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A DOMAIN DECOMPOSITION METHOD FOR THE
STEADY-STATE NAVIER–STOKES–DARCY MODEL WITH

BEAVERS–JOSEPH INTERFACE CONDITION∗

XIAOMING HE† , JIAN LI‡ , YANPING LIN§ , AND JU MING¶

Abstract. This paper proposes and analyzes a Robin-type multiphysics domain decomposition
method (DDM) for the steady-state Navier–Stokes–Darcy model with three interface conditions. In
addition to the two regular interface conditions for the mass conservation and the force balance, the
Beavers–Joseph condition is used as the interface condition in the tangential direction. The major
mathematical difficulty in adopting the Beavers–Joseph condition is that it creates an indefinite
leading order contribution to the total energy budget of the system [Y. Cao et al., Comm. Math.
Sci., 8 (2010), pp. 1–25; Y. Cao et al., SIAM J. Numer. Anal., 47 (2010), pp. 4239–4256]. In
this paper, the well-posedness of the Navier–Stokes–Darcy model with Beavers–Joseph condition
is analyzed by using a branch of nonsingular solutions. By following the idea in [Y. Cao et al.,
Numer. Math., 117 (2011), pp. 601–629], the three physical interface conditions are utilized together
to construct the Robin-type boundary conditions on the interface and decouple the two physics
which are described by Navier–Stokes and Darcy equations, respectively. Then the corresponding
multiphysics DDM is proposed and analyzed. Three numerical experiments using finite elements are
presented to illustrate the features of the proposed method and verify the results of the theoretical
analysis.
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1. Introduction. In the past decade many scientists and engineers have inves-
tigated the Stokes-Darcy models for the coupling of fluid flows and porous media
flows. Different numerical methods, have been developed and analyzed such as the
coupled finite element methods [18, 25, 28, 31, 44, 66, 71, 78, 96], domain decomposi-
tion methods (DDMs) [13, 10, 16, 17, 26, 34, 35, 37, 36, 39, 45, 65, 68, 107], Lagrange
multiplier methods [5, 51, 52, 67, 74], multigrid methods [3, 11, 12, 83, 113, 114, 115],
discontinuous Galerkin methods [56, 70, 80, 94, 95], mortar finite element methods
[43, 49, 48, 50, 57], least square methods [41, 75, 85, 106], partitioned time stepping
methods [84, 99], boundary integral method [9, 90, 105], multiple-time-step methods
[97, 100], stabilization methods [29, 86, 89], and many others [23, 27, 32, 40, 53, 54,
60, 61, 72, 81, 101, 110].

The quick development of this research area is due to its many applications in
different real world problems, which include, but are not limited to, the groundwater
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system in karst aquifers [7, 18, 19], flow in vuggy porous media or around a horizontal
wellbore [2, 4, 59, 63, 69, 73, 88, 111, 112], interaction between surface and subsurface
flows [33, 37, 56, 74], field-flow fractionation for the separation and characterization of
proteins, polymers, and other macromolecules [14, 47, 93, 102], industrial filtrations
[42, 62, 87], blood motion in lungs, solid tumors, and vessels [92, 104], remediation
of soils by means of bacterial colonies [1], meshy zone in alloy solidification [46, 103,
108, 109], spontaneous combustion of coal stockpiles [98], heat transfer in walls with
fibrous insulation [82, 91], and topology optimization [58].

However, most of the existing works are devoted to the linear Stokes–Darcy model.
Hence, recently scientists began studying the more physically faithful Navier–Stokes–
Darcy model [6, 12, 15, 21, 22, 20, 30, 56]. In this paper, we will extend the previous
work for the linear Stokes–Darcy model in [16] to the multiphysics domain decompo-
sition method (DDM) for the steady-state Navier–Stokes–Darcy model with Beavers–
Joseph condition. A branch of nonsingular solutions is utilized for the analysis to pro-
vide Proposition 4.1, which shows the well-posedness of the coupled nonlinear weak
formulation. Then following the idea in [16], we will propose and analyze a physics-
based DDM for the Navier–Stokes–Darcy model based on some Robin-type boundary
conditions constructed from the following three physical interface conditions: the
conservation of mass, the balance of forces, and the Beavers–Joseph condition. The
physics-based DDMs are different from the traditional ones in the sense that they
focus on decomposing different physical domains by directly using the given physical
interface conditions. As expected, a new, major difficulty arises from the nonlinear
advection in the Navier–Stokes equations and its interaction with the Beavers–Joseph
interface condition even though the development and the analysis of the proposed
method fall within the same framework of [16]. When the weak formulation is con-
structed, an additional consistent term is added to the trilinear form in order to ensure
(3.4) in a space which is large enough to include both the coupled weak solution and
the domain decomposition solutions. This property will play a key role in the conver-
gence analysis of the DDM. Furthermore, this paper provides more realistic numerical
experiments than those of [16].

The rest of paper is organized as follows. In section 2, we introduce the steady-
state Navier–Stokes–Darcy model with the Beavers–Joseph interface condition. In
section 3, a coupled weak formulation is proposed, and the trilinear form utilized in
this formulation is analyzed. In section 4, a branch of nonsingular solutions is studied
for the well-posedness of the coupled weak formulation. In section 5, a multiphysics
DDM is proposed based on the decoupled Navier–Stokes and Darcy systems by using
Robin-type boundary conditions arising from the three interface conditions. Then this
method is analyzed in section 6. In section 7, we present three numerical examples to
illustrate the features of the proposed method. Finally, we conclude in section 8.

2. Steady-state Navier–Stokes–Darcy model. In this section we introduce
the following coupled Navier–Stokes–Darcy model on a bounded domain Ω = ΩD ∪
ΩS ⊂ R

d (d = 2, 3); see Figure 1.

In the porous media region ΩD, the flow is governed by the Darcy system

−→u D = −K∇φD,(2.1)

∇ · −→u D = fD.(2.2)

Here, −→u D is the fluid discharge rate in the porous media, K is the hydraulic con-
ductivity tensor, fD is a sink/source term, and φD is the hydraulic head defined as
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ΩD

ΩS

Γ

Fig. 1. A sketch of the porous median domain ΩD, fluid domain ΩS, and the interface Γ.

z+ pD

ρg , where pD denotes the dynamic pressure, z the height, ρ the density, and g the
gravitational acceleration. We will consider the following second order formulation,
which eliminates −→u D in the Darcy system:

−∇ · (K∇φD) = fD.(2.3)

In the fluid region ΩS , the fluid flow is assumed to be governed by the Navier–
Stokes equations

−→u S · ∇−→u S −∇ · T(−→u S , pS) =
−→
f S ,(2.4)

∇ · −→u S = 0,(2.5)

where −→u S is the fluid velocity, pS is the kinematic pressure,
−→
f S is the external body

force, ν is the kinematic viscosity of the fluid, T(−→u S , pS) = 2νD(−→u S) − pSI is the
stress tensor, and D(−→u S) = (∇−→u S +∇T−→u S)/2 is the deformation tensor.

Let Γ = ΩD∩ΩS denote the interface between the fluid and porous media regions.
On the interface Γ, we impose the following three interface conditions:

−→u S · −→n S = −−→u D · −→n D,(2.6)

−−→n S · (T(−→u S , pS) · −→n S) +
1

2
−→u S · −→u S = g(φD − z),(2.7)

−τ j · (T(−→u S , pS) · −→n S) =
αν

√
d√

trace(
∏
)
τ j · (−→u S −−→u D),(2.8)

where −→n S and −→nD denote the unit outer normal to the fluid and the porous media
regions at the interface Γ, respectively; τ j (j = 1, . . . , d− 1) denote mutually orthog-
onal unit tangential vectors to the interface Γ, α is the Beavers–Joseph constant, and∏

= Kν
g .

The first interface condition can be easily obtained from the conservation of mass.
The second condition describes the balance of the forces [22, 30]. The third condition
is referred to as the Beavers–Joseph (BJ) interface condition [8]. The BJ interface
condition creates an indefinite leading order contribution to the total energy budget of
the system, which causes a major mathematical difficulty in adopting the BJ interface
condition [19, 18]. More theoretical support for the BJ condition can be found in [24].

In this paper, for simplification we assume that the hydraulic head φD and the
fluid velocity −→u S satisfy the homogeneous Dirichlet boundary condition except on Γ,
i.e., φD = 0 on the boundary ∂ΩD\Γand −→u S = 0 on the boundary ∂ΩS\Γ. Without
loss of generality, we also assume that K is isotropic.
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3. Coupled weak formulation. Let (·, ·)D denote the L2 inner product on the
domain D (D = ΩS or ΩD), and let 〈·, ·〉 denote the L2 inner product on the interface

Γ or the duality pairing between (H
1/2
00 (Γ))′ and H1/2

00 (Γ). Define the spaces

XS = {−→v ∈ [H1(ΩS)]
d | −→v = 0 on ∂ΩS\Γ},

QS = L2(ΩS),

XD = {ψ ∈ H1(ΩD) | ψ = 0 on ∂ΩD\Γ}.
Let λ = 1

ν . Then the weak formulation of the coupled Navier–Stokes–Darcy model
(2.3)–(2.8) is given as follows: find (−→u S , pS , φD) ∈ XS ×QS ×XD such that

(3.1)

λcS(
−→u S ,

−→u S ,
−→v ) + aS(

−→u S ,
−→v ) + λbS(

−→v , pS)− λbS(
−→u S , q) + λgaD(φD, ψ)

+λ〈gφD,−→v · −→n S〉 − λg〈−→u S · −→n S , ψ〉+ α
√
d√

trace(
∏
)
〈Pτ (

−→u S +K∇φD), Pτ
−→v 〉

= λg(fD, ψ)ΩD + λ(
−→
f S ,

−→v )ΩS + λ〈gz,−→v · −→n S〉 ∀ (−→v , q, ψ) ∈ XS ×QS ×XD.

Here the bilinear forms are defined as

aD(φD, ψ) = (K∇φD,∇ψ)ΩD ,

aS(
−→u S ,

−→v ) = 2(D(−→u S),D(
−→v ))ΩS ,

bS(
−→v , q) = −(∇ · −→v , q)ΩS ,

the projection onto the tangent space on Γ is defined as

Pτ
−→u =

d−1∑
j=1

(−→u · τ j)τ j ,

and the trilinear form is defined as

cS(
−→u ,−→w ,−→v ) = (−→u · ∇−→w ,−→v )ΩS +

1

2
((∇ · −→u )−→w ,−→v )ΩS − 1

2
〈−→u · −→w ,−→v · −→n S〉,(3.2)

which is continuous on the space triplet XS ×XS ×XS . Furthermore,

cS(
−→u ,−→u ,−→v ) = (−→u · ∇−→u ,−→v )ΩS +

1

2
((∇ · −→u )−→u ,−→v )ΩS − 1

2
〈−→u · −→u ,−→v · −→n S〉

=
1

2
(−→u · ∇−→u ,−→v )ΩS − 1

2
(−→u · ∇−→v ,−→u )ΩS

+
1

2
〈−→u · −→v ,−→u · −→n S〉 − 1

2
〈−→u · −→u ,−→v · −→n S〉 ∀−→u ,−→v ∈ XS(3.3)

since 1
2 ((∇ · −→u )−→u ,−→v )ΩS = 0. Thus, the trilinear term is completely consist with the

present problem (2.3)–(2.8). Obviously, the trilinear term cS(
−→u ,−→w ,−→v ) satisfies the

following identity:

cS(
−→u ,−→u ,−→u ) = 0 ∀−→u ∈ XS.(3.4)

Remark 3.1. The space XS = {−→v ∈ [H1(ΩS)]
d | −→v = 0 on ∂ΩS\Γ} is large

enough to include both the solutions of the coupled weak formulation and those of
the decoupled formulations in section 5. This is crucial for the analysis in this paper.
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4. A branch of nonsingular solutions. In this section we will introduce a
branch of the nonsingular solutions for the steady-state Navier–Stokes and Darcy
equations and then utilize it to show the well-posedness of the coupled weak formu-
lation. First, we define

X = XS ×QS ×XD,

Y = [H−1(ΩS)]
d ×H−1(ΩD),

VS = {−→v ∈ [H1(ΩS)]
d | ∇ · −→v = 0 in ΩS}

and

(4.1)

B((−→u S , φD); (−→v , ψ)) = aS(
−→u S ,

−→v ) + λgaD(φD, ψ)

+λg〈φD,−→v · −→n S〉 − λg〈−→u S · −→n S , ψ〉

+
α
√
d√

trace(
∏
)
〈Pτ (

−→u S +K∇φD), Pτ
−→v 〉,

(F, (−→v , ψ)) = (
−→
f S ,

−→v )ΩS + g(fD, ψ)ΩD + 〈gz,−→v · −→n S〉,(4.2)

(C(−→u ,−→u ),−→v ) = cS(
−→u ,−→u ,−→v ).(4.3)

Pick (−→v , ψ) = (−→u S , φD) in the definition of B((−→u S , φD); (−→v , ψ)); we obtain

B((−→u S , φD); (−→u S , φD)) = aS(
−→u S ,

−→u S) + λgaD(φD, φD)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→u S +K∇φD), Pτ
−→u S〉.(4.4)

Consider

K = KI =

(
K 0
0 K

)
.

By the coercivity in Lemma 3.2 of [19], when α is small enough, we have

B((−→u S , φD); (−→u S , φD)) ≥ C̃1(‖−→u S‖21 + ‖φD‖21),(4.5)

where C̃1 depends on K linearly. Hence, we have

B((−→u S , φD); (−→u S , φD)) ≥ C1 [aS(
−→u S ,

−→u S) + λgaD(φD, φD)] ,(4.6)

where C1 is independent of K.
The weak formulation (3.1) is equivalent to the following problem: given F ∈ Y ,

find ū(λ) = (−→u S , pS, φD) ∈ X such that

(4.7)

B((−→u S , φD); (−→v , ψ)) + λbS(
−→v , pS)− λbS(

−→u S , q) = λ(F, (−→v , ψ))− λ(C(−→u S ,
−→u S),

−→v )
∀ (−→v , q, ψ) ∈ X.

Furthermore, a C2-mapping G :R+ ×X → Y is introduced as follows:

G(λ, ū(λ)) = λ

[(
C(−→u S ,

−→u S)
0

)
− F

]
.(4.8)
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Then we define a linear operator T ∈ L(Y ;X) such that the above equation (4.7) is
denoted by

ū(λ) = −TG(λ, ū(λ)).(4.9)

Then, the system (4.7) (or (3.1)) can be presented as follows:

F(λ, ū(λ)) ≡ ū(λ) + TG(λ, ū(λ)) = 0.(4.10)

That is, ū(λ) = (−→u S , pS , φD) is a solution of the problem (4.10) if and only if it is a
solution of (4.7) (or (3.1)). Furthermore, {λ, ū(λ)} is called a branch of nonsingular
solutions if DūG(λ, ū(λ)) is an isomorphism between X and Y for all λ ∈ R+ [55].
Then for the branch of nonsingular solutions {λ, ū(λ)}, given any w̄1 = (−→w 1, r1, χ1) ∈
X , there exists a unique w̄ = (−→w , r, χ) ∈ X satisfying

DūF(λ, ū(λ))w̄ = w̄1.(4.11)

Plugging (4.10) into (4.11), we obtain

w̄ − w̄1 = −TDūG(λ, ū(λ))w̄.(4.12)

Using the definition of linear operator T ∈ L(Y ;X) and

DūG(λ, ū(λ))w̄ = λ

(
C(−→u S ,

−→w ) + C(−→w ,−→u S)
0

)
,

we can obtain the following equation:

B((−→w −−→w 1, χ− χ1); (
−→v , ψ)) + λbS(

−→v , r − r1)− λbS(
−→w −−→w 1, q)(4.13)

= −λcS(−→u S ,
−→w ,−→v )− λcS(

−→w ,−→u S ,
−→v ) ∀ (−→v , q, ψ) ∈ X.

Define

λ(f̃ , (−→v , ψ, q)) = B((−→w 1, χ1); (
−→v , ψ)) + λbS(

−→v , r1)− λbS(
−→w 1, q)(4.14)

and

Bλ((
−→w , r, χ); (−→v , q, ψ)) = B((−→w ,χ); (−→v , ψ)) + λbS(

−→v , r)− λbS(
−→w , q)

+λcS(
−→u S ,

−→w ,−→v ) + λcS(
−→w ,−→u S ,

−→v ).(4.15)

Then (4.13) can be rewritten as

Bλ((
−→w , r, χ); (−→v , q, ψ)) = λ(f̃ , (−→v , ψ, q)) ∀ (−→v , q, ψ) ∈ X.(4.16)

On the other hand, DūG(λ, ū(λ)) is an injective mapping from X onto Y for each
λ ∈ R+. Then there exists a positive constant η0 > 0 such that

||DūG(λ, ū(λ))−→w ||Y ≥ η0‖−→w ‖1 ∀−→w ∈ XS ,(4.17)

where ||DūG(λ, ū(λ))−→w ||Z = supv∈XS
〈DūG(λ, ū(λ))−→w ,−→v 〉/‖−→v ‖1. Then we can

obtain

cS(
−→u S ,

−→w ,−→v ) + cS(
−→w ,−→u S ,

−→v ) ≥ η0
λ
‖−→w ‖1‖−→v ‖1 ∀−→w , −→v ∈ XS .(4.18)
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Combining (4.6), (4.15), and (4.18), we have

Bλ((
−→w , r, χ); (−→w , r, χ)) = B((−→w ,χ); (−→w , χ)) + λcS(

−→u S ,
−→w ,−→w ) + λcS(

−→w ,−→u S ,
−→w )

≥ B((−→w ,χ); (−→w , χ)) + η0‖−→w‖21
≥ B((−→w ,χ); (−→w , χ))
≥ C1 [aS(

−→u S ,
−→u S) + λgaD(φD, φD)] .(4.19)

Following [12, 55, 64, 76, 77], we can obtain the next proposition based on the
Lax–Milgram theory, (4.6), and (4.16) for the well-posedness of the coupled weak
formulation.

Proposition 4.1. {λ, ū(λ)} is a branch of nonsingular solutions to (4.7) (or
(3.1)) if and only if there holds

Bλ((
−→w , r, χ); (−→w , r, χ)) ≥ C1 [aS(

−→u S ,
−→u S) + λgaD(φD, φD)](4.20)

∀−→w ∈ XS , r ∈ QS , χ ∈ XD,

where the positive constant C1 is independent of K.

5. Multiphysics domain decomposition method. In this section, we will
propose the multiphysics DDM for solving the Naiver–Stokes–Darcy model with BJ
condition.

First, in order to decouple the two physics, the components in the three interface
conditions are directly reorganized to construct the Robin–Robin conditions on the
interface as follows [16]:

γDK∇φ̂D · −→nD + gφ̂D = ηD on Γ,(5.1)

−→n S · (T(−̂→u S , p̂S) · −→n S)− 1

2
−̂→u S · −̂→u S + γS

−̂→u S · −→n S = ηS on Γ,(5.2)

−Pτ (T(
−̂→u S , p̂S) · −→n S)− αν

√
d√

trace(
∏
)
Pτ

−̂→u S = −→η Sτ on Γ.(5.3)

Here ηD, ηS , and
−→η Sτ are given functions defined on Γ. γD > 0 and γS > 0 are

two positive relaxation parameters which are important to the convergence of the
iteration of the proposed DDM. These two parameters are specifically designed to
deal with the different velocity scales of the Stokes flow and Darcy flow, which need
to match each other on the interface in the normal direction due to the interface
condition (2.6). These Robin conditions are different from those conditions proposed
in [34, 35, 37, 38, 39], and we consider the BJ interface condition instead of the
Beavers–Joseph–Saffman interface condition or its simplification.

Then the corresponding weak formulation is given as follows: for ηD ∈ L2(Γ) and

ηS ∈ L2(Γ) and −→η Sτ ∈ L2(Γ), find φ̂D ∈ XD, −̂→u S ∈ XS, and p̂S ∈ QS such that

aD(φ̂D, ψ) +

〈
gφ̂D
γD

, ψ

〉
= (fD, ψ)ΩD +

〈
ηD
γD

, ψ

〉
∀ψ ∈ XD,(5.4)

λcS(
−̂→u S ,

−̂→u S ,
−→v )ΩS + aS(

−̂→u S ,
−→v ) + λbS(

−→v , p̂S)− λbS(
−̂→u S , q)(5.5)

+λγS〈−̂→u S · −→n S ,
−→v · −→n S〉+ α

√
d√

trace(
∏
)
〈Pτ

−̂→u S , Pτ
−→v 〉

= λ(
−→
f S ,

−→v )ΩS + λ〈ηS ,−→v · −→n S〉 − λ〈−→η Sτ , Pτ
−→v 〉 ∀ (−→v , q) ∈ XS ×QS .
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One advantage of the Robin conditions proposed above is the straightforward
derivation of the following compatibility conditions for the equivalence between the
solutions of the Navier–Stokes–Darcy system and those of the decoupled system. Sim-
ilarly to Lemma 1 in [16], we can obtain the following lemma.

Lemma 5.1. Let (−→u S , λpS , φD) be the solution of the coupled Navier–Stokes–

Darcy system (3.1), and let (−̂→u S , λp̂S , φ̂D) be a branch of nonsingular solutions of

the decoupled Navier–Stokes and Darcy equations (5.4)–(5.5). Then, (−̂→u S , λp̂S , φ̂D)
= (−→u S , λpS , φD) if and only if γS, γD, ηS,

−→η Sτ , and ηD satisfy the following com-
patibility conditions:

ηD = γD
−̂→u S · −→n S + gφ̂D,(5.6)

ηS = γS
−̂→u S · −→n S − gφ̂D + gz,(5.7)

−→η Sτ =
αν

√
d√

trace(
∏
)
Pτ (K∇φ̂D).(5.8)

These compatibility conditions provide convenient tools to directly predict ξD,
ξS and ξSτ on the interface at each time step based on the results from the previous
time steps. Hence we can propose a multi-physics DDM as follows.

1. Initial values η0D, η0S and −→η 0
Sτ are guessed. They may be taken to be zero.

2. For k = 0, 1, 2, . . ., independently solve the Darcy and Navier–Stokes equa-
tionss with the Robin boundary conditions on the interface, which are con-
structed in section 5. More precisely, φkD ∈ XD is computed from

aD(φkD, ψ) + 〈gφ
k
D

γD
, ψ〉 = 〈η

k
D

γD
, ψ〉+ (fD, ψ)ΩD , ∀ψ ∈ XD,(5.9)

and (−→u k
S , p

k
S) ∈ XS ×QS are computed from:

(5.10)

λcS(
−→u k

S ,
−→u k

S ,
−→v )ΩS + aS(

−→u k
S ,

−→v ) + λbS(
−→v , pkS)− λbS(

−→u k
S , q)

+λγS〈−→u k
S · −→n S ,

−→v · −→n S〉+ α
√
d√

trace(
∏
)
〈Pτ

−→u k
S , Pτ

−→v 〉

= λ(
−→
f S ,

−→v )ΩS + λ〈ηkS ,−→v · −→n S〉 − λ〈−→η k
Sτ , Pτ

−→v 〉, (−→v , q) ∈ XS ×QS.

3. ηk+1
D , ηk+1

S and −→η k+1
Sτ are updated in the following manner:

ηk+1
S =

γS
γD

ηkD − (1 +
γS
γD

)gφkD + gz,(5.11)

ηk+1
D = −ηkS + (γS + γD)−→u k

S · −→n S + gz,(5.12)

−→η k+1
Sτ =

αν
√
d√

trace(
∏
)
Pτ (K∇φkD),(5.13)

6. Convergence of the domain decomposition method. In this section
we will follow the elegant energy method proposed in [79] and the arguments in
[16] to demonstrate the convergence of the proposed DDM for appropriate choice of
parameters γD and γS . The new, major difficulty is the extension of the previous
analysis for the nonlinear advection in the Navier–Stokes equations.
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Let (−→u S , pS , φD) denote the solution of the coupled Stokes–Darcy system (3.1)
for a given λ ∈ R+. Then we have that (−→u S , pS , φD) solves the equivalent decou-
pled system (5.4)–(5.5) with γS , γD, ηD, ηS , and

−→η Sτ satisfying the compatibility
conditions (5.6)–(5.8) with the hats removed. Next, we define the error functions

εkD = ηD − ηkD, εkS = ηS − ηkS ,
−→ε k

Sτ = −→η Sτ −−→η k
Sτ ,

ekφ = φD − φkD,
−→e k

u = −→u S −−→u k
S , ekp = pS − pkS,

and then provide the error equations in the following two lemmas.
Lemma 6.1. The error functions satisfy

λ‖εk+1
D ‖2Γ = λ‖εkS‖2Γ − 2(γS + γD)

[
λcS(

−→e k
u,
−→u S ,

−→e k
u)(6.1)

+λcS(
−→u S ,

−→e k
u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]

+λ(γ2D − γ2S)‖−→e k
u · −→n S‖2Γ.

Proof. First, we analyze the errors from trilinear terms:

(6.2)

cS(
−→u S ,

−→u S ,
−→v )− cS(

−→u k
S ,

−→u k
S ,

−→v )
= cS(

−→u S ,
−→u S ,

−→v )− cS(
−→u k

S ,
−→u S ,

−→v ) + cS(
−→u k

S ,
−→u S ,

−→v )− cS(
−→u k

S ,
−→u k

S ,
−→v )

= cS(
−→e k

u,
−→u S ,

−→v ) + cS(
−→u k

S ,
−→e k

u,
−→v )

= cS(
−→e k

u,
−→u S ,

−→v ) + cS(
−→u S ,

−→e k
u,
−→v )− cS(

−→u S ,
−→e k

u,
−→v ) + cS(

−→u k
S ,

−→e k
u,
−→v )

= cS(
−→e k

u,
−→u S ,

−→v ) + cS(
−→u S ,

−→e k
u,
−→v )− cS(

−→e k
u,
−→e k

u,
−→v ).

Subtracting (5.5) from (5.10) and applying (6.2), we obtain

(6.3)

λcS(
−→e k

u,
−→u S ,

−→v ) + λcS(
−→u S ,

−→e k
u,
−→v )− λcS(

−→e k
u,
−→e k

u,
−→v )

+ aS(
−→e k

u,
−→v ) + λbS(

−→v , ekp)− λbS(
−→e k

u, q) + λγS〈−→e k
u · −→n S ,

−→v · −→n S〉

+
α
√
d√

trace(
∏
)
〈Pτ

−→e k
u, Pτ

−→v 〉

= λ〈εkS ,−→v · −→n S〉 − λ〈−→ε k
Sτ , Pτ

−→v 〉 ∀ (−→v , q) ∈ XS ×QS .

Note that −→u S ,
−→u k

S ∈ XS . Then
−→e k

u ∈ XS and (3.4) lead to

cS(
−→e k

u,
−→e k

u,
−→e k

u) = 0.(6.4)

Setting (−→v , q) = (−→e k
u, e

k
p) in (6.3), we get

λcS(
−→e k

u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)(6.5)

+ λγS‖−→e k
u · −→n S‖2Γ +

α
√
d√

trace(
∏
)
〈Pτ

−→e k
u, Pτ

−→e k
u〉

= λ〈εkS ,−→e k
u · −→n S〉 − λ〈−→ε k

Sτ , Pτ
−→e k

u〉.
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Along the interface Γ, the errors satisfy

−→ε k+1
Sτ =

αν
√
d√

trace(
∏
)
Pτ (K∇ekφ).(6.6)

By (6.5) and (6.6), we have

λ〈εkS ,−→e k
u · −→n S〉 = λcS(

−→e k
u,
−→u S ,

−→v ) + λcS(
−→u S ,

−→e k
u,
−→v ) + aS(

−→e k
u,
−→e k

u)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉+ λγS‖−→e k
u · −→n S‖2Γ.(6.7)

Furthermore, we have

εk+1
D = −εkS + (γS + γD)−→e k

u · −→n S ,(6.8)

which leads to

‖εk+1
D ‖2Γ = ‖εkS‖2Γ + (γS + γD)2‖−→e k

u · −→n S‖2Γ − 2(γS + γD)〈εkS ,−→e k
u · −→n S〉.(6.9)

Plugging (6.7) into (6.9), we obtain

λ‖εk+1
D ‖2Γ = λ‖εkS‖2Γ + λ

[
(γS + γD)2 − 2(γS + γD)γS

] ‖−→e k
u · −→n S‖2Γ

− 2(γS + γD)

[
λcS(

−→e k
u,
−→u k

S ,
−→v ) + λcS(

−→u k
S ,

−→e k
u,
−→v ) + aS(

−→e k
u,
−→e k

u)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]
,(6.10)

which completes the proof of (6.1).
Furthermore, we recall the following conclusion from [16].
Lemma 6.2. The error functions satisfy

(6.11)

‖εk+1
S ‖2Γ =

(
γS
γD

)2

‖εkD‖2Γ +

[
1−
(
γS
γD

)2
]
‖gekφ‖2Γ − 2γS

(
1 +

γS
γD

)
g aD(ekφ, e

k
φ).

In the rest of this section, we will carry out the convergence analysis for γS = γD
and γS < γD in Theorem 6.3 and Theorem 6.4 separately.

Theorem 6.3. Under the assumption of Proposition 4.1, if γS = γD = γ > 0,
K is isotropic, and α is small enough such that (6.15) and (6.19) are satisfied, then
the domain decomposition solution (−→u k

S , p
k
S , φ

k
D) converges to the analytic solution

(−→u S , pS , φD).
Proof. From Lemma 6.1, Lemma 6.2, and γS = γD = γ, we have

(6.12)

λ‖εk+1
D ‖2Γ = λ‖εkS‖2Γ − 4γ

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]
,
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λ‖εk+1
S ‖2Γ = λ‖εkD‖2Γ − 4λγgaD(ekφ, e

k
φ).(6.13)

Adding the two equations and summing over k from k = 1 to N , we obtain

0 ≤ λ‖εN+1
D ‖2Γ + λ‖εN+1

S ‖2Γ(6.14)

= λ‖ε1D‖2Γ + λ‖ε1S‖2Γ − 4γ

N∑
k=1

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u)

+ aS(
−→e k

u,
−→e k

u) + λg aD(ekφ, e
k
φ) +

α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ekφ), Pτ

−→e k
u〉
]

− 4γ

N∑
k=1

α
√
d√

trace(
∏
)
〈Pτ (K∇ek−1

φ −K∇ekφ), Pτ
−→e k

u〉.

By Proposition 4.1, when α is small enough, we have

λcS(
−→e k

u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u) + λg aD(ekφ, e
k
φ)(6.15)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ekφ), Pτ

−→e k
u〉

≥ C1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]
.

Since we suppose K is isotropic, K = KI, where K is an constant and I is the identity
matrix. Based on (5.36) in [16], we have

N∑
k=1

〈Pτ (K∇ek−1
φ −K∇ekφ), Pτ

−→e k
u〉 ≥ − C̃2

N∑
k=0

(
‖−→e k

u‖21 + ‖ekφ‖21
)
,(6.16)

where C̃2 depends on K linearly. Hence,

(6.17)
N∑

k=1

〈Pτ (K∇ek−1
φ −K∇ekφ), Pτ

−→e k
u〉 ≥ −C2

N∑
k=0

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]
,

where C2 is also independent of K.
Then plugging (6.15) and (6.17) into (6.14), we get

4γ

(
C1 − C2

α
√
d√

trace(
∏
)

)
N∑

k=0

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]

(6.18)

≤ (‖ε1D‖2Γ + ‖ε1S‖2Γ
)
+ 4γC1

[
aS(

−→e 0
u,
−→e 0

u) + λgaD(e0φ, e
0
φ)
]

for any positive integer N . If α is small enough such that

C1 − C2
α
√
d√

trace(
∏
)
> 0,(6.19)

then −→e k
u and ekφ tend to zero by the convergence theorem of series of positive terms.

Hence, we obtain the convergence of φkD and −→u k
S to the hydraulic head φD and the
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velocity −→u S , respectively. The convergence of p
k
S to the pressure pS then follows from

the inf-sup condition and (6.3).

Now we turn to the analysis for the case of 0 < γS < γD. In this case, we will
first show the convergence and then derive a geometric convergence rate.

Theorem 6.4. Under the assumption of Proposition 4.1, if 0 < γS < γD, K

is isotropic, α is small enough such that (6.15) and (6.19) are satisfied, and γS and
γD are close to each other such that (6.25) and (6.26) are satisfied, then the domain
decomposition solution (−→u k

S , p
k
S , φ

k
D) converges to the analytic solution (−→u S , pS , φD).

Furthermore, if (6.34) and (6.35) are satisfied, then we have geometric convergence

rate
√

γS

γD
.

Proof. Multiplying (6.1) by γS

γD
and (6.11) by λ and adding them together, we get

(6.20)

λ
γS
γD

‖εk+1
D ‖2Γ + λ‖εk+1

S ‖2Γ

= λ
γS
γD

‖εkS‖2Γ − 2
γS
γD

(γS + γD)

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u)

+ aS(
−→e k

u,
−→e k

u) +
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]

+λ
γS
γD

(γ2D − γ2S)‖−→e k
u · −→n S‖2Γ + λ

(
γS
γD

)2

‖εkD‖2Γ + λ

[
1−
(
γS
γD

)2
]
‖gekφ‖2Γ

− 2λγS

(
1 +

γS
γD

)
g aD(ekφ, e

k
φ) = − 2

γS
γD

(γS + γD)

[
λcS(

−→e k
u,
−→u S ,

−→e k
u)

+λcS(
−→u S ,

−→e k
u,
−→e k

u) + aS(
−→e k

u,
−→e k

u) + λg aD(ekφ, e
k
φ)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ekφ), Pτ

−→e k
u〉
]

− 2
γS
γD

(γS + γD)
α
√
d√

trace(
∏
)
〈Pτ (K∇ek−1

φ −K∇ekφ), Pτ
−→e k

u〉

+λ
γS
γD

(γ2D − γ2S)‖−→e k
u · −→n S‖2Γ + λ

(
1−
(
γS
γD

)2
)
‖gekφ‖2Γ

+λ

(
γS
γD

)2

‖εkD‖2Γ + λ
γS
γD

‖εkS‖2Γ.

Then summing over k from k = 1 to N , we obtain

(6.21)

0 ≤ λ

N∑
k=2

[
γS
γD

− (
γS
γD

)2
]
‖εkD‖2Γ + λ

N∑
k=2

[
1− γS

γD

]
‖εkS‖2Γ + λ

γS
γD

‖εN+1
D ‖2Γ + λ‖εN+1

S ‖2Γ
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= − 2
γS
γD

(γS + γD)

N∑
k=1

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)

+λg aD(ekφ, e
k
φ) +

α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ekφ), Pτ

−→e k
u〉
]

− 2
γS
γD

(γS + γD)
α
√
d√

trace(
∏
)

N∑
k=1

〈Pτ (K∇ek−1
φ −K∇ekφ), Pτ

−→e k
u〉

+λ
γS
γD

(γ2D − γ2S)
N∑

k=1

‖−→e k
u · −→n S‖2Γ

+λ

(
1−
(
γS
γD

)2
)

N∑
k=1

‖gekφ‖2Γ + λ

(
γS
γD

)2

‖ε1D‖2Γ + λ
γS
γD

‖ε1S‖2Γ.

By the trace inequality, Poincaré inequality, and Korn’s inequality we have

‖−→e k
u · −→n S‖2Γ ≤ C3aS(

−→e k
u,
−→e k

u),(6.22)

‖gekφ‖2Γ ≤ g2
C4

K
aD(ekφ, e

k
φ).(6.23)

Plugging (6.15), (6.17), (6.22), and (6.23) into (6.21), we get

(6.24)

0 ≤ λ

N∑
k=2

[
γS
γD

−
(
γS
γD

)2
]
‖εkD‖2Γ + λ

N∑
k=2

[
1− γS

γD

]
‖εkS‖2Γ + λ

γS
γD

‖εN+1
D ‖2Γ + λ‖εN+1

S ‖2Γ

≤ −2
γS
γD

(γS + γD)C1

N∑
k=1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]

+2
γS
γD

(γS + γD)
α
√
d√

trace(
∏
)
C2

N∑
k=0

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]

+λ
γS
γD

(γ2D − γ2S)C3

N∑
k=1

aS(
−→e k

u,
−→e k

u) + λ

(
1−
(
γS
γD

)2
)
g2
C4

K

N∑
k=1

aD(ekφ, e
k
φ)

+λ

(
γS
γD

)2

‖ε1D‖2Γ + λ
γS
γD

‖ε1S‖2Γ

= −(2− s)
γS
γD

(γS + γD)

[
C1 − α

√
d√

trace(
∏
)
C2

]
N∑

k=1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]

+

[
λ
γS
γD

(γ2D − γ2S)C3 − s
γS
γD

(γS + γD)

(
C1 − α

√
d√

trace(
∏
)
C2

)]
N∑

k=1

aS(
−→e k

u,
−→e k

u)

+

[(
1−
(
γS
γD

)2
)
g
C4

K
− s

γS
γD

(γS + γD)

(
C1− α

√
d√

trace(
∏
)
C2

)]
N∑

k=1

λgaD(ekφ, e
k
φ)

+λ

(
γS
γD

)2

‖ε1D‖2Γ + λ
γS
γD

‖ε1S‖2Γ

+2
γS
γD

(γS + γD)
α
√
d√

trace(
∏
)
C2

[
aS(

−→e 0
u,
−→e 0

u) + λgaD(e0φ, e
0
φ)
]
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for any s ∈ (0, 2). Suppose γS and γD are chosen such that

λ
γS
γD

(γ2D − γ2S)C3 − s
γS
γD

(γS + γD)

(
C1 − α

√
d√

trace(
∏
)
C2

)
≤ 0,(6.25) (

1−
(
γS
γD

)2
)
g
C4

K
− s

γS
γD

(γS + γD)

(
C1 − α

√
d√

trace(
∏
)
C2

)
≤ 0.(6.26)

Then we get

(6.27)

(2− s)
γS
γD

(γS + γD)

(
C1 − α

√
d√

trace(
∏
)
C2

)
N∑

k=1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ekφ, e
k
φ)
]

≤ λ

(
γS
γD

)2

‖ε1D‖2Γ + λ
γS
γD

‖ε1S‖2Γ

+2
γS
γD

(γS + γD)
α
√
d√

trace(
∏
)
C2

[
aS(

−→e 0
u,
−→e 0

u) + λgaD(e0φ, e
0
φ)
]
.

With the same argument as at the end of the proof of Theorem 6.3, we obtain the
convergence if α is small enough such that (6.19) is true.

Now we derive a geometric convergence rate. Plugging (6.11) into (6.1), we have

λ‖εk+1
D ‖2Γ = −2(γS + γD)

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)

+
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]

+λ

(
γS
γD

)2

‖εk−1
D ‖2Γ + λ

[
1−
(
γS
γD

)2
]
‖gek−1

φ ‖2Γ

−2λγS

(
1 +

γS
γD

)
g aD(ek−1

φ , ek−1
φ ) + λ(γ2D − γ2S)‖−→e k

u · −→n S‖2Γ

= −2(γS + γD)

[
λcS(

−→e k
u,
−→u S ,

−→e k
u) + λcS(

−→u S ,
−→e k

u,
−→e k

u) + aS(
−→e k

u,
−→e k

u)

+λg aD(ek−1
φ , ek−1

φ ) +
α
√
d√

trace(
∏
)
〈Pτ (

−→e k
u +K∇ek−1

φ ), Pτ
−→e k

u〉
]

+λ

(
γS
γD

)2

‖εk−1
D ‖2Γ + λ

[
1−
(
γS
γD

)2
]
‖gek−1

φ ‖2Γ

+2λ(γS + γD)

(
1− γS

γD

)
g aD(ek−1

φ , ek−1
φ ) + λ(γ2D − γ2S)‖−→e k

u · −→n S‖2Γ.(6.28)

Plugging (6.15), (6.22), and (6.23) into (6.28), we obtain

λ‖εk+1
D ‖2Γ ≤ −2(γS + γD)C1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ek−1
φ , ek−1

φ )
]
+ λ

(
γS
γD

)2

‖εk−1
D ‖2Γ
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+λ

[
1−
(
γS
γD

)2
]
g2
C4

K
aD(ek−1

φ , ek−1
φ )

+ 2λ(γS + γD)

(
1− γS

γD

)
gaD(e

k−1
φ , ek−1

φ ) + λ(γ2D − γ2S)C3aS(
−→e k

u,
−→e k

u).(6.29)

For a constant s ∈ (0, 2), we have

λ‖εk+1
D ‖2Γ + (2− s)(γS + γD)C1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ek−1
φ , ek−1

φ )
]

(6.30)

≤ λ

(
γS
γD

)2

‖εk−1
D ‖2Γ +

[
λ(γ2D − γ2S)C3 − s(γS + γD)C1

]
aS(

−→e k
u,
−→e k

u)

+

{[
1−
(
γS
γD

)2
]
g
C4

K
+ 2(γS + γD)

(
1− γS

γD

)
− s(γS + γD)C1

}
λgaD(ek−1

φ , ek−1
φ ).

Choose γS and γD such that

λ(γ2D − γ2S)C3 − s(γS + γD)C1 ≤ 0,(6.31) [
1−
(
γS
γD

)2
]
g
C4

K
+ 2(γS + γD)

(
1− γS

γD

)
− s(γS + γD)C1 ≤ 0.(6.32)

Then we obtain

λ‖εk+1
D ‖2Γ + (2− s)(γS + γD)C1

[
aS(

−→e k
u,
−→e k

u) + λgaD(ek−1
φ , ek−1

φ )
]

(6.33)

≤ λ

(
γS
γD

)2

‖εk−1
D ‖2Γ.

This provides the geometric convergence rate
√

γS

γD
. Here the requirements (6.31)–

(6.32) are equivalent to

γD − γS ≤ sC1

λC3
,(6.34)

γD − γS ≤ sC1γ
2
DK

gC4 + 2γDK
.(6.35)

Using (6.3), we can obtain the geometric convergence for ekp.

7. Numerical examples. In this section, we will present three examples to
illustrate the features of the proposed method. Newton iteration will be used to
deal with the nonlinear systems. The Taylor–Hood element pair will be used for the
Navier–Stokes equations, and the quadratic finite element will be used for the second
order formulation of the Darcy equation.

Example 1. Consider the model problem (2.3)–(2.8) on Ω = [0, 1] × [0, 1]. Let
ΩS be the polygon ABCDEFGHIJ , where A = (0, 1), B = (0, 3/4), C = (1/2, 1/4),
D = (1/2, 0), E = (3/4, 0), F = (3/4, 1/4), G = (1, 1/4), H = (1, 1/2), I = (3/4, 1/2),
and J = (1/4, 1). Let ΩD = Ω/ΩS and Γ = ΩD ∩ ΩS .

Choose αν
√
d/
√
trace(

∏
) = 1, ν = 1, g = 1, z = 0, and K = KI, where I is

the identity matrix and K = 1. Let
−→
f S = 0 in ΩS , fD = 0 in ΩD, and φD = 0 on

∂ΩD/Γ. Let
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Fig. 2. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1 and s2 = 1.

−→u S =

⎧⎨⎩
(−s1, 0)T on GH,
(0, s1)

T on DE,
(−s2, s2)T on AB and JA,

where s1 and s2 are two constants. We divide Ω into rectangles of height and width
h = 1/N , where N denotes a positive integer, and then subdivide each rectangle into
two triangles by drawing a diagonal. N is chosen such that the boundary of ΩS is
aligned with the mesh. Clearly, faces of the grids in ΩD and ΩS align with and match
at the interface Γ = ΩD

⋂
ΩS .

For the proposed DDM, we choose γS = 0.3, γD = 1.2, and N = 64. In the
following, we will first discuss the effect of different boundary data in order to validate
the proposed numerical method. First, Figure 2 shows the simulation results for s1 = 1
and s2 = 1, where the warmer color indicates higher speed of the flow, and the line
with arrows is the streamline. In this case, the total inflow rate is equal to the total
outflow rate. Second, we choose s1 = 1 and s2 = 1/2, which cause the total inflow
rate to be larger than the total outflow rate. Then the simulation results in Figure
3 show that the flow becomes slower in the left-top quarter of the problem domain.
By comparing the contours and the streamlines in Figure 3 with those in Figure 2, it
is seen that more fluid flows out of the conduit to the porous media region. Indeed,
none of the streamlines, which go from the conduit to the porous media, come back
to the conduit. Third, we choose s1 = 1 and s2 = 3/2, which cause the total inflow
rate to be larger than the total outflow rate in Figure 4. In the left-top quarter of the
problem domain, the flow becomes faster. Compared with Figure 2, it can be seen
that more fluid flows from a broader porous media area into the free flow region.

Furthermore, we change K to be 10−2, 10−4, 10−6 in this example to test the
effect of smaller K on the solution. Figures 5, 6, and 7 show that the domain decom-
position solutions are convergent for these smaller values of K, and the flow speed
in porous media is significantly reduced when K becomes smaller. Comparing with
Figure 2, the slower flow in porous media also causes a smaller effect of the porous
media flow on the fluid flow in the region around the interface. In order to illus-
trate more details for the porous media flow, smaller scales are used for smaller K in
Figures 6 and 7.
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Fig. 3. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1 and s2 = 1/2.
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Fig. 4. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, s2 = 3/2,
and K = 1.

Example 2. Consider the model problem (2.3)–(2.8) without the inertial force
1
2
−→u S · −→u S on the interface. The source terms and boundary conditions are chosen

such that the exact solution is given by⎧⎨⎩
φD = [2− π sin(πx)][−y + cos(π(1 − y))],−→u S = [x2y2 + e−y, − 2

3xy
3 + 2− π sin(πx)]T ,

pS = −[2− π sin(πx)] cos(2πy).

The problem domain is Ω = [0, 1] × [−0.25, 0.75], where ΩD = [0, 1] × [0, 0.75] and
ΩS = [0, 1]× [−0.25, 0]. Choose αν

√
d/
√
trace(

∏
) = 1, ν = 1, g = 1, and K = KI,

where I is the identity matrix and K = 1. We divide ΩD and ΩS into rectangles of
height and width h = 1/N , where N denotes a positive integer, and then subdivide
each rectangle into two triangles by drawing a diagonal. In this example, we will
illustrate the accuracy order and convergence of the proposed method.



DDM FOR NAVIER–STOKES–DARCY MODEL WITH BJ CONDITION S281

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

U

1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Fig. 5. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, s2 = 1, and
K = 10−2.
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Fig. 6. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, s2 = 1, and
K = 10−4.

For the coupled finite element method corresponding to the coupled weak formu-
lation (3.1), Table 1 provides errors for different choices of h. Using linear regression,
the errors in Table 1 satisfy

‖−→u S,h −−→u S‖0 ≈ 0.177 h2.998, |−→u S,h −−→u S |1 ≈ 1.281 h1.999,

‖pS,h − pS‖0 ≈ 1.264 h2.018,

‖φD,h − φD‖0 ≈ 0.545 h3.002, |φD,h − φD|1 ≈ 4.515 h1.995.
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Fig. 7. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, s2 = 1, and
K = 10−6.

Table 1

Example 2: Errors of the finite element method.

h
∥
∥−→u S,h −−→u S

∥
∥
0

|−→u S,h −−→u S |1
∥
∥pS,h − pS

∥
∥
0

∥
∥φD,h − φD

∥
∥
0

|φD,h − φD|1
1/8 3.488× 10−4 2.009 × 10−2 1.941 × 10−2 1.063 × 10−3 7.088 × 10−2

1/16 4.325× 10−5 5.012 × 10−3 4.648 × 10−3 1.319 × 10−4 1.796 × 10−2

1/32 5.424× 10−6 1.255 × 10−3 1.139 × 10−3 1.645 × 10−5 4.511 × 10−3

1/64 6.804× 10−7 3.143 × 10−4 2.831 × 10−4 2.056 × 10−6 1.130 × 10−3

1/128 8.525× 10−8 7.866 × 10−5 7.065 × 10−5 2.571 × 10−7 2.827 × 10−4

1/256 1.067× 10−8 1.968 × 10−5 1.765 × 10−5 3.214 × 10−8 7.069 × 10−5

These rates of convergence are consistent with the approximation capability of the
Taylor–Hood element and quadratic element. In particular, we see the third order
convergence rate with respect to the L2 norm of −→u S and φD, the second order con-
vergence rates with respect to the H1 norm of −→u S and φD, and the second order
convergence rate with respect to L2 norms of pS .

For the DDM with γS = 0.3 and h = 1/32, Figures 8 and 9 show the L2 errors
of hydraulic head, velocity, pressure, and ηS . In order to obtain the convergence of
the DDM, the requirements in Theorem 6.4 need to be satisfied. We can see that for
this example the proposed DDM is convergent for γD = γS and γD = 4γS but not
γD = 1

4γS .
Remark 7.1. In this section, we remove the error from the initial guess of the

DDM iteration and start from the error of the first DDM iteration step as the “step
0” in the plots.

In addition to the above observation about the convergence, we also observe a

geometric convergence rate
√

γS

γD
for the case of γS < γD. First, it is observed that

smaller γS

γD
provides faster convergence in Figures 10 and 11 when the requirements

of Theorem 6.4 are satisfied. Then Tables 2 and 3 list some L2 errors in velocity,
hydraulic head, pressure, and ηS for the proposed DDM with γS = 0.3 and γD = 1.2.
Let e(i) denote the error at the ith iteration step. We can see that all the error ratios

are less than
(√

γS

γD

)4
=
(√

1
4

)4
= 0.0625, which numerically confirms the geometric
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Fig. 8. Example 2: Convergence for the velocity of the free flow (left) and the hydraulic head
of the porous medium flow (right) versus the iteration counter m for the DDM.
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Fig. 9. Example 2: Convergence for the pressure of the free flow (left) and ηS (right) versus
the iteration counter m for the DDM.
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Fig. 10. Example 2: Geometric convergence rate of the velocity of the free flow (left) and the
hydraulic head of the porous medium flow (right) for the DDM.
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Fig. 11. Example 2: Geometric convergence rate of the pressure of the free flow (left) and ηS
(right) versus the iteration counter m for the DDM.
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Table 2

Example 2: L2 errors in velocity and hydraulic head for the DDM.

L2 velocity errors
e(i)

e(i−4)
L2 hydraulic head errors

e(i)
e(i−4)

e(0) 7.873 × 10−2 7.104× 10−3

e(4) (i = 4) 5.023 × 10−4 0.00638 6.318× 10−5 0.00889
e(8) (i = 8) 1.437 × 10−5 0.0286 1.727× 10−6 0.0273

e(12) (i = 12) 4.801 × 10−7 0.0334 5.298× 10−8 0.0307
e(16) (i = 16) 1.846 × 10−8 0.0384 1.864× 10−9 0.0352
e(20) (i = 20) 7.791 × 10−10 0.0422 7.399 × 10−11 0.0397

Table 3

Example 2: L2 errors in pressure and ηS for the DDM.

L2 velocity errors e(i)
e(i−4)

L2 hydraulic head errors e(i)
e(i−4)

e(0) 1.534× 100 8.468× 10−2

e(4) (i = 4) 2.394× 10−2 0.0156 4.486× 10−3 0.0530
e(8) (i = 8) 7.204× 10−4 0.0301 2.454× 10−4 0.0547

e(12) (i = 12) 2.586× 10−5 0.0359 1.386× 10−5 0.0558
e(16) (i = 16) 1.087× 10−6 0.0420 8.005× 10−7 0.0585
e(20) (i = 20) 5.054× 10−8 0.0465 4.699× 10−8 0.0587

convergence rate
√

γS

γD
.

Additionally, we have similar observations for the errors in other norms, including
the errors of hydraulic head and velocity in the H1 norm and discrete maximum norm
and the errors of pressure and ηS in the discrete maximum norm. Hence, we omit the
related data here in order to simplify the presentation.

Example 3. Consider the model problem (2.3)–(2.8). The source terms and
boundary conditions are chosen such that the exact solution is given by⎧⎨⎩

φD = (ey + e−y − 2) sin(x),
−→u S =

[
K
(
1
π sin(2πy)− 2y

)
cos(x), K

(
1
π2 sin

2(πy)− y2
)
sin(x)

]T
,

pS = 0.

The problem domain is Ω = [0, π] × [−1, 1], where ΩD = [0, π] × [−1, 0] and ΩS =
[0, π] × [0, 1]. Choose αν

√
d/
√
trace(

∏
) = 1, ν = 1, g = 1, and K = KI, where I is

the identity matrix. We divide ΩD and ΩS into rectangles of height and width h =
(π/N, 1/N), where N denotes a positive integer, and then subdivide each rectangle
into two triangles by drawing a diagonal. In this example, we will illustrate the
influence of the parameter K on the convergence and convergence rate since the given
analytic solutions satisfy the interface conditions (2.6)–(2.8) for arbitrary K. Again,
in the figures we remove the error from the initial guess of the DDM iteration and
start from the error of the first DDM iteration step as “step 0.”

Figures 12–15 show the convergence and convergence rate of the hydraulic head
for different choices on K, γD, and γS . The figures for the velocity of the free flow
are similar; hence they are omitted here to shorten the presentation. As indicated in
(6.35), we can see that the parameter K does have a significant influence on the choice
of the parameters γD and γS for the convergence and convergence rate. Smaller K
requires larger γD and γS for a better performance in convergence and convergence
rate, which is consistent with the nonlinear requirement in (6.35). The errors in Fig-
ures 12–15 quickly decrease for K = 1, 10−2, 10−4, 10−6. Therefore the convergence
rate is good for smaller K even though it is not as good as the case of K = 1 due
to some nonlinear effect of the smaller K on the convergence and convergence rate,
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Fig. 12. Example 3: Convergence and convergence rate of the hydraulic head for K = 1 with
γS = 0.3 (left) and γS = 1 (right).
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Fig. 13. Example 3: Convergence and convergence rate of the hydraulic head for K = 10−2

with γS = 1 (left) and γS = 10 (right).
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Fig. 14. Example 3: Convergence and convergence rate of the hydraulic head for K = 10−4

with γS = 10 (left) and γS = 1000 (right).
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Fig. 15. Example 3: Convergence and convergence rate of the hydraulic head for K = 10−6

with γS = 10000 (left) and γS = 100000 (right).
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which will lead to some interesting future work.

8. Conclusions. In this paper, the well-posedness of the coupled weak for-
mulation for the stationary Naiver–Stokes–Darcy model with Beavers–Joseph in-
terface condition is illustrated by using a branch of nonsingular solutions. Then a
multiphysics domain decomposition method is proposed and analyzed for this model
based on the Robin boundary conditions constructed from the three physical interface
conditions. The numerical experiments validate the proposed method and verify the
theoretical conclusions.
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