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Abstract

We present, using three-dimensional Particle-In-Cell simulations, an observation that orbital

angular momentum is transferred to resonant electrons proportionally to longitudinal momentum

when Laguerre-Gaussian plasma waves are subject to Landau damping. A higher azimuthal mode

number leads to a larger net orbital angular momentum in particles travelling close to the phase

velocity of the plasma wave, implying a population of electrons that are orbiting the same centre

of rotation as the plasma wave. This observation has implications on magnetic field excitation

as a result of the formation and damping of OAM plasma waves. The energy distributions of

electrons in damping Laguerre-Gaussian plasma waves are significantly changed as a function of

azimuthal mode number. This leads to larger numbers of lower energy particles tending towards a

mono-energetic bunching.
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I. INTRODUCTION

Electromagnetic waves carrying orbital angular momentum (OAM), described as Laguerre-

Gaussian solutions to the paraxial equation in cylindrical geometry [1], have a variety of

applications in optics with low-intensity beams for compact storing of information, nano-

scale imaging and manipulation [2]. More recently applications at higher intensities are

showing the potential of OAM light in particle focusing and acceleration, and generation of

strong plasma waves, and quasi-static magnetic fields [3–6].

A proper description of the propagation of electromagnetic waves with OAM through a

plasma requires the understanding of excitation and evolution of electrostatic waves (plas-

mons) carrying OAM [7]. In addition to this, these OAM plasmons may have applications of

their own, as several studies [8, 9] show, for the generation of complex quasi-static magnetic

fields.

The description of OAM plasmons damping requires the kinetic framework. However, the

Laguerre-Gaussian (LG) functions are not the eigenfunctions of the electron kinetic equa-

tion. For this reason, a simplified consideration [10] leads to an inaccurate expression of

the dispersion, and thus the phase velocity, and damping of these waves even in the linear

regime. A more consistent approach using the expansion on the paraxial parameter – the

ratio of the plasma wavelength 2π/k to the radial width of the wave packet wb (or more

conveniently written as 1/kwb) - leads to dispersion and damping coefficients being shown

to be strongly mode dependent in certain regimes[8].

For an electron, with a sufficiently small initial velocity v, travelling through a low am-

plitude plasma wave, the electric field of an OAM plasma wave reversibly transfers linear

momentum and orbital momentum to the particle during one half cycle and then back in

the second. When the plasma wave is damped this symmetry is broken and momentum,

both linear, and possibly orbital angular momentum, can be transferred. Calculations have

been performed previously to find the proportion of angular momentum transferred from the

electrostatic wave to individual particles [11]. Our aim is to study the irreversible transfer

occurring via Landau damping in the non-linear regime where particle trapping can occur.
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II. LINEAR THEORY

A. OAM Plasma Waves

To aid in understanding of the work carried out in this study we briefly restate the for-

malism used for description of OAM plasma waves [8]. Firstly we consider a small amplitude

plasma wave described by an electrostatic potential Φ and electron distribution function f

related by the Poisson equation:

∇Φ =
e

ε0
δne =

e

ε0

∫

dvδfe, (1)

where the solutions to the paraxial equation in the limit 1/kwb,0 � 1, are of the form:

Φ(z, r, θ, t) =
∑

p,l

φp,lFp,l exp(−iωt+ ikz + ilθ + iψp,l + iqX), (2)

f(z, r, θ,v, t) =
∑

p,l

fp,l(v)Fp,l exp(−iωt+ ikz + ilθ + iψp,l + iqX). (3)

Here q is the term for front curvature, X = r2/w2
b is the normalised radial coordinate, and

ψp,l is the Gouy phase. For this study we only consider a parallel propagating plasma wave

(the beam waist wb is considered constant) and so only consider the structure within the

Rayleigh zone |z| � zR, such that the contributions of q and ψp,l are ignored. Fp,l is the

Laguerre-Gaussian function given by:

Fp,l(X) = Cp,lX
|l|/2L|l|

p (X)e−X/2, (4)

L
|l|
p is a generalised, or associated, Laguerre polynomial with radial mode integer p ≥ 0 and

azimuthal mode integer l, and Cp,l =
√

p!/(|l|+ p)! is a normalisation factor to ensure that

solutions are orthonormal. However, as presented in Ref. [8] for the Vlasov equation, the

solutions given in Eq. (2) are not plasma wave eigenmodes and so neighbouring modes are

in fact coupled in higher orders of the paraxial parameter 1/kwb.
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B. Electric Field

For simplicity we consider here a structure of a single mode p and use the electric potential

given in Ref. [8] containing only one term characterised by the amplitude φp,l:

Φ(z, r, θ) = φp,lFp,l(X) cos(kz − ωt+ lθ), (5)

where the radial part is given by the function Fp,l(r
2/w2

b ) (4). The electric field is found by

taking the gradient of the potential:

Ez = E0Fp,l(X) sin(kz − ωt+ lθ), (6)

Eθ =
lE0

kwb

X−1/2Fp,l(X) sin(kz − ωt+ lθ), (7)

Er = −2
E0

kwb

X1/2F ′
p,l(X) cos(kz − ωt+ lθ), (8)

where E0 = kφp,l is the amplitude of the axial electric field. The axial field dominates, the

transverse fields are smaller by a factor 1/kwb. When looking at Eqs. (7) and (8) one can

immediately observe from these two equations that there is a ratio of Eθ/Ez = l/kr.

A previously published calculation [11] has been performed to find the momentum gain from

the electron equation of motion in an electric field described by Eqs. (6), (7), and (8). This

calculation is made assuming a small first order change, which would still be in the realm

of a small deviation occurring per plasma oscillation. These calculations yield a ratio of

∆vθ/∆vz = l/kr, or considering the change in radial position as well ∆(rvθ)/∆vz = l/k. If

we consider the change in orbital angular momentum, then ∆lz/∆pz = l/k where ∆lz is the

change in specific orbital momentum about the axis z.

III. NUMERICAL SIMULATION SETUP

A. Plasma Wave Amplification

For this study the particle-in-cell (PIC) code OCEAN [12] is used. To create a sta-

ble plasma wave a similar initialization to that described in Refs. [8, 11] can be used to

adiabatically drive a plasma wave for a small number of oscillations. An electric field is

volumetrically imposed according to Eqs. (6), (7), and (8). Several simulations are run,

each for a single mode, the first with a standard Gaussian profile, with l = 0 and p = 0,
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the remaining three simulations with p = 0 and an l = 1, 2 and 4. The simulation box

boundaries are reflecting on the transverse edges, to preserve any OAM particles may have

gained, and periodic along the wave propagation axis in order that the wave can be excited.

For these simulations a plasma is set up so that a cold phase velocity of ωpe/k = 0.53 c is

chosen, with an initial temperature Te = 0.03 mec
2 such that vth = 0.173 c. Here, ωpe is

the plasma frequency and vth =
√

Te/me is the electron thermal velocity. The resolution

and temperature are set so that λDe = 1.208 ∆x and the time-step ∆t = 0.01318 Tpe, where

λDe = vth/ωpe is the plasma Debye length and Tpe = 2π/ωpe is the plasma wave period.

The grid resolution is observed to be sufficient to ensure energy conservation and other non-

physical effects for at least 4000 δt. The plasma wave transverse width is wb = 0.95 λpe,

where λpe = 2π/k is the plasma wavelength, so that the paraxial parameter is kwb = 6.

The waves are initially driven with the described electric field over 5 periods with a dimen-

sionless amplitude eE0/meωpec = 0.08 (e being the electron charge, me being electron mass,

and E0 being the amplitude of the electric field). The amplitude of the plasma waves reach

only eE0/meωpec ∼ 0.025, due to a slight mismatching between the phase of the imposed

electric field and the plasma response, and due to the damping of the wave occurring during

the amplification process. Despite these losses the total energy of each plasma wave mode

produced in this way vary less than ∼ 3% from the mean of the total energy of all of the

plasma waves.

The simulation parameters are chosen foremost with the aim of studying the wave-particle

interaction in three dimensions (3D) and being achievable computationally whilst also not

having a Landau damping rate so high that no plasma wave survives. With the second

concern being having some Landau damping at velocities that are observable within the

PIC code given the limited number of particles per cell achievable in 3D. The amplitude

of the wave is also carefully chosen so that the resulting plasma wave is not close to the

wave-breaking regime whilst still being visible above PIC noise.

B. Model for the Tail of Electron Distribution Function

When generating a distribution of electrons in a 3D PIC simulation a good resolution of

higher energy regions of the distribution function, e.g. regions greater than a few standard

deviations from the mean velocity, is necessary in our case. To achieve a reasonable resolution
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for the diagnostics related to the distribution function, for a moderate temperature plasma

(vth � c), the velocity distribution function along the wave propagation axis is split into

three parts: a truncated Gaussian distribution such that the distribution is cut off at −vs <

|vz| < vs and is symmetrical about the mean velocity. Two tail distributions truncated such

that |vz| > vs. For the main body distribution a Box-Mueller transform can be used to

generate a Maxwellian distribution followed by a simple accept-reject method to make the

cut-offs at the ±vs edges of the distribution. For the last two parts the method described in

chapter 9, by Devroye [13], for sampling a Gaussian tail distribution is efficient enough that

it can be employed to generate the two tail distributions for a split value of vs = 2.5 vth.

When tested using a plasma wave with vph = c, so that no damping will occur (as in Ref. [8]),

the simulations with multiple electron species and single species produce identical results.

However, the simulations with lower values of vph ' 3 vth, where Landau damping is expected

to be stronger, with just a single species of electrons were seen to artificially suppress Landau

damping. When testing the number of particles required in the extra species to initiate

damping, a small number were added to each simulation run until the behaviour was seen

not to change significantly from run to run. The electrons in each simulation are split into

two species, with 100 particles per cell for the main-body distribution, and 20 particles per

cell for both tail (±vs) distributions.

For this study only a split along the wave propagation direction is considered, whilst it is

possible to add extra particles in the transverse direction it is not necessary for observing

Landau damping of a wave with a phase velocity such that vph � vth.

IV. SIMULATION RESULTS

A. Non-Linear Landau Damping and Particle Trapping

Finding a regime where linear Landau damping is clearly observable in a 3D PIC environ-

ment, whilst still resolving relevant processes, is extremely challenging. However obtaining

results for a relatively stable non-linear regime is achievable.

The conditions in the presented PIC simulations, along with the extra resolution provided

by the additional particle species, give rise to non-linear Landau damping as the bounce

frequency ωb =
√

eE0k/me ' 0.7ωpe is nly slightly smaller than the plasma frequency. The
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FIG. 1. Phase plots of pz vs. z at different times for the Gaussian beam (left) and an l = 2

Laguerre-Gauss beam, the top row shows the simulations at t = 3.1 Tpe, the second row t = 6.3 Tpe

and the last row at t = 9.4 Tpe after the simulation has started. These plots are calculated by

integrating over the whole range of r and θ. The Gaussian wave clearly shows rotation in the

vz, z space, this is not visible for the Laguerre-Gauss wave until the appropriate variable (vz, z̃) is

selected, where z̃ = z + lθ/k. As there is only a single mode with a single phase velocity in each

simulation rotation is only visible in the positive vz direction.

maximum amplitude achieved in the simulations is lower than the wave-breaking thresh-

old [14] (i.e. eE0/meωpe < vph) and so wave-breaking is not observed. Another non-linearity

to note is that the phase velocity (at the lowest condition for a Gaussian mode ω/k = 0.61 c

from the Bohm-Gross dispersion), while not strongly relativistic (γph = 1.26) will lead to

particles accelerating into relativistic regimes.

While these conditions present more difficulty in analysis and linking to linear theory, they

do provide an interesting test to observe the transfer of OAM from an electrostatic plasma

wave to higher energy particles. The rotation in phase space (vz, z)for non-linear Landau

damping is observable in Fig. 1, while the rotation is clearly observable in the Gaussian case

as we can integrate over the whole transverse plane. In the higher LG modes this rotation

is not visible at all, however if the phase space is ’untwisted’ so that the axial coordinate is

chosen as z̃ = z + lθ/k, the rotation is visible.

There are three distinct periods of time during the simulations which need to be considered.
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The first period t = 0− 5 Tpe, is the time during which the plasma wave is amplified, with

an increase in energy for both fields and particles. The second period t = 3 − 4 Tpe can

be defined as a span of time, where quasi-linear Landau damping occurs (e.g. the wave

dampens but at a slower rate than expected). Here the EM energy decreases, while the

particle energy rises at the same rate. The final period t > 8− 9 Tpe, being the span of time

where there is a dynamic exchange between the EM field energy and particle energy. As the

damping rate is dependent on the gradient of the distribution function around the phase

velocity, it can be expected that the distribution function is flattened out around the phase

velocity starting during the second period and completing in the third period, this can be

seen in Fig. 2.

A measurement of the reduction in the phase velocity can then be used to confirm the

non-linear behaviour of Landau damping. It means a feedback on the wave phase velocity,

which is reduced as the density of resonant particles decreases [15]. The phase velocity can

be calculated by measuring the frequency of the wave by taking the Fourier transform over

the time domain in the electric field measured at several points in space. When taking the

longitudinal electric field Ez the measured value is ω/ωpe = 1.12 ± 0.005 (or vph = 0.59 c

assuming constant k), which corresponds to a plasma frequency lower than the Bohm-Gross

dispersion predicts, which is also lower than the dispersion calculated in Refs. [8, 11].

The average transverse transit time (vth) of an electron accross the plasma wave is approxi-

mately 6 Tpe, while the approximate bounce period is ∼ 1.4 Tpe. This indicates, that while

particles will remain trapped for some time, there is some irreversible loss of energy from

the wave to trapped particles.

There are two caveats to note while analysing the numerical results obtained in the setup

described above. The first caveat is that the theory developed in previous works [8, 11] sup-

poses, for simplicity, a simple Maxwell-Boltzmann distribution, which given the magnitude

of the phase velocity vph ∼ 0.6 c may not be sufficient. Moreover, the Landau damping rate

is a function of the gradient df/dvz around the resonance region vz ∼ vph, which is slightly

shallower in the Maxwell-Boltzmann distribution when compared to the more realistic (at

least for higher Te) Maxwell-Jüttner distribution.

The second caveat is that there are a finite number of particles in a periodic box. In this

case the alteration of df/dvz
∣

∣

vph
is much more significant as the gradient parallel to the wave

propagation direction becomes flattened around phase velocity vph and so less momentum
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FIG. 2. Distribution of the velocity in the axial direction (top) and distribution of energy (bottom)

at time t = 5 Tpe when oscillations after amplification has finished. The solid light grey line shows

the initial conditions for the simulations. The red dotted line shows the distribution for the

Gaussian wave simulation, the cyan line for the case of LG mode l = 1, the green dashed line for

l = 2, and the solid blue line for l = 4. The vertical dashed black line in the top plot shows the

magnitude of the measured phase velocity. The vertical dashed grey line in the bottom plot shows

Ek = 0.35 mec
2 relevant to Fig. 3.

is transferred from the electrostatic wave to the particles.

This may lead to a significant problem in comparing the measured phase velocity and

damping rate that occurs in simulations like this to theoretical models, which assume fixed

distribution functions. In this situation an appreciation of how momentum is transferred

from the wave to the particles is possible and presented below.

B. Energy Distribution

It is important to note that in each simulation the same amount of energy is input via the

amplification process, the same temperature is initially selected, and that the distribution

function for particles with energies less than ∼ 0.35 mec
2 remain unchanged throughout the
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length of the simulation (some 2000+ time steps). Despite the fact that the low energy

particle behaviour is similar in each simulation the distribution of particles with energies

higher than 0.35 mec
2 is quite different, both in the amount of energy each particle has

(though the total energy is roughly constant) (see Fig. 2), and the distribution of that

energy amongst the three components of velocity vz, vθ, and vr (see Fig. 3).

In each of the simulations the gradient in the energy distribution around the high energy

region (Fig. 2) starts to decrease almost immediately as the plasma-wave is amplified, after

approximately 3−4 periods after the amplification of the wave (approximately 8−9 plasma

periods, a steady state is reached where the energy transfer between the electric field and

the particles becomes reversible and the rate of change of both becomes zero.

The distribution of energy in the high energy tail is significantly different depending on

the mode chosen (see Fig. 2), with the Gaussian mode promoting fewer particles to higher

energies (with a maximum ∼ 0.7 mec
2), whilst the modes with larger mode numbers have

larger numbers of particles accelerated but to lower energies (with a maximum of∼ 0.55mec
2

in the case where l = 4). An interesting point to note is the reduction in the number of

particles with very high energies at higher l, with l = 4 the distribution of energy of the

accelerated particles looks closer to mono-energetic than those with lower mode numbers.

C. Momentum Distribution

The largest differences in resonant electron behaviour between the modes are apparent

when looking at the distribution of momentum when resolved into axial pz, azimuthal pθ,

and radial pr components.

There does appear to be a structure to the assignment of angular and radial momentum

when momentum is transferred from the electrostatic wave to the trapped particles. Figure 3

shows plots of vz, vθ, and vr, from this it is clear to see that with increase l there is a decrease

in 〈vz〉 with a corresponding increase in 〈vθ〉. While 〈vr〉 = 0 the spread of the momentum

increases slightly as a function of l, this change is noted to increase very slowly over time,

unlike vz and vθ, it is possible that this is a ponderomotive effect (as the gradient of the

radial electric field is dependent on l) that leads to particles leaving the plasma wave. This

happens much later in time and so no conclusions are drawn about 〈vr〉, or from later in the
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FIG. 3. Velocity distributions for particles with energies over Ek > 0.35 mec
2, split into the axial

z direction (top), azimuthal θ direction (centre), and radial r direction (bottom). This plot uses

the same line styles as in Fig. 2, where the red dotted line represents the l = 0, the cyan dashed

line the l = 1, the green solid line l = 2, and the blue broken line l = 4. The vertical lines show

the average velocity for each component except the bottom plot where 〈vr〉 = 0 for all simulations.

The lines shown here are smoothed using a moving average over 5 bins.

simulation (past ∼ 20 Tpe).

The values for 〈vz〉 and 〈vθ〉 can be seen in the second and third columns in Table I.

D. Angular Momentum Transfer

The average angular momentum would for a non-rotating plasma wave, be equal to zero.

However as can be seen in the middle plot of Fig. 4 for plasma waves with non-zero azimuthal

mode numbers the average is non-zero.

The distribution of particles as a function of rvθ = lz/γme can be seen as the upper most
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TABLE I. Mean Variables

Mode 〈vz〉 (c) 〈vθ〉 (c) 〈rvθ〉vz=vph

number l ±× 10−2 ±× 10−2 ×10−3(c2ω−1
pe )

0 0.72 0.00 0.0± 1.0

1 0.69 0.11 0.4± 0.4

2 0.68 0.17 1.0± 0.5

4 0.66 0.23 3.0± 1.5

TABLE II. Average velocity and orbital momentum components as a function of azimuthal mode

number l, the averages in the second and third columns are plotted in Fig. 3, the averages and

errors are calculated from Gaussian function fits. The fourth column shows the average 〈rvθ〉vz=vph

with errors obtained from the fits taken in Fig. 4.

plot in Fig. 4. It is convenient to plot the negative and positive rvθ overlaid so that the

relative amount of rvθ can be readily observed. For values of rvθ in the range 0.55 → 0.75 a

net positive orbital angular momentum can be seen, whilst above a certain threshold (∼ 0.73

for l = 4, ∼ 0.74 for l = 2, and ∼ 0.75 for l = 1) orbital angular momentum is negative.

The calculations performed in Ref. [11] suggest a linear relationship between the ∆pz and

∆lz as a function of the azimuthal mode number. Ideally to confirm this relationship a

sum over the distribution function for the entire box would be calculated, however the level

of noise in the main bulk of the plasma renders the errors on the sum too large to draw

conclusions. Picking a specific velocity allows for a single point of comparison, for this a

velocity equivalent to the measured phase velocity of the plasma waves (vph/c = 0.59±0.01)

is taken 〈rvθ〉vz=vph . This is plotted in at Fig. 4, while a conclusion that the relationship

between rvθ and l is linear can be drawn, the errors on the actual readings are too large to

confirm the linearity (see Table I), however there is a definite increase in rvθ as a function

of mode number.

V. CONCLUSIONS

There are several conclusive observations that can be made from this study. The first,

and most significant, is that particles are observed to be trapped in OAM plasma waves.
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FIG. 4. Plots showing diagnostics of rvθ (or lx/γme) at a time t = 6.3 Tpe. The upper plot shows

the distribution of the electron angular momentum rvθ split into positive and negative parts (× for

positive, ◦ for negative): the red dotted line corresponds to the Gaussian mode, the cyan dashed

line to l = 1, the green solid line for l = 2, and the blue broken line shows the l = 4 case. The

central plot shows 〈rvθ〉 as a function of vz. The solid black vertical line is the phase velocity

vph = 0.59, the straight solid lines show associated fits to each case. The bottom plot shows a

single 〈rvθ〉 at a point vz = vph from the fits shown on the middle plot as a function of l with a

linear best fit.

These trapped elecctrons are shown to be trapped in a phase space with the same twisted

geometry as the OAM plasma waves themselves. Fig. 1 shows the same rotation in phase

space for OAM plasma waves as is seen with planar waves when the space is transformed

to take into account the rotation of the OAM.

The second conclusion worthy of note is that the energy distributions of electrons in damp-
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ing Laguerre-Gaussian plasma waves are significantly changed as a function of azimuthal

mode number. This leads to larger numbers of lower energy particles tending towards a

mono-energetic bunching, see Fig. 2.

The third is that angular momentum is transferred from the plasma wave to the resonant

electrons when Laguerre-Gaussian plasma waves are subject to Landau damping. In ad-

dition this transfer of OAM is proportional to the transfer of longitudinal momentum, see

Fig. 3.

Lastly, it is observed, from results shown in Fig. 4, that the damping of a plasma wave

with a higher azimuthal mode number leads to a larger net orbital angular momentum lz in

particles travelling close to vph. This implies the existence of a population of electrons, with

a longitudinal velocity close to the phase velocity of the plasma wave, that are orbiting the

same centre of rotation as the plasma wave.
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