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A B S T R A C T   

Accurately representing croplands in climate models is important for simulating water and energy fluxes between 
the land and atmosphere, as well as evaluating the impacts of climate change on agriculture. The recent inte
gration of dynamic crop growth in the Noah land surface model with multiparameterization (Noah-MP-Crop) has 
the potential to substantially advance Earth system modeling and is included in the latest release of the Weather 
Research and Forecasting (WRF) regional climate model. The addition of dynamic crop growth to WRF provides 
a unique opportunity to simultaneously evaluate biases associated with a crop model coupled to a regional 
climate model and address outstanding questions regarding the role of agroecosystems in modulating regional 
climate. Here, we analyze dynamic crop growth in WRF across three simulated spatial scales (25km, 5km, and 
1km) for growing seasons with precipitation above (2010), below (2012), and approximately equal (2015) to the 
seasonal average. Including dynamic crop growth in WRF significantly reduces biases in simulated leaf area 
index over croplands in the central U.S. relative to observations. However, there is no substantial difference in 
calculated daily evapotranspiration, average growing season temperature, or total growing season precipitation 
between WRF simulations with dynamic crops (WRF-Crop) compared to the dynamic vegetation module without 
crops (WRF-DV). Simulated corn (soy) mean absolute error (MAE), as a percentage of observed annual average 
yield, ranges from 24.7% -101% (28.1% - 109%) depending on year and spatial resolution, with the most sig
nificant biases in highly irrigated counties. Forcing Noah-MP-Crop with observed climate substantially reduces 
the range of corn (soy) yield MAE to 9.5% - 55.1% (15.0% - 37.5). Increased model resolution consistently leads 
to lower corn and soy yield estimates within WRF-Crop.   

1. Introduction 

Climate and agriculture are inherently linked. Large-scale transitions 
from natural landscapes and ecosystems to heavily managed croplands 
and pasturelands, along with the expansion of irrigation over the last 60 
years, have significantly modified hydrologic and carbon cycles, altered 
land-atmosphere interactions, and impacted local, regional, and global 
climate (Foley et al., 2005; Pielke et al., 1998; Spera et al., 2020; Thiery 
et al., 2020). Today, approximately 35% of global land area is devoted to 
growing food (World Bank, 2020) and nearly 70% of all freshwater 
withdrawals are used to irrigate crops and pasturelands (FAO, 2017; 

Siebert et al., 2010). In the contiguous United States roughly 19% of the 
land area is devoted to growing crops and irrigation accounted for 42% 
of total freshwater withdrawals in 2015 (Dieter et al., 2018). Rising 
temperatures, altered precipitation patterns, and more frequent and 
intense extreme weather events due to climate change are already 
impacting agriculture, and will continue to do so in the future (Lobell, 
et al., 2011; Rosenzweig & Parry, 1994; Wuebbles et al., 2014). Agri
culture is a significant driver of climate change, accounting for roughly 
30% of total global anthropogenic greenhouse gas emissions and nearly 
60% of non-CO2 emissions (Tubiello et al., 2014). Understanding feed
backs between agricultural systems and climate is paramount to 
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developing effective adaptation and mitigation strategies (McDermid, 
et al., 2017). 

Converting natural landscapes to croplands through deforestation or 
tilling native vegetation modifies the surface albedo, alters latent and 
sensible heat fluxes, perturbs the boundary layer, and impacts regional 
temperature and precipitation patterns (Adegoke et al., 2007; Bonan, 
2008; Pielke et al., 1998). Management of croplands, including irriga
tion and planting practices, can also have notable impacts on climate. 
Irrigation can directly link groundwater reservoirs to the surface, which 
can enhance evapotranspiration (ET) over irrigated land (Uddin, et al., 
2013). Increased ET can reduce local and regional temperatures through 
increased evaporative cooling (Kueppers, et al., 2007; Puma & Cook, 
2010), and has been shown to increase local and regional precipitation 
as a result of enhanced precipitable water and convective available 
potential energy (Pei et al., 2016). Irrigation has also been linked to 
warmer nighttime temperatures as a result of an increased heat storage 
capacity of wetter soils (Chen & Jeong, 2018) and increased net surface 
radiation due to a lower soil albedo and enhanced absorption of long
wave radiation by increased water vapor in the upper atmosphere 
(Boucher et al., 2004; Otterman, 1977). Increased plant density in both 
rainfed and irrigated croplands has also been shown to enhance local ET, 
resulting in a regional cooling effect. These combined effects may 
contribute to the “warming hole” over the U.S. (Alter, et al., 2018; 
Mueller et al., 2016; Nikiel & Eltahir, 2019; Partridge et al., 2018), 
which has in turn likely boosted agricultural productivity in the region 
(Partridge et al., 2019). While it is clear that agricultural practices 
modulate climate, many of the models used to explore the feedbacks 
between climate and croplands use a prescribed crop LAI or dynamically 
simulate crops as generic grasses, both of which could result in signifi
cant biases as crops are known to respond to weather and climate var
iations through both natural and managed processes (Lu, et al., 2015). 

In recent years, several studies have simulated dynamic crop growth 
in climate and land surface models (Drewniak et al., 2013; Kucharik, 
2003; Levis et al., 2012; Osborne et al., 2009; Lu et al., 2015; Liu et al., 
2016). Osborne et al. (2009) found that including dynamic crop growth 
in a global climate model increased growing season temperature vari
ability in the tropics by up to 40% during dry years. Levis et al. (2012) 
integrated corn, soy, and cereal crops into the Community Earth System 
Model (CESM1) and found improved representations of surface heat 
fluxes due to more realistic seasonal LAI patterns and net ecosystem 
exchange. The 4th version of the Community Land Model (CLM4), which 
includes dynamic crop growth and irrigation within WRF 
(WRF-CLM4-crop), has been evaluated against observations (Lu et al., 
2015) and compared to simulations with a prescribed LAI (Harding 
et al., 2015). WRF-CLM4-crop overestimates LAI and growing season 
length, but dynamic crop growth improves interannual variability of LAI 
relative to prescribed LAI values. Simulating irrigation improves tem
perature, soil moisture, and surface energy flux biases compared to 
observations (Lu et al., 2015), but the effect of irrigation on precipitation 
in WRF-CLM4-crop is dependent on dynamic crop growth. Simulations 
with dynamic crop growth showed a significant correlation between 
precipitation and water used for irrigation, while those with prescribed 
crop growth did not (Harding et al., 2015). 

Incorporating dynamic crop growth in climate models also expands 
our understanding of the feedbacks between weather variability, climate 
change, and agricultural productivity, which is essential for short- and 
long-term yield projections. The integration of dynamic crop growth in 
land surface models is often based on simplified representations from 
traditional biophysical crop models, which simulate daily plant growth 
as a function of temperature, precipitation, environmental stress, and 
management. Traditional biophysical crop models require large 
amounts of input data such as cultivar type, planting and harvest dates, 
and fertilizer application rates. This makes them cumbersome to directly 
couple with climate models over data-limited areas or for projections, as 
management practices are likely to change in the future. However, 
uncoupled traditional biophysical crops models do not capture 

feedbacks between crops and the atmosphere, which can have important 
implications for yield (Thiery et al., 2017). 

Dynamic crop growth was recently integrated into the Noah land 
surface model with multiparameterization (Noah-MP-Crop; Niu et al., 
2011; Liu et al., 2016) and implemented in version 3.7 of the Weather 
Research and Forecasting (WRF; Skamarock et al., 2019) regional 
climate model. Noah-MP-Crop simulates the growth of both corn (Zea 
mays) and soy (Glycine max) using plant growth stages determined by 
accumulating growing degree days (GDDs), or the accumulated daily 
average temperature above a threshold. Each plant growth stage has a 
unique set of carbohydrate allocation coefficients that dictate carbon 
assimilation (from photosynthesis) and loss (from respiration, turnover, 
and senescence) for each carbon pool within the plant (roots, stem, 
leaves, and grain). Noah-MP-Crop has been shown to reasonably capture 
LAI, surface latent and sensible heat fluxes, and above ground biomass 
for both corn and soy relative to observations when forced with mete
orological data from Ameriflux eddy covariance towers in Bondville, IL 
and Meade, NE (Liu et al., 2016). Zhang et al. (2020) recently evaluated 
regional simulations of Noah-MP-Crop across the central U.S. with and 
without the irrigation scheme developed by Xu et al. (2019). They found 
that including irrigation and spatially varying planting and harvest dates 
significantly reduced yield biases. 

Here, we evaluate Noah-MP with dynamic crop growth coupled to 
WRF by comparing simulated LAI, ET, temperature, precipitation, and 
yield to observations. To the best of our knowledge, Noah-MP-Crop has 
yet to be assessed in dynamically coupled simulations with WRF. We run 
three triple-nested WRF simulations over the central U.S. (Fig. 1) for 
2010, 2012, and 2015; these correspond with a wetter than average 
year, a drought year, and a year with approximately normal precipita
tion for the central U.S. The first set of simulations uses the pre-existing 
dynamic vegetation module within Noah-MP (hereafter WRF-DV), the 
second set uses dynamic crop growth within Noah-MP (hereafter WRF- 
Crop), and the third set uses an offline version of Noah-MP-Crop run 
within the High Resolution Land Data Assimilation System (hereafter 
HRLDAS-Crop; Chen et al., 2007) to isolate errors associated with 
simulated climate. Our simulations do not account for irrigation on the 
landscape. 

2. Data and Methods 

We evaluated the performance of WRF-Crop relative to observed 
climate, LAI, ET, and crop yield data. We used observed temperature and 
precipitation from Daymet, Leaf Area Index (LAI) and estimated ET from 
both the MODerate Resolution Imaging Spectroradiometer (MODIS) 
satellite and the eddy covariance flux tower at the Brooks experimental 
field site in Ames Iowa, and reported county-level corn and soy yield 
data from USDA NASS. 

Daymet is a 1km gridded daily observational product covering North 
America from 1980 to present available from the Oak Ridge National 
Laboratory Distributed Active Archive Center (Thornton et al., 2018). 
This data product was developed using ground observations from the 
Global Historical Climatology Network-Daily dataset, and has been 
widely used in regional climate model evaluation analyses (e.g. 
Bukovsky & Karoly, 2011; Huang et al., 2020). 

For evapotranspiration (ET), we used the MOD15A2H 8-day, 500m 
global LAI product (Myneni et al., 2015), and the MOD16 8-day 500m 
global ET product (Running et al., 2017), which are both derived from 
the MODIS instrument aboard NASA’s Terra satellite. Both MODIS 
datasets were acquired from the USGS AppEARS data portal. The 
MOD16 ET product combines daily meteorological reanalysis data with 
land cover estimates, albedo, and vegetation dynamics from MODIS 
using an algorithm developed by Mu et al. (2007, 2011) based on the 
Penman-Monteith equation. MOD16 ET has been evaluated for biomes 
across the globe, and is generally well correlated with independent es
timates of ET from observations and models (Ramoelo et al., 2014; Sun 
et al., 2007; Velpuri et al., 2013). Data from the US-Br-1 fluxtower was 
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downloaded from the Ameriflux website (ameriflux.lbl.gov). The Brooks 
Field site is planted in a corn-soy rotation with management practices 
similar to agricultural sites across the central U.S. 

2.1. Model Configuration 

We used the Weather Research and Forecasting (WRF) regional 
climate model version 4.0.1 (Skamarock et al., 2019) to run one-way 
triple nested simulations over the central United States. We simulated 
climate during 2010, 2012, and 2015, to examine years with growing 
season precipitation above, below, and approximately equal to the 
long-term average, respectively. We ran each simulation for the full 
year, but only analyzed results over the growing season (approximately 
May–September) reserving January through April for model spin-up. 
The model domain (shown in Fig. 1) is centered over Iowa with 
spatial resolution increasing from 25 km (D1) to 5 km (D2) to 1 km (D3). 
We utilized an adaptive time step, which has been shown to improve 
model efficiency without affecting model bias (Hutchinson, 2007). For 
boundary and initial conditions, we used six-hourly data from the Eu
ropean Centre for Medium Range Weather Forecast Reanalysis-Interim 
(ERA-I; Berrisford et al., 2011). Physics parameterization schemes 
include: Kain-Fritsch for convective rainfall, WSM3 microphysics, Yon
sei University planetary boundary layer, Dudhia shortwave radiation, 
and RRTM longwave radiation. We allowed WRF to explicitly resolve 
convection within the 1 km domain (Pieri et al., 2015). WRF does come 
with a suggested physics package for the U.S., however we found that a 
component of that physics package, the Thompson microphysics 
scheme, was not compatible with dynamic crop growth in Noah-MP. We 
ran three simulations for each year: one using Noah-MP with dynamic 
crop growth (WRF-Crop), the second using Noah-MP without dynamic 
crops but with dynamic vegetation (WRF-DV), and the third decoupled 
from WRF using the High-Resolution Land Data Assimilation System 
(HRLDAS-Crop; Chen et al., 2007). For HRLDAS-Crop simulations, we 
used hourly data from the North American Land Data Assimilation 
System (NLDAS; Xia et al., 2012) instead of ERA-I as forcing data. 
NLDAS combines climate and land surface observations from multiple 
sources with reanalysis products to create a temporally and spatially 
consistent dataset at 1/8◦ (Luo et al., 2003). We chose to force 
HRLDAS-Crop with NLDAS instead of ERA-I due to its increased spatial 
resolution. For comparability, we ran HRLDAS-Crop simulations for all 
three WRF spatial resolutions. NLDAS climate forcing data was spatially 
interpolated within HRLDAS-Crop to the three resolutions (25 km, 5 km, 
1 km) using bilinear interpolation. 

Within Noah-MP, we used the crop model developed by Liu et al. 
(2016) to simulate the dynamic crop growth of corn and soy over 

cropland areas as identified by the USGS National Land Cover Dataset 
(www.mrlc.gov/) provided with WRF 4.0.1. The crop model is run if 
50% of a grid cell’s area is cultivated, and the grid cell is designated as 
either corn or soy by the dominant crop type within the cell (Fig. 1). 
Each year has the same crop distribution because WRF uses static land 
cover data. Planting and harvest dates are static through time but vary 
by state. WRF-Crop has eight plant growth stages ranging from 
pre-planting to post-harvest. Crops progress through each growth stage 
based on accumulated growing degree day (GDD) thresholds. Plant 
growth stage GDD thresholds are normalized by an average seasonal 
GDD map to create a cell-specific GDD threshold that accounts for 
spatial variations in planted cultivars. The accumulation of leaf, stem, 
root and grain mass depends on the rate of photosynthesis, experienced 
environmental stress, and growth stage dependent carbohydrate trans
location coefficients (Liu et al., 2016). In this study, we updated the 
version of Noah-MP with dynamic crop growth provided with WRF 4.0.1 
using code from github.com/CharlesZheZhang/hrldas-release. The 
updated code allows users to assign unique photosynthesis parameters 
to each crop type, instead of using generic values for all crops, and 
simulates corn as a C4 plant. The crop physiology parameters originally 
provided with WRF-Crop significantly overestimate LAI (Figure S1). We 
adjusted the provided parameters using estimates derived from litera
ture and decreased the corn coefficient for leaf area per living leaf 
biomass (BIO2LAI) from 0.035 to 0.02 to best match observed 2015 LAI 
data from MODIS at the 25 km resolution. We further decreased the soy 
GDD threshold for plant growth stage progression from seeding to 
physical maturity (PGS5) from 1555 to 1505 to increase time in grain 
filling stage. The final crop physiology parameter estimates, with ref
erences, are provided in Table S1. 

2.2. Model Evaluation 

We evaluated WRF-Crop, WRF-DV, and HRLDAS-Crop based on their 
ability to simulate: (1) the seasonal cycle of temperature, precipitation, 
LAI, and ET; (2) growing season (May – September) average temperature 
and total precipitation; (3) July average LAI and ET; (4) county level 
corn and soy yield. Observed gridded data were upscaled to the corre
sponding WRF resolution (25 km, 5 km, or 1 km) by first aggregating 
from their original resolution (Daymet: 1 km or MODIS: 500 m) and then 
interpolating to the WRF grid using a cubic spline. 

Seasonal cycles of temperature and precipitation were calculated as 
daily domain-averaged temperature and monthly total precipitation for 
WRF-Crop, WRF-DV, and NLDAS interpolated to the WRF grid. The 
seasonal cycles of LAI and ET were calculated for either corn or soy grid 
cells across all three resolutions within the boundaries of D3 (innermost 

Figure 1. WRF nested domains and crop category within each domain. The spatial resolution of domain 1 is 25 km (a), domain 2 is 5 km (b), and domain 3 is 1 km 
(c). Crop category is determined by the dominant crop type in each grid cell. 
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domain) to compare consistent geographic areas. WRF uses static crop 
land use data. To account for the common practice of rotating between 
corn and soy in a given field, we used data from the Cropland Data Layer 
(CDL; Boryan, et al., 2011) to mask out any cells that may be mis
identified as either corn or soy for a particular year in WRF. Specifically, 
we calculate the yearly fraction of corn and soy planted within each 
WRF grid cell using the CDL. We then exclude any WRF grid cells that 

were modeled with the wrong crop (e.g., simulated as corn but had 
<50% of its area planted as corn based on CDL data) from comparisons 
with observations. This classification was performed independently for 
each of the three nested grid scales, resulting in slightly different dis
tributions of corn and soy for each scale (Fig. 1). To evaluate the model’s 
skill at simulating seasonal cycles, we calculated the Mean Absolute 
Error (MAE) between the simulated and observed spatially averaged 

Figure 2. July 2015 LAI bias (simulated – MODIS) for domain 1: 25 km grid (a), domain 2: 5 km grid (b), and domain 3: 1 km grid (c). Bias is relative to MODIS 
500m LAI. See Figures S2 and S3 for comparisons in 2010 and 2012. Edge effects were not removed from figures. 

Figure 3. Weekly LAI seasonal cycles for corn (a-c) and soy (d-f). Dashed, dotted, and solid lines correspond with domains 1 (25 km), 2 (5 km), and 3 (1 km) 
respectively. HRLDAS-Crop is only shown at 5 km resolution. There are no 25 km soy pixels within the boundaries of domain 3, thus there are no dashed lines for 
panels d-f. 
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time series. 
In addition to the seasonal comparisons, we compared simulated 

growing season (July) average values of temperature and precipitation 
(LAI and ET) to upscaled values from Daymet and MODIS. We reported 
the bias averaged over the entirety of each domain for temperature and 
precipitation, and the crop-specific bias for ET and LAI. We masked the 
ten outermost grid cells from WRF simulations to reduce the influence of 
edge effects. 

We compared simulated yield to county-level reported yield from the 
USDA/NASS website (quickstats.nass.usda.gov). Simulated yield values 
were aggregated to the county level by spatially averaging any grid cells 
within a given county that were planted as either corn or soy. Available 
versions of Noah-MP-Crop do not yet simulate irrigation on the land
scape. We do not mask out irrigated counties in our analysis but do 
separately evaluate simulated yield over irrigated croplands, identified 
from 2012 USDA NASS census data. Directly comparing simulated yield 
to reported yield can be problematic, especially over extended time 
periods, due to the highly trended nature of historical crop yields. 
However, the direct comparison of yields is desirable due to the ease of 
interpretation. We reduced the influence of observed yield trends on our 
comparisons by focusing on three years within a five-year period where 
yields have remained relatively stable. Average Iowa corn (soy) yields 
increased insignificantly from 2010 to 2015 by 0.43 (0.048) t/ha/yr (not 
shown). The interannual variability of yield during this time was high, 
especially for corn, due to the low reported yields during 2012. Accu
rately simulating trends in observed yield over longer time periods 
would require altering crop parameters in WRF-Crop to account for 
temporal changes in agricultural management or cultivar improvement. 

3. Results and Discussion 

3.1. Leaf Area Index 

LAI, which is defined as the one-sided total leaf area per unit of 
ground area, affects surface albedo, boundary layer turbulence, and 
plant transpiration, thus it has a direct connection between the land 
surface and the atmosphere (Pielke et al., 1998). In Fig. 2, we compare 
LAI for July 2015 from WRF-Crop across the three simulated spatial 
resolutions relative to MODIS LAI. Compared to MODIS, WRF-Crop 
tends to overestimate LAI over the arid western part of D1 and under
estimate LAI in the more humid eastern portion. This broad west to east 
pattern persists for 2010 and 2012 (Figures S2 and S3). July average 
spatial biases in LAI are summarized in Table S2. Average 2015 July LAI 
bias over areas planted as corn (soy) is 0.35 (-0.38) for D1, -0.20 (-1.6) 
for D2 and -1.3 (-4.5) for D3. Both simulated corn and soy appear to be 
sensitive to drought, as LAI biases are substantially more negative dur
ing 2012. July LAI biases over D3 vary spatially and with year simulated. 
The majority of D3 is planted as corn (Fig. 1), and the LAI bias of corn is 
variable. However, WRF-Crop consistently underestimates July LAI over 
soy areas. Soy LAI biases over D3 range from -5.0 in 2012 to -3.6 in 2010 
(Tables S2). 

We evaluate the seasonal cycles of simulated LAI from WRF-Crop, 
WRF-DV, and HRLDAS-Crop for corn (panels a-c) and soy (panels d-f) 
grid cells averaged across the 1 km (D3) domain in Fig. 3. WRF-Crop 
better captures LAI seasonality and magnitude for corn and soy than 
WRF-DV. For 2015, D3 corn (soy) MAE is 0.50 (1.1) for WRF-Crop 
compared to 0.86 (1.7) for WRF-DV (Table 1). However, WRF-Crop 
underestimates early season corn and soy LAI in all three years. Differ
ences between early season MODIS and WRF-Crop LAI are likely 
explained by differences in planting dates and crop growth rates. WRF- 
Crop uses a static planting date of May 7th in Iowa for both corn and soy. 
Reported USDA NASS data suggest that the majority of the corn acreage 
(68%) was planted by April 25th in 2010, nearly two weeks earlier than 
the model date. In 2012, 64% of the corn was planted by May 6th, while 
in 2015 68% of the corn was planted by May 3rd. WRF-Crop exhibits 
similar early season LAI biases in 2012 and 2015 despite the model 
planting date being close to reality. This suggests that early season WRF- 
Crop LAI biases over corn are associated with a modeled growth rate 
that is too slow. 

For all three years, LAI simulated by WRF-Crop and WRF-DV de
creases at higher resolutions for both corn and soy. In most cases, WRF- 
Crop MAE values are lower for D1 and D2 than for D3. This result is 
counterintuitive, as the higher resolution of D3 should better capture the 

Figure 4. July 2015 ET bias (simulated – MODIS) for domain 1: 25 km grid (a), domain 2: 5 km grid (b), and domain 3: 1 km grid (c) of WRF-Crop. Bias is relative to 
MODIS 500m ET. See Figures S4 and S5 for comparisons in 2010 and 2012. Edge effects were not removed from figures. 

Table 1 
Simulated LAI Mean Average Error (MAE) of weekly corn (soy) LAI for each 
resolution within the boundary of domain 3. No 25 km soy cells exist within the 
boundaries of domain 3. Simulations with the lowest MAE are shown in bold.    

MAE [ ]   

2010 2012 2015 

WRF- Crop D1 0.32 (NA) 0.42(NA) 0.26 (NA)  
D2 0.31 (0.77) 0.46 (1.3) 0.27 (0.81)  
D3 0.31 (0.97) 0.57 (1.3) 0.50 (1.1) 

WRF-DV D1 1.2 (NA) 0.87 (NA) 0.97 (NA)  
D2 1.1 (2.3) 0.87 (1.8) 0.95 (1.9)  
D3 1.0 (2.0) 0.77 (1.6) 0.86 (1.7) 

HRLDAS-Crop D1 0.33 (NA) 0.26 (NA) 0.33 (NA)  
D2 0.38 (0.50) 0.29 (0.86) 0.37 (0.37)  
D3 0.38 (0.50) 0.29 (0.89) 0.37 (0.37)  
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true land use distribution. This contradiction is likely associated with 
WRF significantly underestimating precipitation at the 1 km scale 
(Fig. 7). Temperature biases are modest within D3 for 2010 and 2015, 
but 2012 simulations are substantially warmer than observations 
(Fig. 6), further limiting simulated LAI during that year. Reduced LAI in 
D3 translates into a lower MAE for 2010 (Table 1), during which LAI is 
overestimated in the coarser resolution domains. However, all three 
spatial resolutions substantially underestimate LAI during the 2012 
drought year. Biases in simulated climate account for some of the LAI 
error. In 2012, corn LAI from HRLDAS-Crop is closer to observations. 
However, for 2010 and 2015 HRLDAS-Crop overestimates corn and soy 
LAI. 

3.2. Evapotranspiration (ET) 

The improved LAI from WRF-crop simulations should translate to a 
more realistic representation of surface albedo and ET. Liu et al. (2016) 
show that Noah-MP-Crop has significant improvements in seasonal and 
diurnal cycles of sensible and latent heat fluxes relative to the dynamic 
vegetation model. In Fig. 4, we found that there is reasonable agreement 
between average daily July 2015 ET from MOD16 and WRF-Crop. 
Simulated average July ET biases in 2015 range from -3.5 mm/day 
over soy areas in D3 to 1.7 mm/day over soy areas in D1 (Table S3). 
WRF-Crop overestimates daily July ET over the western and southern 
portions of D1 and underestimates July ET over croplands in D3. 
WRF-Crop shows similar spatial patterns in 2010 and 2012 (Figures S4 
and S5), however the underestimation of ET over croplands in D3 is 
more pronounced during the drought year (2012). 

In Fig. 5, we compare seasonal ET patterns from MOD16 to simulated 
values from WRF-Crop, WRF-DV, and HRLDAS-Crop over areas identi
fied as either corn or soy. Monthly averaged ET from the Brooks Field 

Site flux tower is strongly correlated with ET from the collocated 
MOD16 grid cell (Figure S6; 2010 monthly Pearson’s correlation =

0.98). Interestingly, the large biases in LAI from the WRF-DV simula
tions do not translate into an overestimation of overall ET. Instead we 
find general agreement in simulated ET between WRF-Crop and WRF- 
DV simulations, both of which are strongly correlated with MODIS 
data. WRF-Crop MAE slightly improves with resolution and is generally 
comparable to WRF-DV (Table 2). Partitioning ET into distinct moisture 
sources (i.e., canopy evaporation, bare ground evaporation, and tran
spiration) does reveal differences between WRF-Crop and WRF-DV 
(Figures S7 – S9). Consistent with the differences in LAI, WRF-DV 
tends to simulate higher rates of transpiration early and late in the 
growing season as vegetation is not bound by planting and harvest dates. 

Figure 5. Monthly seasonal cycles of average daily ET for corn (a-c) and soy (d-f). Dashed, dotted, and solid lines correspond with domains 1 (25 km), 2 (5 km), and 
3 (1 km) respectively. HRLDAS-Crop only shown at 5 km resolution. There are no 25 km soy pixels within the boundaries of domain 3, thus there are no dashed lines 
for panels d-f. 

Table 2 
Simulated ET Mean Average Error (MAE) of monthly corn (soy) ET for each 
resolution within the boundary of domain 3. No 25 km soy cells exist within the 
boundaries of domain 3. Simulations with the lowest MAE are shown in bold.    

MAE [mm/day]   

2010 2012 2015 

WRF- Crop D1 0.74 (NA) 0.86 (NA) 0.83 (NA)  
D2 0.71 (1.4) 0.84 (2.1) 0.80 (1.5)  
D3 0.70 (1.4) 0.79 (1.8) 0.65 (1.3) 

WRF-DV D1 0.74 (NA) 0.95 (NA) 0.78 (NA)  
D2 0.66 (1.4) 0.92 (2.0) 0.77 (1.4)  
D3 0.62 (1.3) 0.83 (1.7) 0.75 (1.5) 

HRLDAS-Crop D1 0.97 (NA) 0.68 (NA) 0.98 (NA)  
D2 0.99 (2.2) 0.72 (1.7) 1.0 (2.1)  
D3 0.98 (2.0) 0.71 (1.7) 1.0 (2.0)  

T.F. Partridge et al.                                                                                                                                                                                                                             



Agricultural and Forest Meteorology 296 (2021) 108217

7

3.3. Temperature and Precipitation 

Fig. 6 shows WRF-Crop average temperature biases relative to Day
met for May through September, which is the approximate growing 
season over the majority of our domain. WRF-DV growing season tem
perature biases are shown in Figure S10. For 2015, WRF-Crop over
estimates growing season temperatures across most of the Great Plains 
by roughly 1-2◦C and slightly underestimates temperature in the 

Midwest. The 2015 average simulated temperature is 0.21◦C cooler than 
Daymet over D2 and 0.56◦C warmer over the 15 counties included in D3 
(Table S4). WRF-Crop substantially overestimates temperatures for 
2012, an anomalously warm and dry year for the central U.S., over the 
majority of D1 and practically all of D2 and D3. The 2012 growing 
season temperature biases are 0.59◦C, 2.0◦C, and 2.7◦C for D1, D2, and 
D3, respectively (Table S4). Note that the city of Des Moines Iowa, near 
the southern border of D3 is anomalously warm in 2010, 2012, and 
2015. These grid points are assigned an albedo typical of urban areas, 
however we do not use an urban parameterization scheme for these 
simulations, which could explain the localized warm bias. While there is 
little difference in daily temperatures between WRF-Crop and WRF-DV 
(Figures S11 – S13), WRF-Crop has a slightly lower MAE in simulated 
daily average temperature (Table 3). Note that because HRLDAS-Crop 
does not simulate temperature, forcing data for those simulations 
derived from NLDAS are shown for comparison. 

Fig. 7 shows total growing season precipitation (May – September) 
simulated by WRF-Crop relative to Daymet for each domain. Precipita
tion spatial biases over D1 are generally heterogeneous with the 
exception of clear edge effects and a consistent wet bias in the south
eastern corner for all years. Domain average biases for D1 are 19.0 mm 
for 2010, 10.4 mm for 2012, and 15.0 mm for 2015 (Table S4). Total 
growing season precipitation bias over D2 is also heterogeneous. 
Domain 2 biases are 0.876 mm for 2010, 7.22 mm for 2012 and 13.6 mm 
for 2015. Domain 3 shows a significant and consistent dry bias for all 
three years. Domain 3 biases are -37.1 mm for 2010, -41.4 mm for 2012, 
and -37.3 mm for 2015. Note that the edge effects apparent in all figures 

Figure 6. WRF-Crop May through September average temperature bias (simulated - Daymet) for each year simulated. Domain 1 (25 km) with domain 2 identified as 
a black box (a-c), domain 2 (5 km) with counties outlined in grey and domain 3 identified as black box (d-f), and domain 3 (1 km) with county borders outlined in 
grey (g-i). Edge effects were not removed from figures. 

Table 3 
Mean Absolute Error (MAE) in domain averaged timeseries of simulated daily 
temperature and total monthly precipitation. The ten outermost grid cells on 
each side were removed from WRF simulations to reduce edge effects. Simula
tions with the lowest MAE are shown in bold.    

May – SeptemberMAE   

Temperature [◦C] Precipitation [mm]   

2010 2012 2015 2010 2012 2015 

WRF- Crop D1 0.54 0.81 0.59 26 6.8 15  
D2 1.1 3.1 0.94 30 17 19  
D3 1.4 3.8 1.3 100 27 64 

WRF-DV D1 0.79 0.82 0.57 25 6.6 16  
D2 1.2 3.0 0.94 30 16 19  
D3 1.6 3.6 1.4 106 24 69 

NLDAS* D1 1.4 1.8 1.4 7.6 5.4 9.6  
D2 1.7 3.6 1.8 7.3 7.2 9.5  
D3 1.7 4.2 1.8 18 6.9 14  

* NLDAS values have been interpolated to WRF grid. 
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were removed before calculating bias and MAE. Table 3 highlights to 
MAE from total monthly precipitation timeseries for 2010, 2012, and 
2015 shown in Figures S14-S16. Both WRF-Crop and WRF-DV have a 
substantially higher MAE than NLDAS, especially over D3, relative to 
Daymet, but there is little difference in total monthly precipitation be
tween WRF-Crop and WRF-DV. 

3.4. Yield 

In addition to more realistically capturing land-atmosphere in
teractions over croplands, WRF-Crop is able to directly simulate grain 
yield for corn and soy. Reliably using climate models such as WRF for 
future yield projections requires an understanding of biases. We 
compare simulated yield from WRF-Crop and HRLDAS-Crop to reported 
yield for 2015 in Fig. 8 and summarize yield bias results from all sim
ulations in Table 4. Yield bias maps for 2010 and 2012 are shown in 
Figures S17 and S18, respectively, and correlation plots for all simula
tions are shown in Figures S19 and S20 with yield MAE and line of best 
fit statistics in Table S5. In 2015, WRF-Crop has an average simulated 
corn (soy) bias of -3.1 (0.79) t/ha over D1, -4.2 (-0.25) t/ha over D2, and 
-6.2 (-1.3) t/ha over D3. WRF-Crop corn (soy) yield MAE in 2015 is 
nearly identical in magnitude to yield bias, 3.2 (1.1) t/ha over D1, 4.2 
(0.90) t/ha over D2, and 6.2 (1.3) t/ha over D3, underscoring the 
consistent underestimation of yield, especially for corn (Table S5). 
However, simulated yield biases from WRF-Crop are compounded by 
errors in simulated climate. HRLDAS-Crop simulations reduce these 
biases to -2.0 (0.035) t/ha for D1, -1.9 (0.22) t/ha for D2, and -0.87 

(0.49) t/ha for D3. Corn yields are routinely underestimated throughout 
nearly all counties in WRF-Crop and HRLDAS-Crop, with the exception 
of southeastern Iowa and western Illinois in 2010 (Fig S17). However, 
there is considerable spatial heterogeneity in soy yield error. HRLDAS- 
Crop tends to underestimate soy yields in D1, however D2 counties in 
southern Iowa and all counties in D3 are slightly overestimated in 2015 
and 2010. Simulated crop yields are highly sensitive to drought. In 2012, 
corn and soy are underestimated for nearly all counties in both HRLDAS- 
Crop and WRF-Crop. This underestimation is nearly twice as large in 
WRF-Crop relative to HLRDAS-Crop, exacerbated by hot and dry biases 
in WRF (Table 4 and Figs. 6 and 7). Simulated irrigation within Noah- 
MP was not available at the time of this study. Not surprisingly, the 
most significant yield biases for WRF-Crop and HRLDAS-Crop occur in 
irrigated counties, defined here as counties with an irrigated fraction 
greater than 25%. Yield biases are significantly more negative (p< 0.01) 
in these irrigated counties than the remaining, non-irrigated counties, 
for WRF-Crop and HRLDAS-Crop over D1 and D2 (Table 4 and 
Figure S21). There are no counties with an irrigated fraction greater 
than 25% in D3. 

Overall, our results are consistent with those of Zhang et al. (2020), 
who found that the offline version of Noah-MP-Crop without irrigation 
forced with meteorological data from NLDAS produced average 
2000-2004 yield errors of 26.3% for corn and 27.1% for soy based on 
RSME values. Here we compare individual growing seasons and find 
domain average yield MAE from HRLDAS-Crop ranges from 0.91 t/ha 
(2015 D3) to 3.9 t/ha (2012 D3) for corn and 0.40 t/ha (2010 D1) to 1.0 
t/ha (2010 D3) for soy (Table S5). As a percentage of the mean annual 

Figure 7. May through September total precipitation bias (simulated - Daymet) for each year simulated. Domain 1 (25 km) with domain 2 identified as black box (a- 
c), domain 2 (5 km) with Iowa counties outlined in grey and domain 3 identified as black box (d-f), and domain 3 (1 km) with county borders outlined in grey (g-i). 
Edge effects were not removed from figures. 
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yield, these ranges translate to 9.6% – 55.1% for corn and 15.0% – 
37.5% for soy. Domain average yield MAE from WRF-Crop ranges from 
2.1 t/ha (2010 D1) to 7.2 t/ha (2012 D3) for corn and 0.75 t/ha (2010 
D2) to 2.9 t/ha (2012 D3) for soy, or 25.7% – 102% for corn and 28.1% – 

109% for soy. 
We evaluated the effect of model resolution on yield estimates by 

comparing simulated yield in the 15 counties within the domain 
boundary of D3, across the three spatial resolutions (25 km, 5 km, 1 km; 

Figure 8. Simulated yield bias for 2015 shown as a percentage of observed county yield from: WRF-Crop (a-e) and HRLDAS-Crop (f-j). County yield biases in domain 
1 (25 km grid; panels a and f) contain both corn and soy grid cells. County yield biases in domain 2 (5 km grid; panels b,c,g,h) for corn (panels b and g) and soy 
(panels c and h) grid cells. County yield bias in domain 3 (1 km grid; panels d,e,i,j) for corn (panels d and i) and soy (panels e and j) grid cells. Observed yield from 
USDA-NASS. Black boxes identify domain boundaries. We include all counties that contain any WRF grid cells simulating crops. 

Table 4 
Simulated yield average bias for corn (soy) from WRF-Crop and HRLDAS-Crop over both all counties within a domain and irrigated counties (Irrigated fraction >=

25%) within a domain. Average yearly yield is included for reference. WRF-DV does is excluded from this table as it does not simulate crop yield. Simulations withe the 
lowest absolute bias are shown in bold.    

2010 Bias [t/ha] 2012 Bias [t/ha] 2015 Bias [t/ha]   

All Irrigated All Irrigated All Irrigated 

WRF-Crop D1 -1.9 (0.31) -3.1 (-0.76) -4.7 (-1.9) -7.5 (-2.2) -3.1 (0.79) -3.9 (-0.53)  
D2 -2.4 (-0.29) -3.9 (-1.3) -5.1 (-2.1) -6.7 (-2.4) -4.2 (-0.25) -5.3 (-1.7)  
D3 -3.0 (-0.10) NA (NA) -7.2 (-2.9) NA (NA) -6.2 (-1.3) NA (NA) 

HRLDAS-Crop D1 -0.35 (-0.12) -3.1 (-0.47) -2.6 (-0.56) -5.7 (-1.3) -2.0 (0.035) -4.1 (-0.66)  
D2 0.63 (0.25) -2.1 (-0.90) -2.8 (-0.58) -4.7 (-0.93) -1.9 (0.22) -3.2 (-0.74)  
D3 2.4 (1.0) NA (NA) -3.9 (-0.99) NA (NA) -0.87 (0.49) NA (NA) 

USDA Average 8.15 (2.67) 7.08 (2.64) 9.48 (3.02)  
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Figures S19 and S20). In WRF-Crop, finer resolution routinely results in 
reduced corn and soy yield. This translates into a larger negative yield 
bias for corn, which is consistently underestimated in WRF-Crop. 
Coarser resolution simulations aggregate temperature and precipita
tion across a broader area, suppressing localized extremes and produc
ing a drizzling effect of precipitation, both of which likely enhance plant 
growth (Challinor, et al., 2009). HRLDAS-Crop shows little difference in 
simulated yield across resolutions as the meteorological forcing data are 
simply interpolated, not dynamically downscaled as in WRF. 

4. Conclusion 

Agricultural practices alter the hydrologic and carbon cycles with 
notable feedbacks on climate. Over the last decade, Earth system models 
have begun to explicitly represent crop growth, allowing for more 
realistic representations of land-atmosphere interactions over agricul
tural areas and crop yield simulations. Here, we evaluate the ability of 
dynamic crop growth in Noah-MP, both coupled and decoupled from 
WRF. Dynamic crop growth in WRF substantially improves simulated 
LAI of both corn and soy over the central U.S. The differences in LAI 
seasonality and extent lead to differences in evapotranspiration parti
tioning between WRF-DV and WRF-Crop. However, these differences are 
largely balanced as there is no distinct difference in total ET between 
WRF with dynamic vegetation and WRF with dynamic crop growth for 
these model domains. Simulated ET from WRF-Crop and WRF-DV have 
similar MAE over corn and soy areas when compared to MODIS. 
Consequently, there is little difference in simulated temperature and 
precipitation between WRF simulations with and without dynamic crop 
growth. 

Compared to reported county level yields, WRF-Crop underestimates 
corn yields at all three resolutions. Modeled soy yields are closer to re
ported yields. Finer resolutions within WRF-Crop led to lower, and 
therefore generally worse, yield estimates for both corn and soy. WRF- 
Crop is sensitive to drought stress as simulated yield and LAI for both 
corn and soy are substantially below observations for 2012. Yield esti
mates within WRF-Crop are a function of the representation of crop 
physiology, agricultural management, and biases in simulated climate, 
making it difficult to directly compare to observations. Biases in simu
lated climate substantially contributed to simulated yield error. Running 
Noah-MP-Crop forced with reanalysis removes biases in simulated 
climate and reduces corn and soy yield error. The addition of dynamic 
crop growth to Noah-MP is a significant improvement in representing 
the land surface in WRF. Future work could refine agricultural man
agement practices by integrating irrigation, allowing for dynamic 
planting and harvest dates, and incorporating variable fertilizations 
rates. 
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