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Introduction

Evolution is increasingly recognized as a powerful tool for

building and controlling living and lifelike systems. How-

ever, the complexity and stochasticity of the evolutionary

process have thus far made it more of a blunt instrument than

a tool that can be precisely controlled. Here, we present an

approach that can begin to give us the level of fine control

we need to harness evolution for a wider variety of purposes.

A common step in using evolution to achieve a desired end

result is to gradually change an environment over time along

some continuous axis. Currently, our lack of rigorous theory

predicting the rate at which this adaptation will occur means

a population must be repeatedly tested to know when it has

reached the desired end state. This requirement is not ideal,

as there are some contexts in which such testing is impossi-

ble (e.g. measuring the current genetic state of drug-resistant

cancer cells in a patient’s body). Here, we describe the be-

ginning of a solution to this problem (presented in full in

(Iram et al., 2019)). As a starting point, we consider an ideal

case where we have perfect knowledge of the fitness land-

scape, frequent mutations, and a large population. Using

an approach from physics called counterdiabatic (CD) driv-

ing, we can mathematically derive a prescription for how to

change the environment so that the population arrives at the

adaptive end-state at a fast and predictable speed.

CD driving is a concept originally developed in quantum

mechanics Demirplak and Rice (2003, 2005); Berry (2009).

More recently, it has been used in classical physics appli-

cations such as the creation of an optical tweezer Martı́nez

et al. (2016). Fundamentally, CD driving is a way to force a

noisy system to equilibrate to a new state arbitrarily quickly

by subjecting it to a different series of intermediate states.

As an intuitive example, consider a waiter carrying a glass of

water on a tray (Sels and Polkovnikov, 2017). If he keeps the

tray perfectly flat while walking, he will need to move very

slowly to avoid spilling any water. He can walk much more

quickly without spilling if he instead tilts the tray slightly

to counteract the force his acceleration exerts on the glass.

In so doing, he has used a CD force – a new degree of free-

dom that can be manipulated to move a system more quickly

between a given start and end state.

Counterdiabatic Driving of Evolution

Like the glass of water, a population undergoing natural se-

lection will have a predictable equilibrium in a given en-

vironment, but will be behave unpredictably if the envi-

ronment is rapidly perturbed. As a concrete example, we

consider a population in an empirically-measured fitness

landscape based on antimalarial drug resistance genes Og-

bunugafor et al. (2016); Brown et al. (2010). If the pop-

ulation remains in a given environment (defined here as a

specific drug concentration) long enough, it will reach an

equilibrium. Most of the population will have a genotype

corresponding to the highest point(s) in the fitness landscape

for that environment. Depending on the balance of mutation

and selection, mutationally-adjacent genotypes will also be

present at some frequency.

Adding some quantity of a drug will put the population

into a new fitness landscape. This new landscape also has

an equilibrium genotype distribution, which the population

will reach eventually. However, this equilibration process

could potentially take a long time. A scenario where the

drug dosage increases over time (common in medicine) re-

sults in applying a sequence of fitness landscapes much more

rapidly than the population can reach the equilibrium geno-

type distribution for any of them. As a result, we see a “lag”

between the current genotype distribution and the equilib-

rium distribution for the current drug concentration.
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Figure 1: CD driving eliminates evolutionary lag in 16-genotype simulation. Change in genotype frequencies over a period of
environmental change (increasing drug concentration). Each color shows a different one of the 16 genotypes included in an agent based
model. Dashed lines indicate the theoretical equilibrium value at each point in time, based on the current drug concentration. Solid lines
indicate the observed value (median out of 10 replicates; error bars are plotted but are too small to see). Without CD driving, the observed
values (solid lines) lag substantially behind the equilibrium values (dashed lines). CD driving almost completely eliminates this lag.

We can eliminate this lag using a CD driving protocol

based on our drug ramp-up pattern (see Figure 1; for the

math used to create the protocol, see (Iram et al., 2019)).

This protocol will be a sequence of drug doses to adminis-

ter. By following the protocol, we can force the genotype

distribution in the population to always match the equilib-

rium distribution for the original drug ramp-up pattern (see

Figure 1). As a result, we are able to move the population

through the fitness landscape at a predictable speed.

Conclusion

We have shown that using CD driving to control the speed

with which a population traverses a fitness landscape works.

Our protocol is relatively robust to errors in parameter es-

timates and constraints on the maximum drug concentra-

tion (Iram et al., 2019). Note that drug concentrations are

just one example of a selection pressure that can be var-

ied over time. Currently the applications for this work are

limited by the lack of systems for which we have suffi-

ciently quantified the relevant portion of the fitness land-

scape. However, we anticipate more fitness landscapes be-

ing measured in the near future. When combined with on-

going work on using environmental sequencing to steer evo-

lution (Nichol et al., 2015; Maltas and Wood, 2018), we be-

lieve CD driving will help us gain more control over evolv-

ing systems.
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