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Abstract. Crop monitoring using synthetic aperture radar requires an understanding of how
dynamic crop features influence radar response. We use crop parameters from the decision
support system for agrotechnology transfer (DSSAT) model, a dynamic crop growth model,
as inputs to the Michigan microwave canopy scattering (MIMICS) model, a radiometric model,
to simulate radar scattering from selected wheat, rice, and corn fields in Yolo County, California,
during 2015. We compared DSSAT-MIMICS modeled backscatter to Sentinel-1A backscatter
and conducted sensitivity analyses to examine crop features that influence backscatter. For each
crop, DSSAT-MIMICS modeled VV (vertically transmitted and received) backscatter was cor-
related to Sentinel-1A a(\),v (mean R-value = 0.76, p < 0.05), root-mean-square error <2 dB, and
a model bias between —0.23 and 0.99 dB. However, there were not sufficient Sentinel-1A VH
(vertically transmitted and horizontally received) backscatter observations to robustly evaluate
DSSAT-MIMICS modeled VH performance. The sensitivity analyses revealed modeled back-
scatter was most responsive to wheat and rice stems, and corn leaves. Using the analyses, we
developed a crop growth index that normalizes Sentinel-1A backscatter to modeled backscatter
and mapped corn, rice, and wheat variability, identifying high and low crop growth in fields. This
research contributes to the potential application of Sentinel-1A for crop monitoring. © 2020
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.14.044508]
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1 Introduction

Assessing crop and field conditions in a timely manner remains a challenge to agricultural
management. This includes field conditions presowing, tracking growth stage and health, and
within-field discrimination of crop development and stress. Accurate assessment of crop growth
and field conditions can improve yield forecasts and enhance farm management practices.'”
Common monitoring efforts include field and airborne surveys, which can provide highly accu-
rate measurements. However, field surveys can be difficult to perform over large areas and
airborne surveys can be expensive and difficult to sustain throughout a growing season.’

Satellite-based remote sensing has the potential to improve the spatial and temporal scales of
agricultural monitoring, essential to maintaining food production, and transform agricultural
monitoring by enhancing large-scale understanding of crop dynamics across broad regional
scales.® Optical/infrared (IR) remote sensing satellites are common choices to monitor agricul-
tural fields but are limited to daytime and cloud-free conditions that can give rise to gaps in
multitemporal monitoring.** Additionally, vegetation indices derived from optical/IR measure-
ments, such as the normalized difference vegetation index, provide limited information on crop
conditions.’
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As an alternative, the availability of active microwave remote sensing datasets has signifi-
cantly advanced with respect to the needs of agricultural monitoring owing to the launch of
several space-based synthetic aperture radar (SAR) satellites. The advantages of SAR over opti-
cal/IR include independence from sunlight, thereby allowing for day and night coverage of the
land surface throughout the year, in addition to “seeing” through cloudy conditions and atmos-
pheric aerosols.*”* C-band (~5 GHz) SAR backscatter is sensitive to the entire crop canopy
volume and to the moisture content of both the soil surface and canopy.*’ The launch of the
C-band Sentinel-1A/B SARs has established a capability for routine, sustained monitoring of
agricultural areas with SAR. This supports SAR monitoring of crops at spatial resolutions com-
parable to Landsat—tens of meters with weekly revisits.!” The high temporal and spatial
resolutions offered by SAR can identify crop growth cycles and generate within-field discrimi-
nation of growth during a growing season, providing a potentially valuable crop monitoring
tool.>!!

The assessment of SAR backscatter sensitivity to various crops and to vegetation and surface
moisture has been well documented. C-band SAR backscatter is sensitive to crop vegetation and
growth, being dominated by vegetation when the leaf area index (LAI) is >0.5, with field geom-
etry (i.e., row spacing and direction) having minimal impact on backscatter, especially at C-band
and shorter wavelengths.*!'>!* Ulaby and Bush'* investigated the ability to monitor a corn field
using a radar spectrometer, acquiring radar backscatter measurements in the range of 8 to
18 GHz. Their study demonstrated a strong correlation between radar and corn canopy water
content. Previously published work has shown C-band radar backscatter to have a positive cor-
relation with increasing LAI and a radar penetration depth limited to the upper canopy.'>"’
Furthermore, these studies revealed C-band radar backscatter is influenced by stages of corn
development, with soil dominating the signal during juvenile corn growth and the canopy
dominating during later stages of corn growth. In contrast, an inverse relationship occurs
between backscatter and wheat growth—backscatter response decreases as wheat biomass
increases.”!® For C-band radar, it was observed that the backscatter response decreased due
to an increase in wheat biomass, and the VV-polarization (vertically transmitted and received)
was more attenuated than HH-polarization (horizontally transmitted and received) owing to the
vertical orientation of the wheat stems interacting more with VV-polarization.'”?* Several
studies'?'>* have shown the unique rice-radar signature interaction when monitored by satel-
lite-borne C-band SARs (European Remote Sensing-1, Radarsat-1/2). As the rice stems emerge
from a flooded field, there is a rapid increase in backscatter due to the increase radar interaction
between the flooded surface and stems. The radar response tends to plateau when maximum rice
biomass has been reached.

Radiometric models have been used to further our understanding of radar scattering from
different crop canopies.’*° The Michigan microwave canopy scattering (MIMICS) model,
a radar backscatter model based on radiative transfer theory, has been used to model the back-
scatter signature and variation from a walnut orchard, verified with scatterometer data.**
Additionally, MIMICS has been applied to model backscatter for wheat, canola® and corn.?**’
In these studies, MIMICS accurately modeled the radar backscatter variation, identifying scat-
tering mechanisms contributing to total backscatter for each crop type and providing an under-
standing of the specific canopy moisture and structural features that influence the total measured
radar signature. Della Vecchia et al.” conducted similar analyses for wheat and corn. Their model,
Tor Vergata, captured the backscatter change, using in-situ corn and wheat field data during a
growing season, and identified the dominant scattering mechanisms from the wheat fields. For
rice, Le Toan et al.,”! Koay et al.,”® Oh et al.,”? and Liu et al.? developed their own models to
explain the radar scattering behavior from flooded rice fields, using in-situ ground data as inputs
to their models. Oh et al. showed how backscatter increased during early rice growth, with a
decrease in backscatter (attenuation) as the rice canopy matured. Liu et al. found rice stems were
important scatterers, with radar responding more to stem attributes than other rice features.

While all of these studies further the understanding of SAR backscatter response from
different crops, they have practical limitations with respect to agricultural monitoring. Many
of these studies rely on field data to interpret SAR radar observations or as inputs to the radio-
metric models used. While field data are suitable for parameterizing and interpreting outputs
from radiometric models, the collection of field data over larger spatial scales is difficult.
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Additionally, radiometric models typically are applied to one crop type and management
approach and use SAR backscatter as an evaluation of modeled backscatter results. The results
from these models generally have not been used to inform on crop growth and conditions with
SAR backscatter or to inform crop management practices. Finally, some of these studies that
retrieve a specific crop parameter (e.g., LAI or biomass) do so by inverting the empirical relation-
ship between the measured in-situ crop parameter and backscatter, making the inversion process
site specific.?!**" In all, these limitations prevent SAR application for agricultural monitoring in
fields in different agricultural regions.

In this study, we evaluate an approach to assess variability in crop fields and growth for three
staple crops—wheat, rice, and corn—using key surface and crop information from a dynamic
crop growth simulation model [Decision Support System for Agrotechnology Transfer (DSSAT)
Cropping Systems Model], instead of observations, for input to the MIMICS model. We com-
pare MIMICS modeled backscatter to an ensemble mean Sentinel-1A backscatter from each
crop field to understand Sentinel-1A backscatter variation from wheat, rice, and corn fields in
Yolo County, California, for October 1, 2014, to September 30, 2015. Specifically, we:

1 Characterize the ability of the DSSAT and MIMICS combined architecture to model
time-series Sentinel-1A radar backscatter response from wheat, rice, and corn fields.

2 Confirm backscatter sensitivity to wheat, rice, and corn canopy parameters, and ground
surface parameters, as established in prior studies.

3 Create a crop growth index (CGI) value that assesses Sentinel-1A backscatter variability
relative to a modeled reference backscatter to map Sentinel-1A backscatter variability in
each crop field area.

The use of the DSSAT-MIMICS combination to provide an assessment of within-field vari-
ability has the potential to advance the application of SAR monitoring and assessment of crop
development. By successfully linking remote sensing signatures to vegetation structure and
moisture via this DSSAT-MIMICS approach, we contribute to the expansion of SAR-based agri-
cultural assessments for improved crop monitoring, forecasting, and potential yield estimates in
food-producing regions.

2 Methods

2.1 Study Location

Yolo County is situated in the Sacramento River Basin in the northern Central Valley of
California (Fig. 1). This county is a well-studied, intensive agricultural region with crops cover-
ing 57% of the total land area (Fig. 1).>' The climate of this area is defined as Mediterranean—
cool, wet winters with hot and dry summers.”” The cumulative sum for precipitation was
36.84 cm for water year 2015 (October 1, 2014, to September 30, 2015), based on Station
6 data from the California Irrigation Management Information System (CIMIS) near Davis,
California. Precipitation fell mainly during the winter months, primarily in December 2014.
Sporadic precipitation events occurred during the summer months with a cumulative total of
0.03 cm. Average air temperatures ranged from a minimum of 3.5°C (winter) to a maximum
of 30.9°C (summer).

We focus our analyses on individual wheat, rice, and corn fields in Yolo County (Fig. 1). We
selected 11 corn (11 acres, 4.45 ha) and 17 wheat fields (17 acres, 6.88 ha) located in the Russell
Ranch Sustainable Agriculture Facility, operated by University of California, Davis.* Russell
Ranch is an experimental farm where field conditions are monitored and controlled, supporting
considerations for determining wheat and corn field conditions and the establishment of some
crop management parameters in DSSAT. The fields we selected were fully watered, defined as
either fully irrigated or as receiving irrigation supplemental to rain.

Rice fields in Yolo County were identified and selected using the U.S. Department of
Agriculture National Agricultural Statistics Service (NASS) 2015 cropland data layer.** Once
the rice fields were located with the cropland data layer, we used the unique radar backscatter
response from rice fields during the early part of the growth phase,*'>*?® a rapid increase in radar
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Fig. 1 (a) Location of Yolo County region (red outline) in the northern Central Valley of California.
(b) Yolo County with Sentinel-1A false-color image (R = VV/G = VH/B = VV; July 23, 2015) with
crop fields marked—diamond marks wheat and corn fields at Russell Ranch and triangle marks
rice fields. (c) Close-up of wheat (brown boxes) and corn (yellow boxes) fields at Russell Ranch.
(d) Close-up of rice fields (red boxes) in eastern Yolo County.

Table 1 Summary of crop management parameters for DSSAT simulations.

Crop Density (#/m?) Row spacing (cm) Depth (cm) Planting date Harvest date
Corn 8 61 7 April 15, 2015 September 15, 2015
Rice 200 25 25 April 15, 2015 September 30, 2015
Wheat 270 16 3 November 15, 2014 March 30, 2015

backscatter as the rice stems emerge and elongate from a flooded field, to identify fields that
were sowed and flooded in May 2015 and to set when rice is flooded for our crop management
parameters in DSSAT (Table 1). In total, five rice fields (63 acres, 25.5 ha) were selected.

2.2 SAR Data and Processing

Sentinel-1A SAR operates at C-band (4 = ~5.5 cm; 5.4 GHz), generating multitemporal dual-
polarization (VV + VH; vertically transmitted and received, and vertically transmitted and
horizontally received) backscatter measurements (69, and 6%;;). Backscatter measurements are
provided at 20-m resolution with a temporal revisit time of 12 days or less depending on
the location.® Sentinel-1A interferometric wide swath level-1 ground range images were down-
loaded from the Alaska Satellite Facility Vertex.*® Sentinel-1A images were selected based on
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each crop’s growing season defined by each crop’s phenology and planting and harvest dates
(Table 1).>”* For wheat, only single polarization (VV) was available during the growing season,
so seven single-polarization (VV) images were used to observe growth. For corn, six single-
polarization (VV) and four dual-polarization (VV 4 VH) images were used to observe growth.
For rice, seven single-polarization and four dual-polarization images were used to observe
growth.

The European Space Agency Sentinel Application Platform software was used to process the
Sentinel-1A images, which included radiometric calibration and geocoding using the Doppler
method that accounts for terrain correction.” Since the images were multi-looked and projected
to ground range as part of this preprocessing, no additional speckle filter was applied, thus main-
taining sufficient spatial resolution for our study. Multiple Sentinel-1A imagery from two orbit
paths were included in the time-series assembly as each crop field was observed at similar inci-
dence angles (42° to 44°).

Backscatter was generated for each crop in the following ways: (1) the mean field-level back-
scatter was generated for each field to support analysis of between-field backscatter variation.
(2) The ensemble mean backscatter was determined for each crop type—wheat, rice, and corn—
to support the DSSAT-MIMICS model analysis and assessment of the overall crop development
and of the parameters that influence backscatter.

2.3 DSSAT

Crop parameters were estimated using the Crop Estimation through Resource and Environment
Synthesis (CERES) component of DSSAT. DSSAT is a set of applications designed to under-
stand, predict, and manage cropping systems at the field scale.***! DSSAT runs on a daily time
step with crop yield estimates dependent on surface meteorology, a detailed soil profile, cultivar
genetics, and management. DSSAT simulates biological processes that track carbon, nitrogen,
water, and energy budgets, and associated stresses, through a crop’s developmental stages as it
interacts with the environment and agricultural management practices. DSSAT supports models
for 27 unique crop species, including all the major staple crops, and has been used in agricultural
systems around the world for a variety of applications.**® In our simulations, we run the
CERES-Maize, CERES-Wheat, and CERES-Rice applications of DSSAT, which have been
widely used in crop modeling and studies of California’s Central Valley.*’~*

DSSAT was run for the 2015 water year, initializing October 1, 2014, and ending September
30, 2015. DSSAT was driven with surface (2 m) maximum and minimum air temperature, pre-
cipitation, surface wind speed, surface relative humidity, and insolation from Station 6 of the
Station CIMIS, located in Davis, California.’® DSSAT has primarily been used for staple crops,
so our initial assessment of climate impacts on irrigated agriculture is focused on corn (maize;
Zea mays), winter wheat (Triticum aestivum), and rice (Oryza sativa). Crop management infor-
mation is described in Table 1.

Planting dates are consistent with the crop phenology and typical planting dates in the region
and are accurate in all but exceptional circumstances.’”*® Soil properties, including soil moisture
initialization, were defined for all crops using a generic deep sandy loam profile. Details on the
construction and attributes of the soil profile are included in the DSSAT source code.*’
According to Russell Ranch field information, wheat and corn crops were well fertilized, so
we turned off nutrient stress in DSSAT for both crops. We also assumed no nutrient stress for
rice. Automatic irrigation for corn and wheat is triggered when the fraction of soil moisture in the
top 30 cm of the soil profile falls below 50% of soil saturation. Water is then applied as furrow
irrigation until the soil moisture level reaches 100% saturated. Rice is flooded on May 1, 2015,
through harvest to a depth of 100 mm. Bund height is set to 150 mm, and percolation rate
is assumed to be 4 mmday~'. Simulations for each crop type were run using the observed
atmospheric CO, concentration time series.”!

Crop varieties were selected for each of the three crops based on the field and management
characteristics of Yolo County. Growers in this area generally use slow-maturing corn varieties
to take advantage of the long growing season in the region.’’> We selected a corn cultivar in
DSSAT that contains the generic attributes of California corn but does not match a specific
variety grown in Yolo County both because the corn variety grown at Russell Ranch is not
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available in DSSAT and because we seek to maintain flexibility for model applications beyond
Yolo County. Most of California’s wheat production is hard red spring wheat planted in the fall
(University of California Division of Agriculture and Natural Resources, 2006). Important
characteristics for California wheat production include short stature, lodging resistance, soil
saturation tolerance, shatter resistance, and nitrogen responsiveness (University of California
Division of Agriculture and Natural Resources>). A hard-red spring wheat cultivar with the
desired properties was not available in DSSAT, so a hard-red winter wheat available in DSSAT
was selected. Rice production in California is dominated by semidwarf, medium-grain
varieties, with the majority classified as early maturity.>*>> These varieties provide a high
yield and quality of rice and flexibility in planting dates due to the relatively short time
to maturity. As with corn, a rice cultivar in DSSAT was selected that contains the key proper-
ties of rice currently grown in California because an exact match for the rice field trial variety
was not available in DSSAT and to ensure that the model is valid for applications throughout
California.

Not all crop structure parameters are provided by DSSAT (e.g., wheat ears and rice panicles).
However, DSSAT does provide the key time-evolving biophysical parameters that describe
each crop’s growth. For wheat and rice, DSSAT provides tiller density, a critical biophysical
parameter of wheat and rice growth, and yield determination.”>’ For corn, DSSAT provides
numerous key biophysical parameters of corn growth, including leaf diameter (derived from
LAI) and stem density (Table 2). While DSSAT output parameters are generated at the point-
scale level, and therefore, do not necessarily represent all the variation that can occur within
individual wheat, rice, and corn fields, DSSAT provides a reasonable average set of parameters
and conditions by crop type based on a specific planting date and set of management practices.
We use these parameters as inputs to MIMICS to support understanding backscatter response to
surface and crop conditions.

2.4 Radiometric Modeling

Microwave radar backscatter from wheat, rice, and corn canopies was simulated using the
MIMICS model. MIMICS is a fully polarimetric radar scattering model based on radiative trans-
fer theory and has been used to evaluate radar backscatter sensitivity to crop and surface struc-
ture, and moisture features (i.e., vegetation canopy structure and moisture, and soil moisture;
McDonald et al.; and Frolking et al.). MIMICS models a vegetation canopy as a layer of discrete
scattering constituents on top of a semi-infinite rough ground surface. The model supports a
physically based understanding of the behavior of microwave energy propagating through a
vegetation medium. While MIMICS was developed to model backscatter from tree canopies
as either a two or three-layer model, the model is adaptable for a variety of vegetation canopies,
including crops.***%® Detailed information on MIMICS can be found in Ref. 24.

We use MIMICS with input parameters provided by DSSAT output to examine the scattering
mechanisms contributing to the backscatter measurement and the sensitivity response to each
crop parameter modeled. This allows us to link the vegetation and surface properties to back-
scatter signatures and provide a backscatter reference for crop growth to compare with Sentinel-
1A observations.

3 Methods

3.1 Informing MIMICS with DSSAT

The flow chart in Fig. 2 shows the overall methodology employed in this study. Local CIMIS
meteorological data and initial management conditions were used to force DSSAT to generate
surface and crop parameters for wheat, rice, and corn. DSSAT provided the key time-evolving
biophysical inputs to represent crop growth. Parameters not provided by DSSAT, but needed in
the radiometric modeling, were derived from previously published research. Table 2 describes
the parameters used in MIMICS, listing those provided by DSSAT and those supplemented from
prior research, and the equivalent MIMICS input.
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Table 2 Crop parameters, source, and MIMICS input to model backscatter for wheat, rice, and

corn canopy.

Crop Parameter Source MIMICS input
Wheat  Tiller density (#/m?) From DSSAT Needle density
Height (m) Function from Toure et al. 1994  Canopy height and needle length
Stem orientation’ From Toure et al. 1994 Needle orientation
Stem diameter’ Mean, from various sources Needle diameter
Soil Moisture (cm3/cm®)  From DSSAT Soil volumetric moisture content
rms and correlation From Toure et al. 1994 rms and correlation length
length (cm)
Rice Tiller density (#/m?) From DSSAT Needle density
Height (m) Function from Oh et al. 2009 Canopy height and needle length
Stem orientation From Koay et al. 2007 Needle orientation
Stem diameter Mean from various sources, Needle diameter
in text
rms and correlation From Koay et al. 2007 rms and correlation length
length (cm)
Corn Stem density (#/m?)’ From DSSAT Canopy density

Stem orientation’
Stem diameter
Height (m)

Leaf density (#/m?)

Leaf diameter (cm;
from LAI)

Leaf orientation’
Leaf thickness (cm)’
Soil moisture (cm3/cmq)

rms and correlation
length (cm)

From McDonald 1991

From Della Vecchia et al. 2006
From DSSAT

From DSSAT

From DSSAT

From McDonald 1991
From McDonald 1991
Form DSSAT

From McDonald 1991

Trunk orientation

Trunk diameter

Canopy and trunk height
Leaf density

Leaf diameter

Leaf orientation
Leaf diameter
Soil volumetric moisture content

rms and correlation length

Asterisk symbols indicate parameters modeled as constants in MIMICS.

MIMICS was parameterized independently for each crop. Wheat was modeled as in
Ref. 25—a single vegetation layer canopy consisting of dielectric cylinders with vertical orien-
tation over a rough ground surface. For rice, a similar set up to Ref. 28 was used—a single
vegetation layer consisting of dielectric cylinders with vertical orientation over a rough water
surface. For wheat and rice, no trunk and leaf inputs were used and associated parameters were
omitted. Tiller density (hereafter referred to as stem density) is considered a primary indicator of
wheat and rice health and grain yield and DSSAT provides this primary indicator.>*¢-3

Corn was modeled as two layers of vegetation consisting of stalks and leaves over a rough
ground surface.”” Corn stalks were modeled as dielectric cylinders and leaves were modeled as
oblate dielectric spheroids (oblate disks).

All MIMICS simulations employed the UMich Empirical developed by Oh et al. to model
backscatter from the ground.’® This model is fully integrated within the MIMICS architecture,
has been verified across a broad range of surface roughness and soil moisture conditions, and can
model both co- and cross-polarization backscatter.”*%! The UMich Empirical model was set to
044508-7
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Provide initial management CIMIS Station 6 located in Davis,
conditions. CA
DSSAT <4 I
MIMICS - For each crop, generate For each crop, generate
modeled backscatter at varying VWC Sentinel-1A backscatter at
at each time step. each time step.

] ]

Identify optimal VWC with absolute difference for each time step

]

Re-run MIMICS for each crop with optimal VWC

|

‘ Evaluation and sensitivity analysis. ‘

‘ Create SAR crop growth index ‘

Fig. 2 Flowchart depicting the approach that uses DSSAT, MIMICS, and Sentinel-1A to describe
field variability. Approach description is provided in text.

the Sentinel-1A frequency (5.4 GHz) and acquisition incidence angle (43°) based on the crop
fields’ locations. The model used for vegetation dielectric constant is the Debye—Cole dual-
dispersion model that incorporates the vegetation gravimetric moisture content.®> The model
used for soil dielectric constant is the empirical model developed by Ref. 63.

A time-series dataset of soil surface and crop parameter inputs were used to drive MIMICS.
For each crop, the parameters in Table 2 were matched to Sentinel-1A acquisition dates in water
year 2015 (e.g., Julian day 144 in DSSAT corresponds to Sentinel-1A acquisition on May 24,
2015) and adapted as input to MIMICS. Wheat and rice stem diameters were modeled as con-
stant with a mean value created from various sources.”>?* Stem and leaf moisture content were
not modeled in DSSAT, and field measurements of time-evolving plant moisture content are not
common. These parameters, however, are required for MIMICS and associated interpretation of
radar backscatter. To address this, we used an iterative approach that models backscatter values
for a range of observed gravimetric moisture contents [g/g, hereafter, referred to as vegetation
water content (VWC)]. First, the range of observed VWCs for each crop type were set in
MIMICS at each time step.”>"?325%* Corn leaf VWCs were given slightly lower values compared
to the corn stems, as described in Ref. 64. Once the model generated a range of backscatter
values at different VWCs for each time step, we retrieved the optimal VWC by finding the
smallest absolute difference between MIMICS and Sentinel-1A 6%y in linear units

Optimal VWC, = |[Mo%y, — S1AcYy,|. (D
If a time step had observed both 6\, and oYy, then the following was used

Optimal VWC, = HMGQ/Vr - SlAO’Q/Vz‘ - ‘MGOVHt - SIAO'Q/HI

. @

where Moy, and Moy, are MIMICS modeled backscatter by polarization, S1AcYy, and
S1 Aoy are Sentinel-1A backscatter by polarization, and  is the time step. We used only the
mean ensemble Sentinel-1A 63, and 6%y from each crop to provide a frame of reference to
constrain the VWCs to identify the optimal value to model backscatter for each crop.
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3.2 Evaluation of Approach

The optimally retrieved VWC for each crop’s time step was combined with the previous crop
parameters and MIMICS was rerun with these updated inputs. This created the modeled back-
scatter time series needed to assess the approach for identifying the scattering components and
backscatter response to the appropriate crop parameters. We calculated Esys (systematic error or
model bias), root-mean-squared error (RMSE), and Pearson correlation coefficient (R p) between
the MIMICS modeled and ensemble mean Sentinel-1A backscatter time series. Additionally, we
assessed the MIMICS modeled backscatter scattering contributions to total backscatter to iden-
tify those canopy constituents (e.g., the crop canopy or soil moisture) that were dominant in the
total radar backscatter (Fig. 3). For example, as a corn grows, the density of radar scatterers in
the vegetation canopy increases. Correspondingly, the dominant radar scattering process tran-
sitions from one involving soil backscatter to one dominated by scattering from the vegetation
components.®

A sensitivity analysis was performed to understand how different crop and soil surface
parameters influenced backscatter. For each crop type, crop vegetation and surface parameters,
and the optimally retrieved VWCs, used to create the MIMICS 69, time-series, were varied by
4+10% to examine the radar response

AdB = 10 % Log10(MIMICS 6%, /MIMICS varied 6y ), 3)

where MIMICS 6%, is the modeled backscatter value from the original time-series model run,
and MIMICS varied 69, is the modeled backscatter value with the input parameter varied by
+10% from the original time-series model run. The +10% was selected based on previous work
understanding how DSSAT cultivar parameters influence yields and how modeled backscatter
responds to individual crop parameters.>>!

The sensitivity analysis was performed on each parameter and on multiple parameters that are
intrinsically linked, e.g., wheat and rice stem heights and diameters, and corn leaf diameter and
thickness. This supports understanding how individual parameters and combinations influence
radar response. This sensitivity analysis provided valuable information about the suitability of
the optimization approach applied using DSSAT-MIMICS and how backscatter responds to each
parameter through the growing season. Use of 69, was emphasized for the sensitivity analysis
since 6%, measurements were unavailable for wheat and sparse for rice and corn.

3.3 Crop Growth Index

A challenge for crop monitoring and describing within- and between-field variability is provid-
ing an indicator representing a specific set of crop growth conditions. We examined the potential
for SAR to address these challenges by developing a SAR CGI that could provide the basis for

3)

(1) [2a) }2';) :(4 @)
1 U

1
7 1
1

-
-~
S

Fig. 3 lllustration of scattering mechanisms from a crop canopy and underlying surface—
(1) Scattering from canopy (direct canopy); (2a) Scattering from the soil and canopy (ground-
canopy), and (2b) the reciprocal process to (2a) (canopy-ground); (3) Multiple scattering from the
soil, canopy, and soil (ground-canopy-ground); (4) Scattering from soil (direct ground). The recip-
rocal terms (2a) and (2b) are combined as one term, hereafter referred to as canopy-ground.
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in-season near-real-time crop monitoring. SAR CGI is an extension of the sensitivity analysis
where we compare each within-field Sentinel-1A backscatter value to a DSSAT-MIMICS mod-
eled backscatter value. To map SAR CGI, dates when DSSAT-MIMICS backscatter best matches
the ensemble mean Sentinel-1A backscatter per crop were used. Then the difference between
each within-field Sentinel-1A 63, pixel and DSSAT-MIMICS modeled o%.,, was performed

SARCGI(dB) = 10 * Log 10(S1A 6% ,; /DM oy ), )

where DM oY)y, , is DSSAT-MIMICS modeled backscatter for VV-polarization at time “s” with ¢
being the specific date [expressed in days after planting (DAP)], and STA 6(\)/V.t,i is Sentinel-1A
backscatter at time ¢ for the individual area “i” (pixel) in the crop field. To account for the inverse
relationship between radar response for wheat (see Sec. 5, wheat sensitivity analysis), a factor
of —1 is introduced. A comparison of Sentinel-1A 6Y%;; and DSSAT-MIMICS modeled 6%, was
not used due to the lack of sufficient cross-polarized data for corn and rice, and absence of
data for wheat.

The SAR CGI describes relative crop growth by quantifying the difference between Sentinel-
1A backscatter and DSSAT-MIMICS modeled backscatter, the latter being the reference back-
scatter for a field developing under nonstressed growth conditions. Thus, a negative (positive)
SAR CGI represents areas of less (more) crop growth as measured by Sentinel-1A relative to
growth modeled by the DSSAT-MIMICS construct. This provides a flexible indicator to under-
stand within- and between-field variability without the site-specific retrieval of crop conditions
used in previous studies. We focus on two dates when DSSAT-MIMICS and Sentinel-1A back-
scatter were similar for each crop, one during early and one during late crop growth stages, for
application of SAR CGI.

4 Results

The results of the wheat, rice, and corn field variability as observed by Sentinel-1A, DSSAT-
MIMICS modeled performance, sensitivity analysis, and SAR CGI are presented. We use the
matching DAP provided by DSSAT for interpreting the Sentinel-1A (hereafter, S1) and DSSAT-
MIMICS modeled backscatter signatures. Inputs parameters used in MIMICS are provided to
describe wheat, rice, and corn growth and backscatter change.

4.1 Sentinel-1A Wheat, Rice, and Corn Fields Backscatter

Wheat fields display a decreasing S1 69, for the growing season (Fig. 4). This is similar to other
studies that show a decreasing 6%, as the wheat canopy develops.'*?’ Additionally, each of the
fields’ mean field backscatter time series suggests differing amounts of wheat vegetation and
development throughout the growing season. On 94 DAP, there is an increase in 63,, which may
be caused by irrigation, as the CIMIS data indicate no preciptation in the prior days and weeks.

=5

O S1-VV Ensemble Mean

o9, (dB)

—20=—q T T T T T T
22 46 82 94 106 118 130
DAP

Fig. 4 Wheat fields mean Sentinel-1A 6,,. Each line indicates individual wheat fields with S1-VV
ensemble mean (gray open-circle markers).
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After 94 DAP, there is an increasing trend in 6, which is associated with wheat thinning and
drying, allowing 6% to interact more with the ground. '

The rice fields display similar S1 6%, temporal variation with each other, a rapid backscatter
increase that can be associated with stem elongation during the initial growth stages (Fig. 5).!2!*
Before 75 DAP, the rice fields display a larger dynamic range, suggesting that some fields may
have experienced delayed growth. After 75 DAP, the range decreases and all the fields have
similar o9, variation, which increases toward harvest. Each of the rice fields” mean backscatter
time series suggests varying rice canopy development through the growing season. Only a few
dates of S1 69y, are available and follow 6V, where backscatter increases as the rice canopy
develops.

Corn fields display a greater dynamic range compared to wheat and rice, with as much as a
4-dB range difference on different DAPs (Fig. 6). No single field maintains a consistenly high
or low backscatter signature, suggesting varying rates of corn canopy development. All fields
selected are fully irrigated. The field-to-field variability in backscatter suggests an increased
sensitivity to corn vegetation volume and structure between the fields. Corn exhibits more
field-to-field variability than do wheat and rice fields, especially as related to the geometry
of the leaves. This backscatter response shares similarities to SAR scattering from corn canopies
of different structural attributes.® The ensemble mean S1 69, increases after 39 DAP, which
stablizes and decreases toward harvest after 123 DAP. The few avaliable S1 6%, have a similar
response, backscatter increases during the corn growing season and decreases toward harvest.
This S1 69y and oY, temporal change are similar to others SAR studies of corn.'>'®
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Fig. 5 (a) Rice fields mean Sentinel-1A 6%, and (b) mean Sentinel-1A ¢J,,. Each line indicates
individual rice fields with S1-VV and VH ensemble mean (gray open-circle markers).
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Fig. 6 (a) Corn fields mean Sentinel-1A 49, and (b) mean Sentinel-1A 69,,. Each line indicates
individual corn fields with S1-VV and VH ensemble mean (gray open-circle markers).

4.2 MIMICS-Modeled Backscatter Response and Model Performance

MIMICS modeled 6%, associated scattering contributions, and ensemble mean S1 6%, for the
wheat fields are shown in Fig. 7. S1 cross-polarization was not available during the wheat grow-
ing season. The modeled backscatter reproduces the S1 65, decrease that is associated with radar
signal attenuation as the wheat canopy develops (Rp = 0.84, p < .05, RMSE = 1.55 dB, and
Esys = .99 dB). The DSSAT-MIMICS approach underestimates S1 backscatter before 82 DAP,
ranging between 0.1 and 2.9 dB. These DAPs are associated with juvenile wheat canopy growth,
as the stem density and canopy height increases. On 94 DAP, MIMICS modeled backscatter does
not capture the observed S1 63, increase, indicating a change of field condition that DSSAT did
not capture. Later in the wheat growing season (106, 118, and 130 DAPs), the MIMICS modeled
backscatter matches the increasing S1 backscatter, when the wheat stem density thinned and
decreased in height.

The direct ground scattering contribution is the largest single contributor to MIMICS total
backscatter (6%,) for wheat. For the entire wheat growing season, the ground contribution is
similar to total backscatter and S1 6%, variability (Fig. 7). Other contributors, such as direct
canopy scattering, were relatively negligible in contribution to the total backscatter signature.

Retrieved wheat stem VWCs fall within wheat moisture values previously reported by
Ref. 25 and show minimal variation during the wheat growing season. Stem VWC remains
at 0.48 on 94 DAP, just after max tiller density. Afterward, stem VWC increases to 0.53, then
reduces to 0.48 on 130 DAP, at harvest. The relative lack of change in stem VWCs can be
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Fig. 7 (a) Wheat S1-VV ensemble mean (open circles) and MIMICS modeled (open square-line)
oy (dB) with the major contributor to modeled backscatter (direct ground and diamond-dashed
line). Scattering mechanisms < — 20 dB not shown. (b) Retrieved VWC (stem VWC, diamond-
dashed line) and parameters used to model backscatter—height (Hgt, circle line); soil moisture
(SM, square line); Stem density (X-dashed line).

attributed to the dominance of the direct ground scattering contribution to the total backscatter
signal. While the wheat canopy can attenuate radar response, the surface provides the magnitude
for the total modeled backscatter signature.

MIMICS modeled and ensemble mean S1 69, and 6%, for rice are shown in Fig. 8. MIMICS
6% compares well to S1 6%, (Rp = 0.81, p < .05, RMSE = 1.62 dB, and Esys = —0.07 dB).
The DSSAT-MIMICS approach reproduces the S1 69y, on 27 and 39 DAP, where the difference
between modeled and S1 backscatter was 0.05 and 0.46 dB, respectively. These two DAPs
coincide with increasing stem density and height. MIMICS modeled 69y is greater and less
than S1 o-%V on 51 and 87 DAP, respectively, but matches on 63, 75, and 99 DAP. On these
DAPs, the rice canopy reaches maximum stem density and height. After 99 DAP, stem density
decreases and MIMICS modeled and S1 69, are similar on 135 and 159 DAP (0.20 and 0.04 dB
for each) but modeled 69 overpredicts on 147 DAP by 3.9 dB.

MIMICS modeled 6%, generally reproduces the increasing backscatter from the rice fields
but, based on the few S1 cross-polarization dates available, the model underperforms compared
to the copolarization (Rp = 0.39, p = .61, RMSE = 3.93 dB, Esys = 2.22 dB). MIMICS mod-
eled and S1 69, increases in response to the growing rice canopy. Modeled 6%, is slightly higher
and lower than S1 on 51 and 99 DAP, respectively. Modeled 6%, underpredicts S1 6% by 7.5 dB
on 123 DAP and is similar to S1 69;; on 147 DAP.

MIMICS modeled 6%, and 69y are dominated by the canopy-ground scattering contribution,
representing the double-bounce scattering interaction between the rice canopy and water surface.
The canopy-ground scattering contributor follows the MIMICS modeled backscatter change and
is similar to S1 backscatter. The main contributor suggests that backscatter from a rice field,
modeled or observed, is strongly influenced by the double-bounce scattering between the rice
stems and flooded surface.

Retrieved stem VWCs fall within previously reported measured values and follow changes in
rice vegetation moisture—an overall decrease in moisture content as the rice canopy matures.®>%
VWC decreases after 39 DAP from 0.90 and varies around 0.60. Toward harvest, the retrieved
values increase to 0.80, and subsequently decrease to 0.63. This increase can be attributed to the
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Fig. 8 (a) Rice S1-VV ensemble mean (open circles) and MIMICS modeled (open square-line)
¢, (dB) with major contributors to model backscatter (canopy-ground, diamond-dashed line).
Scattering contributions < —25 dB not shown. (b) Rice S1-VH ensemble mean (open circles)
and modeled (open square-line) 49, (dB) from rice fields with major contributors to model back-
scatter (canopy-ground, diamond-dashed line). Any contributions < — 30 dB were considered
negligible. (c) Retrieved VWC (Stem VWC, diamond-dashed line) and parameters used to model
backscatter—height (Hgt, circle line); Stem density (triangle-dashed line).

input parameters used in MIMICS on this DAP. Since the VWC is found with a set of rice stem
input parameters, this creates the unusually high VWC to match MIMICS modeled backscatter
to Sentinel-1A. This suggests the stem height and/or density inputs on 147 DAP may need to be
lower to represent what S1 was observing in the rice fields.

Corn canopy MIMICS modeled backscatter, scattering contributions, and ensemble mean S1
oYy and oYy are shown in Fig. 9. The DSSAT-MIMICS combination models a backscatter
response similar to S1 6%y (Rp = 0.64, p < .05, RMSE = 0.97 dB, and Esys = —0.23 dB).
The low Rp value is due to correlation sensitivity to outliers, the 3 dB mismatch on 27
DAP. When Rp is performed excluding 27 DAP, Rp increases to 0.95 (p < 0.01). This mismatch
on DAP 27 suggests that the inputs used in MIMICS may reflect a less-developed corn canopy
than what actually existed, and hence, a more developed canopy structure actually existed. From
39 to 87 DAP, modeled and S1 o-%v are similar, with a difference of ~0.15 dB. This time range
corresponds to increasing corn height and LAI growth. After 87 DAP, MIMICS modeled and S1
backscatter decreases as corn LAI decreases; modeled backscatter differs from S1 6%, by 0.10 to
0.5 dB. For the few available S1 69;; measurements, DSSAT-MIMICS oY, captures the back-
scatter increases and decreases seen with S1 6V, which can be in response to changing LAI
(Rp = 0.63, p = 0.37, RMSE = 2.69 dB, and Esys = 2.43 dB). MIMICS modeled 69 under-
predicts S1 backscatter for the available acquisitions by 0.50 to 3.7 dB on 51, 99, 123, and
147 DAP.
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Fig. 9 (a) Corn S1-VV ensemble mean (open circles) and MIMICS modeled (open square-line)
¢y, (dB) with major contributors to model backscatter (direct canopy and triangle-dashed line;
direct ground and diamond-dashed line). Scattering contributions < — 25 dB not shown. (b) Corn
S1-VH ensemble mean (open circles) and modeled (square-line) 9, (dB) with major contributors
to model backscatter (direct canopy and triangle-dashed line; direct ground and diamond-dashed
line). Scattering contributions <— 35 dB not shown. (c) Retrieved VWC (leaf VWC, diamond-
dashed line; stem VWC, x-line) and parameters used to model backscatter—height (Hgt, circle
line); LAI (triangle-dashed line); soil moisture (SM, square-line).

The contributors to MIMICS modeled 69+, and 6%y, vary. Direct ground scattering dominates
the total backscatter signal up to 51 DAP and switches to direct canopy scattering. The direct
ground contribution diminishes as the canopy develops after 51 DAP. On 99 DAP, there is an
increase in direct ground contribution, associated with a higher soil moisture value and lower
corn LAIL The direct ground contribution is more apparent for 63y on 99 DAP. Overall, this
suggests the contribution to total backscatter is initially driven by the surface and minimally
by the juvenile corn canopy. As the corn canopy develops, the situation transitions to the scatter-
ing dominated by a mature corn canopy.

The retrieved corn stem and leaf VWCs fall within previously measured values for corn.
The retrieved stem and leaves VWC decrease from 0.68 and 0.62 (27 DAP) and varies between
0.45 and 0.53 up to 99 DAP. The VWC decrease may be due to ground contribution influencing
total backscatter measurement, making the retrieval of VWC for early corn growth challenging.
The minimal variation up to 99 DAP is not unusual as corn stem and leaf VWCs can remain
relatively stable for certain periods during the growing season.®’ Additionally, the lower VWC
values suggest the corn leaf geometry influence backscatter the most. The combined MIMICS-
DSSAT approach retrieves higher stem and leaf VWC, up to 0.90, on 123 and 135 DAP, and
a reasonable value on 147 DAP. While it has been reported that corn canopies experience some
reduction in moisture during the growth season, it has been reported that corn leaf and stem

64
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VWCs can remain relatively high toward harvest; or the LAI may need to be higher to represent
what S1 was observing in the corn fields.5*¢’

5 Sensitivity Analysis

We explore how crop and ground surface parameters influence 6, through a sensitivity analy-
sis. For each crop, all the parameters and the retrieved VWCs used to create a MIMICS 69, in
Figs. 7 to 9 were varied by £10% to examine the radar response. Figures 10 to 12 show how
some of these individual parameters and combinations can vary radar response through the grow-
ing season.

Regardless of crop type, the vegetation parameters influence radar backscatter to a higher
degree than surface parameters, either separately or in combination (Table 3). Wheat and rice
stem height, diameter, and density produced the largest response, close to 2 and 1.7 dB, respec-
tively. Closer examination shows that wheat and rice stem height and diameter are the primary
parameters with stem density having a smaller radar response. Corn leaf diameter, thickness, and
density produce the largest radar response, 1.63 dB. Closer examination shows the leaf diameter
influencing the radar response the most, with leaf thickness and density having a smaller influ-
ence on radar response. For corn and wheat, soil moisture and roughness are up to four times
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Fig. 10 Backscatter sensitivity response to wheat canopy parameters for (a) +10% varied param-
eters and (b) —10% varied parameters: stem density (circle-dashed line), stem height, and diam-
eter (stem hgt_dm, square-dashed line), VWC (triangle-dashed line), surface roughness (rms,
x dashed line), and soil moisture (sm; pentagon-dashed line).
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Fig. 11 Backscatter sensitivity response to rice canopy parameters for (a) +10% varied
parameters and (b) —10% varied parameters: stem density (circle-dashed line), stem height and

diameter (stem hgt_dm, square-dashed line), VWC (triangle-dashed line), and surface roughness
(rms, x dashed line).
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Fig. 12 Backscatter sensitivity response to corn canopy parameters for (a) +10% varied param-
eters and (b) —10% varied parameters: leaf density (leaf den, circle-dashed line), leaf diameter and
thickness (leaf dm_th, square-dashed line), leaf VWC (triangle-dashed line), surface roughness
(rms, x-dashed line), soil moisture (sm; pentagon-dashed line), stem density (pentagon-dashed
line), stem diameter (stem dm, triangle down-dashed line), and stem VWC (star-dashed line).

smaller in magnitude with regard to influence. However, we note that soil moisture values are
consistently low throughout the growing season. Additionally, while smaller in magnitude over-
all, soil moisture may have a larger influence on backscatter depending on the stage of crop
development, and hence, the vegetation biomass influences the backscatter sensitivity to soil
moisture. For example, in Fig. 10(a) on 22 DAP, when the wheat canopy is not fully developed,
a +10% increase in soil moisture produces the largest backscatter response.

Figure 10 shows the backscatter sensitivity response to select wheat vegetation and surface
parameters through the growing season. Overall, varying the wheat stem parameters leads to the
highest backscatter response (Table 3). An increase (decrease) of the vegetation parameters
decreases (increases) radar response. A +10% parameter change for the stem height, diameter,
and both, followed by the VWC produce the largest sensitivity response. Additionally, the —10%
stem height and diameter time-series curve is similar to the S1-mean and modeled backscatter
curve in Fig. 7. Surface parameters and radar response are directly related to each other with the
+10% soil moisture and rms producing a response up to 1 dB. A —10% soil moisture and rms
parameters produce a nearly O dB sensitivity response. The sensitivity response to increasing soil
moisture and rms may explain the S1 69, spike on 94 DAP. This suggests that some surface
feature changed and was observed by Sentinel-1A, but the DSSAT-MIMICS approach is not able
to capture that change.

Figure 11 shows the backscatter sensitivity to select rice vegetation and surface parameters.
The backscatter response to the rice parameters is not consistent across the growing season.
Overall, the varying of the rice stem parameters elicits a greater sensitivity response.
Increasing the vegetation parameters leads to a positive sensitivity response before 75 DAP and
after 99 DAP. Between DAP 75 and 99, there is an inverse relationship, an increase in the stem
parameters leads to a negative sensitivity response. Additionally, the +10% time-series curve is
similar to the stem density curve in Fig. 8. Together, this suggest that (1) stem density dominates
the overall magnitude and variation, and (2) the switch to an inverse relationship may be caused
by the slightly stronger radar response to the longer and denser rice stems due to the orientation
of the stems relative to the VV-polarization, similar to wheat. This suggests 6%y, is attenuated
when the rice canopy is at max height and density, while shorter and thinner rice stems can
increase 63, response.

Figure 12 shows the backscatter sensitivity response to select corn vegetation and surface
parameters through the growing season. The sensitivity response to leaf parameters is a direct
relationship—increasing leaf area leads to a corresponding increase in radar backscatter. The
combination of leaf diameter and thickness followed by VWC are the largest influencers for
both a +10% parameter change, up ~2.5 and 1 dB, respectively. Varying stem and surface
parameters have less of an influence and inverse relationship on the backscatter response, the
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Table 3 Mean absolute sensitivity response to varied crop
parameters for (A) wheat, (B) rice, and (C) corn. Mean abso-
lute sensitivity response expressed as AdB.

(A) Wheat AdB
Stem hgt + dm + den 1.87
Stem hgt + dm 1.68
Stem dm 1.38
Stem hgt 1.38
VWC 0.63
Stem density 0.46
SM 0.35
rms 0.34
(B) Rice AdB
Stem hgt + dm + den 1.66
Stem hgt + dm 1.52
Stem dm 1.3
Stem hgt 1.19
VWC 0.89
Stem density 0.32
rms 0.02
©) Corn AdB
Leaf hgt + dm + den 1.63
Leaf hgt + dm 1.52
Leaf dm 1.34
Leaf VWC 0.76
Stem dm 0.51
Stem VWC 0.5
Stem density 0.47
rms 0.46
SM 0.46
Leaf den 0.44
Leaf th 0.44
Stem hgt + dm 0.32
Stem hgt + dm + den 0.3
Stem hgt 0.27
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increasing of these parameters leads to decreasing radar backscatter. Overall, the slight varying
of corn leaf parameters leads to a greater sensitivity response compared to the other corn
parameters.

6 SAR Crop Growth Index

The DSSAT-MIMICS modeling approach generates modeled backscatter signatures that re-
present a particular set of wheat, rice, and corn parameters. Additionally, the modeled backscat-
ter supports interpretation of Sentinel-1A backscatter, identifies the scattering mechanisms
contributing to total backscatter, and accounts for differences in backscatter associated with crop
and surface parameters. This supports the comparison of S1 backscatter from the wheat, rice, and
corn fields to modeled backscatter signatures, or reference backscatter, to understand field vari-
ability. Measured backscatter variation from a baseline modeled reference backscatter can be
mainly attributed to crop vegetation parameters influencing backscatter, specifically the struc-
tures, based on the sensitivity analysis. Using this information, we calculate the difference
between the ensemble mean Sentinel-1A 69, and DSSAT-MIMICS modeled 6%, the reference
backscatter, for the SAR CGI, expressed as in Eq. 4. We apply the SAR CGI to map wheat, rice,
and corn within-field variability (Fig. 13). For each crop, different DAPs were selected for
application.

Wheat mean SAR CGl is 0.33 dB with 55% of the field areas having high growth conditions
relative to the reference backscatter (>0 dB) on 82 DAP [Fig. 13(a)]. Backscatter from 21% of
the field areas was 2 dB above the DSSAT-MIMICS reference backscatter, suggesting higher
growth conditions. About 37% of the wheat field areas were within 1 dB of the reference back-
scatter. In relation to the sensitivity response, a variation of 1 dB suggests a +10% growth varia-
tion from wheat parameters modeled. Corn field areas on 75 DAP mean SAR CGI is —0.72 dB
with 40% of the areas within 1 dB of the reference backscatter, suggesting a +10% growth
variation from corn parameters modeled [Fig. 13(c)]. A fair amount of the fields had low growth
conditions, where 65% of the field areas were below the DSSAT-MIMICS reference backscatter.
This suggests corn growth lagged in certain areas. Rice fields on 63 DAP mean CGl is —0.28 dB,
with 30% of the areas within 1 dB of the reference backscatter and 45% were above the reference
(>0 dB), suggesting higher rice growth in some of the field areas [Fig. 13(e)].

Wheat mean SAR CGI is 0.56 dB and 68% of the field areas had high growth conditions
relative to the DSSAT-MIMICS reference backscatter on 130 DAP [Fig. 13(b)]. About 40% of
the wheat fields are within 1 dB of the reference backscatter, suggesting a +10% growth varia-
tion from wheat parameters modeled. Only 29% of the corn field areas are within 1 dB of the
DSSAT-MIMICS reference backscatter on 135 DAP [Fig. 13(d)]. A fair amount of the corn field
areas displayed low growth conditions. The rice fields on 135 DAP mean SAR CGl is —0.33 dB,
with 41% of the field areas within 1 dB of the reference backscatter and 43% are above 0 dB,
suggesting higher growth conditions relative to the DSSAT-MIMICS reference backscatter.

The negative SAR CGIs on different DAPs show that measured backscatter from these areas
lagged behind what was expected based on DSSAT-MIMICS simulations, suggesting subopti-
mal crop growth in these areas. This could be a result of the actual planting dates differing from
the DSSAT planting dates, or plant stresses occurring in the field (e.g., nutrient, water, and pest)
but not captured by DSSAT. Positive SAR CGIs indicate crop growth that was ahead than what
was expected based on DSSAT-MIMICS reference backscatter. This could indicate slightly ear-
lier planting dates or ideal conditions that created higher wheat, rice, and corn growth. In this
study, we use a single DSSAT-MIMICS simulation as a backscatter reference for multiple fields
observed by Sentinel-1A. Future assessments with SAR CGI could run DSSAT-MIMICS for
each field.

7 Discussion

S1 mean backscatter for the wheat and rice fields displayed similarity within each other in Figs. 7
and 8. This suggests wheat and rice fields were developing at similar rates, but the amount of
vegetation varied based on the differing S1 backscatter values. S1 mean backscatter for the corn
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Fig. 13 SAR CGI maps for wheat, rice, and corn field area variability on specific DAPs (with S1
observation date). (a) Wheat fields at Russell Ranch on 82 DAP (S1 date February 5, 2015).
(b) Wheat fields at Russell Ranch on 130 DAP (S1 date March 25, 2015). (¢) Corn fields at
Russell Ranch on 75 DAP (S1 date June 29, 2015). (d) Corn fields at Russell Ranch on 75
DAP (S1 date August 25, 2015). (e) Rice fields in eastern Yolo County on 63 DAP (S1 date
June 17, 2015). (f) Rice fields in eastern Yolo County on 135 DAP (S1 date August 28, 2015).
SAR CGl legend provided in each image.

fields had a higher degree of variation relative to other crops, suggesting the amount of veg-
etation varied through the growing season. By combining S1 backscatter, the mean ensemble
backscatter represents the average conditions for each crop. This was used to identify VWCs
that, with wheat, rice, and corn parameters inputs for MIMICS, represented a certain modeled
backscatter signature.
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The wheat field analysis (Fig. 7), DSSAT-MIMICS modeled 69, was strongly correlated
with ensemble mean S1 6%, with an RMSE dB and Esys <2 dB. This evaluation is consistent
with previously published work.”> The time-series and sensitivity analyses highlighted the
attenuation effects the wheat canopy can have on radar response (Figs. 7 and 10; Table 3).
Similar attenuating effects were reported.”'®* MIMICS identified direct ground scattering
as the main contributor to total backscatter, similar to previously published work that modeled
a wheat canopy to interpret the scattering physics.”>> However, the retrieved wheat stem VWCs
did not produce the dynamic VWC range seen in a developing wheat field.”” This may be due to
the direct ground contribution dominating the total backscatter in addition to backscatter sensi-
tivity to stem geometry, making the determination of stem VWCs difficult during the wheat
growing season.

In the rice analysis, DSSAT-MIMICS modeled 6%, is strongly correlated with the ensemble
mean S1 6%, and produced an RMSE <2 dB and an Esys close to 0 dB (Fig. 8). MIMICS
modeled 6%, was not statistically correlated to S1 6%, and produced higher RMSE and
Esys compared to 65, which is difficult to address because of the lack of Sentinel-1A 69y
observations. DSSAT-MIMICS 69, and 6, backscatter was dominated by the ground-canopy
(ground-canopy or water-stem) scattering contribution, similar to Ref. 23. The sensitivity analy-
sis reveals radar response varied as the rice canopy develops. When the rice canopy is developing
or thinning, the sensitivity response varied directly with any change in rice parameters (Fig. 11).
This differs when the rice canopy reached a certain density and stem height, leading to an attenu-
ation effect. In Ref. 23, a sensitivity response was performed for the entire rice growing season
and found an inverse relation between rice stem parameters and backscatter response. Similar
attenuation effects on radar as the rice canopy matured was reported in Ref. 22. This suggests the
attenuation effect may occur when the rice canopy reaches a certain density and height. Finally,
DSSAT-MIMICS was able to estimate rice stem VWCs that produced a range of values in devel-
oping rice fields.%>-%

For the corn analysis (Fig. 9), DSSAT-MIMICS modeled 6(\),\, was correlated to the ensemble
mean S1 69, and produced an RMSE close to 1 dB and Esys close to 0 dB. DSSAT-MIMICS
modeled 69y, was not statistically significant to S1 63;; and produced slightly higher RMSE dB
and Esys. The RMSEs are similar to those found by Ref. 9. The modeled backscatter for both
polarizations identified the ground as the main contributor to total backscatter during early corn
growth and the canopy as the main contributor as the corn canopy matured [LAI surpasses 3;
Fig. 9(c)]. The sensitivity analysis performed reveals radar response is sensitive to changing
corn leaf parameters (Fig. 12; Table 3). The retrieved corn stem and leaf VWCs fall within pre-
viously reported corn moisture measurements and display similar variations previously reported
(Fig. 6%+7).

Using the information from the analyses, the SAR CGI identified field areas of high and
low growth relative to the DSSAT-MIMICS reference backscatter values (Fig. 13). The wheat
fields generally displayed high growth conditions relative to the reference backscatter value,
suggesting field areas more developed relative to the wheat growth simulated in the DSSAT-
MIMICS approach. For rice, during the early growth stage, the field areas displayed a high
amount of heterogeneity that reduced in the later growth stage. The corn fields had areas that
experienced negative index values, indicating certain areas were underdeveloped relative to the
corn growth simulated in DSSAT-MIMICS approach.

8 Conclusion

This study developed and evaluated a combined DSSAT-MIMICS modeling approach to assess
wheat, rice, and corn field growth variability observed by Sentinel-1A for water year 2015 in
Yolo County, California. We applied this methodology to inform on crop growth and develop-
ment by relating Sentinel-1A backscatter to the DSSAT-MIMICS modeled backscatter signature
that simulated specific wheat, rice, and corn parameters and growth. Our findings support five
main conclusions.

1. DSSAT-MIMICS was able to simulate Sentinel-1A 6%, for wheat, rice, and corn and

both are strongly correlated. For oV, the seasonal change between modeled and
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S1 backscatter was similar but limited because of the lack of cross-polarization
acquisitions during water year 2015.

2. Wheat VWC estimates were realistic on average, consistent with results from prior
studies, but do not reflect the expected seasonal variability in vegetation moisture.
Rice VWC estimates generally captured the moisture changes found in previous studies.
Corn VWCs have reasonable variations but have lower VWCs during early corn growth
and slightly higher VWCs for late corn growth relative to prior results.

3. Radiometric modeling using MIMICS identified major contributors to total back-
scatter for each polarization by crop type, consistent with previous studies. Direct ground
scattering dominated total backscatter for wheat. Canopy-ground scattering was the
dominant contributor to total backscatter for rice. For corn, the direct ground scattering
contribution diminished while direct canopy scattering contribution increased as the can-
opy developed.

4. Modeled C-band backscatter was sensitive to wheat stem parameters and decreased with
crop development. Modeled C-band backscatter for rice was most sensitive to the rice
stem parameters. Modeled C-band backscatter for mature corn was most sensitive to
the leaf parameters.

5. SAR CGI demonstrated potential to assess crop development by identifying areas
that exhibited high or low growth relative to a consistently modeled reference back-
scatter.

Our approach would benefit from more time-series Sentinel-1A cross-polarization observa-
tions, which could help constrain and adjust the unexpected VWCs. A more consistent cross-
polarized backscatter time-series would also support interpretation of radar response to the
vegetation volume. A dual-frequency approach wherein C-band SAR would be combined with
L-band SAR, would also enhance characterization of canopy conditions.

DSSAT-MIMICS and SAR CGI show potential for providing information on growth status
and within- and between-field variability. A low or very low growth index could be an indicator
of vegetation stress or delayed growth because of later planting dates. A better understanding of
how to differentiate stress and growth as measured by SAR is needed to refine this index and
verify the ability of DSSAT-MIMICS to assess canopy conditions.

While we present a proof of concept in this paper, extending the DSSAT-MIMICS analysis to
multiple years and over multiple regions would advance the usability and potential of this
approach. An analysis of this approach should be applied to different SAR platforms to under-
stand the utility of monitoring crops using the DSSAT-MIMICS approach. As a next step,
DSSAT could simulate different crop conditions to generate the resultant parameters that re-
present healthy and stressed crop conditions by varietal. The resultant parameters can be used
in MIMICS to model healthy and stressed crop backscatter signatures and can be compared to
different SAR measurements to understand how the SAR response differs from DSSAT-
MIMICS modeled responses. Since DSSAT, MIMICS, and SAR CGI are flexible and adaptable,
this provides the opportunity to monitor crops at large-scale without the need to be in those
fields. The only information needed is meteorological data, crop location and type, and a general
growth window. This creates the opportunity to expand our crop monitoring efforts for improved
monitoring, forecasting, and possibly yield estimates in different agricultural regions.
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