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The quest to control evolutionary processes in areas like agri-
culture and medicine pre-dates our understanding of evolu-
tion itself. Recent years have seen growing research efforts 

towards this goal, driven by rapid progress in quantifying genetic 
changes across a population1–3 as well as a global rise in challenging 
problems like therapeutic drug resistance4,5. New approaches that 
have arisen in response include prospective therapies that steer evo-
lution of pathogens towards maximized drug sensitivity6,7, typically 
requiring multiple rounds of selective pressures and subsequent 
evolution under them. Because we cannot predict the exact progres-
sion of mutations that occur in the course of the treatment, the best 
we can hope for is to achieve control over probability distributions 
of evolutionary outcomes. However, our lack of precise control over 
the timing of these outcomes poses a major practical impediment 
to engineering the course of evolution. This naturally raises a ques-
tion: rather than being at the mercy of evolution’s unpredictability 
and pace, what if we could simultaneously control the speed and the 
distribution of genotypes over time?

Controlling an inherently stochastic process like evolution has 
close parallels to problems in other disciplines. Quantum informa-
tion protocols crucially depend on coherent control over the time 
evolution of quantum states under external driving8,9, in many cases 
requiring that a system remains in an instantaneous ground state 
of a time-varying Hamiltonian in applications like cold atom trans-
port10 and quantum adiabatic computation11. The adiabatic theorem 
of quantum mechanics facilitates such control when the driving is 
infinitely slow, but over finite time intervals control becomes more 
challenging, because fast driving can induce random transitions to 

undesirable excited states. Overcoming this challenge—develop-
ing fast processes that mimic the perfect control of infinitely slow 
ones—has led to a whole subfield of techniques called ‘shortcuts to 
adiabaticity’12–17. One such method in particular, known as transi-
tionless—or counterdiabatic (CD)—driving, involves adding an 
auxiliary control field to the system to inhibit transitions to excited 
states18–20. Intriguingly, the utility of CD driving is not limited to 
quantum contexts: requiring a quantum system to maintain an 
instantaneous ground state under driving is mathematically analo-
gous to demanding that a classical stochastic system remains in an 
instantaneous equilibrium state as external control parameters are 
changed21,22. Extending CD driving ideas to the classical realm has 
already led to proof-of-concept demonstrations of accelerated equil-
ibration in optical tweezer23 and atomic force microscope24 experi-
mental frameworks, and is closely related to optimal, finite-time 
control problems in stochastic thermodynamics25,26.

Here we demonstrate the first biological application of CD 
driving, by using it to control the distribution of genotypes in a 
Wright–Fisher (WF) model27 describing evolution in a population of 
organisms. The auxiliary CD control field (implemented, for exam-
ple, through varying drug concentrations or other external param-
eters that affect fitness) allows us to shepherd the system through a 
chosen sequence of genotype distributions, moving from one evolu-
tionary equilibrium state to another in finite time. We validate the 
CD theory through numerical simulations using an agent-based 
model (ABM) of evolving unicellular populations, focusing on a sys-
tem where 16 possible genotypes compete via a drug dose-dependent 
fitness landscape derived from experimental measurements.
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Theory
Evolutionary model. We develop our CD driving theory in the 
framework of a WF diffusion model for the evolution of genotype 
frequencies in a population (see Methods for details). Let us con-
sider M possible genotypes, where the ith genotype comprises a 
fraction xi of a population. Because 

PM
i¼1 xi ¼ 1

I
, we can describe 

the state of the system through M − 1 independent values of xi, or 
equivalently through a frequency vector x = (x1, …, xM − 1). Without 
loss of generality, we will take the Mth genotype to be the reference 
(the ‘wild type’) with respect to which the relative fitnesses of the 
others will be defined. Let 1 + si be the relative fitness of genotype 
i = 1, …, M − 1 compared to the wild type, where si is a selection 
coefficient, defining the ith component of a vector s. We assume 
fitnesses are influenced by some time-dependent control parameter 
λ(t), which we write as a scalar quantity, though it could in principle 
be a vector, reflecting a set of control parameters. These parame-
ters could involve any environmental quantity amenable to exter-
nal control: in the examples below we consider the concentration 
of a single drug applied to a population of unicellular organisms. 
However, we could have more complicated drug protocols (switch-
ing between multiple drugs)6 or other perturbations in fitness sec-
ondary to microenvironmental change (for example, nutrient or 
oxygenation levels). Our control protocol λ(t) from initial time t0 
to final time tf defines a trajectory of the selection coefficient vec-
tor, s(λ(t)), shown schematically in Fig. 1a. Our population thus 
evolves under a time-dependent fitness landscape, or a so-called 
‘seascape’28. Note that all time variables, unless otherwise noted, are 
taken to be in units of WF generations.

For simplicity, the total population is assumed to be fixed at a 
value N, corresponding to a scenario where the system stays at a 

time-independent carrying capacity over the time interval of interest. 
(Our approach is easily generalized to more complicated cases with 
time-dependent N(t), as shown in the Supplementary Information.) 
The final quantity characterizing the dynamics is an M × M dimen-
sional mutation rate matrix m, where each off-diagonal entry mβα 
represents the mutation probability (per generation) from the αth to 
the βth genotype. For later convenience, the αth diagonal entry of m 
is defined as the opposite of the total mutation rate out of that geno-
type, mαα ≡ −∑β ≠ αmβα. As in the case of N, we assume the matrix m 
is time-independent, although this assumption can be relaxed.

Driving the genotype frequency distribution. Given the system 
described above, we focus on p(x,t), the probability to find geno-
type frequencies x at time t, calculated over an ensemble of possible 
evolutionary trajectories. The dynamics of this probability for the 
WF model can be described to an excellent approximation through 
a Fokker–Planck equation:

∂tpðx; tÞ ¼ LðλðtÞÞpðx; tÞ ð1Þ

where ∂t ≡ ∂/∂t and LðλðtÞÞ
I

 is a differential operator, acting on func-
tions of x (described in the Methods). This operator involves N, m 
and s(λ(t)), and we highlight the dependence on λ(t). In setting up 
the analogy to driving in quantum mechanics, equation (1) cor-
responds to the Schrödinger equation, with p(x,t) playing the role 
of the wavefunction and LðλðtÞÞ

I
 the time-dependent Hamiltonian 

operator. The full analogy between quantum and evolutionary 
dynamics is described in more detail in Table 1. Although for our 
purposes we only employ this analogy qualitatively, in fact there 
exists in certain cases an explicit mapping from the Fokker–Planck 
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Fig. 1 | Schematic overview of counterdiabatic driving for evolutionary systems. a, The trajectory of the selection coefficient vector s(λ(t)) as a function 
of a time-varying control parameter λ(t), depicted in the bottom panel, for a hypothetical system of three genotypes (M = 3). This represents the fitness 
‘seascape’ under which the population evolves during driving. Three time points are highlighted: the initial time t0, an intermediate time t1 and the final time 
tf, where the corresponding control parameter values are λ0, λ1 and λf. The amplitude of the control parameter along the trajectory is represented through a 
colour gradient. b, The instantaneous equilibrium (IE) distribution of genotypes ρ(x; λ(t)) for the three highlighted values of the control parameter from a. 
These distributions are probability densities on the two-dimensional (2D) simplex defined by x1 + x2 ≤ 1 and x1, x2 ≥ 0. In the lower part of the panel we show 
the curve of mean IE genotype frequencies xðλðtÞÞ

I
. c, For driving over finite times, the actual distribution of genotypes p(x,t) will generally lag behind the IE 

distribution while the control parameter is changing. Thus, at tf, the distribution p(x,tf) is still far from ρ(x;λf), and will only catch up with it at times t ≫ tf as 
the system re-equilibrates.
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to the Schrödinger equation (though not vice versa)29–31. For a par-
ticular value of the control parameter λ, the analogue of the quan-
tum ground-state wavefunction is the eigenfunction ρ(x;λ) with 
eigenvalue zero, the solution of the equation

LðλÞρðx; λÞ ¼ 0 ð2Þ

In the evolutionary context, ρ(x;λ) has an additional meaning with 
no direct quantum correspondence: it is the ‘equilibrium probability 
distribution of genotypes’. If one fixes the control parameter λ(t) = λ, 
the distribution p(x,t) obeying equation (1) will approach ρ(x;λ) in 
the limit t → ∞.

Consider the following control protocol, where we start at one 
control parameter value, λ(t) = λ0 for t ≤ t0, and finish at another 
value, λ(t) = λf for t ≥ tf, with some arbitrary driving function λ(t) 
in the interval t0 < t < tf. We assume the system starts in one equi-
librium distribution, p(x,t0) = ρ(x;λ0), and we know that it will 
eventually end at a new equilibrium, p(x,t) → ρ(x;λf) for t ≫ tf. But 
what happens at intermediate times? If λ(t) changes infinitesimally 
slowly during the driving (and hence tf → ∞) then the system would 
remain at each moment in the corresponding instantaneous equi-
librium (IE) distribution, p(x,t) = ρ(x;λ(t)) for all t. This result, 
derived in the Supplementary Information, is the analogue of 
the quantum adiabatic theorem32 applied to the ground state: for 
a time-dependent Hamiltonian that changes extremely slowly, a 
quantum system that starts in the ground state of the Hamiltonian 

always remains in the same instantaneous ground state (assuming 
that at all times there is a gap between the ground-state energy and 
the rest of the energy spectrum). Figure 1b presents schematic snap-
shots of ρ(x;λ(t)) at three times, with the control parameter shifting 
them across the genotype frequency space.

When the driving occurs over finite times (tf < ∞), the above 
results break down: p(x,t) ≠ ρ(x;λ(t)) for 0 < t < tf, but is instead a 
linear combination of many instantaneous eigenfunctions of the 
Fokker–Planck operator, just as the corresponding quantum sys-
tem under faster driving will generically evolve into a superposi-
tion of the instantaneous ground state and excited states. This will 
manifest itself as a lag, with p(x,t) moving towards but not able to 
catch up with ρ(x;λ(t)), as illustrated in Fig. 1c. For t > tf, once λ(t) 
stops changing, the system will eventually settle into equilibrium at 
ρ(x;λf) in the long-time limit.

Control and counterdiabatic driving. This lag can be an obstacle 
if one wants to control the evolution of the system over finite time 
intervals. Because evolutionary trajectories are stochastic, we can-
not necessarily guarantee that the system starts and ends at precise 
genotype frequencies, but we can attempt to specify initial and final 
target frequency distributions. At the end of the driving t = tf, we 
would like our system to arrive at the target distribution, and then 
stay there as long as the control parameter is fixed. In this way we 
complete one stage of the control protocol and have a known start-
ing point for the next stage, because in practice we could imagine 

Table 1 | Analogies between quantum physics and evolutionary dynamics

Quantum physics Evolutionary dynamics

1. Wavefunction: describes the state of a quantum system. For a simple 
quantum particle in a spatial region described by coordinates x, this is 
a function ψ(x,t) whose squared amplitude |ψ(x,t)|2 is the probability 
density of finding the particle at x at time t.

1. Genotype probability distribution: the distribution p(x,t) of genetic variants 
(genotypes) in a population of organisms at time t, where x is a vector of 
genotype fractions.

2. Hamiltonian operator: a differential operator H(λ(t)) depending 
on control parameters λ(t), defined below. It describes how the 
wavefunction changes in time through the time-dependent Schrödinger 
equation, iħ∂tHψ(x,t) = H(λ(t))ψ(x,t), where ħ is the reduced Planck 
constant. H(λ(t)) involves terms that correspond to the kinetic and 
potential energies of the quantum particle.

2. Fokker–Planck operator: a differential operator LðλðtÞÞ
I

 depending on 
control parameters λ(t) defined below. It describes how the genotype 
probability p(x,t) changes in time through the Fokker–Planck equation, 
∂tp(x,t) = LðλðtÞÞ

I
 p(x,t). The full form of LðλðtÞÞ

I
 (equations (5)–(7)) involves 

terms that describe the mean change in genotype fractions due to mutations 
and selection, as well as fluctuations due to genetic drift.

3. Control parameters: a set of parameters λ(t) that can be manipulated 
over time by an experimentalist. These parameters modify the kinetic/
potential energy terms in the Hamiltonian, and thus influence the 
quantum dynamics. An example of this would be the magnitude of an 
externally applied electromagnetic field.

3. Control parameters: a set of parameters λ(t) that can be manipulated 
over time by an experimentalist. These parameters modify genotype 
fitnesses, and hence influence evolutionary dynamics through the 
selection terms in the Fokker–Planck operator. An example would be 
the concentration of a drug applied to a microbial population, where 
different genotypes exhibit different degrees of resistance against the drug 
depending on the concentration.

4. Ground state: the lowest energy state of a quantum system. In general, 
for a Hamiltonian H(λ) and given parameter values λ, the energy states 
(labeled by n = 0, 1, 2, ...) correspond to solutions of the time-independent 
Schrödinger equation: H(λ)ψn(x;λ) = En(λ)ψn(x;λ). Here, En(λ) and ψn(x;λ) 
are the energy and wavefunction, respectively, of the nth state. The 
energies E0 < E1 < ... and the ground state corresponds to n = 0. If λ is 
fixed, a system whose wavefunction is ψn(x;λ) will be stationary, with its 
wavefunction not changing in time.

4. Equilibrium state: for a given set of parameter values λ, this is the genotype 
probability ρ(x;λ), which would remain unchanged in time (stationary) during 
evolutionary dynamics under fixed λ. In general, a Fokker–Planck operator 
LðλÞ
I

 has a set of eigenfunctions ψn(x;λ) and eigenvalues −κn(λ) ≤ 0 for n = 0, 
1, 2, ... defined through the following equation: LðλÞ

I
 ψn(x;λ) = −κn(λ)ψn(x;λ). 

The equilibrium state corresponds to n = 0, with eigenvalue −κn(λ) = 0 and 
ρ(x;λ) ≡ ψ0(x;λ).

5. Adiabatic theorem: if we start in the nth energy state, 
ψ(x,t = 0) = ψn(x;λ(0)) for some initial control parameters λ(0), and then 
vary λ(t) infinitesimally slowly (adiabatically), the theorem states that the 
wavefunction at later times remains in the nth energy state corresponding 
to the instantaneous value of the parameters, ψ(x,t) = ψn(x;λ(t)). This is 
true as long as there is always a non-zero difference between En(λ(t)) and 
any Em(λ(t)) for m ≠ n at all t.

5. Adiabatic theorem: if we start at equilibrium p(x,t = 0) = ρ(x;λ(0)) for 
some initial control parameters λ(0), and then vary λ(t) infinitesimally slowly 
(adiabatically), the theorem (derived in the Supplementary Information) 
states that at later times we will always remain in the equilibrium state 
corresponding to the instantaneous value of the parameters, p(x,t) = ρ(x;λ(t)).

A summary of the connections between quantum and evolutionary concepts used in our theory is shown, where each numbered item in the quantum column on the left has its analogue in the evolutionary 
column on the right.
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the interval t0 < t < tf as just one step of a multi-stage protocol involv-
ing distinct interventions (that is, a sequence of different drugs). 
Completing each stage as quickly as possible, while accurately 
hitting each target, would for example be a crucial prerequisite 
to translating certain evolutionary medicine approaches to clini-
cal settings (see Supplementary Section 8 for a fuller discussion). 
Thus, if we were enumerating the characteristics of an ideal con-
trol mechanism, at the very least it should be able to drive the sys-
tem from one equilibrium distribution, p(x,t0) = ρ(x;λ0), to another, 
p(x,tf) = ρ(x;λf), over a finite time tf − t0.

In the context of quantum adiabatic computing11, the typical 
focus is on the initial ground state (which has to be easy to real-
ize experimentally) and the final ground state (because it encodes 
the solution to the computational problem). In the evolutionary 
case, we can imagine additional desired characteristics for our driv-
ing, beyond the start and end-point distributions. There are many 
ways to go from an initial fitness landscape, s(λ0), to a final fitness 
landscape, s(λf), corresponding to different possible trajectories in 
the selection coefficient space of Fig. 1a that share initial and final 
values. Depending on how we empirically implement the control, 
many of these trajectories may be physically inaccessible. However, 
among the remaining set of realizable trajectories, some may be 
more desirable than others (that is, have different evolutionary 
consequences33 or trade-offs34). Each trajectory defines a continu-
ous sequence of IE distributions ρ(x;λ(t)), and for each distribution 
there is a mean genotype frequency xðλðtÞÞ

I
, illustrated in the lower 

half of Fig. 1b. We may, for example, want protocols that minimize 
the chances of our system visiting certain problematic genotypes: 
in practice this could translate to demanding that the curve xðλðtÞÞ

I
 

for t0 < t < tf stays far away from certain regions of the genotype 
frequency space. This, in turn, restricts the s(λ(t)) trajectories and 
hence the protocols λ(t) of practical interest. In simpler terms, we 
would ideally like to control not just the distributions at the begin-
ning and end of the driving, but also, if possible, along the way.

We formulate this ideal control problem in the following way: 
we demand that p(x,t) = ρ(x;λ(t)) for some chosen control proto-
col λ(t) in t0 < t < tf. The protocol λ(t) is determined with the above 
considerations in mind, and thus defines a particular path through 
the space of genotype frequency distributions over which we would 
like to guide our system. Clearly, we will not achieve success by just 
directly implementing λ(t), because p(x,t), obeying equation (1), 
will generally lag behind ρ(x;λ(t))35. The resolution of this prob-
lem in the quantum case through CD driving is to add a specially 
constructed auxiliary time-dependent Hamiltonian to the original 
Hamiltonian18–20. For a specific choice of this auxiliary Hamiltonian, 
we can guarantee that our new system always remains in the instan-
taneous ground state of the original Hamiltonian. The evolutionary 
analogue of CD is to replace the Fokker–Planck operator LðλðtÞÞ

I
 in 

equation (1) with a different operator eLðλðtÞ; _λðtÞÞ
I

, which depends 
on both λ(t) and its time derivative _λðtÞ  dλðtÞ=dt

I
. This CD opera-

tor satisfies

∂tρðx; λðtÞÞ ¼ eLðλðtÞ; _λðtÞÞρðx; λðtÞÞ ð3Þ

Thus, by construction, p(x,t) = ρ(x;λ(t)) is a solution to the 
Fokker–Planck equation with the new operator. Additionally, to 
be consistent with the slow adiabatic driving limit discussed above, 
eLðλðtÞ; 0Þ ¼ LðλðtÞÞ
I

, so we recover the original Fokker–Planck 
operator when the speed of driving _λðtÞ ! 0

I
 and tf → ∞.

Of course, defining eLðλðtÞ; _λðtÞÞ
I

 in this way is the easy part: figuring 
out how to implement a new control protocol to realize eLðλðtÞ; _λðtÞÞ

I
 

is more challenging. In the Methods, we show how the most gen-
eral solution to go from L

I
 to eL

I
 is to replace the original selection 

coefficient trajectory s(λ(t)) with a frequency-dependent version, 
~sðx; λðtÞ; _λðtÞÞ
I

. Implementing a particular frequency-dependent 
fitness seascape is a degree of control that is generally impossible 

in realistic scenarios. Fortunately, we show that in one impor-
tant parameter regime the CD seascape becomes approximately 
frequency-independent, ~sðx; λðtÞ; _λðtÞÞ  ~sðλðtÞ; _λðtÞÞ

I
. This occurs 

in the large-population, frequent-mutation regime: if the typi-
cal mutation rate scale is μ, meaning mβα  OðμÞ

I
 for all non-zero 

mutation rates where α ≠ β, then this corresponds to μN ≫ 1, N ≫ 1 
(refs. 36–39). In this regime multiple genotypes can generally coexist 
in the population at equilibrium (although one may be quite domi-
nant), which is particularly relevant for pathogenic populations, 
especially ones spreading through space40–42. Remarkably, there is a 
simple analytical expression that provides an excellent approxima-
tion to ~sðλðtÞ; _λðtÞÞ

I
 in this case:

~siðλðtÞ; _λðtÞÞ  siðλðtÞÞ þ
d
dt

ln
xiðλðtÞÞ
xMðλðtÞÞ

; i ¼ 1; ¼ ;M� 1

ð4Þ

where xMðλðtÞÞ  1�
PM�1

i¼1 xiðλðtÞÞ
I

. We see that the new selection 
coefficient protocol is defined through the target mean genotype 
frequency trajectory xðλðtÞÞ

I
, and reduces to the original protocol 

when _λðtÞ ! 0
I

. Moreover, as we show in the examples below for 
specific systems, equation (4) can at least in certain cases be imple-
mented through physically realistic manipulations of the environ-
ment, like time-varying drug dosages. Although we focus on the 
frequent-mutation regime in the current work, the applicability of 
CD ideas is not limited to just this regime: for the opposite case 
of infrequent mutations, μN ≪ 1, where the evolutionary dynamics 
can be modelled as a sequence of mutant fixations, one can also for-
mulate a CD theory based on a discrete Markov state description43.

Results
Two genotypes. The simplest example of our CD theory is for 
a two-genotype (M = 2) system, where the dynamics are one- 
dimensional (1D) and described by a single frequency x1 and selec-
tion coefficient s1(λ(t)). As shown in the Methods, equation (4) in this 
case can be evaluated analytically. To illustrate driving, we assume 
a control protocol λ(t) such that the selection coefficient increases 
according to a smooth ramp (the original protocol in Fig. 2b).  
This starts from zero at t0 (both genotypes have equal fitness) and 
increases until reaching a plateau at a final selection coefficient that 
favours genotype 1. Figure 2a shows p(x1,t) from a numerical solu-
tion of equation (1) using this protocol, compared against the IE 
distribution ρ(x1;λ(t)), solved using equation (2), at three time snap-
shots. To validate the Fokker–Planck approach, we also designed 
an ABM, as described in the Methods, which simulates the indi-
vidual life trajectories of an evolving population of cells. Because 
there exists a mapping between the parameters of the ABM and the 
equivalent Fokker–Planck equation (see Methods), one can directly 
compare the p(x1,t) results from the ABM simulations (circles) to 
the Fokker–Planck numerical solution of equation (1) (curves), 
which show excellent agreement. In the absence of CD driving, as 
expected, p(x1,t) lags behind ρ(x1;λ(t)), with the latter shifting rap-
idly to larger x1 frequencies as the fitness of genotype 1 increases.

To eliminate this lag, we implemented the alternative selection 
coefficient trajectory of equation (20). Figure 2b shows a compari-
son between ~s1ðλðtÞ; _λðtÞÞ

I
 and the original s1(λ(t)). We see that the 

CD intervention requires a transient overshoot of the selection coef-
ficient during the driving, nudging p(x1,t) to keep up with ρ(x1;λ(t)). 
Figure 2c shows the same snapshots as in Fig. 2a, but now with CD 
driving: we see that the actual and IE distributions nearly perfectly 
overlap at all times. To quantify the effectiveness of the CD protocol, 
we measured the degree of overlap through the Kullback–Leibler 
(KL) divergence35,44, defined for any two probability distributions 
p(x) and q(x) as DKL(p∣∣q) = ∫dx pðxÞlog 2

I
(p(x)/q(x)). Expressed 

in bits, the KL divergence is always ≥0, and equals 0 for identical 
distributions. Figure 2d shows DKL(ρ∣∣p) for both the original and 
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CD protocols, with the latter dramatically reducing the divergence 
across the time interval of driving.

Multiple genotypes via agent-based modelling. The ABM simula-
tions also allow us to test the CD theory in more complex scenarios. 
To this end, we considered a system with 16 genotypes (four alleles), 
with selection coefficients based on a well-characterized experi-
mental system: the fitness effects of the antimalarial drug pyri-
methamine at varying concentrations on all possible combinations 
of four different drug-resistance alleles2,3. Our control parameter 
λ(t) is the drug concentration, and we implement the seascape by 
increasing the drug over time (after an initial equilibration period), 
eventually saturating at a concentration of 10−4 M (the protocol 
labelled ‘original’ in Fig. 3e). With our choice of simulation param-
eters (see Methods), a number of the genotypes have sufficient 
resistance to survive even at higher drug dosages, so the overall 
population remains at carrying capacity. What changes as the dos-
age increases is the distribution of genotypes. Figure 3a,b shows the 
results in the absence of CD driving, with each genotype labelled 
by a four-digit binary sequence. The population goes from being 
dominated by 1110 (with smaller fractions of other genotypes) to 
eventually becoming dominated by 1111. However, there is a dra-
matic lag behind the IE distribution, taking more than 1,500 gen-
erations to resolve. This is quantified in the KL divergence DKL(ρ∣∣p) 
in Fig. 3f, which rapidly increases by five orders of magnitude as 
the drug ramp starts showing its effects (around generation 500). 
Equilibration to the higher drug dosages brings the divergence back 
down over time, but it only achieves relatively small amplitudes 

after generation 2,000. Note that the scale of the KL divergences for 
15-dimensional probability distributions is larger than for the 1D 
example in the previous section: this reflects both the greater sen-
sitivity of the KL measure to small discrepancies in a 15D space, as 
well as the fact that distributions estimated from an ensemble of 
simulations (1,000 independent runs in this case) will always have 
a degree of sampling error. Thus it is more instructive to look at 
the relative change of the KL with driving rather than the absolute 
magnitudes.

To reduce the lag through CD driving, one should, in principle, 
implement the selection coefficients according to equation (4). 
However this involves guiding the system along a fitness trajec-
tory in a 15D space, and in this case we have a single tuning knob 
(the concentration of pyrimethamine) to perturb fitnesses. In such 
scenarios one then looks at the closest approximation to CD driv-
ing that can be achieved with the experimentally accessible control 
parameters. In this particular case the genotypes that dominate the 
population at small and large drug concentrations are 1110 (i = 15) 
and the wild-type 1111 (i = 16), so the selection coefficient s15 that 
encodes their fitness relative to each other plays the most impor-
tant role in the dynamics. We thus choose a CD drug dosage by 
numerically solving for the concentration that most closely approxi-
mates the i = 15 component of equation (4) at each time. Because 
in real-world scenarios there will be limits on the maximum allow-
able dosage, we constrain the CD concentrations to be below a cer-
tain cutoff. The approximation described here, where two different 
genotypes dominate at different times during the driving, is just a 
special case of a more general approximation approach where we 
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seek to achieve the closest possible protocol to the one described by 
equation (4), given the experimental constraints. In Supplementary 
Section 9 and Extended Data Figs. 1 and 2 we illustrate how this 
general strategy works in two additional 16-genotype seascape 
examples (including the empirical seascape for the drug cyclogua-
nil2) where more than two genotypes dominate during driving.

Figure 3e shows CD drug protocols with three different cutoffs: 
1 × 10−2, 1 × 10−3 and 5 × 10−4 M (all within the experimentally mea-
sured dosage range). The higher the cutoff, the better the approxi-
mation to CD driving. We can directly quantify the overall reduction 
in lag time Δt due to CD from the KL divergence results of Fig. 3f, as 
explained in the Methods. For a cutoff of 10−2 M the lag is reduced 
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by Δt = 1,210 generations. Notably, although the approximation is 
based on the top two genotypes (1110 and 1111), it reduces the lag 
time across the board for all genotypes (see Fig. 3c for four rep-
resentative genotype trajectories at 10−2 M cutoff, with other geno-
types shown in the snapshots of Fig. 3d). This is because driving of 
the top two also entrains the dynamics of the subdominant geno-
types whose populations are sustained by mutations out of and into 
the dominant ones. Even with the more restrictive constraint of 
5 × 10−4 M, there is still a substantial benefit, with the lag reduced 
by Δt = 656 generations. This highlights the robustness of the CD 
approach: even if one cannot implement the solution of equation (4) 
exactly, we can still arrive at the target distribution faster through an 
approximate CD protocol.

Discussion
Our demonstration of the CD driving approach in a population 
model with empirically derived drug-dependent fitnesses shows 
that we can accelerate evolution toward a target distribution in 
silico. As new technologies progressively allow us to assemble ever 
more extensive fitness landscapes for various organisms as a func-
tion of external perturbations like drugs1–3, the next step is imple-
menting CD driving in the laboratory. This would be a necessary 
milestone on the path to a range of potential applications (the latter 
is discussed in more detail in Supplementary Section 8). Thus, it is 
worth considering the challenges and potential workarounds that 
will be involved in experimental applications.

One salient issue is the range of control parameters available 
in laboratory settings. Our examples have focused on the simplest 
cases of 1D control, but to access the full power of the CD approach 
presented here, we should explore a richer parameter space: not 
only single drugs, but combinations, along with varying nutrients, 
metabolites, oxygen levels, osmotic pressure and temperature. 
The eventual goal would be to have for every system a library of 
well-characterized interventions that could be applied in tandem, 
allowing us the flexibility to map out desired target trajectories 
through a multidimensional fitness landscape. In other words, for 
a given system we would have access to a selection coefficient func-
tion s(λ(t)), where λ(t) = (λ1(t), λ2(t), …) is a multidimensional vec-
tor of control parameters at time t: λ1(t) is the concentration of one 
drug, λ2(t) is the concentration of another drug (or nutrient), and so 
on. More generally, one could explore how fundamental differences 
among fitness landscapes (that is, the difficulties in reaching local 
optima in so-called ‘hard’ landscapes45) influence the types of inter-
vention needed to achieve driving and their effectiveness.

Even given accurately measured fitnesses, one might be ham-
pered by imperfect estimation of other system parameters, such as 
mutation rates. To determine how large the margin for error is, we 
tested the CD driving prescription calculated using incorrect muta-
tion rates, varying the degree of discrepancy over two orders of 
magnitude (see Supplementary Information for details). Although 
such discrepancies do reduce the efficacy of CD driving, leading 
to deviations between actual and IE distributions at intermediate 
times, populations driven with an incorrect protocol still reached 
the target distribution faster than in the absence of driving. As in 
the case of the dosage cutoff discussed above, the CD approach has 
a degree of robustness to errors in the protocol, which increases its 
chances of success in real-world settings.

But what if we lacked measurements of the underlying fit-
ness seascape? Interestingly, there might still be some utility of 
the CD method even in this case. We could first do a preliminary 
quasi-adiabatic experimental trial: vary external parameter(s) λ 
extremely gradually and use sequencing at regularly spaced inter-
vals to determine the quasi-equilibrium mean genotype fractions 
xiðλÞ
I

 as a function of λ. If we now wanted to guide the system 
through the same sequence of evolutionary distributions but much 
faster, we have enough information to approximately evaluate the 

CD perturbation in equation (4), which just depends on xiðλÞ
I

  
and the rate _λðtÞ

I
 that we would like to implement. So, at the very 

least, the CD prescription could be estimated, providing a blue-
print, and the remaining challenge would be figuring out what 
combination of external perturbations would yield the right sorts of 
fitness perturbations to achieve CD driving. Because the prescrip-
tion is dominated by the most frequently observed genotypes, this 
approach is well suited for cases where we do not have complete 
fitness information about all possible mutations, opening up CD 
driving to an even wider range of systems.
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Methods
Fokker–Planck description of the WF evolutionary model. The underlying 
evolutionary dynamics of our model are based on the canonical haploid WF model 
with mutation and selection, and we adopt the formalism of recent approaches28,46 
that generalize Kimura’s original two-allele diffusion theory47 to the case of multiple 
genotypes. A convenient feature of the WF formalism is that other, more detailed 
descriptions of the population dynamics (for example, ABMs that track the life 
histories of individual organisms) can often be mapped onto an effective WF form, 
as we illustrate below.

The starting point of the Fokker–Planck diffusion approximation28,46,47 for 
evolutionary population dynamics is the assumption that genotype frequencies 
change only by small amounts in each generation. We can thus take the genotype 
frequency vector x to be a continuous variable that follows a stochastic trajectory. The 
key quantities describing these stochastic dynamics are the lowest-order moments 
of δx, the change in genotype frequency per generation. We will denote the mean of 
the change in the ith genotype, δxi, taken over the ensemble of possible trajectories, 
as vi(x;λ(t)) ≡ 〈δxi〉. Note that in general vi(x;λ(t)) will be a function of the genotype 
frequencies x at the current time step, and also have a dependence on the control 
parameter λ(t) through the selection coefficient vector s(λ(t)) (which influences 〈δxi〉).

In non-evolutionary contexts vi(x;λ(t)) is called the drift function, but here 
we will call it a velocity function to avoid confusion with genetic drift. Similarly, 
we will introduce an (M − 1) × (M − 1) diffusivity matrix Dij(x) to describe the 
covariance of the genotype changes, defined through 2Dij(x) ≡ 〈δxiδxj〉 − 〈δxi〉〈δxj〉. 
As shown in the Supplementary Information, to the lowest-order approximation, 
Dij(x) is independent of s(λ(t)), and hence is not an explicit function of λ(t). If we 
are interested in the dynamics on timescales much larger than a single generation, 
the probability p(x,t) to observe a genotype state x at time t obeys a multivariate 
Fokker–Planck equation48:

∂tpðx; tÞ ¼ �∂i viðx; λðtÞÞpðx; tÞð Þ þ ∂i∂jðDijðxÞpðx; tÞÞ
 LðλðtÞÞpðx; tÞ

ð5Þ

where ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi. Note that we use Einstein summation notation, 
where repeated indices are summed over, and furthermore designate Greek 
indices to range from 1 to M while Roman indices range from 1 to M − 1 (for 
example, the term ∂i∂jðDijðxÞpðx; tÞÞ 

PM�1
i¼1

PM�1
j¼1 ∂i∂jðDijðxÞpðx; tÞÞ

I
). The 

right-hand side of equation (5) defines the Fokker–Planck differential operator 
LðλðtÞÞ
I

 in equation (1). To correspond to genotype fractions, vectors x have to lie 
in the (M − 1)-dimensional simplex Δ defined by the conditions xi ≥ 0 for all i and PM�1

j¼1 xj≤1
I

. If x ∈ Δ, then the wild-type fraction xM ¼ 1�PM�1
j¼1 xj

I
 lies between 

0 and 1. Normalization of p(x,t) takes the form ∫Δdx p(x,t) = 1, where the integral is 
over the volume of the simplex Δ.

To complete the description of the model, we need expressions for the 
functions vi(x;λ(t)) and Dij(x). Given a WF evolutionary model, these take the 
following form (see Supplementary Information for a detailed derivation):

viðx; λðtÞÞ ¼ miμxμ þ gijðxÞsjðλðtÞÞ; Dijðx; tÞ ¼
gijðxÞ
2N

ð6Þ

where m is the M × M mutation rate matrix defined in the main text, and g(x) is an 
(M − 1) × (M − 1) matrix with elements given by

gijðxÞ 
�xixj i≠j

xið1� xiÞ i ¼ j; no sumover i

�
ð7Þ

Instantaneous equilibrium distributions. The IE distribution ρ(x;λ(t)) is defined 
through equation (2), LðλðtÞÞρðx; λðtÞÞ ¼ 0

I
. Because we evaluate the effectiveness 

of our driving by comparing the actual distribution p(x,t) to the IE distribution, 
it is useful to know the form of ρ(x;λ(t)). Unfortunately, it is generally not 
possible to find an IE analytical expression, except in some specific cases28,46. The 
two-genotype system (M = 2) is one example where an exact solution is known. It 
has a form analogous to the Boltzmann distribution of statistical physics28,46:

ρðx; λðtÞÞ ¼ e�Φðx;λðtÞÞ

ZðλðtÞÞ
ð8Þ

where Φ(x;λ(t)) is an effective ‘potential’ given by

Φðx; λðtÞÞ ¼ �2N m12log x1 þm21log ð1� x1Þ þ s1ðλðtÞÞx1ð Þ þ log det gðxÞ ð9Þ

and Z(λ(t)) is a normalization constant.
To estimate the IE distribution for general M, we take advantage of the 

large-population, frequent-mutation regime, mβα  OðμÞ
I

, for all non-zero matrix 
entries where α ≠ β, with μN ≫ 1, N ≫ 1. In this case we know that ρ(x;λ(t)) is 
approximately a multivariate normal distribution of the form

ρðx; λðtÞÞ 
ð2πÞM�1 detΣðλðtÞÞ
� ��1=2

exp � 1
2 ðxi � xiðλðtÞÞÞΣ�1

ij ðλðtÞÞðxj � xjðλðtÞÞÞ
� �

ð10Þ

Here, xiðλÞ ¼
R
Δdx xiρðx; λÞ

I
 is the ith mean genotype fraction for the IE 

distribution, and Σ−1(λ) is the inverse of the covariance matrix Σ(λ) for this 
distribution. The latter has entries Σij � xixj � xixj

I
. To make practical use of 

equation (10), we need a method to estimate xiðλÞ
I

 and Σ(λ). As shown in the 
Supplementary Information, this can be done through an approximate numerical 
solution to a set of exact equations involving the moments of ρ(x;λ).

Counterdiabatic driving protocol. To implement CD driving, we need to 
solve for the CD Fokker–Planck operator eLðλðtÞ; _λðtÞÞ

I
 that satisfies equation 

(3). We posit that eL should be in the Fokker–Planck form of equation (5), but 
with some CD version of the selection coefficient, ~sðx; λðtÞ; _λðtÞÞ

I
, instead of the 

original s(λ(t)). The necessary perturbation to the fitness seascape to achieve 
CD driving, δ~sðx; λðtÞ; _λðtÞÞ  ~sðx; λðtÞ; _λðtÞÞ � sðλðtÞÞ

I
, we take for now to be 

frequency-dependent for generality. Thus, equation (3) takes the form

∂tρðx; λðtÞÞ ¼ eLðλðtÞ; _λðtÞÞρðx; λðtÞÞ
¼ �∂i ~viðx; λðtÞ; _λðtÞÞρðx; λðtÞÞ

� 
þ ∂i∂jðDijðxÞρðx; λðtÞÞÞ

ð11Þ

with a modified velocity function

~viðx; λðtÞ; _λðtÞÞ ¼ miμxμ þ gijðxÞ~sjðx; λðtÞ; _λðtÞÞ
¼ viðx; λðtÞÞ þ gijðxÞδ~sjðx; λðtÞ; _λðtÞÞ

ð12Þ

Using the fact that LðλðtÞÞρðx; λðtÞÞ ¼ 0
I

, because ρ(x;λ(t)) is the IE distribution of 
the original operator L, we can rewrite equation (11) as

∂tρðx; λðtÞÞ ¼ �∂i ρðx; λðtÞÞgijðxÞδ~sjðx; λðtÞ; _λðtÞÞ
� �

 �∂iJ i

ð13Þ

where J i  ρðx; λðtÞÞgijðxÞδ~sjðx; λðtÞ; _λðtÞÞ
I

 is a probability current. In this form, 
equation (13) looks like a continuity equation, describing the local transport 
of probability density due to the current field J

I
. For this equation to conserve 

total probability over the simplex Δ, we also require the condition that J ini ¼ 0
I

 
at any point on the boundary of the simplex, where the vector n is normal 
to the boundary at the point. The perturbation δ~sðx; λðtÞ; _λðtÞÞ

I
 that satisfies 

equation (13) and the boundary condition defines an exact CD protocol for the 
evolutionary system.

Given an arbitrary continuous time sequence of IE distributions ρ(x;λ(t)), such 
a perturbation always exists. In fact, from a formal mathematical standpoint49, any 
perturbation of the following form is a solution (note that for clarity we do not use 
Einstein summation in this case):

δ~sðx; λðtÞ; _λðtÞÞ
¼ g�1ðxÞ 1

ρðx;λðtÞÞ �PM�1
i¼1 x̂iwi

R xi
0 dx0i ∂tρðx1; ¼ ; x0i; ¼ ; xM�1; λðtÞÞ

�h

þfðx; λðtÞ; _λðtÞÞ


ð14Þ

Here g−1(x) is the inverse of the matrix g(x), x̂i is the unit vector along the ith 
axis, and the integral in the ith term of the sum is carried out only over the ith 
genotype fraction, keeping all other components xj, j ≠ i, fixed. There are two 
quantities in equation (14) that make the solution potentially non-unique: (1) the 
weights wi can be any real numbers, so long as 

PM�1
i¼1 wi ¼ 1

I
; (2) fðx; λðtÞ; _λðtÞÞ

I
 

is an (M − 1)-dimensional vector function that has zero divergence, ∂ifi = 0. 
However, we have additional constraints on this function f: it has to be compatible 
with the vanishing of the current orthogonal to the boundary, J ini ¼ 0

I
. For 

M = 2, where necessarily w1 = 1, these constraints mean that only f = 0 is allowed, 
and we get a unique exact CD solution. For M > 2, the partial differential equation 
∂ifi = 0 and the boundary condition do not specify f uniquely, and hence we get 
many possible allowable CD solutions, all of which satisfy equation (13). This in 
turn means that we can always find CD Fokker–Planck operators eLðλðtÞ; _λðtÞÞ

I
 

that satisfy equation (3).
However, the formal existence of such perturbations δ~s

I
 is not the end of 

the story, because many of the solutions described by equation (14) may not be 
physically realizable. To get at a more practical (though approximate) CD solution, 
we proceed as follows. As discussed in the section “Instantaneous equilibrium 
distributions”, in the regime of interest it is easier to work with moments of the IE 
distribution, so it is useful to convert equation (13) into a relation involving the 
IE first moment xiðλÞ

I
. Multiply both sides of equation (13) by xk, and notice that 

xk∂iJ i ¼ ∂i xkJ ið Þ � δikJ i

I
, where δik is the Kronecker delta function. Integrating 

over the entire simplex gives
Z

Δ
dx xk∂tρðx; λðtÞÞ ¼ �

Z

Δ
dx ∂i xkJ ið Þ þ

Z

Δ
dx J k ð15Þ

By Gauss’s theorem, 
R
Δdx ∂i xkJ ið Þ ¼

R
∂Δdσ xkJ ini

I
, where the integral involves 

area elements dσ of the simplex boundary ∂Δ, and ni are the components of the 
normal vector to this boundary. By conservation of probability, the component 
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of J
I

 normal to ∂Δ vanishes, that is, J ini ¼ 0
I

, so the first term in equation (15) is 
zero. Plugging the definition of J k

I
 into the second term, we get

Z

Δ
dx xk∂tρðx; λðtÞÞ ¼

Z

Δ
dx ρðx; λðtÞÞgkjðxÞδ~sjðx; λðtÞ; _λðtÞÞ ð16Þ

or equivalently

∂txðλðtÞÞ ¼ gðxÞδ~sðx; λðtÞ; _λðtÞÞ
� �

ð17Þ

where the brackets 〈〉 denote an average over the simplex with respect to ρ(x;λ(t)).
So far, both equations (13) and (17) are exact relations satisfied by the CD 

perturbation δ~s
I

. However, we can simplify the results in the large-population, 
frequent-mutation regime, where ρ(x;λ(t)) has the approximate normal form of 
equation (10). As argued in the Supplementary Information, in this case the leading 
contribution to δ~s

I
 is frequency-independent, δ~sðx; λðtÞ; _λðtÞÞ  δ~sðλðtÞ; _λðtÞÞ

I
, with 

corrections that vanish in the large N limit. The leading contribution δ~sðλðtÞ; _λðtÞÞ
I

 
satisfies a version of equation (17) with x on the right-hand side replaced by the IE 
mean xðλðtÞÞ

I
:

∂txðλðtÞÞ ¼ gðxðλðtÞÞÞδ~sðλðtÞ; _λðtÞÞ ð18Þ

This equation can be directly solved for δ~sðλðtÞ; _λðtÞÞ
I

 in terms of xðλðtÞÞ
I

, 
yielding the approximate CD solution of equation (4). Thus, knowing the IE first 
moment xðλðtÞÞ

I
 over the duration of the protocol (via the numerical procedure 

described in the Supplementary Information) allows us to estimate a CD driving 
prescription.

Counterdiabatic driving for the two-genotype example. For the M = 2 system, 
the exact IE distribution is given by equations (8) and (9). In the large-population, 
frequent-mutation limit we can estimate the mean frequency x1ðλðtÞÞ

I
 

corresponding to this distribution as

x1ðλðtÞÞ 
�m12 �m21 þ s1ðλðtÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12 þm21 � s1ðλðtÞÞÞ2 þ 4m12s1ðλðtÞÞ

q

2s1ðλðtÞÞ
ð19Þ

This allows the CD prescription in equation (4) to be evaluated analytically, 
yielding

~s1ðλðtÞ; _λðtÞÞ ¼ s1ðλðtÞÞ þ
∂t s1ðλðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m12 þm21 � s1ðλðtÞÞð Þ2 þ 4m12s1ðλðtÞÞ
q ð20Þ

For the results in Fig. 2, we assume the following ramp for the selection coefficient: 
s1(λ(t)) = σ/(1 + ae−kt) − σ/(1 + a), with σ = 0.02, a = 817 and k = 0.06. The other 
model parameters are set to N = 104, m12 = m21 = 2.5 × 10−3.

Agent-based model. Model description. For the ABM simulations, we track a 
population of single-celled organisms that undergo birth (through binary division), 
death and mutations. There are M genotypes, and the fitness of genotype i < M 
relative to the Mth one (the wild type) is 1 + si(λ(τ)), which depends on the drug 
dosage λ(τ) at the current simulation time step τ. (The mapping between simulation 
time steps τ and WF generations t will be discussed below.) At each simulation 
time step, every cell in the population undergoes the following process: (1) with 
probability d it dies; (2) if it survives, the cell divides with a genotype-dependent 
probability

biðτÞ ¼
min b0 1þ siðλðτÞÞð 1� NcellðτÞ

K

 
; 1

 
NcellðτÞ≤K

0 NcellðτÞ

(
ð21Þ

where i is the cell’s genotype, b0 is a baseline birth rate, Ncell(τ) is the current 
number of cells in the population and K is the carrying capacity. Upon division, the 
daughter cell mutates to another genotype j with probability m̂ji

I
, j ≠ i.

In silico implementation. The ABM was implemented for the M = 2 and M = 16 
examples described in the main text using code written in the C++ programming 
language. Code, configuration files and analysis scripts for these models can be 
found on https://github.com/Peyara/Evolution-Counterdiabatic-Driving. The code 
directly implements the model of the previous section, and is summarized in the 
flow chart of Supplementary Fig. 4. The M = 2 selection coefficient s1(λ(t)) and 
other model parameters are as described above.

For M = 16, the simulations were run for 4.5 × 104 time steps with a death rate 
d = 0.05, a baseline birth rate b0 = 2 and a carrying capacity of K = 5 × 106. The 
mutation probability m̂ji

I
, j ≠ i is zero unless the Hamming distance between the 

binary string representation of i and j is 1. This gives the ‘tesseract’ connectivity 
seen in Fig. 3a,d. Where non-zero, the probability is m̂ji ¼ 2:5 ´ 10�4

I
, giving a 

total mutation probability 
P

j≠im̂ji ¼ 10�3

I
 for all offspring. To give the population 

time to reach an initial equilibrium, the drug concentration λ(τ) is initially small, 

increases substantially around time step τ ≈ 104, and then plateaus at later times. 
The dosage follows the equation

λðτÞ ¼ a
1þ expð�bðτ � cÞÞ ð22Þ

with parameters a = 1.5 × 10−4 M, b = 2 × 10−3 and c = 10, 110. The selection 
coefficients si(λ(τ)) were varied with concentration λ(τ) in accordance with the 
experimentally measured dose–fitness curves of 16 genotypes for the antimalarial 
drug pyrimethamine2,3. To calculate the distributions of genotype frequencies, 
every simulation was repeated 1,000 times.

Mapping the agent-based model simulations to a Fokker–Planck equation. To 
implement the CD driving protocol, derived for WF Fokker–Planck dynamics, in 
the context of the ABM, we need a mapping between the ABM parameters and 
the corresponding Fokker–Planck parameters. As shown in the Supplementary 
Information, this can be done by describing the ABM simulation population, 
updating at each time step, as an effective Langevin equation, and then using 
the connection between the Langevin and Fokker–Planck descriptions48,50. The 
resulting approximate correspondence is summarized as follows: (1) a duration 
of τ ABM simulation time steps maps to t ≈ τd WF generations, where d is the 
ABM death rate. (2) The Fokker–Planck mutation matrix entries miν, i ≠ ν, are 
given by miν  m̂iνð1þ sνÞ

I
, where m̂iν

I
 are the ABM mutation probabilities. 

(3) The effective population N in the Fokker–Planck model is given by 
N  1

2Kð1� db�1
0 ð1� dÞ�1Þ

I
, where K is the ABM carrying capacity and b0 the 

baseline birth rate. The accuracy of this mapping is illustrated in Fig. 2a,c, where 
the distributions from ABM simulations for M = 2 (red circles) are compared 
against numerical Fokker–Planck solutions with parameters calculated using the 
mapping (red curves).

Numerical estimation of the KL divergence and reduction in lag time. To quantify 
the effectiveness of the CD driving, we use the KL divergence between the 
actual distribution, p(x,t), and the IE one, ρ(x;λ(t)), defined as DKL(ρ∣∣p) = ∫dx 
ρðx; λðtÞÞlog 2
I

(ρ(x;λ(t))/p(x,t)). For M = 2, the Fokker–Planck equation can be 
solved numerically for p(x1,t), while ρ(x1;λ(t)) is known analytically (equations (8) 
and (9)). Hence the 1D integral for DKL(ρ∣∣p) can be numerically evaluated. For 
M = 16 the situation becomes more complicated. There is no analytical solution 
for ρ(x;λ(t)), but we do have a good approximation in terms of the multivariate 
normal distribution of equation (10), expressed in terms of the mean vector xðλðtÞÞ

I
 

and covariance matrix Σ(λ(t)), which are calculated using the moment approach 
described in the Supplementary Information. The ABM simulation results are also 
normally distributed in this parameter regime, and hence there is a corresponding 
simulation mean xsimðtÞ

I
 and covariance Σsim(t) that can be calculated at each time 

t. These are calculated from the ensemble of 1,000 simulations that are run for each 
parameter set. The integral for the KL divergence DKL(ρ∣∣p) between the simulation 
and IE multivariate normal distributions can then be evaluated directly, yielding

DKLðρjjpÞ ¼
1

2ln 2 ln detΣsimðtÞ
detΣðλðtÞÞ �Mþ 1þ tr Σ�1

sim ðtÞΣðλðtÞÞ
� h

þ xsimðtÞ � xðλðtÞÞð ÞTΣ�1
sim ðtÞ xsimðtÞ � xðλðtÞÞð Þ

i ð23Þ

Because Σsim(t) will have some degree of sampling errors due to the finite size of the 
simulation ensemble, it can in some cases be badly conditioned. In these scenarios 
the Moore–Penrose pseudo-inverse is used to estimate Σ�1

sim ðtÞ
I

.
We can use the curves of DKL(ρ∣∣p) as a function of time, for example those 

of Fig. 3f, to estimate how much lag time (Δt) is being eliminated using a given 
approximate CD protocol, relative to the original one. The lag time savings are 
Δt ¼ torigeq � tCDeq
I

, where torigeq

I
 and tCDeq

I
 are respectively the times at which probability 

distributions in the original and CD protocols reach their final IE target values. In 
terms of DKL(ρ∣∣p), there is minimum value Deq

KL
I

 attained at long times when p(x,t) 
has converged with ρ(x;λ(t)). Note that this value is not precisely zero because of 
numerical noise associated with estimation of the distribution p(x,t) from a finite 
number of simulations. At long times when DKL(ρ∣∣p) approaches Deq

KL
I

, the final 
approach can be fit well by the following exponential decay function:

DKLðρjjpÞ 
Deq

KLe
�ðteq�tÞ=τ t≤ teq

Deq
KL t> teq

(
ð24Þ

Because we know Deq
KL
I

 from the long-time behaviour of the KL divergence 
curves, we then can estimate τ and teq by fitting equation (24) to the final decay 
portion of each DKL(ρ∣∣p) curve (the time range where DKL(ρ∣∣p) is within two 
orders of magnitude of Deq

KL
I

). After finding teq for the original and CD protocols, 
the difference gives us the Δt values quoted in the main text and Supplementary 
Information.

Data availability
The raw numerical data for the figures in the main text and Supplementary 
Information, as well as the code to generate the figures, are available via GitHub at 
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https://github.com/Peyara/Evolution-Counterdiabatic-Driving. Source Data are 
provided with this paper.

Code availability
The code to perform the numerical simulations and the specific 
driving protocols is available via GitHub at https://github.com/Peyara/
Evolution-Counterdiabatic-Driving.
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Extended Data Fig. 1 | CD driving for an altered 16-genotype pyrimethamine seascape. This is the same seascape as in main text Fig. 3, using the 
experimental data of Ref. 2, except that genotype 0110 has been modified to have a 5% larger base growth rate under no drug conditions. a,b, Sample 
simulation trajectories (solid lines) versus IE expectation (dashed lines) for the fraction of 4 representative genotypes without a and with b CD driving.  
The CD driving is implemented approximately through the drug dosage protocol (green curve) shown in panel c with cutoff 10−2 M. The original protocol 
(blue curve) is shown for comparison. d, Kullback–Leibler divergence between actual and IE distributions versus time, with and without CD driving.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


ArticlesNaTurE PhYsIcs

Extended Data Fig. 2 | CD driving for a 16-genotype cycloguanil seascape. This is the same 16-genotype system as in the examples of main text Fig. 3 
and Extended Data Fig. 1, except using the antimalarial drug cycloguanil instead of pyrimethamine. The seascape is based on the experimental data of 
Ref. 2, without any modifications. a,b, Sample simulation trajectories (solid lines) versus IE expectation (dashed lines) for the fraction of 4 representative 
genotypes without a and with b CD driving. The CD driving is implemented approximately through the drug dosage protocol (green curve) shown in panel 
c. The original protocol (blue curve) is shown for comparison. d, Kullback–Leibler divergence between actual and IE distributions versus time, with and 
without CD driving.
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