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ABSTRACT

Recent literature has demonstrated that the use of per-channel
energy normalization (PCEN), has significant performance
improvements over traditional log-scaled mel-frequency
spectrograms in acoustic sound event detection (SED) in
a multi-class setting with overlapping events. However, the
configuration of PCEN’s parameters is sensitive to the record-
ing environment, the characteristics of the class of events of
interest, and the presence of multiple overlapping events
[1]. This leads to improvements on a class-by-class basis,
but poor cross-class performance. In this article, we experi-
ment using PCEN spectrograms as an alternative method for
SED in urban audio using the UrbanSED dataset, demon-
strating per-class improvements based on parameter config-
uration. Furthermore, we address cross-class performance
with PCEN using a novel method, Multi-Rate PCEN (MR-
PCEN). We demonstrate cross-class SED performance with
MRPCEN, demonstrating improvements to cross-class per-
formance compared to traditional single-rate PCEN.

Index Terms— Acoustic noise, acoustic sensors, acoustic
signal detection, signal classification, spectrogram.

1. INTRODUCTION

Noise suppression is a critical step in acoustic signal detec-
tion, particularly so in the case of practical sound event detec-
tion (SED) in field recordings. Popular approaches to this task
use convolutional operators, mimicking the methods used in
computer vision [2]. When using audio as an input to these
methods, the images are typically time-frequency representa-
tions (spectrograms). Traditionally, log-scaling is the primary
approach for noise reduction, and is the standard approach
when spectrograms are the feature of interest. For single-
source audio in clean acoustic environments, this is sufficient
for SED.

However, real world environments typically don’t have
clean, separated events of a single class; this is particularly
true in the case of urban audio. Field recordings often have
multiple sound sources of varying acoustic qualities, leading
to varying cross-class performance. Furthermore, the intro-

duction of auditory deformations can lead to rapid perfor-
mance degradation [3].

Former research has proposed using per-channel energy
normalization (PCEN) as a time-frequency representation to
mitigate the effects of background noise, demonstrating its
use as an input to convolutional methods in SED. PCEN has
proven beneficial in various single-source tasks, including
bioacoustic event detection [1], keyword spotting [3], and
vocal detection in music [4]. The per-channel background
suppression characteristics make PCEN an attractive choice
in SED in urban environments, as background noise in urban
environments tends to be Brownian, rather than Gaussian, an
assumption made when log-scaling spectrograms [5].

One constraint of PCEN is its dependence on parameter
configurations in relation to the specific acoustic properties
of the sound event of interest [6]. This makes PCEN poorly
suited for multi-class classification, as a given PCEN param-
eter configuration will likely suit only one particular class of
sound events while performing poorly across other classes.
In this article, we demonstrate the effectiveness of PCEN for
SED in urban environments. Furthermore, we propose a new
approach to acoustic event detection that combines the fore-
ground separation characteristic of PCEN while preserving
multi-class performance: Multi-Rate PCEN (MRPCEN). By
computing a multi-layered PCEN spectrogram at different pa-
rameter configurations, we gain the advantages of PCEN, par-
ticularly robustness to varying acoustic conditions and au-
ditory deformations without the performance loss associated
with cross-class performance.

2. AUDIO REPRESENTATION

While log-scaling mel-spectrograms is a simple and computa-
tionally efficient method of range compression, it has limited
effects in certain conditions, particularly those in which back-
ground noise is non-Gaussian noise. PCEN has been used as
a pre-processing method for time-frequency representations
that reduces the effects of noise on convolutional neural net-
works by Gaussianizing the distribution of magnitudes across
mel-frequency spectrogram coefficients [3].
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Fig. 1. A comparison of standard SED audio featurizations
compared to Multi-Rate PCEN. Note the unevenly distributed
noise in the log-mel spectrogram, with more noise in the
lower end of the spectrum (due to Brown noise found in urban
environments), which is removed in the PCEN spectrogram.

2.1. PCEN

PCEN is a sequence of audio processing steps on a spec-
trogram E(t, f) using adaptive gain control scaled by the
response an autogregressive filter φT , followed by dynamic
range compression. It takes the form:

PCEN(t, f) =

(
E(t, f)

(ε+ (E ∗ φT )(t, f))α
+ δ

)r
− δr (1)

The gain α scales the smoothing of the spectrogram. δ and r
are the bias and power of the dynamic range compression that
PCEN provides. We can see that the filter response M(t, f) =
(E ∗ φT )(t, f) scales our PCEN magnitude by:

M(t, f) = (E ∗ φT )(t, f) = sE(t, f) + (1− s)M(t− τ, f)
(2)

where 0 < s < 1 is the weight of 1st order autogregressive
filter (AR(1)), and τ is the discretized step defined by the hop
size of the input spectrogram (ε is an offset term). The re-
sulting filter is a low-pass filter of 0dB gain and a cuttoff fre-
quency of ωc = 2πτ

T = arccos (1− s2

2(1−s) ) at 3 dB, and
sidelobe falloff of 10 dB per decade near ωc [6].

We consider this filter response M(t, f) an approxima-
tion to the relative magnitude of stationary background noise
at each frequency band f . The effect of scaling our output
PCEN spectrogram by the reciprocal of this response is am-
plifying/magnifying the response of foreground events and
suppressing background events on a per-channel basis. In
regimes where the background noise isn’t Gaussian, such as
the case with Brownian noise in urban environments, this
decorrelates noise across different frequency bands.

A critical tuning parameter of this smoothing of the au-
toregressive filter is the rate parameter T , which defines the

cutoff frequency by ωc = 2πτ
T . Setting T too low will re-

duce the noise reduction effects of PCEN, but setting it too
high will suppress the sound event of interest, especially if
the sound event of interest is stationary. Prior practical rec-
ommendations for the rate parameter are defined by the sta-
tionarity of the sound, the frequency range, and the chirp rate.
For single sources in a consistent acoustic environment, tun-
ing the rate parameter T to these specifications proves suffi-
cient for audio detection and classification tasks [6].

2.2. Multi-rate PCEN

In a field setting, with several audio classes with varying
acoustic properties and variable recording conditions, a sin-
gular ideal value for T is much harder to identify. For ex-
ample, in the case of urban audio, the combination of short,
fast decay sounds (such as gunshots or dog barks) compared
to longer ambient sounds (e.g. sirens, air conditioners) lead
to widely varying preferred values of T . To capture infor-
mation across varying regimes of our rate parameter, T , we
take inspiration from 3-channel RGB images in computer
vision. These three separate but correlated feature maps can
be passed to a convolutional neural network (CNN) which
can use this multi-frequency image to make predictions that
a black-and-white image could not.

We replicate this multi-regime approach, but instead of
frequency responses, we vary our rate parameter T in each
layer, as shown in figure 1. Each ith layer of the image has
a differing level of gain control applied based on the cutoff
threshold from Ti. By using multiple logarithmically-scaled
values of Ti, we can produce a multi-layered image that cap-
tures information of sounds at varying decay lengths. This
ensures that sound events that may be suppressed using one
value of Ti will be preserved in another. The resulting multi-
channel image can be used as an input to a CNN much like
a multi-channel color image is used in machine vision. By
incorporating information at varying degrees of gain control,
our model preserves the robustness of PCEN without degrad-
ing multi-class performance.

3. EXPERIMENTAL DESIGN

3.1. UrbanSED

We used the UrbanSED dataset to evaluate the performance
on this method for the task of sound event detection[5]. Ur-
banSED contains 10,000 synthetic soundscapes of 10 distinct
sound classes, with each class having approximately 1000
instances per class, drawn from the UrbanSound8K dataset.
Each soundscape contains 1-9 time/class labeled foreground
events with additive background Brownian noise. The dataset
is pre-split in a 6-2-2 training, validation, and evaluation sub-
sets. Because UrbanSED is synthetic, we can ensure no spu-
rious unlabeled audio is included in the soundscapes, making
it a standard benchmark for state-of-the-art SED models.
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3.2. Data augmentation

Because one of the primary predicted benefits of PCEN is
improved robustness to audio deformations, we augmented
our dataset with several reverberant duplicates of UrbanSED.

In this implementation, reverb is modeled as a convolu-
tion of a source signal and an impulse response of a given
acoustic environment. Augmenting a given audio clip with
reverb is done by computing the convolution of the impulse
and the audio file. This effectively computes the response
of the audio clip in the acoustic environment associated with
the impulse. We used 6 distinct reverb responses, three im-
pulse responses recorded in different acoustic environments,
and three synthetic impulse responses of white noise with an
exponential decay envelope e−t/τc .

The three real impulse responses were recorded in a bed-
room1, an alleyway2, and a tunnel3, each with increasing de-
cay times. The three synthetic impulse responses had decay
time constants τc of 0.1s, 0.3s, and 0.5s. In addition to reverb
augmentation, we also duplicated our dataset by pitch shifting
each sample by {±1,±2} semitones. We applied pitch shifts
and convolutional to reverb to our dataset using using MuDA,
a library for musical data augmentation [7].

3.3. Audio featurization

Training audio was processed using librosa 0.7.2 [8] which
generated a PCEN spectrogram for each audio sample and
rate parameter T . Each spectrogram had the following pa-
rameters: sampling rate 44.1kHz, window size 1024 samples,
hop length 512 samples, and 128 mel-frequency bands. Our
resulting frame rate was 44.1kHz/512 ≈ 86Hz. At a 10 sec-
ond length sample length, each spectrogram had a horizontal
length of 862 samples per band.

Our rate parameters were 10 logarithmically spaced val-
ues, ranging from 20 = 1 to 29 = 512, corresponding to
averaging over windows ranging from 10ms to 6s. The adap-
tive gain control bias was set to ε = 10−6, the gain was
set to α = 0.98, the dynamic range compression bias was
set to δ = 2, and the compression power r = 0.5 for all
rate configurations; these parameters were chosen based on
prior work in audio classification [1]. Each audio sample had
10 PCEN spectrograms, one per rate parameter. Individual
layers/subsets were selected in training and evaluation. Fol-
lowing the channels-last conventions of Keras, the resulting
PCEN spectrograms have the shape of (128,862,10), and the
resulting log-mel spectrograms had a shape (128,862,1).

3.4. Network architecture

The network architecture is inspired by the L3 audio sub-
network [9] for discriminative audio-video correspondence

1“My Bedroom”, https://freesound.org/people/Uzbazur/sounds/382907/
2“alley.wav”, https://freesound.org/people/NoiseCollector/sounds/126804/
3“tunnel 2013”, https://freesound.org/people/recordinghopkins/sounds/175358/

embeddings. This architecture has demonstrated success in its
use for classification and predictions at a fine time-resolution
with mel-spectrogram inputs[2]. We follow the implemen-
tation of this architecture found in [2], with the input layer
adjusted to accept multi-layer images to ensure that all meth-
ods were being evaluated on near-identical architecture. Ad-
ditional parameters in the input layer may lead to lower per-
formance due to additional depth requirements, but this is as-
sumed to be negligible for this application.

Models were built and trained using Keras 2.3.1 [10],
with Tensorflow 2.2.0 [11]. The model was trained using the
Adam optimizer [12], using UrbanSED’s pre-folded training
and validation sets. The loss function was binary cross-
entropy on a per-class per-frame bases. The validation metric
was accuracy. If no improvement in the accuracy was seen in
10 epochs, the learning rate would be reduced. Early stop-
ping was implemented if no improvement was seen after 30
epochs. Evaluation was handled via the sed eval package
[13], which computed segment-based classification metrics,
including precision, recall, and error rate. We used the F1-
score, the harmonic mean of precision and recall, as our main
metric of effectiveness. These metrics were computer both
per-class and overall. For reproducability, the implementa-
tion and experimental framework, including data preprocess-
ing, model training, and evaluation, is publicly available on
github4.

3.5. Data preparation

We trained and evaluated models across multiple datasets to
test robustness and stability to audio deformation. We pri-
marily used the dry dataset as our baseline dataset, which
was UrbanSED with no reverb augmentation, to ensure we
were achieving state of the art performance seen in [2]. The
realreverb set is built from the reverb-augmented audio us-
ing the 3 real recorded impulse responses, and is the pri-
mary set we evaluate, as this is closest to real-world con-
ditions. The simreverb set, using the remaining 3 synthetic
impulse responses, demonstrated the strongest separation be-
tween PCEN and log-mel models, but the results don’t gener-
alize as well as when using real impulse responses. All mod-
els were trained on data augmented by {±1,±2} pitch-shifts,
but were validated and evaluated on non-shifted data.

3.6. Rate parameters

We trained and evaluated models on fixed sets of rate param-
eters. We experimented with single rate parameter models
and varying sets of multi-layered models, each with rate con-
stants in Tk = 2k for k ∈ {0, 1, ..., 9}. We tested a total of
44 unique rate parameter configurations for our PCEN mod-
els. This included single-rate parameter models and n-layer
models including rate parameters from Ti to Ti+n−1. As a

4https://github.com/ChrisIck/pcen-t-varying
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Fig. 2. F1-score of single-rate PCEN models at various T
values (blue dots), compared to 8-layer MRPCEN (dashed

green) and log-mel (dotted red) models evaluated on the 100

bootstrapped samples of the realreverb dataset.

baseline, we also computed a model using a traditional log-

scaled mel-spectrogram, as seen in previous literature for this

application and dataset [2].

3.7. Training and evaluation

Each set of models was trained and evaluated on both datasets

to see how stable each model was to reverberation conditions

that were both contained in the respective training dataset, as

well as in conditions distinct from those in the training set.

Evaluation was done on bootstrapped subsamples of each eva-

lution set, sampling 100 evaluation examples with replace-

ment, 100 times per model and dataset. Evaluations were

completed both in overall micro-averaged performance met-

rics across classes, as well as on a per-class basis.

4. RESULTS

4.1. Per-class performance

We demonstrate PCEN’s robustness to noise by comparing

performance of models trained and evaluated on the realre-
verb dataset. We see in figure 2 that single rate PCEN demon-

strates performance at or above log-scaled spectrograms, de-

pending on its choice of rate parameter T and the class of

the target event. Certain classes, like the jackhammer and

gunshot classes, prefer higher T values in the neighborhood

Model Overall F1

(realreverb)

Overall F1

(simreverb)

Overall F1

(All Data)

Logmel 0.334 0.175 0.274

PCEN 0.345 0.167 0.268

MRPCEN 0.356 0.204 0.285

Table 1. Overall Micro-averaged F1 Scores on the realreverb
and simreverb datasets

of T = 27 where mid-low frequency is filtered out with the

adaptive gain aspect of PCEN. Similarly, for higher and full-

band frequency stationary events, such as air conditioners and

sirens, lower values of T in the neighborhood of T ∈ [21, 23]
perform better, as the low-frequency noise doesn’t interfere

with the relevant frequency bands. However, it is crucial to

note that due to the diversity of sonic characteristics of these

different classes, there does not exist a single ideal value of T
that produces the strongest performance overall.

4.2. Cross-class performance

MRPCEN successfully outperforms most single-rate models

in cross-class performance, as seen in figure 2. The plot

shows per-class performance of each model evaluated on

the realreverb dataset, compared to a log-mel based model

and an 8-layer MRPCEN. In comparison, MRPCEN model

preserves information at multiple rates, it consistently per-

forms at or above the majority of the single rate models.

Furthermore, MRPCEN performs at or above the level of

the standard log-mel spectrogram with the exception of the

“car horn” and “jackhammer” classes, providing it with the

highest overall performance metric on this dataset (compared

to the strongest performing single-rate PCEN model T = 21)

in table 1.

5. CONCLUSION

The results here show PCEN as a viable alternative to log-mel

spectrograms, showing equivalent or improved performance

depending on rate parameter choice, which in turn depends

on the acoustic characteristics of the target sound event and

acoustic environment. We can also see that MRPCEN pro-

vides cross-class performance improvements over single-rate

PCEN models. MRPCEN permits simultaneous prediction of

differing classes with distinct acoustic characteristics in a sin-

gle model. In a field setting, this will lead to less per-class

knowledge and tuning expertise needed to effectively deploy

a model that can perform well in multi-class applications.
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