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Abstract—Distributed applications cannot assume that their
security policies will be enforced on untrusted hosts. Trusted
execution environments (TEEs) combined with cryptographic
mechanisms enable execution of known code on an untrusted
host and the exchange of confidential and authenticated messages
with it. TEEs do not, however, establish the trustworthiness of code
executing in a TEE. Thus, developing secure applications using
TEEs requires specialized expertise and careful auditing.

This paper presents DFLATE, a core security calculus for
distributed applications with TEEs. DFLATE offers high-level
abstractions that reflect both the guarantees and limitations of
the underlying security mechanisms they are based on. The
accuracy of these abstractions is exhibited by asymmetry between
confidentiality and integrity in our formal results: DFLATE
enforces a strong form of noninterference for confidentiality, but
only a weak form for integrity. This reflects the asymmetry of
the security guarantees of a TEE: a malicious host cannot access
secrets in the TEE or modify its contents, but they can suppress
or manipulate the sequence of its inputs and outputs. Therefore
DFLATE cannot protect against the suppression of high-integrity
messages, but when these messages are delivered, their contents
cannot have been influenced by an attacker.

Index Terms—information flow control, language-based secu-
rity, trusted execution environment, enclaves, distributed systems
security

I. INTRODUCTION

Many applications rely on security checks in compilers and

runtime systems to enforce security policies. In distributed de-

centralized settings (where applications are distributed, entities

involved in the application may be mutually distrusting, and no

single node is trusted by all entities), the effectiveness of such

checks is limited: local security checks cannot ensure that a

remote host will protect confidential information it receives.

Encryption can ensure that an untrusted host cannot reveal

secrets, but it also prevents the host from performing general

computation on encrypted data.1 Lack of trust between entities

may require data to be hosted separately from computations

that use it, hurting performance. Worse, it is possible that no

entity is sufficiently trusted to both access the data and compute

the result, limiting what the application can do.

Trusted Execution Environments (TEEs) such as SGX [29,

4] and Sanctum [14] address some of these limitations with ap-

plication enclaves. An enclave is a protected user-level process

that is strongly isolated from the OS and other applications by

trusted hardware. Remote nodes can verify the integrity of code

running in an enclave using a remote attestation protocol. Once

1Fully homomorphic encryption [21] can permit such computation, but at
great cost to performance.

verified, the remote node knows that runtime security checks

are still present in the code, and that static properties verified

during compilation are still valid.

TEEs by themselves are insufficient to enforce security

policies. For instance, inputs and outputs to TEEs must be

correctly encrypted, signed, decrypted, and verified to protect

against malicious hosts. Even with correct use of cryptography,

the application must be written to ensure that it does not in-

appropriately reveal confidential information nor allow entities

to inappropriately influence computations. Although previous

work has combined techniques to enforce strong application-

level confidentiality and integrity guarantees with correct-by-

construction use of cryptography [28, 41, 39], no such previous

work supports TEEs, and extending them to do so is nontrivial.

This work presents Distributed Flow-Limited Authorization

for Trusted Execution (DFLATE), a core calculus for secure

decentralized distributed applications. DFLATE extends the

Flow-Limited Authorization Calculus (FLAC) [5] with dis-

tributed execution, communication channels, concurrency, and

TEEs. DFLATE’s type system enforces confidentiality and

integrity guarantees that are consistent with standard crypto-

graphic mechanisms and TEE platforms.

To better understand how TEEs work, and the challenges in

building secure applications that use them, consider an example

of a simple distributed application, illustrated in Figure 1.

Here, “Enclave” refers to code running in a TEE on Bob’s

node. The only way for Alice to interact with the enclave

is via Bob, whom Alice does not trust. To establish the

authenticity of the enclave, Alice uses a remote attestation
protocol. First, Alice requests a remote attestation from Bob

(message 0), who requests a secure measurement of the enclave

code from the TEE: a cryptographic hash of the loaded binary

(message 1). This hash, as well as additional parameters for

establishing a secure channel, is signed by a key that has

been securely provisioned to the TEE (message 2). Next, Bob

relays the signed message to Alice (message 3), who inspects

the measurement to ensure the expected code is running, and

verifies the signature to ensure it is from an authentic TEE.

Once the signature is verified, Alice uses the security param-

eters included in the message to establish a secure authenticated

channel to the enclave. Alice uses this channel to provide

decryption and signing keys to the enclave (messages 4 and 5).

Later, she can use these keys to exchange encrypted and signed

inputs and outputs with the enclave (messages 6-9) without

repeating the remote attestation protocol.

Omitting or improperly executing any of the above steps can
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Fig. 1: Remote enclave attestation and secret provisioning.

undermine Alice’s security. If the remote attestation is omitted,

Alice has no guarantee that the enclave code (and not some

malicious version of it) is running nor that code execution is

protected from Bob. If Alice fails to encrypt (or sign) inputs

to the enclave, or uses keys that are accessible to Bob, then

Bob can learn (or modify) the inputs. Similarly, if the enclave

fails to properly encrypt and sign outputs, Bob may be able to

read or modify them.

Fortunately, the security and correctness of the first three

messages is mostly independent of the application. So a rela-

tively simple (but trustworthy) library API or language exten-

sion can provide remote attestation capabilities to applications

and eliminate programmer errors.

But even with remote attestation and proper encryption

and authentication, Alice’s security may still be undermined.

Although Bob cannot decrypt messages between Alice and

the enclave, he does see each encrypted message when it is

transmitted and may be able to infer secret information based

on the sequence of exchanged messages. For example, the

pseudocode below sends an encrypted and signed message msg
from within an enclave over channel ch if h is true.

if h then send ch (enc (sign msg)) else ()

Because of the TEE and the cryptographic mechanisms, Bob

cannot directly access h or msg, but he can infer the value of h
based on whether a message is sent. The above code might also

be problematic in terms of integrity: if Bob can influence the

value of h, he can suppress the message. Similar code might

permit Bob to replay messages or permute the message order.

Information-flow control (IFC) is well suited to protect

against these kinds of vulnerabilities because it enables end-

to-end semantic guarantees such as noninterference, which

ensures an attacker cannot infer secret information from public

outputs. However, existing IFC languages cannot precisely

model the security guarantees and limitations of TEEs.

There are two key challenges to enforcing IFC in a decen-

tralized distributed setting that employs encryption, signatures,

and TEEs. The first challenge is to (symbolically) represent the

security guarantees of the cryptographic mechanisms without

abstracting away the power of the attacker to permute, sup-

press, or infer secrets from the message sequence. Security

models of existing distributed IFC systems (Fabric [28] and

DStar [41]) are insufficiently precise. Encryption and digital

signatures allow secret or high-integrity messages to be sent

over untrusted channels. For example, Alice could sign and

send a message to the enclave over a channel controlled by

Bob; if the enclave receives the message it knows (by verifying

the signature) that it is from Alice, even though Bob could

suppress the message. In Fabric and DStar, the only sound

policy (that doesn’t ignore a potential attack) expresses that

both Alice and Bob might have influenced the message. In

other words, they are too coarse-grained to distinguish the

attacker’s influence on control flow from its influence on

data flow. Consequently, their enforcement mechanisms cannot

determine if code respects the programmer’s intended policy.

This scenario arises in any nontrivial application using TEEs,

since the main benefit of TEEs is to run computation on

potentially malicious nodes. So IFC must be able to reason

about protected data flowing through untrusted nodes.

The second challenge is to design high-level abstractions that

accurately reflect the guarantees of TEEs in a decentralized

distributed setting. Currently, developers integrate TEEs into

their applications using low-level library APIs. Using these

libraries correctly may require a different skill set from that

needed for the rest of the application. A better approach would

be to design high-level programming abstractions for TEEs

that don’t burden the developer with low-level implementation

details. Code expressed with these abstractions can be used

to synthesize low-level implementations, shifting trust from

application developers to the compiler.

Finding the right security abstraction for TEEs in decen-

tralized settings is challenging. TEEs ensure that specific code

is running securely, but, as discussed above, do not ensure

the trustworthiness of the code. So different entities may trust

different enclaves (perhaps based on who wrote the enclave

code or analysis of the code). TEE mechanisms don’t hide the

existence of messages to and from an enclave, nor guarantee

message delivery. A suitable TEE abstraction must reflect these

limitations on communication and allow entities to express

their trust in specific TEEs and entities.

DFLATE addresses these challenges. DFLATE has suffi-

ciently fine-grained information-flow control to distinguish

(and usefully reason about) important TEE use cases. DFLATE

provides language abstractions for TEEs, distribution, and

security principals that can ensure security while enabling

applications to benefit from the powerful features of TEEs.

DFLATE is the first language to enforce end-to-end infor-

mation security for distributed applications with TEEs. We

prove that well-typed DFLATE programs enjoy noninterference
guarantees. Confidentiality noninterference [22] ensures that an

attacker cannot infer secret information from public outputs.

Integrity noninterference ensures that an attacker cannot influ-

ence high-integrity outputs by modifying low-integrity inputs.

Integrity is dual to confidentiality [10], and thus most

systems that protect confidentiality noninterference also protect

integrity noninterference. However, DFLATE provides asym-

metric guarantees for confidentiality and integrity. This asym-

metry reflects inherent limitations of TEEs. The confidentiality

and integrity of the contents of inputs and outputs to TEEs can

be cryptographically protected, but neither the TEE itself nor

cryptographic mechanisms can prevent the host of the TEE

from suppressing or manipulating the sequence of inputs and

outputs. Hence, we derive strong noninterference results for

confidentiality, but weaker results for integrity that hold only
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when messages are not suppressed.

II. MOTIVATING THE DFLATE DESIGN

DFLATE is a high-level language designed to be imple-

mented using cryptographic mechanisms and trusted execution

environments. Designing an IFC model in this setting is subtly

different than designing a general IFC model. In this section we

motivate three design features of DFLATE that are informed

by cryptography and TEEs.

A. Fine-grained policies for secure communication

Suppose Alice sends a message to Carol via Bob, who is

only partially trusted by Alice and Carol. Figure 2(a) illustrates

the scenario where no cryptographic mechanisms are used to

enforce information security, similar to the model of Fabric and

DStar. Sending message A1 to Carol is secure only if Alice

permits Bob to learn the contents of A1 and Carol permits Bob

to (potentially) modify the contents of A1 en route. Figure 2(b)

illustrates the same scenario, but Alice additionally signs the

message and encrypts it with Carol’s public key. In this case,

Bob can neither learn nor modify the contents of A1. However,

Bob does learn of the existence of A1. Furthermore, although

Bob cannot modify A1, he could replace it with a previously

signed message A2, or could choose to send no message at all.

Most existing IFC abstractions do not distinguish these two

scenarios and instead enforce policies conservatively using

checks similar to Figure 2(a). This lack of precision effectively

ignores guarantees offered by cryptographic mechanisms for

communication over untrusted channels.

DFLATE distinguishes the ability to disclose or modify

messages sent over a channel from the ability to observe

channel traffic and influence or suppress message sequences.

In DFLATE, the security of a channel is specified using two

policies. One policy governs the confidentiality and integrity of

the contents of messages sent over the channel, and the other

governs the confidentiality and integrity of contexts in which

the channel may be used. A node may receive a message that

it can’t read or modify; this can be enforced by signing and

encrypting the message. A node should not send a message to

an untrusted node in a secret context (even if the message is

public), and should not rely on a message from an untrusted

node in a high-integrity context (even if the message contents

are trusted).

B. Decentralized and distributed trust management

DFLATE’s abstractions are based directly on the capabilities

of the underlying cryptographic and TEE mechanisms, which

allows stronger assumptions and finer-grained reasoning about

what information flows and actions are possible than most

previous IFC models. Two places where DFLATE’s design is

influenced by the underlying mechanisms are clearance bounds
and computation principals.

DFLATE’s type system associates a clearance bound [36]

with every node, which restricts what data may be used and

produced by computations on that node. Based on trust rela-

tionships between the node and other principals, the clearance

bound reflects which cryptographic keys the node has access

to, and thus models the ability of a node to digitally sign values

and decrypt encrypted values.2 In Figure 2(b), Bob does not

have access to Alice’s decryption key, so any computation that

attempts to read and compute with Alice’s data would exceed

Bob’s clearance. Similarly, Bob would be unable to produce a

new message with Alice’s integrity using a DFLATE program,

modeling Bob’s inability to access Alice’s signing key.

For each source-level DFLATE computation e that will

execute in a TEE, DFLATE defines a unique computation
principal t. Code running in a TEE is subject to clearance

bounds of the computation principal rather than of the node

executing the TEE. DFLATE permits principals to express

their trust in code running in a TEE by expressing trust in

the corresponding computation principal t. Therefore Alice can

express trust in an enclave running on Bob’s node, allowing

it to perform computation on her secrets even if Bob is not

trusted to do so. DFLATE also provides protection in the other

direction: if Bob doesn’t trust Alice or the enclave, Alice can’t

use the enclave to leak Bob’s secrets or influence his data.

C. Observability of TEE interactions

TEEs introduce additional subtlety into information flow

control design. TEEs provide guarantees similar to those of a

trusted third party, but executing code in a TEE on an untrusted

node is not equivalent to executing code on a trusted node.

Consider our previous examples, but where Bob executes

application code in an enclave E (Figure 2(c)). Although the

code executes within an enclave, Bob can still observe and

manipulate incoming and outgoing messages, as in Figure 2(b).

Most distributed IFC approaches (e.g., [28, 41]) ignore an

attacker’s ability to analyze traffic over communication chan-

nels. This is somewhat defensible for attackers with a limited

view of the network, or when nodes use obfuscating techniques

like TOR [15]. With TEEs, however, ignoring this ability is not

as reasonable: in Figure 2(c), Bob is the only available conduit

to E. Communicating over an observed untrusted channel is

fundamental to the TEE abstraction. DFLATE ensures that pro-

grams capture the ability of a host to mediate communication

with its enclaves, and enables reasoning about the security of

these situations. For node-to-node communication, DFLATE

makes similar assumptions to previous models: only the sender

and the receiver observe the communication.

III. THE DFLATE LANGUAGE

A. FLAM principal algebra

Security policies in DFLATE are based on the Flow-Limited

Authorization Model (FLAM) [6], a principal algebra and logic

for reasoning simultaneously about authorization and informa-

tion flow control policies. Entities in a distributed application

(e.g., Alice, Bob, etc.) are represented by names in a set of

primitive principals N . The FLAM algebra provides operations

for constructing composite principals from this base set. A

FLAM principal refers to the authority of the entity (or entities)

represented by that principal. A principal p’s authority consists

of confidentiality authority, the authority necessary to learn

2Using LIO-style clearance bounds as a proxy for access to cryptographic
keys was first introduced in CLIO [39].
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Fig. 2: Information flow checks with and without cryptographic mechanisms.

p’s secrets, and integrity authority, the authority necessary to

influence information trusted by p. Authority projections of the

form pπ where π ∈ {→,←} allow us to represent the partial

authority of a principal. For example, the principal p→ denotes

a principal with only the confidentiality authority of p, and p←

denotes a principal with only the integrity authority of p.3 The

combined authority of principals p and q is represented by the

conjunction p∧q, and the selective authority of principals p and

q (i.e., the individual authority of either p or q) is represented

by the disjunction p∨q. The universally trusted principal (with

the most authority) is represented by �, and the universally

distrusted principal (with the least authority) is ⊥.

The complete set P of FLAM principals for any setting is

given by the closure of the operations ∧, ∨, ←, and → over

the set of primitive principals N , extended with �, and ⊥.

Principals in this set are related by a preorder �, the “acts

for” relation, which orders principals by increasing trust. The

equivalence classes4 of � form a distributive lattice with �
and ⊥ as most and least trusted elements, and with ∧ and ∨
as join and meet operations.

The trust ordering � also induces an ordering on prin-

cipals specifying safe information flows. We write p 	 q
when information labeled p may safely flow to principal q.

The flows-to relation also forms a distributive lattice with

⊥→ ∧�← (public and trusted) as the least restrictive element,

and �→ ∧ ⊥← (secret and untrusted) as the most restrictive

element. The flows-to relation and joins and meets in the

information flow lattice are defined in terms of their authority

lattice counterparts:

p 	 q � p← � q← and q→ � p→

p 
 q � (p→ ∧ q→) ∧ (p← ∨ q←)

p � q � (p→ ∨ q→) ∧ (p← ∧ q←)

Every principal p is equivalent (under the trust ordering) to

a principal in normal form, q→ ∧ r←, i.e., the conjunction of a

confidentiality authority and an integrity authority. The voice
of a principal p, ∇(p), is the integrity authority necessary to

act on the behalf of the principal. Formally, if q→ ∧ r← is the

normal form of p, then ∇(p) = ∇(q→ ∧ r←) = q← ∧ r←.

3One way to remember what each arrow means is to think of confidentiality
as secrets “coming from” p, and integrity as information “accepted by” p.

4Principals p and q are in the same equivalence class if and only if p � q
and q � p.

n ∈ N (primitive principals) x ∈ V (variables)

ch ∈ VC (channel variables) ν ∈ C (channel values)

p, �, pc ::= n
∣∣ � ∣∣ ⊥ ∣∣ p→ ∣∣ p← ∣∣ p ∧ p

∣∣ p ∨ p

v ::= ()
∣∣ 〈v, v〉 ∣∣ 〈p � p〉 ∣∣ inji v

∣∣ λ(x :τ)[pc,Θ,P,Π]. e∣∣ ΛX[pc,Θ,P,Π]. e
∣∣ η� v

∣∣ v where v

e ::= x
∣∣ v

∣∣ e e
∣∣ 〈e, e〉 ∣∣ η� e

∣∣ e τ
∣∣ proji e∣∣ inji e

∣∣ case e of inj1(x). e | inj2(x). e∣∣ bind x = e in e
∣∣ assume e in e∣∣ send ch e then e
∣∣ recv ch as x in e∣∣ TEEt s

∣∣ spawn @n (ch[pc; τ ], ch[pc; τ ]). e then e∣∣ runTEEt s
∣∣ send ch v then e

∣∣ e where e

τ ::= p � p
∣∣ unit ∣∣ τ + τ

∣∣ τ × τ∣∣ τ
pc,Θ,P,Π−−−−−−→ τ

∣∣ � says τ
∣∣ X

∣∣ ∀X[pc,Θ,P,Π]. τ

c ::= chanp⇀q pc τ
∣∣ chanp↽q pc τ

Fig. 3: DFLATE syntax

B. DFLATE syntax and local semantics

The DFLATE language is inspired by the Flow-Limited

Authorization Calculus (FLAC) [5]. Like FLAC, DFLATE

is a core calculus and secure programming model that en-

forces strong information security guarantees. DFLATE ex-

tends FLAC with distributed computation, communication, and

TEEs, and the DFLATE type system is more compatible with

implementations that use cryptographic enforcement mecha-

nisms. This makes DFLATE a more suitable basis for the

formal analysis of decentralized distributed applications, or

as a core programming model for a general-purpose secure

distributed programming language.

Figure 3 shows the DFLATE syntax. Principals are used

both to specify the information flow policies on data and

to represent the authority of the entities in the distributed

application. Metavariables p, q, �, and pc range over principals.

We assume the set of primitive principals N includes compu-

tation principals t and nodes n, representing, respectively, code

executed in a TEE and host machines. Nodes and computation

principals represent the places where computation occurs, and

we use metavariable pl to range over them.

Metavariables v and e range over values and expressions.

(Shaded values and expressions are not part of the surface

syntax but arise during evaluation.) DFLATE includes standard

307

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 15,2021 at 04:49:03 UTC from IEEE Xplore.  Restrictions apply. 



[DE-APP] pl, D � (λ(x :τ)[pc,Θ,P,Π]. e) v −→ e{v/x}

[DE-UNITM] pl, D � η� v −→ η� v

[DE-BINDM] pl, D � bind x = η� v in e −→ e{v/x}

[DE-ASSUME] pl, D � assume v in e −→ e where v

[DE-TEE] pl, D � TEEt s −→ runTEEt s

[DE-WHERE]
pl, D · v � e −→ e′

pl, D � e where v −→ e′ where v

[DE-SEND]
v′ = export del(D, v) noTEE(v)

pl, D � send ν v then e −→ send ν v′ then e

export del is a function such that if D = 〈p1 � q1〉 · . . . · 〈pn � qn〉 then

export del(D, e) = e where〈p1 � q1〉 . . .where〈pn � qn〉.
Fig. 4: Selected DFLATE sequential evaluation rules

syntax for variables, tuples, projections of types, tagged unions,

case expressions, function application, and type-abstraction ap-

plication. Term and type abstractions have annotations (princi-

pal pc , channel environment Θ, set of places P , and delegation

context Π) that restrict how abstractions can be applied; we

discuss this further when we present the type system. We

explain non-standard parts of the syntax below, as they arise.

The operational semantics for DFLATE uses two judgments:

one for sequential semantics and one for distributed semantics

(see Section III-C). Sequential semantic judgment pl, D 
e −→ e′ indicates that at place pl, under delegation sequence
D, expression e takes a small step to e′. Figure 4 presents

some of the inference rules for this judgment. 5

A delegation sequence is a sequence of delegations 〈p � q〉,
indicating that principal q has delegated its authority to princi-

pal p. We assume that there is a well-known initial delegation

sequence Dinit . Expression assume 〈p � q〉 in e adds del-

egation 〈p � q〉 to the delegation sequence used to evaluate

e. This can be thought of as an annotation indicating that

more information flows are permitted during the computation

e. However, note that the type system ensures that it is secure

to add this delegation, i.e., that the delegation to add and the

decision to add it have sufficiently high integrity. We use term

e where v to record that delegation v holds for evaluation of

e. Rules DE-ASSUME and DE-WHERE show how these terms

operate. (Runtime representation of the delegation sequence

and where terms are needed only for proof purposes and do

not need to be present in an implementation of DFLATE.)

The monadic unit term η� e protects e at security level �. This

syntax is similar to that used by DCC [2] and FLAC [5], but the

DFLATE type system treats monadic terms slightly differently

in order to better model cryptographic protection mechanisms.

The protection mechanism is left abstract, but DFLATE’s

design is consistent with standard cryptographic mechanisms

like semantically secure asymmetric encryption [31] and exis-

tentially unforgeable signature schemes [23]. Intuitively η� e
evaluates e to a value, and then encrypts and signs the value

5All inference rules are given in the accompanying technical report [25].

[PAR-STEP]
n,Dinit � e −→ e′

D ‖ 〈n, e〉 =⇒ D ‖ 〈n, e′〉

[PAR-SPAWN]

e = E[spawn @n′ (ch1[pc1; τ1], ch2[pc2; τ2]). e1 then e2]
ν1, ν2 fresh channels

e′ = E[e2{ν1/ch1}{ν2/ch2}] e′1 = e1{ν1/ch1}{ν2/ch2}
D ‖ 〈n, e〉 =⇒ D ‖ 〈n, e′〉 ‖ 〈n′, e′1〉

[PAR-SEND-RECV]

D ‖ 〈n1, E1[send ν v then e1]〉 ‖ 〈n2, E2[recv ν as x in e2]〉
=⇒ D ‖ 〈n1, E1[e1]〉 ‖ 〈n2, E2[e2{v/x}]〉

Fig. 5: DFLATE distributed semantics

with keys appropriate for � to protect it. Protected value η� v
represents the encrypted and signed value v (see rule DE-

UNITM). For example, ηAlice←∧Bob→ v represents value v
signed by Alice and encrypted with Bob’s key. A protected

value may flow to places that would be insecure for the

unprotected value to go. A protected value can be used only

via a monadic bind term bind x = η� v in e, which binds

v to variable x in e (rule DE-BINDM). This is analogous to

decrypting and verifying the signature of protected value η� v.

Expression TEEt s represents a TEE that will execute

computation s. Syntactic category s (omitted in Figure 3)

consists of expressions without TEE or spawn terms. This

syntactically prevents nested or forking TEE code and reflects

restrictions in existing TEE mechanisms. Each expression s is

uniquely identified by a computation principal t, which can be

thought of as a hash of the code s and can be used to identify a

TEE. Assuming that t uniquely identifies s is compatible with

the trust assumptions of most TEE designs: code is securely

measured and the hash is unique up to collisions, which

occur with negligible probability. Rule DE-TEE evaluates the

source-level TEE term to the intermediate value runTEEt s.

Note that the t in runTEEt s is related to the source-level

expression s; additional steps evaluate s, but t remains fixed.

C. Distributed semantics

Process 〈n, e〉 is expression e running on node n. A dis-
tributed configuration 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 is the parallel

composition of processes 〈ni, ei〉. Without loss of generality,

we assume that each node ni in a distributed configuration

is unique. We assume standard structural equivalence for

distributed configurations and use metavariable D to range over

distributed configurations.

Rules for distributed configurations are presented in Figure 5

and have the form D =⇒ D′. Some of the rules use evaluation

contexts [16] for sequential evaluation: E[e] is an expression

with subexpression e that can be reduced. Evaluation contexts

are standard and defined in the accompanying technical re-

port [25].

Rule PAR-STEP states that a distributed configuration takes

a step whenever one of its processes takes a step. Note that

the sequential evaluation of a process uses the initial delega-
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tion sequence Dinit , although the process may use additional

delegations via assume and where terms.

Processes communicate via channels. Channel endpoints are

unidirectional: an endpoint can be used to send or receive

values, but not both. Communication is synchronous: a send

blocks until there is a matching receive, and a receive blocks

until a message is available. Channels are not first-class and

we ensure that a channel endpoint is used by at most one

process. This restriction prevents certain races that are both

difficult for programmers to reason about as well as potential

covert channels. Indeed, even though the distributed semantics

are non-deterministic, because of the careful management of

channel endpoints, there can never be a race between two sends

on the same channel or between two receives on the same

channel. Thus our distributed semantics is confluent.

Rule PAR-SEND-RECV matches up a process that is sending

on channel ν with a process that is receiving on ν. For

bookkeeping purposes in the proof, the value sent over the

channel is a where term that includes all delegations in use

by the sender. Rule DE-SEND ensures that delegations are

included in the value before the communication occurs. We

allow closures to be sent over channels, but the type system

carefully ensures that the closure can not contain inappropriate

channel endpoints nor can the closure contain TEE code.

Term spawn @n (ch1[pc1; τ1], ch2[pc2; τ2]). e1 then e2
spawns expression e1 as a new process on node n and continues

as e2 (rule PAR-SPAWN ). Expressions e1 and e2 may refer

to channel variables ch1 and ch2, which, when the process

is spawned, will be replaced with fresh channels, enabling

the parent and child processes to communicate. Channel type

annotations pc1, τ1, pc2, and τ2 restrict how channels may be

used. (Spawn expressions have an additional form to facilitate

spawning a process that executes a TEE and creating a channel

between the parent process and the TEE. Details are in the

accompanying technical report [25].)

IV. THREAT MODEL

The DFLATE type system statically enforces information-

flow control policies on data processed by DFLATE programs.

In order to understand various design choices in the type

system, it is necessary to understand the attacker model.

We assume that some conjunction of principals (denoted

A for “attacker”) are malicious. Since nodes are principals,

this also permits us to express that nodes are compromised.

Intuitively, the security guarantees that we will provide (Sec-

tion VII) are based on the idea that “you can be hurt only by

those you trust.” That is, if A is the malicious principal and

p is a “good principal” (i.e., a principal that doesn’t trust A),

then A can not violate the security concerns of p. We assume

all processes start execution with common trust assumptions,

i.e., the initial delegation sequence Dinit .

For confidentiality, we assume that a good principal provides

confidential input to a program and that the attacker observes

the output of the program (namely, the final value computed

on a compromised node). For integrity, we assume that the

attacker provides untrustworthy input to a program and that a

good principal consumes the output of the program. We thus

use an “input/output” observational model.

We also consider a stronger observational model for confi-

dentiality, where the attacker is able to observe the execution

trace on a compromised node. However, the attacker cannot

observe the contents of a ciphertext for which it does not have a

decryption key: the attacker cannot distinguish values η� v and

η� v′ (which represent values v and v′ encrypted and signed

by principal �) if the attacker does not have the authority to

decrypt η� v and η� v′. Similarly, the attacker cannot observe

the contents of a TEE unless it has sufficient authority to access

the keys of the corresponding computation principal.

We ignore covert channels, including timing, termination,

memory accesses by TEEs, and speculative-execution channels.

Orthogonal techniques (e.g., [42, 32, 27]) can mitigate some

of these concerns, and we expect some covert channels related

to TEEs to be addressed in future TEE designs.

We assume that cryptographic mechanisms, TEE implemen-

tations, and the compiler and runtime system are correct. We

assume that node-to-node communication is secure and unob-

served by other principals, i.e., we do not consider network-

level adversaries. Tools such as Tor cite can be used to make

it harder for network-level adversaries to observe the presence

of node-to-node communication. We do, however, assume that

communication with a TEE is observed by the host node. In

DFLATE we use symbolic cryptography but do not treat keys

as values in the language. We thus assume that an attacker

has access to some set of signing and encryption keys based

on trust relationships, but do not consider a Dolev-Yao-style

attacker that can learn new keys from observations.

V. THE DFLATE SECURITY TYPE SYSTEM

DFLATE types (Figure 3) include unit, sums, products,

functions, type functions, and type variables. (Functions and

type functions have non-standard annotations that we describe

below.) Delegation types are singleton types: each delegation

type (p � q) is inhabited by a single value 〈p � q〉. Monadic

type � says τ protects an expression of type τ at level �; it

is the type of values such as η� v (where v has type τ ).

Channels are not first-class values but do have types of the

form chanpl1⇀pl2 pc τ and chanpl1↽pl2 pc τ . These types

specify channels that connect places pl1 and pl2 (either nodes

or TEEs) and may exchange values of type τ in contexts up to

pc. Recall that channels are uni-directional. The former type

specifies a send channel, (indicated by the subscript pl1 ⇀ pl2)

meaning pl1 may use the channel to send values to pl2, the

latter specifies a receive channel (subscript pl1 ↽ pl2) meaning

pl1 may use the channel to receive values from pl2.

Typing judgment Π;Γ;Θ; pl; pc  e : τ indicates that expres-

sion e has type τ . Delegation context Π contains a sequence

of delegations that are valid just before executing e. It is a

conservative approximation of the delegation sequence D that

is present at run time. The delegation context is extended

by assume and where terms. Variable typing context Γ
maps variables to types. Channel variable scope is maintained

using the channel environment Θ. Principal pl indicates the

place the term is typed at, either a node n or computation
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principal t. Program counter level pc is an upper bound (in

the information-flow ordering 	) on the decision to execute e,

and also a lower bound on observable side-effects of e.

The core DFLATE typing rules are presented in Figures 6

and 7 present some of the key DFLATE typing rules. Rules

in Figure 6 are adapted from FLAC, and those in Figure 7

cover DFLATE’s distributed computation and TEE extensions.

Premises of these rules are either typing judgments or judg-

ments that specify required relationships between principals,

or between principals and types.

Acts-for judgments have the form Π � p � q and require

that p has at least as much authority as q in delegation context

Π. (Alternatively, that assuming the delegations in Π, q trusts

p.) Recall that 	 is defined in terms of � so using the same

rules we may also derive judgments of the form Π � p 	 q.

Intuitively, if Π � p 	 q information labeled with p can flow

to information labeled q, since (given the delegations in Π)

the confidentiality and integrity of q is at least as restrictive as

that of p. Both of these judgments are simplified versions of

the corresponding FLAM judgments [6], which we can use in

DFLATE since delegations are reasoned about statically and

thus do not provide an information channel. (FLAC could also

benefit from this simplification.) More details are available in

the technical report. The benefit of embedding DFLATE’s acts-

for judgment in the FLAM logic is that we can rely on FLAM’s

formal properties, which have been mechanically verified [7],

in our proofs. In our technical report [25], we formalize this

embedding rigorously, correcting some technical errors in the

original FLAC [5] formalization.

Type protection judgments have the form Π  � ≤ τ ,

indicating that type τ protects information labeled with �.
Intuitively, it means that the type system ensures that any

information gained by using a value of type τ will have a

security level at least as restrictive as �. The rules for deriving

type protection judgments are based on a subset of FLAC’s

rules. The primary rule is DP-LBL:

[DP-LBL]
Π � � 	 �′

Π  � ≤ �′ says τ

This rule connects acts-for judgments to protected types. If �
flows to �′, then the type �′ says τ protects level �. Singleton

types like unit and (p � q) protect any level since the type

itself encodes the value: observing the runtime value carries no

information. However, the type τ1 + τ2 is not protected at any

level since observing the value reveals the side of the sum the

value is on, even if the sides have the same type. All protection

rules are given the accompanying technical report [25].

DFLATE’s type protection judgment is more restrictive than

both FLAC’s and the protection rules in the Dependency

Core Calculus [2, 1] (which FLAC’s are based on). The

restrictiveness comes from the omission of three rules. One

rule, DP-LBL1, permits a level to be protected by the inner

type of a says type if the outer type does not protect it.

[ DP-LBL1]
Π  � ≤ τ

Π  � ≤ �′ says τ

This rule is not compatible with the cryptographic mechanisms

DFLATE seeks to model: it makes nested says types com-

mutative in the sense that p says q says τ protects the

same levels as q says p says τ . Commutativity undermines

the expressiveness of integrity policies since a value of type

τ signed by q then p (and thus unmodified by p) cannot be

statically distinguished from a value signed by p then q (and

thus unmodified by q). It also complicates reasoning about

confidentiality since encryption order is not reflected statically.
The other two rules we omit assume that information can

be gained from abstractions only by applying them. In a dis-

tributed setting, however, functions can be sent over channels

to potentially malicious hosts, who can directly examine the

encoding of an abstraction and potentially learn information.

Every DFLATE typing rule contains a clearance premise
Π � pl � pc that requires place pl to act for pc. This ensures

a place cannot observe or use data exceeding its authority, as

discussed in Section II-B.

For function type τ1
pc,Θ,P,Π−−−−−−→ τ2, level pc is the latent

effect of the function (i.e., a lower-bound on the observable

side-effects when the function is invoked), Θ is the channel

environment the function expects, Π is the delegation context

the function expects, and P are the places at which the function

make be invoked. Rule DT-LAM shows that the function

body must be well-typed for the function’s pc and channel

environment, for every place pl ∈ P . Function application (rule

DT-APP ) may occur only if the pc at call site flows to the

latent effect of the function, the call-site place is in P , and

the channel environment and delegation context of the caller

is compatible with the function’s channel environment and

delegation context. Note that any place can receive a lambda

expression but only those within P are allowed to invoke it.

Channels are not first class, and so the channel environment

requirement ensures that the caller has the appropriate channels

available and channel variables do not escape via closures.

(Type abstraction and application is similar.)
Expression η� e will evaluate e and then protect the result

at level � (in implementation, by signing and encrypting it). It

has type � says τ (rule DT-UNITM ) provided that e is well-

typed and the program counter level pc flows to �. Intuitively,

this premise is required because program counter level pc is an

upper bound on the decision to execute the statement and on

the information available in this computational context (e.g.,

through variables). Thus, the result of e might be influenced

by information at level pc and must be protected appropriately.

Clearance (Π � pl � pc) ensures that place pl has appropriate

integrity to sign the value. Suppose Alice wants to protect a

value at Bob’s integrity by evaluating ηBob v. To type check,

it must be the case that Π � pc 	 Bob. By clearance we have

Π � Alice � pc, and thus Π � Alice← � Bob←, indicat-

ing Alice has access to Bob’s signing key. Note that a principal

can create protected values that are more confidential than its

clearance, e.g., Alice can encrypt values using Bob’s public

encryption key without having access to Bob’s decryption key.
Rule DT-SEALED permits protected values to be on nodes

that would not have the authority to create them. For instance,

even if Alice does not trust Bob, sealed value ηAlice v is
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[DT-LAM]

∀pl′ ∈ P. Π′; Γ, x :τ1; Θ
′; pl′; pc′ � e : τ2 Π � pl � pc

Π;Γ;Θ; pl; pc � λ(x :τ1)[pc′,Θ′,P,Π′]. e : τ1
pc′,Θ′,P,Π′
−−−−−−−→ τ2

[DT-UNITM]
Π;Γ;Θ; pl; pc � e : τ

Π � pc � � Π � pl � pc
Π;Γ;Θ; pl; pc � η� e : � says τ

[DT-SEALED]
Π;Γ;Θ; pl; pc � v : τ Π � pl � pc

Π;Γ;Θ; pl; pc � η� v : � says τ

[DT-APP]

Π;Γ;Θ; pl; pc � e : τ1
pc′,Θ′,P,Π′
−−−−−−−→ τ2

Π � pc � pc′ pl ∈ P
∀(p � q) ∈ Π′. Π � p � q Θ |dom(Θ′)= Θ′

Π;Γ;Θ; pl; pc � e′ : τ1 Π � pl � pc
Π;Γ;Θ; pl; pc � e e′ : τ2

[DT-BINDM]
Π;Γ;Θ; pl; pc � e : � says τ1

Π;Γ, x : τ1; Θ; pl; pc � � � e′ : τ2
Π � pc � � ≤ τ2 Π � pl � pc

Π;Γ;Θ; pl; pc � bind x = e in e′ : τ2

[DT-ASSUME]
Π;Γ;Θ; pl; pc � e : (q � r)

Π � pc � ∇(r) Π � ∇(q→) � ∇(r→)
Π · 〈q � r〉; Γ;Θ; pl; pc � e′ : τ Π � pl � pc

Π;Γ;Θ; pl; pc � assume e in e′ : τ

Fig. 6: Core sequential typing rules

well-typed at Bob if v is well-typed. Sealed values reflect the

security guarantees of cryptographic protection mechanisms:

that attackers cannot distinguish ciphertexts or forge signatures.

In bind x = e in e′, expression e evaluates to a protected

value η� v, and x is bound to v in e′. Rule DT-BINDM requires

that the type of e′ must protect pc 
 � and e′ must type check

at a more restrictive level pc
 �. Clearance (for expression e′)
ensures that pc 
 � does not exceed the place’s authority: the

place is trusted to compute on data protected at level �. For

example, if Bob evaluates bind x = ηAlice v in e′, for e′ to

type check it must be the case that Π � Bob � pc 
 Alice.

It follows that Π � Bob→ � Alice→, indicating Bob has

access to Alice’s decryption key.

DT-ASSUME ensures that when the delegation context is ex-

tended, there is sufficient integrity to do so. Specifically, when

r delegates to q, r’s security concerns may be compromised,

so we require that pc acts for ∇(r), the voice of r. Premise

Π � ∇(q→) � ∇(r→) ensures robustness of the delegation, a

desirable property from FLAM [6] that we also enforce.

Figure 7 shows the distributed and TEE typing rules. Rule

DT-SPAWN limits the channel environment of newly spawned

computations to the new channels created by the parent. Only

place pl has access to the send endpoint of ch1 and the receive

endpoint of ch2. Conversely, the newly created process on node

n can use the receive endpoint of ch1 and the receive endpoint

of ch2. Spawned processes e inherit the delegation context from

the parent, but not the variable context. The program counter

level of the spawned process en, pc′, is at least as restrictive

as the pc of the parent process. This ensures that en does not

inadvertently reveal that it was spawned.

DT-SEND requires that channel ch is the send endpoint

and that the expression has the correct type. The channel

program counter level pcch is an upper bound on the confiden-

tiality and integrity of the decision to send the message. This

is distinct from the policy used to restrict what information

can be sent in messages, which is expressed via type τ
(see Section II-A for discussion). After the message is sent,

execution proceeds with e′ which must type check at a program

counter level that is at least as restrictive as pcch. This ensures

that information revealed by successfully sending a message

is protected appropriately. In addition to the usual clearance

premise, DT-SEND also has a channel clearance premise

Π � pl � pcch that ensures p has sufficient authority to use

the channel. Rule DT-RECEIVE is similar to DT-SEND . The

type of channel messages τ and the channel program counter

level pcch allow the sender and receive to co-ordinate on the

security and contents of messages sent over the channel.

Expression TEEt e executes e in a TEE. Rule DT-TEE

requires e to be closed (and so it cannot use variables to access

data from the host node). The channel environment for the TEE

is limited to endpoints for the TEE6 with a channel pc that

protects pc. This restriction ensures two properties. First, all

messages into and out of a TEE pass through the TEE’s host,

which reflects the operation of current TEE implementations.

Second, the restriction to only channels with suitable channel

pc’s ensures that any sends and receives the TEE perform also

protect the pc that launched the TEE. Without this second

property, hosts could use TEEs as covert channels to send

messages from restrictive contexts to less restrictive ones.

Expression e executes with the integrity of t and confi-

dentiality pc→. Rule DT-TEE differs from all other typing

rules in that there is no relation between the integrity of the

program counter where the TEE is executed (pc←) and the

integrity of the program counter within the TEE (t←): this

is a form of endorsement. Computation principal t is unique

for a given expression e and the implementation of DFLATE

can use remote attestation to ensure that the TEE is executing

e, even if the host is untrusted. The typing rule reflects this

guarantee by type checking e at an integrity level unique to that

expression. This ensures that the code e is not altered (e.g., by

malware) before the execution. Thus, principals that delegate

trust to t will consider the TEE trusted, but the TEE gains

no additional authority over principals that do not delegate to

t. The confidentiality level of the information revealed by the

TEE is at least that of the host and thus expression e is type

checked with confidentiality pc→.

A. Examples revisited

Figure 8 presents DFLATE code for the three scenarios in

Figure 2. Each program applies function f to a protected value

from Alice (principal a) and outputs the result to Carol (c)
using Bob (b) as an intermediate, protecting the output at level

a � c, implying Alice and Carol can read it and both trust its

6An extended version of the spawn expression is used to establish channels
between the host and TEE. Remote nodes can not have a channel directly to
the TEE. See the technical report for details.
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[DT-SPAWN]

Π; ∅; [ch1 �→ chann↽pl pc1 τ1, ch2 �→ chann⇀pl pc2 τ2];n; pc′ � en : unit
Π;Γ;Θ[ch1 �→ chanpl⇀n pc1 τ1, ch2 �→ chanpl↽n pc2 τ2]; pl; pc � e : τ

Π � pl � pc Π � pc � pc′

Π;Γ;Θ; pl; pc � spawn @n (ch1[pc1; τ1], ch2[pc2; τ2]). en then e : τ

[DT-SEND]

Π;Γ; ∅; pl; pc � e : τ Π;Γ;Θ; pl; pc′ � e′ : τ ′

Π;Γ;Θ; pl; pc � ch : chanpl⇀pl′ pcch τ
Π � pc � pcch Π � pcch � pc′ Π � pc′ ≤ τ ′

Π � pl � pc Π � pl � pcch
Π;Γ;Θ; pl; pc � send ch e then e′ : τ ′

[DT-RECEIVE]

Π;Γ;Θ; pl; pc � ch : chanpl↽q pcch τ Π;Γ, x : τ ; Θ; pl; pc′ � e : τ ′

Π � pc � pcch Π � pcch � pc′ Π � pc′ ≤ τ ′

Π � pl � pc Π � pl � pcch
Π;Γ;Θ; pl; pc � recv ch as x in e : τ ′

[DT-TEE]

Π; ∅; Θ′; t; t← ∧ pc→ � e : τ
C = {ch | Θ(ch) = chant�pl pc′ τ ∧ Π � pc � pc′}

Θ |C= Θ′ Π � p � pc

Π;Γ;Θ; pl; pc � TEEt e : unit

Fig. 7: Core distributed and TEE typing rules

1 spawn @b (chb[a ∨ b ∨ c;int], ch′
b[pc

′
b; τ̇ ]) {

2 spawn @c (chc[a ∨ b ∨ c;int], ch′
c[pc

′
c; τ̇ ]) {

3 recv chc as x in ηa�c (f x)

4 }
5 recv chb as y in send chc y then ()
6 }
7 bind z = ηa v in send chb z then ()

(a) DFLATE code for Figure 2(a).

1 spawn @b (chb[a ∨ b ∨ c; a says int], ch′
b[pc

′
b; τ̇ ]) {

2 spawn @c (chc[a ∨ b ∨ c; a says int], ch′
c[pc

′
c; τ̇ ]) {

3 recv chc as y in

4 bind x = y in ηa�c (f x)

5 }
6 recv chb as z in send chc z then ()
7 }
8 send chb (ηa v) then ()

(b) DFLATE code for Figure 2(b).

1 spawn @b (chb[(a ∨ b)←; a says int], ch′
b[pc

′
b;unit]) {

2 spawn @c (chc[(a ∨ b ∨ c ∨ t)←; a says int], ch′
c[pc

′
c;unit]) {

3 recv chc as y in bind x = y in x
4 }
5

spawn @b (cht[(a ∨ b ∨ t)←; a says int],
ch′

t[(a ∨ b ∨ c ∨ t)←; a � c says int]) {
6 TEEt {
7 assume b← � t← in assume c→ � a→ in
8 recv cht as y in

9 send ch′
t (bind x = y in ηa�c (f x) ) then ()

10 }
11 }
12 recv chb as z in send cht z then
13 recv ch′

t as y in send chc y then ()
14 }
15 send chb (ηa v) then ()

(c) DFLATE code for Figure 2(c).

Fig. 8: DFLATE code

integrity. Despite similar functionality, each program requires

different trust relationships between Alice, Bob, and Carol.

Figure 8(a) is an implementation of Figure 2(a), where no

cryptographic mechanisms are used. For this program to type

check under some delegation context Π, it must be the case

that Alice trusts Bob and Carol completely. That is, Π � b � a
and Π � c � a. Furthermore, Carol must trust Alice and Bob

with her integrity, Π � a← � c← and Π � b← � c←. To

see why, first consider the send in line 7. For this term to

type check, it must be the case that Π � a 	 a ∨ b ∨ c since,

by DT-BINDM , the pc at this point is at least as restrictive as

the level a on the protected value ηa v, and by DT-SEND , this

pc must flow to the channel pc , a∨b∨c. If Π � a 	 a ∨ b ∨ c
holds, from the definitions of 	, 
, and � (Section III-A), it

follows that Π � b→ � a→ and Π � c→ � a→. A similar

argument for the recv at line 3 implies Π � c→ � a→.

Now consider line 3, where function f is applied and the

result protected at a� c. DT-RECEIVE requires that the pc of

the continuation is at least a∨ b∨ c, and DT-UNITM requires

that this pc is protected by a � c, i.e., Π � a ∨ b ∨ c 	 a � c.
For this to hold, it must be the case that Π � a ∨ b ∨ c � a and

Π � a ∨ b ∨ c � c. These judgments imply all the following:

Π � b← � a← Π � c← � a←

Π � a← � c← Π � b← � c←

Figure 8(b) is an implementation of Figure 2(b). Recall that

in Figure 2(b), Alice signs and encrypts her message to Carol,

and Bob does not learn the contents of this message. In other

words, Alice trusts Carol with her confidentiality and integrity

but does not trust Bob with her confidentiality. However, she

needs to trust Bob’s integrity because of his power to suppress

the message. The DFLATE program shown in Figure 8(b)

reflects the same trust relations. Values are protected when

sent over channels. Hence, the channel type for chb and chc

is a says int rather than just int as in Figure 8(a). This

program requires Alice to delegate her confidentiality and

integrity to Carol, but does not require her to delegate her

confidentiality to Bob. However, Alice and Carol must still

trust Bob’s integrity since he can influence the computation by

suppressing Alice’s message. To see why: the protected value

ηa v is never used in a bind on Bob’s node, so there is no

requirement that Alice trust Bob with her secrets. When Carol

binds the value in order to apply function f, the pc at the box

in line 4 is at (a∨b∨c)
a which is equal to a→∧(a∨b∨c)← by

definition of 
 and lattice absorption.7 Therefore, DT-UNITM

requires that Π � a→ ∧ (a ∨ b ∨ c)← 	 a � c, which implies

that Π � c→ � a→ as well as the same integrity relationships

7The absorption laws (a ∨ b) ∧ a = a and (a ∧ b) ∨ a = a for all lattice
elements a and b are algebraic properties of all lattices.
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implied by Figure 8(a).

Figure 8(c) is an implementation of Figure 2(c). Recall that

Bob can influence the incoming and outgoing messages to the

enclave E but the recipients (of messages from enclave) can

detect the modifications. Thus it suffices for Alice and Carol

to trust the enclave E. The DFLATE program in Figure 8(c)

uses a TEE to further reduce the need for mutual trust among

Alice, Bob, and Carol. By running the computation in a TEE

(identified as t) hosted on potentially untrusted Bob’s node b
(lines 5 and 6), Alice no longer needs to delegate integrity to

Carol since Carol has no influence on the computation. Since

the enclave protects the result (f x) at line 9 on behalf of Alice

and Carol, they must each delegate integrity to t← (Alice’s

integrity is also required for the assume at line 7).

Π � t← � a← Π � t← � c← Π � a← � c←

After receiving y on channel cht, the pc at line 9 is

(a ∨ b ∨ t)←, reflecting Bob’s influence relaying messages.

In order to bind y to x, the enclave must have clearance to

read a→, so Alice must delegate her confidentiality to t←.

Since Bob is unable to modify Alice’s message, the enclave

endorses Bob’s influence by assuming b← � t←, and allows

the result of (f x) to flow to Carol by assuming c→ � a→.

These assumptions allow the body of the bind to type check.

The below judgments show the assumptions needed inside the

TEE, (Πtee is the TEE’s delegation context at lines 8 and 9.)

Πtee � b← � t← Πtee � c→ � a→

Introducing temporary delegations in a TEE using assume is

preferable to the delegation contexts required by 8(a) or 8(b)

since they are enabled only for the scope of the TEE, and the

TEE guarantees that the code is executed as-is.

VI. IMPLEMENTATION CONSIDERATIONS

In this section we discuss how DFLATE can be realized

using existing cryptographic techniques and TEE mechanisms.

Specifically, we identify security principals with public keys,

and rely on a public key infrastructure to distribute private

keys to appropriately authorized nodes. Our TEE abstraction is

carefully designed to be implementable using Intel’s SGX and

similar mechanisms; we describe how the remote attestation

mechanism can be used by the DFLATE runtime to authen-

ticate TEEs and provision the TEE with appropriate private

keys.

A. Cryptography and Representation of Principals

We require that every primitive principal n ∈ N (which

includes nodes and computation principals) is associated with

a public/private key pair where the public key can be used for

encryption and verifying signatures, and the private key can

be used for decryption and signing.8 There are many possible

cryptographic schemes that can be used, and we do not require

any specific one. We do, however, require infrastructure to store

and distribute keys, which we discuss below.

8The public key will likely be a tuple of an encryption key and a verification
key, and similarly for the private key.

A conjunction or disjunction of principals is represented by

a distinct key pair. That is, the cryptographic scheme does

not need to support group encryption, group signatures, etc.

Instead, our key infrastructure will provide appropriate access

control for private keys of conjuncts and disjuncts of principals

such as Alice ∧ Bob and Alice ∨ Bob ∨ Carol.

Computation principals t ∈ T are identified by a secure hash

of (the bytecode representation of) the corresponding compu-

tation, and are associated with a key pair. We describe below

how a TEE executing the code corresponding to computation

principal t is provisioned with the key pair for t.

Value ηp v represents value v encrypted and signed by p.9

The value ηp v is implemented by first encrypting v (using the

appropriate key for p→), and then signing the result (using the

appropriate key for p←). Conversely, evaluation of bind x =
ηp v in e verifies then decrypts. We ensure that places (i.e.,

nodes and TEEs) that need to perform decryption and signing

have access to the appropriate keys; see below.

Delegations 〈p � q〉 are run-time values, and are im-

plemented as a statement “q delegates to p” that is signed

appropriately (i.e., signed by the principal ∇(q)).

We assume that node-to-node communication is secure and

unobservable, which can be achieved using tools such as

Tor [15] or Riffle [26].

B. TEE Implementation

Intel’s SGX is the most widely deployed TEE mechanism,

although other TEE implementations exist (e.g., Sanctum [14]).

Modulo security vulnerabilities10 and the need to trust Intel,

SGX is suitable for implementing DFLATE’s TEE abstraction.

To start executing TEEt e, first an SGX enclave is created

with the DFLATE runtime. SGX’s remote attestation mech-

anism can be used to prove that the enclave is running the

DFLATE runtime. Once a remote party knows it is commu-

nicating with an instantiation of the DFLATE runtime, the

DFLATE runtime can state that it is executing computation

e whose hash is t.

C. DFLATE Runtime

The DFLATE runtime system is responsible for executing

DFLATE code, establishing communication channels between

nodes, dynamically type-checking values (especially closures)

that are received over channels, interacting with the SGX

mechanisms and our key management infrastructure, and other

tasks required to support execution of DFLATE programs.

The DFLATE runtime needs to be able to execute inside an

SGX enclave. Current SGX SDK support is limited to C and

C++, so the DFLATE runtime would be most easily imple-

mented in C or C++. However, DFLATE code is represented

as bytecode that is executed by the DFLATE runtime. This is

necessitated by the ability to send closures over channels, but

also simplifies our use of SGX remote attestation protocols.

9By contrast, term ηp e will evaluate e and then encrypt and sign the result.
10Recent security vulnerabilities discovered in SGX [38] appear to be

implementation issues rather than fundamental concerns.
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D. Key Distribution

Computation at a place will need to encrypt, decrypt, sign,

and verify data. While encryption and signature verification use

the public part of a key pair, decryption and signing require

that the place possess appropriate private keys. Fortunately,

the clearance premises in the typing rules ensure that a well-

typed program at place pl will need to perform decryptions and

signatures only for principals p such that Πinit � pl � ∇(p)
(where Πinit is the initial delegation context and ∇(p) is the

authority required to act on behalf of p).

When an enclave is created for computation principal t, the

enclave does not initially have the private key for t, nor for

any other principals p such that Πinit � t � ∇(p). Thus the

enclave must be provisioned with appropriate keys at run time.

To address this, we require a global key master component

that can store key pairs and allow nodes and enclaves to acquire

the private keys that they are authorized to have. Moreover,

the key master creates key pairs as needed for conjuncts and

disjuncts of principals. The key master can be implemented as

a distributed service to reduce trust in any single entity.

Node n can request the private key for principal p from

the key master by proving that it is n (i.e., that it possesses

the private key for n), whereupon the key master will check

that Πinit � n � ∇(p), and, if so, securely send n the

private key for p. Since we can conservatively approximate

the principals occurring in a computation, node n could be

provisioned with the appropriate private keys before execution,

or the implementation could allow n to request private keys

lazily during execution.11

However, for a computation principal t, the provisioning of

private keys is slightly different, and must be performed at run

time. First, the key master and the SGX enclave engage in a

remote attestation protocol. Once the key master has proof that

the enclave is running the DFLATE runtime, it establishes a

secure channel with the enclave. The DFLATE runtime then

informs the key master it is executing the code corresponding

to computation principal t, and requests private keys. Notably,

this is the only place that the SGX remote attestation protocol

is needed in our proposed DFLATE implementation: secure

communication between a node and a TEE can be established

using keys for DFLATE principals. Each enclave needs to run

the remote attestation protocol only once, with the key master,

in order to acquire keys for DFLATE principals.

VII. SECURITY GUARANTEES

DFLATE’s type system enforces information-flow policies

expressed using the FLAM principal algebra, and thus enjoys

noninterference-based security guarantees. DFLATE permits

weakening, or downgrading, of policies.12 Downgrading occurs

by adding delegations (via assume terms) and by TEE exe-

cution (via endorsement of the TEE’s program counter level).

However, downgrading in DFLATE is carefully controlled

and restricted: well-typed assume terms can only execute in

11Care must be taken to ensure that the decision to communicate with the
key master does not reveal confidential information.

12Weakening confidentiality is called declassification [35]; weakening in-
tegrity is called endorsement [11].

contexts with sufficient integrity, and endorsement of TEEs re-

flect measurement and verification of code executing in a TEE.

We thus expect that well-typed DFLATE programs satisfy a va-

riety of expressive noninterference-based security guarantees,

based on controlled downgrading (e.g., [12, 24, 8, 9, 13, 3]),

suitably adapted to be consistent with our threat model IV.

To demonstrate that DFLATE does indeed enjoy

noninterference-based properties, we state and prove two

variants of noninterference. The first (Theorem 1) uses a

“batch-job” model, and holds for confidentiality and integrity.

In a batch-job model, inputs are provided at the beginning of

execution, and outputs are provided if and when the program

terminates [30]. For our purposes, we regard the input as

being data on one node (thus modeling that node possessing

confidential information, or that node containing untrustworthy

data) and the output as the final result on a specific node. Even

though the execution of a DFLATE program involves nodes

interacting with each other over channels, the batch model

ensures that ultimate result of the program is appropriately

secure.

The second (Theorem 2) uses a stronger observational model

where an attacker observes the internal state of a compromised

node, but holds only for confidentiality. It does not hold for

integrity, due to asymmetry in security guarantees inherent in

distributed decentralized applications that use TEEs.

A. Batch-Job Noninterference

We state noninterference with respect to a security level H .

Intuitively, for confidentiality, inputs labeled H (or a more

restrictive security level) are regarded as confidential inputs,

and we are concerned with ensuring that no information about

them is revealed in outputs observable by an attacker, i.e., an

entity that can observe outputs at level � where it is not the

case that H can flow to �. For integrity, inputs labeled H are

regarded as low-integrity and we want to ensure they do not

influence high-integrity outputs (i.e., outputs at level �).

Since we are stating noninterference, we are concerned

only with executions where there is no downgrading from

H (or above) to �. However, we do not want to rule out

all downgrading, as delegations and TEEs are central to

DFLATE’s expressiveness. Instead, we assume that for a given

process 〈nk, ek〉 in a well-typed distributed configuration D, we

have a delegation approximation Π̂D
k that over-approximates

delegations that the process may make during execution.13 See

accompanying technical report [25] for a formal definition.

Suppose all processes in D = 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 are

well-typed, and the ith process takes an input value protected

by H (i.e., it has a free variable of type H says τ ) and the

jth process produces a value of type � says bool. Moreover,

suppose the delegation approximations for the processes ensure

that they never downgrade from H (i.e., Π̂D
k permits the same

flows from H as Πinit ). If we have two executions of D
where the input to the ith process is replaced with different

values, then the result of the jth process will be the same. We

13A straightforward static analysis can be used to compute delegation
approximations, but any over-approximation suffices for the security condition.
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state this formally. (Proofs are in the accompanying technical

report [25].)

Theorem 1 (Batch-Job Noninterference). Let H and � be
security levels such that Πinit � H 	 �. Let D = 〈n1, e1〉 ‖
· · · ‖ 〈nm, em〉 such that for all k ∈ 1..m we have

Πinit ; Γk; Θk;nk; pck  ek : τk,

where τj = � says bool and x : H says τ ∈ Γi.
Assume that no process downgrades from H , i.e., ∀k ∈

1 . . .m. ∀�′. Πinit � H 	 �′ ⇔ Π̂D
k � H 	 �′. For all v1

and v2, and all z ∈ {1, 2} such that

Π;Γi; Θi;ni; pci  vz : H says τ,

let Dz = 〈n1, e1〉 ‖ · · · ‖ 〈ni, ei{vz/x}]〉 ‖ · · · ‖ 〈nm, em〉.
If D1 =⇒∗ 〈n1, e

′
1〉 ‖ · · · ‖ 〈nj , v

′
j〉 ‖ · · · ‖ 〈nm′ , e′m′〉 and

D2 =⇒∗ 〈n1, e
′′
1〉 ‖ · · · ‖ 〈nj , v

′′
j 〉 ‖ · · · ‖ 〈nm′′ , e′′m′′〉 then

v′j = v′′j .

B. Noninterference for Stronger Observational Model

We also prove a stronger confidentiality noninterference

result for an attacker that is able to observe the execution of

a process at a compromised node. Intuitively, the attacker sees

the sequence of expressions (with stuttering removed, since we

ignore timing channels) but cannot see the contents of protected

values or TEEs for which the node does not have the decryption

key. Recall (from Section VI) that node n has access to keys

for all principals p such that Πinit � n � ∇(p). Thus, the

attacker cannot observe the contents of protected value η� v
if Πinit � n � ∇(�→), nor see the contents of a TEE for

computation principal t if Πinit � n � ∇(t→).
The formal definitions of the process trace of node n and

equivalence of process traces are given in the accompanying

technical report. We say that two process traces are equivalent

to node n if n is unable to distinguish them.

Our stronger noninterference result is similar to the result of

Theorem 1, but holds only for confidentiality.

Theorem 2 (Compromised-node Noninterference). Let H→

and nj be security levels such that Πinit � nj � H→. Let
D = 〈n1, e1〉 ‖ · · · ‖ 〈nm, em〉 such that for all k ∈ 1..m we
have

Πinit ; Γk; Θk;nk; pck  ek : τk,

where x : H→ says τ ∈ Γi.
Assume that no process downgrades from H→, i.e., ∀k ∈

1 . . .m. ∀�. Πinit � H→ 	 � ⇔ Π̂D
k � H→ 	 �. For all v1

and v2, and all z ∈ {1, 2} such that

Π;Γi; Θi;ni; pci  vz : H
→ says τ,

let Dz = 〈n1, e1〉 ‖ · · · ‖ 〈ni, ei{vz/x}]〉 ‖ · · · ‖ 〈nm, em〉.
Then for all executions D1 =⇒∗ D′

1 and D2 =⇒∗ D′
2 the

process traces of node n are equivalent.

An equivalent of Theorem 2 does not hold for integrity. This

asymmetry is due to the message suppression ability of the

attacker. Consider the following program on nodes n1 and n2.

〈
n1,

bind u = x in
case u of
inj1(z). send ch () then ()
inj2(z). recv ch′ as y in y

〉∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
〈
n2,

recv ch as y in
()

〉

On the left, the attacker node binds low-integrity input x (of

type H← says bool) to u and branches on the value, sending

on channel ch in one branch and receiving on channel ch′

in the other. On the right, a high-integrity node is engaged

in communication with n1 and terminates after receiving a

message. For inputs x = ηH← inj1 (), process n2 terminates,

but for x = ηH← inj2 () it blocks, thus distinguishing the

executions.

The weaker integrity result validates our goal of faithfully

expressing the power of attackers to suppress messages with-

out eclipsing the guarantees provided by the cryptographic

mechanisms and TEEs. DFLATE cannot protect against the

suppression of high-integrity messages, but for all programs

that result in high-integrity messages, Theorem 1 guarantees

their contents have not been influenced by an attacker.

VIII. RELATED WORK

A. Enclaves and Information Flow

Gollamudi and Chong [24] use enclaves to enforce in-

formation flow policies against low-level attackers that can

inject arbitrary code into non-enclave parts of a program.

DFLATE uses enclaves to enforce confidentiality and integrity

against low-level attackers in a distributed setting. Our current

noninterference results model passive attackers; we leave more

powerful attacker models for future work.

In CFLOW, Fournet et al. [19] compile a sequential impera-

tive program into a distributed program, preserving its security

properties using cryptographic techniques. A straightforward

security type system enforces noninterference. Fournet and

Planul [17] extend CFLOW to use Trusted Platform Modules

(TPM) and remote attestation to minimize the TCB while

preserving noninterference. DFLATE programs are explicitly

distributed at the source level via spawn, send, and recv
terms. CFLOW’s communication channels are always public

and untrusted whereas DFLATE channels specify separate poli-

cies for the presence of a message and its contents. CFLOW’s

TPM is trusted and has a fixed integrity level, but TEEs

in DFLATE have distinct integrity and confidentiality levels,

allowing TEEs to be trusted than their host.

Subramanyan et al. [37] provide a formal foundation for the

remote execution of enclaves and use it to prove that two re-

mote enclave executions emit observationally equivalent traces

if the attacker provides the same inputs in both executions.

DFLATE uses the high-level guarantees of TEEs and proves

end-to-end semantic guarantees (noninterference) of distributed

applications using enclaves.

B. Communication Channels and Cryptography

Zdancewic et al. [40] securely partition a program into sub-

programs that communicate to simulate the original program.

The resulting distributed program prevents read channels,

which leak information when a remote read request occurs
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for a secret reason. DFLATE’s channel pc annotations protect

against similar leaks.

Fournet and Rezk [18] use a security type system to enforce

the correct use of cryptographic primitives for controlled down-

grading. Compiling DFLATE to this language would ensure

DFLATE’s monadic abstractions are implemented securely.

Wysteria [34] is a language for writing secure multiparty

computation protocols. Wires in Wysteria express the idea of

data ownership and are comparable to the monadic unit types in

DFLATE. However, because Wysteria models communication

implicitly through variable binding, it does not detect insecure

flows that arise due to explicit communication.

Gazeau et al. [20] enforce confidentiality (but not integrity)

of the client data in the cloud. Like our assumptions regarding

access to cryptographic keys, their security guarantee relies on

honest nodes denying access to attacker nodes.

Fabric [28] and DStar [41] use static and dynamic mech-

anisms to enforce IFC for distributed programs. They use

cryptographic protocols to establish secure channels between

nodes, but unlike DFLATE, do not allow high-integrity or

secret data to flow through untrusted hosts.

Our channel design is similar to Rafnsson et al. [33], who

also distinguish the presence of a message from the contents

of a message. DFLATE channel policies are decentralized in

that the security of a channel is relative to each principal rather

than a centralized security lattice.

IX. CONCLUSION

DFLATE offers high-level security abstractions for decen-

tralized, distributed applications that use cryptography and

trusted execution environments. These abstractions accurately

reflect the strengths and limitations of these mechanisms

without exposing low-level implementation details. DFLATE

is suitable for formal analysis of decentralized distributed

applications and as a core programming model for a general-

purpose secure distributed programming language. We have

formalized DFLATE’s semantics and shown that the type

system enforces two variants of noninterference: the stronger

variant holds only for confidentiality, reflecting the asymmetry

in the security guarantees of the underlying mechanisms.
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