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Controlling the speed and trajectory of evolution
with counterdiabatic driving
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The pace and unpredictability of evolution are critically relevant in a variety of modern challenges, such as combating drug
resistance in pathogens and cancer, understanding how species respond to environmental perturbations like climate change
and developing artificial selection approaches for agriculture. Great progress has been made in quantitative modelling of evolu-
tion using fitness landscapes, allowing a degree of prediction for future evolutionary histories. Yet fine-grained control of the
speed and distributions of these trajectories remains elusive. We propose an approach to achieve this using ideas originally
developed in a completely different context—counterdiabatic driving to control the behaviour of quantum states for applica-
tions like quantum computing and manipulating ultracold atoms. Implementing these ideas for the first time in a biological
context, we show how a set of external control parameters (that is, varying drug concentrations and types, temperature and
nutrients) can guide the probability distribution of genotypes in a population along a specified path and time interval. This
level of control, allowing empirical optimization of evolutionary speed and trajectories, has myriad potential applications, from
enhancing adaptive therapies for diseases to the development of thermotolerant crops in preparation for climate change, to

accelerating bioengineering methods built on evolutionary models, like directed evolution of biomolecules.

culture and medicine pre-dates our understanding of evolu-

tion itself. Recent years have seen growing research efforts
towards this goal, driven by rapid progress in quantifying genetic
changes across a population'~ as well as a global rise in challenging
problems like therapeutic drug resistance*”. New approaches that
have arisen in response include prospective therapies that steer evo-
lution of pathogens towards maximized drug sensitivity®’, typically
requiring multiple rounds of selective pressures and subsequent
evolution under them. Because we cannot predict the exact progres-
sion of mutations that occur in the course of the treatment, the best
we can hope for is to achieve control over probability distributions
of evolutionary outcomes. However, our lack of precise control over
the timing of these outcomes poses a major practical impediment
to engineering the course of evolution. This naturally raises a ques-
tion: rather than being at the mercy of evolution’s unpredictability
and pace, what if we could simultaneously control the speed and the
distribution of genotypes over time?

Controlling an inherently stochastic process like evolution has
close parallels to problems in other disciplines. Quantum informa-
tion protocols crucially depend on coherent control over the time
evolution of quantum states under external driving®’, in many cases
requiring that a system remains in an instantaneous ground state
of a time-varying Hamiltonian in applications like cold atom trans-
port'® and quantum adiabatic computation''. The adiabatic theorem
of quantum mechanics facilitates such control when the driving is
infinitely slow, but over finite time intervals control becomes more
challenging, because fast driving can induce random transitions to

| he quest to control evolutionary processes in areas like agri-

undesirable excited states. Overcoming this challenge—develop-
ing fast processes that mimic the perfect control of infinitely slow
ones—has led to a whole subfield of techniques called ‘shortcuts to
adiabaticity’*”"”. One such method in particular, known as transi-
tionless—or counterdiabatic (CD)—driving, involves adding an
auxiliary control field to the system to inhibit transitions to excited
states'®~*°. Intriguingly, the utility of CD driving is not limited to
quantum contexts: requiring a quantum system to maintain an
instantaneous ground state under driving is mathematically analo-
gous to demanding that a classical stochastic system remains in an
instantaneous equilibrium state as external control parameters are
changed””. Extending CD driving ideas to the classical realm has
already led to proof-of-concept demonstrations of accelerated equil-
ibration in optical tweezer* and atomic force microscope** experi-
mental frameworks, and is closely related to optimal, finite-time
control problems in stochastic thermodynamics*~.

Here we demonstrate the first biological application of CD
driving, by using it to control the distribution of genotypes in a
Wright-Fisher (WF) model” describing evolution in a population of
organisms. The auxiliary CD control field (implemented, for exam-
ple, through varying drug concentrations or other external param-
eters that affect fitness) allows us to shepherd the system through a
chosen sequence of genotype distributions, moving from one evolu-
tionary equilibrium state to another in finite time. We validate the
CD theory through numerical simulations using an agent-based
model (ABM) of evolving unicellular populations, focusing on a sys-
tem where 16 possible genotypes compete via a drug dose-dependent
fitness landscape derived from experimental measurements.
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Fig. 1| Schematic overview of counterdiabatic driving for evolutionary systems. a, The trajectory of the selection coefficient vector s(A(t)) as a function
of a time-varying control parameter A(t), depicted in the bottom panel, for a hypothetical system of three genotypes (M =3). This represents the fitness
‘seascape’ under which the population evolves during driving. Three time points are highlighted: the initial time t,, an intermediate time t, and the final time
t, where the corresponding control parameter values are 1., 4, and 4. The amplitude of the control parameter along the trajectory is represented through a
colour gradient. b, The instantaneous equilibrium (IE) distribution of genotypes p(x; A(t)) for the three highlighted values of the control parameter from a.
These distributions are probability densities on the two-dimensional (2D) simplex defined by x;+x, <1and x,, x,> 0. In the lower part of the panel we show
the curve of mean IE genotype frequencies X(A(t)). ¢, For driving over finite times, the actual distribution of genotypes p(x,t) will generally lag behind the IE
distribution while the control parameter is changing. Thus, at t,, the distribution p(x,t;) is still far from p(x;4,), and will only catch up with it at times t>t; as

the system re-equilibrates.

Theory
Evolutionary model. We develop our CD driving theory in the
framework of a WF diffusion model for the evolution of genotype
frequencies in a population (see Methods for details). Let us con-
sider M possible genotypes, where the ith genotype comprises a
fraction x; of a population. Because Zfil x; = 1, we can describe
the state of the system through M —1 independent values of x;, or
equivalently through a frequency vector x=(x,, ..., x,,_,). Without
loss of generality, we will take the Mth genotype to be the reference
(the ‘wild type’) with respect to which the relative fitnesses of the
others will be defined. Let 1 +s; be the relative fitness of genotype
i=1, ..., M—1 compared to the wild type, where s, is a selection
coefficient, defining the ith component of a vector s. We assume
fitnesses are influenced by some time-dependent control parameter
A(t), which we write as a scalar quantity, though it could in principle
be a vector, reflecting a set of control parameters. These parame-
ters could involve any environmental quantity amenable to exter-
nal control: in the examples below we consider the concentration
of a single drug applied to a population of unicellular organisms.
However, we could have more complicated drug protocols (switch-
ing between multiple drugs)® or other perturbations in fitness sec-
ondary to microenvironmental change (for example, nutrient or
oxygenation levels). Our control protocol A(t) from initial time £,
to final time ¢, defines a trajectory of the selection coefficient vec-
tor, s(A(t)), shown schematically in Fig. la. Our population thus
evolves under a time-dependent fitness landscape, or a so-called
‘seascape’”. Note that all time variables, unless otherwise noted, are
taken to be in units of WF generations.

For simplicity, the total population is assumed to be fixed at a
value N, corresponding to a scenario where the system stays at a

time-independent carrying capacity over the time interval of interest.
(Our approach is easily generalized to more complicated cases with
time-dependent N(t), as shown in the Supplementary Information.)
The final quantity characterizing the dynamics is an M XM dimen-
sional mutation rate matrix m, where each off-diagonal entry m1,,
represents the mutation probability (per generation) from the ath to
the fth genotype. For later convenience, the ath diagonal entry of m
is defined as the opposite of the total mutation rate out of that geno-
type, M,,=— 4.qMs As in the case of N, we assume the matrix m
is time-independent, although this assumption can be relaxed.

Driving the genotype frequency distribution. Given the system
described above, we focus on p(x,t), the probability to find geno-
type frequencies x at time ¢, calculated over an ensemble of possible
evolutionary trajectories. The dynamics of this probability for the
WEF model can be described to an excellent approximation through
a Fokker-Planck equation:

aip(x, 1) = L(A(t))p(x, 1) (1)

where d,=0/0t and L(A(t)) is a differential operator, acting on func-
tions of x (described in the Methods). This operator involves N, m
and s(A(?)), and we highlight the dependence on A(¢). In setting up
the analogy to driving in quantum mechanics, equation (1) cor-
responds to the Schrodinger equation, with p(x,t) playing the role
of the wavefunction and £(A(¢)) the time-dependent Hamiltonian
operator. The full analogy between quantum and evolutionary
dynamics is described in more detail in Table 1. Although for our
purposes we only employ this analogy qualitatively, in fact there
exists in certain cases an explicit mapping from the Fokker-Planck
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Table 1| Analogies between quantum physics and evolutionary dynamics

Quantum physics Evolutionary dynamics

1. Wavefunction: describes the state of a quantum system. For a simple 1. Genotype probability distribution: the distribution p(x,t) of genetic variants

quantum particle in a spatial region described by coordinates x, this is (genotypes) in a population of organisms at time t, where x is a vector of

a function w(x,t) whose squared amplitude |y(x,t)|? is the probability genotype fractions.

density of finding the particle at x at time t.

2. Hamiltonian operator: a differential operator H(4(t)) depending 2. Fokker-Planck operator: a differential operator £(A(t)) depending on

on control parameters A(t), defined below. It describes how the control parameters A(t) defined below. It describes how the genotype
wavefunction changes in time through the time-dependent Schrédinger  probability p(x,t) changes in time through the Fokker-Planck equation,
equation, iho,Hy(x,t) = HA()w(x,t), where h is the reduced Planck op(x,t) = L(A(t)) p(x,t). The full form of L(A(t)) (equations (5)-(7)) involves
constant. H(A(t)) involves terms that correspond to the kinetic and terms that describe the mean change in genotype fractions due to mutations
potential energies of the quantum particle. and selection, as well as fluctuations due to genetic drift.

3. Control parameters: a set of parameters A(t) that can be manipulated 3. Control parameters: a set of parameters A(t) that can be manipulated
over time by an experimentalist. These parameters modify the kinetic/ over time by an experimentalist. These parameters modify genotype

potential energy terms in the Hamiltonian, and thus influence the fitnesses, and hence influence evolutionary dynamics through the
quantum dynamics. An example of this would be the magnitude of an selection terms in the Fokker-Planck operator. An example would be
externally applied electromagnetic field. the concentration of a drug applied to a microbial population, where

different genotypes exhibit different degrees of resistance against the drug
depending on the concentration.

4. Ground state: the lowest energy state of a quantum system. In general, 4. Equilibrium state: for a given set of parameter values 4, this is the genotype
for a Hamiltonian H(1) and given parameter values 4, the energy states probability p(x;1), which would remain unchanged in time (stationary) during
(labeled by n=0, 1, 2, ...) correspond to solutions of the time-independent evolutionary dynamics under fixed A. In general, a Fokker-Planck operator
Schrédinger equation: H(Dw,(x;4) =E (D, (x;4). Here, E, (A1) and w,(x;4)  L(4) has a set of eigenfunctions y,(x;4) and eigenvalues —«,(1) <0 for n=0,
are the energy and wavefunction, respectively, of the nth state. The 1, 2, ... defined through the following equation: £(4) y,(x;4) = —k, (D), (x;1).
energies £, < E, <... and the ground state corresponds ton=0. If 1 is The equilibrium state corresponds to n=0, with eigenvalue —«,(4) =0 and
fixed, a system whose wavefunction is y;,(x;1) will be stationary, withits ~ p(x;4) =y (x;4).

wavefunction not changing in time.

5. Adiabatic theorem: if we start in the nth energy state, 5. Adiabatic theorem: if we start at equilibrium p(x,t=0) = p(x;4(0)) for
wix,t=0)=y,(x;4(0)) for some initial control parameters 1(0), and then  some initial control parameters 1(0), and then vary A(t) infinitesimally slowly
vary A(t) infinitesimally slowly (adiabatically), the theorem states that the (adiabatically), the theorem (derived in the Supplementary Information)
wavefunction at later times remains in the nth energy state corresponding states that at later times we will always remain in the equilibrium state

to the instantaneous value of the parameters, w(x,t) =y, (x;A()). This is corresponding to the instantaneous value of the parameters, p(x,t) = p(x;A(t)).
true as long as there is always a non-zero difference between E,(A(t)) and

any E,(A(t)) for m#n at all t.

A summary of the connections between quantum and evolutionary concepts used in our theory is shown, where each numbered item in the quantum column on the left has its analogue in the evolutionary
column on the right.

to the Schrodinger equation (though not vice versa)*~*'. For a par-  always remains in the same instantaneous ground state (assuming
ticular value of the control parameter 4, the analogue of the quan-  that at all times there is a gap between the ground-state energy and
tum ground-state wavefunction is the eigenfunction p(x;4) with  the rest of the energy spectrum). Figure 1b presents schematic snap-

eigenvalue zero, the solution of the equation shots of p(x;A(t)) at three times, with the control parameter shifting
them across the genotype frequency space.
L(A)p(x;4) =0 (2) When the driving occurs over finite times (#;< o), the above

results break down: p(x,t) #p(x;A(¢)) for 0<t<t; but is instead a
In the evolutionary context, p(x;1) has an additional meaning with  linear combination of many instantaneous eigenfunctions of the
no direct quantum correspondence: it is the ‘equilibrium probability = Fokker-Planck operator, just as the corresponding quantum sys-
distribution of genotypes. If one fixes the control parameter A(f)=4, tem under faster driving will generically evolve into a superposi-
the distribution p(x,t) obeying equation (1) will approach p(x;4) in  tion of the instantaneous ground state and excited states. This will
the limit t — oo. manifest itself as a lag, with p(x,f) moving towards but not able to
Consider the following control protocol, where we start at one  catch up with p(x;A(f)), as illustrated in Fig. 1c. For t>t;, once A(f)
control parameter value, A(t)=4, for <t and finish at another stops changing, the system will eventually settle into equilibrium at
value, A(t) =4; for t>t;, with some arbitrary driving function A(f)  p(x;4;) in the long-time limit.
in the interval #,<t<t. We assume the system starts in one equi-
librium distribution, p(x,f,) =p(x;4,), and we know that it will Control and counterdiabatic driving. This lag can be an obstacle
eventually end at a new equilibrium, p(x,t) = p(x;4;) for t>>t. But  if one wants to control the evolution of the system over finite time
what happens at intermediate times? If A(f) changes infinitesimally  intervals. Because evolutionary trajectories are stochastic, we can-
slowly during the driving (and hence t;— o) then the system would  not necessarily guarantee that the system starts and ends at precise
remain at each moment in the corresponding instantaneous equi-  genotype frequencies, but we can attempt to specify initial and final
librium (IE) distribution, p(x,t)=p(x;A(¢)) for all t. This result, target frequency distributions. At the end of the driving t=t¢;, we
derived in the Supplementary Information, is the analogue of would like our system to arrive at the target distribution, and then
the quantum adiabatic theorem?® applied to the ground state: for  stay there as long as the control parameter is fixed. In this way we
a time-dependent Hamiltonian that changes extremely slowly, a  complete one stage of the control protocol and have a known start-
quantum system that starts in the ground state of the Hamiltonian  ing point for the next stage, because in practice we could imagine

NATURE PHYSICS | www.nature.com/naturephysics


http://www.nature.com/naturephysics

ARTICLES

NATURE PHYSICS

the interval £, < t < t;as just one step of a multi-stage protocol involv-
ing distinct interventions (that is, a sequence of different drugs).
Completing each stage as quickly as possible, while accurately
hitting each target, would for example be a crucial prerequisite
to translating certain evolutionary medicine approaches to clini-
cal settings (see Supplementary Section 8 for a fuller discussion).
Thus, if we were enumerating the characteristics of an ideal con-
trol mechanism, at the very least it should be able to drive the sys-
tem from one equilibrium distribution, p(x,t,) = p(x;4,), to another,
p(x.1) =p(x:45), over a finite time t,— ¢,

In the context of quantum adiabatic computing'’, the typical
focus is on the initial ground state (which has to be easy to real-
ize experimentally) and the final ground state (because it encodes
the solution to the computational problem). In the evolutionary
case, we can imagine additional desired characteristics for our driv-
ing, beyond the start and end-point distributions. There are many
ways to go from an initial fitness landscape, s(4,), to a final fitness
landscape, s(4;), corresponding to different possible trajectories in
the selection coefficient space of Fig. 1a that share initial and final
values. Depending on how we empirically implement the control,
many of these trajectories may be physically inaccessible. However,
among the remaining set of realizable trajectories, some may be
more desirable than others (that is, have different evolutionary
consequences™ or trade-offs™). Each trajectory defines a continu-
ous sequence of IE distributions p(x;4()), and for each distribution
there is a mean genotype frequency X(4(t)), illustrated in the lower
half of Fig. 1b. We may, for example, want protocols that minimize
the chances of our system visiting certain problematic genotypes:
in practice this could translate to demanding that the curve X(A(t))
for t,<t<t; stays far away from certain regions of the genotype
frequency space. This, in turn, restricts the s(A(t)) trajectories and
hence the protocols A(f) of practical interest. In simpler terms, we
would ideally like to control not just the distributions at the begin-
ning and end of the driving, but also, if possible, along the way.

We formulate this ideal control problem in the following way:
we demand that p(x,t) =p(x;A(t)) for some chosen control proto-
col A(#) in t, <t <t The protocol A(t) is determined with the above
considerations in mind, and thus defines a particular path through
the space of genotype frequency distributions over which we would
like to guide our system. Clearly, we will not achieve success by just
directly implementing A(t), because p(x,f), obeying equation (1),
will generally lag behind p(x;4(#))*. The resolution of this prob-
lem in the quantum case through CD driving is to add a specially
constructed auxiliary time-dependent Hamiltonian to the original
Hamiltonian'®*. For a specific choice of this auxiliary Hamiltonian,
we can guarantee that our new system always remains in the instan-
taneous ground state of the original Hamiltonian. The evolutionary
analogue of CD is to replace the Fokker—Planck operator L(A(t)) in
equation (1) with a different operator £(4(t), A(t)), which depends
on both A(t) and its time derivative A(¢) = dA(t)/dt. This CD opera-
tor satisfies

Bup(x; (1)) = L(A(t), A(1))p(: 4(1)) 3)

Thus, by construction, p(x,t)=p(x;A(¢)) is a solution to the
Fokker-Planck equation with the new operator. Additionally, to
be consistent with the slow adiabatic driving limit discussed above,
L(A(t),0) = L(A(t)), so we recover the original Fokker-Planck
operator when the speed of driving () — 0 and t;— co.
Ofcourse,defining £(A(t), A(t)) inthiswayistheeasypart: figuring
out how to implement a new control protocol to realize L(A(t), A(t))
is more challenging. In the Methods, we show how the most gen-
eral solution to go from L to L is to replace the original selection
coefficient trajectory s(A(t)) with a frequency-dependent version,
§(x;A(t), A(t)). Implementing a particular frequency-dependent
fitness seascape is a degree of control that is generally impossible

in realistic scenarios. Fortunately, we show that in one impor-
tant parameter regime the CD seascape becomes approximately
frequency-independent, $(x; A(t),A(t)) =~ §(A(t), A(¢)). This occurs
in the large-population, frequent-mutation regime: if the typi-
cal mutation rate scale is 4, meaning mg, ~ O(u) for all non-zero
mutation rates where a# f, then this corresponds to uN>1, N> 1
(refs. **=). In this regime multiple genotypes can generally coexist
in the population at equilibrium (although one may be quite domi-
nant), which is particularly relevant for pathogenic populations,
especially ones spreading through space’~*>. Remarkably, there is a
simple analytical expression that provides an excellent approxima-
tion to §(A(t), A(t)) in this case:

Si(A(1), A1) = si(A(1)) + %h‘ %

where Xy (A(t)) =1 — Zﬁ;l Xi(A(t)). We see that the new selection
coefficient protocol is defined through the target mean genotype
frequency trajectory X(A(t)), and reduces to the original protocol
when A(¢) — 0. Moreover, as we show in the examples below for
specific systems, equation (4) can at least in certain cases be imple-
mented through physically realistic manipulations of the environ-
ment, like time-varying drug dosages. Although we focus on the
frequent-mutation regime in the current work, the applicability of
CD ideas is not limited to just this regime: for the opposite case
of infrequent mutations, uN < 1, where the evolutionary dynamics
can be modelled as a sequence of mutant fixations, one can also for-
mulate a CD theory based on a discrete Markov state description®.

Results
Two genotypes. The simplest example of our CD theory is for
a two-genotype (M=2) system, where the dynamics are one-
dimensional (1D) and described by a single frequency x, and selec-
tion coefficient s, (A(t)). As shown in the Methods, equation (4) in this
case can be evaluated analytically. To illustrate driving, we assume
a control protocol A(t) such that the selection coefficient increases
according to a smooth ramp (the original protocol in Fig. 2b).
This starts from zero at t, (both genotypes have equal fitness) and
increases until reaching a plateau at a final selection coefficient that
favours genotype 1. Figure 2a shows p(x,,t) from a numerical solu-
tion of equation (1) using this protocol, compared against the IE
distribution p(x;;4(¢)), solved using equation (2), at three time snap-
shots. To validate the Fokker-Planck approach, we also designed
an ABM, as described in the Methods, which simulates the indi-
vidual life trajectories of an evolving population of cells. Because
there exists a mapping between the parameters of the ABM and the
equivalent Fokker-Planck equation (see Methods), one can directly
compare the p(x,,t) results from the ABM simulations (circles) to
the Fokker-Planck numerical solution of equation (1) (curves),
which show excellent agreement. In the absence of CD driving, as
expected, p(x,,t) lags behind p(x;;A(¢)), with the latter shifting rap-
idly to larger x, frequencies as the fitness of genotype 1 increases.
To eliminate this lag, we implemented the alternative selection
coefficient trajectory of equation (20). Figure 2b shows a compari-
son between 5 (A(t),A(t)) and the original s,(4(f)). We see that the
CD intervention requires a transient overshoot of the selection coef-
ficient during the driving, nudging p(x,,t) to keep up with p(x;A(t)).
Figure 2c shows the same snapshots as in Fig. 2a, but now with CD
driving: we see that the actual and IE distributions nearly perfectly
overlap at all times. To quantify the effectiveness of the CD protocol,
we measured the degree of overlap through the Kullback-Leibler
(KL) divergence™*, defined for any two probability distributions
p(x) and q(x) as Dy, (pllq) =/dx p(x)log,(p(x)/q(x)). Expressed
in bits, the KL divergence is always >0, and equals 0 for identical
distributions. Figure 2d shows Dy, (p||p) for both the original and
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Fig. 2 | Counterdiabatic driving results for two genotypes. a,c, We plot three time snapshots of the actual probability distribution p(x;t) versus the

|E distribution p(x;A(t)) for driving with the original control protocol (@) and with the CD driving protocol (c), where x, is the fraction of genotype 1in
the population. Solid red curves are numerical solutions of the Fokker-Planck equation (1) for p(x,t) and red circles are agent-based simulations.
Without CD driving, the actual distribution always lags behind the IE. b, The selection coefficient trajectory s, for the original control protocol (dark
blue) versus the corresponding CD prescription (green) s: from equation (20). The three snapshot times (50, 100 and 150 generations) are indicated
by triangles. d, Kullback-Leibler divergence between actual and IE distributions versus time, with and without CD driving, calculated using the numerical

Fokker-Planck solution.

CD protocols, with the latter dramatically reducing the divergence
across the time interval of driving.

Multiple genotypes via agent-based modelling. The ABM simula-
tions also allow us to test the CD theory in more complex scenarios.
To this end, we considered a system with 16 genotypes (four alleles),
with selection coefficients based on a well-characterized experi-
mental system: the fitness effects of the antimalarial drug pyri-
methamine at varying concentrations on all possible combinations
of four different drug-resistance alleles>’. Our control parameter
A(t) is the drug concentration, and we implement the seascape by
increasing the drug over time (after an initial equilibration period),
eventually saturating at a concentration of 10™*M (the protocol
labelled ‘original’ in Fig. 3e). With our choice of simulation param-
eters (see Methods), a number of the genotypes have sufficient
resistance to survive even at higher drug dosages, so the overall
population remains at carrying capacity. What changes as the dos-
age increases is the distribution of genotypes. Figure 3a,b shows the
results in the absence of CD driving, with each genotype labelled
by a four-digit binary sequence. The population goes from being
dominated by 1110 (with smaller fractions of other genotypes) to
eventually becoming dominated by 1111. However, there is a dra-
matic lag behind the IE distribution, taking more than 1,500 gen-
erations to resolve. This is quantified in the KL divergence Dy, (p||p)
in Fig. 3f, which rapidly increases by five orders of magnitude as
the drug ramp starts showing its effects (around generation 500).
Equilibration to the higher drug dosages brings the divergence back
down over time, but it only achieves relatively small amplitudes

NATURE PHYSICS | www.nature.com/naturephysics

after generation 2,000. Note that the scale of the KL divergences for
15-dimensional probability distributions is larger than for the 1D
example in the previous section: this reflects both the greater sen-
sitivity of the KL measure to small discrepancies in a 15D space, as
well as the fact that distributions estimated from an ensemble of
simulations (1,000 independent runs in this case) will always have
a degree of sampling error. Thus it is more instructive to look at
the relative change of the KL with driving rather than the absolute
magnitudes.

To reduce the lag through CD driving, one should, in principle,
implement the selection coefficients according to equation (4).
However this involves guiding the system along a fitness trajec-
tory in a 15D space, and in this case we have a single tuning knob
(the concentration of pyrimethamine) to perturb fitnesses. In such
scenarios one then looks at the closest approximation to CD driv-
ing that can be achieved with the experimentally accessible control
parameters. In this particular case the genotypes that dominate the
population at small and large drug concentrations are 1110 (i=15)
and the wild-type 1111 (i=16), so the selection coefficient s that
encodes their fitness relative to each other plays the most impor-
tant role in the dynamics. We thus choose a CD drug dosage by
numerically solving for the concentration that most closely approxi-
mates the i=15 component of equation (4) at each time. Because
in real-world scenarios there will be limits on the maximum allow-
able dosage, we constrain the CD concentrations to be below a cer-
tain cutoff. The approximation described here, where two different
genotypes dominate at different times during the driving, is just a
special case of a more general approximation approach where we
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Fig. 3 | CD driving eliminates evolutionary lag in a 16-genotype simulation. a,d, Three snapshots of the evolving agent-based population model without
(a) and with (d) CD driving. Each of the three 16-genotype (four binary alleles) hypercubic graphs (‘tesseracts’) has vertices with log-scaled radii
representing the fraction of each genotype in the total population at a given time. Orange is the actual fraction, blue the IE fraction, and the overlap

appears purple. The CD driving in this case is implemented approximately through a drug dosage protocol (e) with a cutoff of 10-2M. b,¢, Corresponding
sample simulation trajectories (solid lines) versus IE expectation (dashed lines) for the fraction of four representative genotypes without (b) and with (c¢)
CD driving. The latter significantly reduces the nearly 1,500-generation lag. e, The original drug protocol versus the CD protocol with different possible

dosage cutoffs. f, KL divergence between the actual and IE distributions versus time, with and without CD driving. For the latter, increasing the dosage
cutoff value makes the protocol more closely approximate the true CD solution, and hence decreases the divergence.

seek to achieve the closest possible protocol to the one described by
equation (4), given the experimental constraints. In Supplementary
Section 9 and Extended Data Figs. 1 and 2 we illustrate how this
general strategy works in two additional 16-genotype seascape
examples (including the empirical seascape for the drug cyclogua-
nil’) where more than two genotypes dominate during driving.

Figure 3e shows CD drug protocols with three different cutoffs:
1x107% 1x107* and 5% 10™*M (all within the experimentally mea-
sured dosage range). The higher the cutoff, the better the approxi-
mation to CD driving. We can directly quantify the overall reduction
in lag time At due to CD from the KL divergence results of Fig. 3f, as
explained in the Methods. For a cutoff of 1072M the lag is reduced
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by At=1,210 generations. Notably, although the approximation is
based on the top two genotypes (1110 and 1111), it reduces the lag
time across the board for all genotypes (see Fig. 3¢ for four rep-
resentative genotype trajectories at 102M cutoff, with other geno-
types shown in the snapshots of Fig. 3d). This is because driving of
the top two also entrains the dynamics of the subdominant geno-
types whose populations are sustained by mutations out of and into
the dominant ones. Even with the more restrictive constraint of
5% 107*M, there is still a substantial benefit, with the lag reduced
by At=656 generations. This highlights the robustness of the CD
approach: even if one cannot implement the solution of equation (4)
exactly, we can still arrive at the target distribution faster through an
approximate CD protocol.

Discussion

Our demonstration of the CD driving approach in a population
model with empirically derived drug-dependent fitnesses shows
that we can accelerate evolution toward a target distribution in
silico. As new technologies progressively allow us to assemble ever
more extensive fitness landscapes for various organisms as a func-
tion of external perturbations like drugs'~, the next step is imple-
menting CD driving in the laboratory. This would be a necessary
milestone on the path to a range of potential applications (the latter
is discussed in more detail in Supplementary Section 8). Thus, it is
worth considering the challenges and potential workarounds that
will be involved in experimental applications.

One salient issue is the range of control parameters available
in laboratory settings. Our examples have focused on the simplest
cases of 1D control, but to access the full power of the CD approach
presented here, we should explore a richer parameter space: not
only single drugs, but combinations, along with varying nutrients,
metabolites, oxygen levels, osmotic pressure and temperature.
The eventual goal would be to have for every system a library of
well-characterized interventions that could be applied in tandem,
allowing us the flexibility to map out desired target trajectories
through a multidimensional fitness landscape. In other words, for
a given system we would have access to a selection coefficient func-
tion s(A(t)), where A(f) = (4,(t), ,(¢), ...) is a multidimensional vec-
tor of control parameters at time #: 4,(¢) is the concentration of one
drug, 4,(t) is the concentration of another drug (or nutrient), and so
on. More generally, one could explore how fundamental differences
among fitness landscapes (that is, the difficulties in reaching local
optima in so-called ‘hard’ landscapes®) influence the types of inter-
vention needed to achieve driving and their effectiveness.

Even given accurately measured fitnesses, one might be ham-
pered by imperfect estimation of other system parameters, such as
mutation rates. To determine how large the margin for error is, we
tested the CD driving prescription calculated using incorrect muta-
tion rates, varying the degree of discrepancy over two orders of
magnitude (see Supplementary Information for details). Although
such discrepancies do reduce the efficacy of CD driving, leading
to deviations between actual and IE distributions at intermediate
times, populations driven with an incorrect protocol still reached
the target distribution faster than in the absence of driving. As in
the case of the dosage cutoff discussed above, the CD approach has
a degree of robustness to errors in the protocol, which increases its
chances of success in real-world settings.

But what if we lacked measurements of the underlying fit-
ness seascape? Interestingly, there might still be some utility of
the CD method even in this case. We could first do a preliminary
quasi-adiabatic experimental trial: vary external parameter(s) 4
extremely gradually and use sequencing at regularly spaced inter-
vals to determine the quasi-equilibrium mean genotype fractions
X;(A) as a function of A. If we now wanted to guide the system
through the same sequence of evolutionary distributions but much
faster, we have enough information to approximately evaluate the
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CD perturbation in equation (4), which just depends on X;(4)
and the rate A(t) that we would like to implement. So, at the very
least, the CD prescription could be estimated, providing a blue-
print, and the remaining challenge would be figuring out what
combination of external perturbations would yield the right sorts of
fitness perturbations to achieve CD driving. Because the prescrip-
tion is dominated by the most frequently observed genotypes, this
approach is well suited for cases where we do not have complete
fitness information about all possible mutations, opening up CD
driving to an even wider range of systems.
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Methods

Fokker-Planck description of the WF evolutionary model. The underlying
evolutionary dynamics of our model are based on the canonical haploid WF model
with mutation and selection, and we adopt the formalism of recent approaches®*
that generalize Kimura’s original two-allele diffusion theory” to the case of multiple
genotypes. A convenient feature of the WF formalism is that other, more detailed
descriptions of the population dynamics (for example, ABMs that track the life
histories of individual organisms) can often be mapped onto an effective WF form,
as we illustrate below.

The starting point of the Fokker-Planck diffusion approximation*** for
evolutionary population dynamics is the assumption that genotype frequencies
change only by small amounts in each generation. We can thus take the genotype
frequency vector x to be a continuous variable that follows a stochastic trajectory. The
key quantities describing these stochastic dynamics are the lowest-order moments
of 8x, the change in genotype frequency per generation. We will denote the mean of
the change in the ith genotype, dx,, taken over the ensemble of possible trajectories,
as v(x;4(t)) = (dx;). Note that in general v,(x;A(f)) will be a function of the genotype
frequencies x at the current time step, and also have a dependence on the control
parameter A(t) through the selection coefficient vector s(4(f)) (which influences (dx;)).

In non-evolutionary contexts v,(x;4(t)) is called the drift function, but here
we will call it a velocity function to avoid confusion with genetic drift. Similarly,
we will introduce an (M — 1) x (M — 1) diffusivity matrix D;(x) to describe the
covariance of the genotype changes, defined through 2D;(x) = (8x,6x;) — (5x,)(x;).
As shown in the Supplementary Information, to the lowest-order approximation,
D,(x) is independent of s(A(1)), and hence is not an explicit function of A(#). If we
are interested in the dynamics on timescales much larger than a single generation,
the probability p(x,t) to observe a genotype state x at time ¢ obeys a multivariate
Fokker-Planck equation*:

ap(x,1) = —ai(vi(x; A(1))p(x, £)) + 9i0; (Dy (x)p(x; 1))
= LA0)p(x 1)

where d,= 0/0t and 9,= d/0x.. Note that we use Einstein summation notation,
where repeated indices are summed over, and furthermore designate Greek
indices to range from 1 to M Whlle Roman lndlCeS range from 1 to M —1 (for
example, the term 9;0;(D;;(x)p( Z ZM Lo 9;(Dji(x)p(x,t))). The
right-hand side of equation (5) deﬁnes the Fokker—Planck dlfferential operator
E(/l(t)) in equation (1). To correspond to genotype fractions, vectors x have to lie
in the —1)-dimensional simplex A defined by the conditions X >0 forall i and
Z 1% <1.Ifx€ A, then the wild-type fraction xy = 1 — 37" x; lies between
0 and 1. Normalization of p(x,t) takes the form fAdx p(x,t) =1, where the integral is
over the volume of the simplex A.

To complete the description of the model, we need expressions for the
functions v,(x;A(t)) and D, #(X). Given a WF evolutionary model, these take the
following form (see Supplementary Information for a detailed derivation):

()

gij(x) (6)

WKA®D) = mix, + (A0, Dylx) =L

where m is the M X M mutation rate matrix defined in the main text, and g(x) is an
(M —1)x (M —1) matrix with elements given by

&(®) = {_xixj = . (7)

xi(1 —x;) i=j, nosumoveri

Instantaneous equilibrium distributions. The IE distribution p(x;A(t)) is defined
through equation (2), £(A(t))p(x; A(t)) = 0. Because we evaluate the effectiveness
of our driving by comparing the actual distribution p(x,t) to the IE distribution,

it is useful to know the form of p(x;A(t)). Unfortunately, it is generally not

possible to find an IE analytical expression, except in some specific cases”**. The
two-genotype system (M =2) is one example where an exact solution is known. It
has a form analogous to the Boltzmann distribution of statistical physics**:

—P(x:A (1))

p(x;A(1)) = W ®)

where ®(x;4(1)) is an effective ‘potential’ given by
D(x;A(t)) = —2N(myzlogxy + mylog (1 — x1) + s1(A(t))x1) + log det g(x) (9)
and Z(A(t)) is a normalization constant.
To estimate the IE distribution for general M, we take advantage of the
large-population, frequent-mutation regime, mg, ~ O(u), for all non-zero matrix

entries where a# f#, with uN>>1, N>> 1. In this case we know that p(x;A(¢)) is
approximately a multivariate normal distribution of the form

P(x;A(1)) =

(2" detz(a(e))) "
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Here, X;(4) = [,dx xip(x; A) is the ith mean genotype fraction for the IE
distribution, and 7!(4) is the inverse of the covariance matrix () for this
distribution. The latter has entries X;; = x;x; — X;X;. To make practical use of
equation (10), we need a method to estimate X;(4) and X(4). As shown in the
Supplementary Information, this can be done through an approximate numerical
solution to a set of exact equations involving the moments of p(x;4).

Counterdiabatic driving protocol. To implement CD driving, we need to
solve for the CD Fokker—Planck operator £(4(t), A(t)) that satisfies equation
(3). We posit that £ should be in the Fokker-Planck form of equation (5), but
with some CD version of the selection coefficient, §(x; A(¢), A(t)), instead of the
original s(A(t)). The necessary perturbation to the fitness seascape to achieve
CD driving, 8s5(x; A(t), A(£)) = 8(x; A(t), A(t)) — s(A(t)), we take for now to be
frequency-dependent for generality. Thus, equation (3) takes the form

L((1), (0)p(x: A1)

9p(x;A(t)) = x (11)
= —0i(7i(x: A1), A(D))p(x: A(1))) + 3:9;(Dy (x)p(x; A(1)))
with a modified velocity function
i 2(6), A(1)) = i, + g, (5 (5 A(8), A(1) W)

= vi(xA(1)) + g5(x)85(x; 4(1), A(1))

Using the fact that L£(4(t))p(x; A(t)) = 0, because p(x;4(t)) is the IE distribution of
the original operator £, we can rewrite equation (11) as

aup(x;2(0)) = —i(plx; A1), (x)85(x; A(1), (1)) )
= —9J;

(13)

where J; = p(x; A(t))g;; (x)85;(x; A(1), (t)) is a probability current. In this form,
equation (13) looks like a continuity equation, describing the local transport
of probability density due to the current field 7. For this equation to conserve
total probability over the simplex A, we also require the condition that J;n; = 0
at any point on the boundary of the simplex, where the vector n is normal
to the boundary at the point. The perturbation 88(x; A(¢), A(¢)) that satisfies
equation (13) and the boundary condition defines an exact CD protocol for the
evolutionary system.

Given an arbitrary continuous time sequence of IE distributions p(x;A(t)), such
a perturbation always exists. In fact, from a formal mathematical standpoint®, any
perturbation of the following form is a solution (note that for clarity we do not use
Einstein summation in this case):

85(x; A(t), A(t))
= g0 [y (- T2 Ko [ dx] upla,
+E(x; A1), 4(1)))]

sem-13A(1)  (14)

Here g~!(x) is the inverse of the matrix g(x), X; is the unit vector along the ith
axis, and the integral in the ith term of the sum is carried out only over the ith
genotype fraction, keeping all other components x;, j# i, fixed. There are two
quantities in equation (14) that make the solution potentially non-unique: (1) the
weights w, can be any real numbers, so long as S0 ! w; = 15 (2) £(x; A(t), A(¢))
is an (M — 1)-dimensional vector function that has zero divergence, df,=0.
However, we have additional constraints on this function f: it has to be compatible
with the vanishing of the current orthogonal to the boundary, J;n; = 0. For
M =2, where necessarily w, = 1, these constraints mean that only f=0 is allowed,
and we get a unique exact CD solution. For M > 2, the partial differential equation
df,=0 and the boundary condition do not specify f uniquely, and hence we get
many possible allowable CD solutions, all of which satisfy equation (13). This in
turn means that we can always find CD Fokker-Planck operators £(A(t), 4(t))
that satisfy equation (3).

However, the formal existence of such perturbations &8s is not the end of
the story, because many of the solutions described by equation (14) may not be
physically realizable. To get at a more practical (though approximate) CD solution,
we proceed as follows. As discussed in the section “Instantaneous equilibrium
distributions”, in the regime of interest it is easier to work with moments of the IE
distribution, so it is useful to convert equation (13) into a relation involving the
IE first moment X;(4). Multiply both sides of equation (13) by x,, and notice that
xk0;J i = 0i(xx T ;) — ST i» where &, is the Kronecker delta function. Integrating
over the entire simplex gives

/dxxkatpxi /dxa (ke T3) /dxjk (15)

By Gauss’s theorem, [, dx 0;(xxJ;) = [;,do x¢Jin;, where the integral involves
area elements do of the simplex boundary dA, and #; are the components of the
normal vector to this boundary. By conservation of probability, the component
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of J normal to dA vanishes, that is, J;n; = 0, so the first term in equation (15) is
zero. Plugging the definition of J into the second term, we get

/Ad" dip(xA(t)) = /Ad" Pl 2(1))gy (X)85, (6 2(1), A1) (16)

or equivalently
AX(A(1)) = (g(x)88(x; 4(1), A(1))) (17)

where the brackets () denote an average over the simplex with respect to p(x;A(t)).

So far, both equations (13) and (17) are exact relations satisfied by the CD
perturbation 8s. However, we can simplify the results in the large-population,
frequent-mutation regime, where p(x;A(t)) has the approximate normal form of
equation (10). As argued in the Supplementary Information, in this case the leading
contribution to 8§ is frequency-independent, 85(x; A(t), A(t)) ~ 85(A(t), A(t)), with
corrections that vanish in the large N limit. The leading contribution 85(A(t), A(t))
satisfies a version of equation (17) with x on the right-hand side replaced by the IE
mean X(A(t)):

AX(4(1)) = g(X(4(1)))88(A(1), A(1)) (18)

This equation can be directly solved for 88(A(t), A(t)) in terms of X(A(t)),
yielding the approximate CD solution of equation (4). Thus, knowing the IE first
moment X(4(t)) over the duration of the protocol (via the numerical procedure
described in the Supplementary Information) allows us to estimate a CD driving
prescription.

Counterdiabatic driving for the two-genotype example. For the M =2 system,
the exact IE distribution is given by equations (8) and (9). In the large-population,
frequent-mutation limit we can estimate the mean frequency ¥, (4(t))
corresponding to this distribution as

iz = may 51 (A(0) + iz + mar — 51 (A(0))? + 4y (4(1))

x1 (A1) =
B 251(A(1))
(19)
This allows the CD prescription in equation (4) to be evaluated analytically,
yielding
3 p 91 (A(t
§(4(0), A(1)) = s (a() + 51 (A1) )

Vi  may = 51 (A(0))? + 4mizsi (4(0))

For the results in Fig. 2, we assume the following ramp for the selection coefficient:
5, (A1) =0/(1+ae™) —o6/(1+a), with 6=0.02, a=817 and k=0.06. The other
model parameters are set to N=10%, m,,=m, =2.5x107.

Agent-based model. Model description. For the ABM simulations, we track a
population of single-celled organisms that undergo birth (through binary division),
death and mutations. There are M genotypes, and the fitness of genotype i <M
relative to the Mth one (the wild type) is 1+ s,(4(z)), which depends on the drug
dosage A(7) at the current simulation time step 7. (The mapping between simulation
time steps 7 and WF generations ¢ will be discussed below.) At each simulation
time step, every cell in the population undergoes the following process: (1) with
probability d it dies; (2) if it survives, the cell divides with a genotype-dependent
probability

b,-<f)={ min(b0(1+s,(/1(r))(1J%W)J) Near(7) <K
0 Neai(7)

(21)

where i is the cell’s genotype, b, is a baseline birth rate, N (7) is the current
number of cells in the population and K is the carrying capacity. Upon division, the

daughter cell mutates to another genotype j with probability 7;;, j#1.

In silico implementation. The ABM was implemented for the M=2 and M=16
examples described in the main text using code written in the C++ programming
language. Code, configuration files and analysis scripts for these models can be
found on https://github.com/Peyara/Evolution-Counterdiabatic-Driving. The code
directly implements the model of the previous section, and is summarized in the
flow chart of Supplementary Fig. 4. The M =2 selection coefficient s,(A(t)) and
other model parameters are as described above.

For M =16, the simulations were run for 4.5 10* time steps with a death rate
d=0.05, a baseline birth rate b,=2 and a carrying capacity of K=5x10°. The
mutation probability 7, j # i is zero unless the Hamming distance between the
binary string representation of i and j is 1. This gives the ‘tesseract’ connectivity
seen in Fig. 3a,d. Where non-zero, the probability is i; = 2.5x 107, giving a
total mutation probability 3 ..,71; = 10~ for all offspring. To give the population
time to reach an initial equilibrium, the drug concentration A() is initially small,

increases substantially around time step 7= 10, and then plateaus at later times.
The dosage follows the equation

Ar)

a
T 14exp(—=b(r—¢)) (22)
with parameters a=1.5x10~*M, b=2x%10"*and c¢=10, 110. The selection
coefficients s,(A(r)) were varied with concentration A(z) in accordance with the
experimentally measured dose-fitness curves of 16 genotypes for the antimalarial
drug pyrimethamine®”. To calculate the distributions of genotype frequencies,
every simulation was repeated 1,000 times.

Mapping the agent-based model simulations to a Fokker-Planck equation. To
implement the CD driving protocol, derived for WF Fokker-Planck dynamics, in
the context of the ABM, we need a mapping between the ABM parameters and
the corresponding Fokker-Planck parameters. As shown in the Supplementary
Information, this can be done by describing the ABM simulation population,
updating at each time step, as an effective Langevin equation, and then using
the connection between the Langevin and Fokker-Planck descriptions**. The
resulting approximate correspondence is summarized as follows: (1) a duration
of r ABM simulation time steps maps to ¢~ rd WF generations, where d is the
ABM death rate. (2) The Fokker-Planck mutation matrix entries m,,, i #v, are
given by m;, ~ ;, (1 + s, ), where 7, are the ABM mutation probabilities.

(3) The effective population N in the Fokker-Planck model is given by
N~LiK(1—dby'(1- d)™"), where K is the ABM carrying capacity and b, the
baseline birth rate. The accuracy of this mapping is illustrated in Fig. 2a,c, where
the distributions from ABM simulations for M =2 (red circles) are compared
against numerical Fokker—Planck solutions with parameters calculated using the
mapping (red curves).

Numerical estimation of the KL divergence and reduction in lag time. To quantify
the effectiveness of the CD driving, we use the KL divergence between the

actual distribution, p(x,t), and the IE one, p(x;4(t)), defined as Dy, (p||p) = fdx

p(x; A(t))log ,(p(x:A(1))/p(x,t)). For M =2, the Fokker-Planck equation can be
solved numerically for p(x,,t), while p(x;;4(f)) is known analytically (equations (8)
and (9)). Hence the 1D integral for Dy, (p||p) can be numerically evaluated. For

M =16 the situation becomes more complicated. There is no analytical solution

for p(x;A(t)), but we do have a good approximation in terms of the multivariate
normal distribution of equation (10), expressed in terms of the mean vector X(A(t))
and covariance matrix X(A(t)), which are calculated using the moment approach
described in the Supplementary Information. The ABM simulation results are also
normally distributed in this parameter regime, and hence there is a corresponding
simulation mean X (¢) and covariance X, (#) that can be calculated at each time
t. These are calculated from the ensemble of 1,000 simulations that are run for each
parameter set. The integral for the KL divergence Dy, (p||p) between the simulation
and IE multivariate normal distributions can then be evaluated directly, yielding

Dxw(pllp) =
s |0 s — M T (25, (920() (23)
+(am (1) = X)) E 5k, (1) am (1) — X(2(1))

Because X, () will have some degree of sampling errors due to the finite size of the
simulation ensemble, it can in some cases be badly conditioned. In these scenarios
the Moore-Penrose pseudo-inverse is used to estimate £}, ().

We can use the curves of Dy, (p||p) as a function of time, for example those
of Fig. 3f, to estimate how much lag time (At) is being eliminated using a given
approximate CD protocol, relative to the original one. The lag time savings are
At = tog® — tSP, where tog® and S are respectively the times at which probability
distributions in the original and CD protocols reach their final IE target values. In
terms of Dy, (p||p), there is minimum value D} attained at long times when p(x,t)
has converged with p(x;4(t)). Note that this value is not precisely zero because of
numerical noise associated with estimation of the distribution p(x,t) from a finite
number of simulations. At long times when Dy, (p||p) approaches D}, the final
approach can be fit well by the following exponential decay function:

D e lta0/e

4
D KL

tSteq

24
>l @)

Dxu(pllp) ~ {

Because we know D, from the long-time behaviour of the KL divergence
curves, we then can estimate 7 and ¢, by fitting equation (24) to the final decay
portion of each Dy, (p||p) curve (the time range where Dy, (p||p) is within two
orders of magnitude of D, ). After finding t,, for the original and CD protocols,
the difference gives us the At values quoted in the main text and Supplementary
Information.

Data availability
The raw numerical data for the figures in the main text and Supplementary
Information, as well as the code to generate the figures, are available via GitHub at

NATURE PHYSICS | www.nature.com/naturephysics


https://github.com/Peyara/Evolution-Counterdiabatic-Driving
http://www.nature.com/naturephysics

NATURE PHYSICS

ARTICLES

https://github.com/Peyara/Evolution-Counterdiabatic-Driving. Source Data are
provided with this paper.

Code availability

The code to perform the numerical simulations and the specific
driving protocols is available via GitHub at https://github.com/Peyara/
Evolution-Counterdiabatic-Driving.
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Extended Data Fig. 1| CD driving for an altered 16-genotype pyrimethamine seascape. This is the same seascape as in main text Fig. 3, using the
experimental data of Ref. ?, except that genotype 0110 has been modified to have a 5% larger base growth rate under no drug conditions. a,b, Sample
simulation trajectories (solid lines) versus IE expectation (dashed lines) for the fraction of 4 representative genotypes without a and with b CD driving.
The CD driving is implemented approximately through the drug dosage protocol (green curve) shown in panel € with cutoff 10-2 M. The original protocol
(blue curve) is shown for comparison. d, Kullback-Leibler divergence between actual and IE distributions versus time, with and without CD driving.
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Extended Data Fig. 2 | CD driving for a 16-genotype cycloguanil seascape. This is the same 16-genotype system as in the examples of main text Fig. 3
and Extended Data Fig. 1, except using the antimalarial drug cycloguanil instead of pyrimethamine. The seascape is based on the experimental data of
Ref. 2, without any modifications. a,b, Sample simulation trajectories (solid lines) versus IE expectation (dashed lines) for the fraction of 4 representative
genotypes without a and with b CD driving. The CD driving is implemented approximately through the drug dosage protocol (green curve) shown in panel
c. The original protocol (blue curve) is shown for comparison. d, Kullback-Leibler divergence between actual and IE distributions versus time, with and
without CD driving.
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