
Vote Them Out: Detecting and Eliminating Byzantine
Peers

Tuan Tran
Priyanka Mondal
atran18@ucsc.edu
pmondal@ucsc.edu

University of California, Santa Cruz
Santa Cruz, California

Roy Shadmon
Manthan Mallikarjun
rshadmon@ucsc.edu
mmallika@ucsc.edu

University of California, Santa Cruz
Santa Cruz, California

Peter Alvaro
Owen Arden

palvaro@ucsc.edu
oarden@ucsc.edu

University of California, Santa Cruz
Santa Cruz, California

ABSTRACT
Byzantine Fault Tolerant (BFT) protocols are designed to
ensure correctness and eventual progress in the face of mis-
behaving nodes [1]. However, this does not prevent negative
effects an adversary may have on performance: a faulty node
may significantly affect the latency and throughput of the
system without being detected. This is especially true in
speculative protocols optimized for the best-case where a
single leader can force the protocol into the worst case [3].
Systems like Aardvark [2] that are designed to maximize
worst-case performance tolerate byzantine behavior with-
out necessarily detecting who the perpetrator is. By forcing
regular view changes, for example, they mitigate the effects
of leaders who deliberately delay dissemination of messages,
even if this behavior would be difficult to prove to a third
party.

Byzantine faults, by definition, can be difficult to detect. An
error of ’commission’, such as a message with a mismatching
digest, can be proven. Errors of ’omission’, such as delaying
or failing to relay a message, as a rule cannot be proven, and
the node responsible for these types of omission faults may
not appear faulty to all observers. Nevertheless, we observe
that they can reliably be detected. Designing protocols that
detect and eject nodes is challenging for two reasons. First,
some behaviors are observed by a subset of honest nodes
and cannot be objectively proven to a third party. Second,
any mechanism capable of ejecting nodes could be subverted
by Byzantine nodes to eject honest nodes.
This paper presents the Protocol for Ejecting All Cor-

rupted Hosts (Peach, a mechanism for detecting and eject-
ing faulty nodes in Byzantine fault tolerant (BFT) protocols.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6973-2/19/11.
https://doi.org/10.1145/3357223.3365442

Nodes submit votes to a trusted configuration manager that
replaces faulty nodes once a threshold of votes are received.
We implement Peach for two BFT protocol variants, a tra-
ditional pbft-style three-phase protocol and a speculative
protocol, and evaluate its ability to respond to Byzantine
behavior.

This work makes the following contributions:
(1) We present and prove a necessary and sufficient con-

straint on cluster membership guaranteeing that any
nodes causing performance degradation via acts of
omission will be detected.

(2) We present an agreement protocol, PEACHes, in which
replicas pass votes about their subjective local obser-
vations of possible omissions to a TTP.

(3) We show how the separation of detection and effec-
tuation allows fine-grained detection of malicious be-
havior that is compatible and easily integrated with
existing systems.

(4) We present DecentBFT, an extension of BFT-Smart
to which we added a speculative fast path (similar to
Zyzzva) and integrated PEACHes.

(5) We show DecentBFT rapidly detects and mitigates a
variety of performance attacks that would have gone
undetected by the state of the art.

ACM Reference Format:
Tuan Tran, Priyanka Mondal, Roy Shadmon, Manthan Mallikarjun,
Peter Alvaro, and Owen Arden. 2019. Vote Them Out: Detecting
and Eliminating Byzantine Peers. In ACM Symposium on Cloud
Computing (SoCC ’19), November 20–23, 2019, Santa Cruz, CA, USA.
ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3357223.
3365442

REFERENCES
[1] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault

tolerance. In OSDI, Vol. 99. 173–186.
[2] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and

Mirco Marchetti. 2009. Making Byzantine Fault Tolerant Systems Toler-
ate Byzantine Faults.. In NSDI, Vol. 9. 153–168.

[3] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. 2007. Zyzzyva: speculative byzantine fault tolerance.
In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 45–58.

480

https://doi.org/10.1145/3357223.3365442
https://doi.org/10.1145/3357223.3365442
https://doi.org/10.1145/3357223.3365442

	Abstract
	References

