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ABSTRACT
Byzantine Fault Tolerant (BFT) protocols are designed to
ensure correctness and eventual progress in the face of mis-
behaving nodes [1]. However, this does not prevent negative
effects an adversary may have on performance: a faulty node
may significantly affect the latency and throughput of the
system without being detected. This is especially true in
speculative protocols optimized for the best-case where a
single leader can force the protocol into the worst case [3].
Systems like Aardvark [2] that are designed to maximize
worst-case performance tolerate byzantine behavior with-
out necessarily detecting who the perpetrator is. By forcing
regular view changes, for example, they mitigate the effects
of leaders who deliberately delay dissemination of messages,
even if this behavior would be difficult to prove to a third
party.

Byzantine faults, by definition, can be difficult to detect. An
error of ’commission’, such as a message with a mismatching
digest, can be proven. Errors of ’omission’, such as delaying
or failing to relay a message, as a rule cannot be proven, and
the node responsible for these types of omission faults may
not appear faulty to all observers. Nevertheless, we observe
that they can reliably be detected. Designing protocols that
detect and eject nodes is challenging for two reasons. First,
some behaviors are observed by a subset of honest nodes
and cannot be objectively proven to a third party. Second,
any mechanism capable of ejecting nodes could be subverted
by Byzantine nodes to eject honest nodes.
This paper presents the Protocol for Ejecting All Cor-

rupted Hosts (Peach, a mechanism for detecting and eject-
ing faulty nodes in Byzantine fault tolerant (BFT) protocols.
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Nodes submit votes to a trusted configuration manager that
replaces faulty nodes once a threshold of votes are received.
We implement Peach for two BFT protocol variants, a tra-
ditional pbft-style three-phase protocol and a speculative
protocol, and evaluate its ability to respond to Byzantine
behavior.

This work makes the following contributions:
(1) We present and prove a necessary and sufficient con-

straint on cluster membership guaranteeing that any
nodes causing performance degradation via acts of
omission will be detected.

(2) We present an agreement protocol, PEACHes, in which
replicas pass votes about their subjective local obser-
vations of possible omissions to a TTP.

(3) We show how the separation of detection and effec-
tuation allows fine-grained detection of malicious be-
havior that is compatible and easily integrated with
existing systems.

(4) We present DecentBFT, an extension of BFT-Smart
to which we added a speculative fast path (similar to
Zyzzva) and integrated PEACHes.

(5) We show DecentBFT rapidly detects and mitigates a
variety of performance attacks that would have gone
undetected by the state of the art.
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