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A DOMAIN DECOMPOSITION METHOD FOR THE
STEADY-STATE NAVIER-STOKES-DARCY MODEL WITH
BEAVERS-JOSEPH INTERFACE CONDITION*

XIAOMING HET, JIAN LI¥, YANPING LIN$, AND JU MINGY

Abstract. This paper proposes and analyzes a Robin-type multiphysics domain decomposition
method (DDM) for the steady-state Navier—Stokes—Darcy model with three interface conditions. In
addition to the two regular interface conditions for the mass conservation and the force balance, the
Beavers—Joseph condition is used as the interface condition in the tangential direction. The major
mathematical difficulty in adopting the Beavers—Joseph condition is that it creates an indefinite
leading order contribution to the total energy budget of the system [Y. Cao et al., Comm. Math.
Sci., 8 (2010), pp. 1-25; Y. Cao et al., STAM J. Numer. Anal., 47 (2010), pp. 4239-4256]. In
this paper, the well-posedness of the Navier-Stokes-Darcy model with Beavers—Joseph condition
is analyzed by using a branch of nonsingular solutions. By following the idea in [Y. Cao et al.,
Numer. Math., 117 (2011), pp. 601-629], the three physical interface conditions are utilized together
to construct the Robin-type boundary conditions on the interface and decouple the two physics
which are described by Navier—Stokes and Darcy equations, respectively. Then the corresponding
multiphysics DDM is proposed and analyzed. Three numerical experiments using finite elements are
presented to illustrate the features of the proposed method and verify the results of the theoretical
analysis.
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1. Introduction. In the past decade many scientists and engineers have inves-
tigated the Stokes-Darcy models for the coupling of fluid flows and porous media
flows. Different numerical methods, have been developed and analyzed such as the
coupled finite element methods [18, 25, 28, 31, 44, 66, 71, 78, 96], domain decomposi-
tion methods (DDMs) [13, 10, 16, 17, 26, 34, 35, 37, 36, 39, 45, 65, 68, 107], Lagrange
multiplier methods [5, 51, 52, 67, 74], multigrid methods [3, 11, 12, 83, 113, 114, 115],
discontinuous Galerkin methods [56, 70, 80, 94, 95], mortar finite element methods
[43, 49, 48, 50, 57], least square methods [41, 75, 85, 106], partitioned time stepping
methods [84, 99], boundary integral method [9, 90, 105], multiple-time-step methods
[97, 100], stabilization methods [29, 86, 89], and many others [23, 27, 32, 40, 53, 54,
60, 61, 72, 81, 101, 110].

The quick development of this research area is due to its many applications in
different real world problems, which include, but are not limited to, the groundwater
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system in karst aquifers [7, 18, 19], flow in vuggy porous media or around a horizontal
wellbore [2, 4, 59, 63, 69, 73, 88, 111, 112], interaction between surface and subsurface
flows [33, 37, 56, 74], field-flow fractionation for the separation and characterization of
proteins, polymers, and other macromolecules [14, 47, 93, 102], industrial filtrations
[42, 62, 87], blood motion in lungs, solid tumors, and vessels [92, 104], remediation
of soils by means of bacterial colonies [1], meshy zone in alloy solidification [46, 103,
108, 109], spontaneous combustion of coal stockpiles [98], heat transfer in walls with
fibrous insulation [82, 91], and topology optimization [58].

However, most of the existing works are devoted to the linear Stokes—Darcy model.
Hence, recently scientists began studying the more physically faithful Navier—Stokes—
Darcy model [6, 12, 15, 21, 22, 20, 30, 56]. In this paper, we will extend the previous
work for the linear Stokes—Darcy model in [16] to the multiphysics domain decompo-
sition method (DDM) for the steady-state Navier—Stokes—Darcy model with Beavers—
Joseph condition. A branch of nonsingular solutions is utilized for the analysis to pro-
vide Proposition 4.1, which shows the well-posedness of the coupled nonlinear weak
formulation. Then following the idea in [16], we will propose and analyze a physics-
based DDM for the Navier—Stokes—Darcy model based on some Robin-type boundary
conditions constructed from the following three physical interface conditions: the
conservation of mass, the balance of forces, and the Beavers—Joseph condition. The
physics-based DDMs are different from the traditional ones in the sense that they
focus on decomposing different physical domains by directly using the given physical
interface conditions. As expected, a new, major difficulty arises from the nonlinear
advection in the Navier—Stokes equations and its interaction with the Beavers—Joseph
interface condition even though the development and the analysis of the proposed
method fall within the same framework of [16]. When the weak formulation is con-
structed, an additional consistent term is added to the trilinear form in order to ensure
(3.4) in a space which is large enough to include both the coupled weak solution and
the domain decomposition solutions. This property will play a key role in the conver-
gence analysis of the DDM. Furthermore, this paper provides more realistic numerical
experiments than those of [16].

The rest of paper is organized as follows. In section 2, we introduce the steady-
state Navier—Stokes—Darcy model with the Beavers—Joseph interface condition. In
section 3, a coupled weak formulation is proposed, and the trilinear form utilized in
this formulation is analyzed. In section 4, a branch of nonsingular solutions is studied
for the well-posedness of the coupled weak formulation. In section 5, a multiphysics
DDM is proposed based on the decoupled Navier—Stokes and Darcy systems by using
Robin-type boundary conditions arising from the three interface conditions. Then this
method is analyzed in section 6. In section 7, we present three numerical examples to
illustrate the features of the proposed method. Finally, we conclude in section 8.

2. Steady-state Navier—Stokes—Darcy model. In this section we introduce
the following coupled Navier—Stokes—Darcy model on a bounded domain Q = Qp U
Qs C R (d = 2,3); see Figure 1.

In the porous media region 2p, the flow is governed by the Darcy system

(2.1) Up=-KVép,
2.2 V.-Up = fp.

Here, @ p is the fluid discharge rate in the porous media, K is the hydraulic con-
ductivity tensor, fp is a sink/source term, and ¢p is the hydraulic head defined as
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Qp
I

Qs

Fic. 1. A sketch of the porous median domain Qp, fluid domain Qg, and the interface T'.

z+ ’;—‘;, where pp denotes the dynamic pressure, z the height, p the density, and g the
gravitational acceleration. We will consider the following second order formulation,
which eliminates @ p in the Darcy system:

(2.3) -V (KV¢p) = fp.

In the fluid region g, the fluid flow is assumed to be governed by the Navier—
Stokes equations

(2.4) Us - Vius—V-T(ds,ps) = ?s,
(2.5) V- -Uds=0,

where U is the fluid velocity, pg is the kinematic pressure, ?5 is the external body
force, v is the kinematic viscosity of the fluid, T(Wg,ps) = 2vD(Ws) — psl is the
stress tensor, and D(Wg) = (VU s + VT U g)/2 is the deformation tensor.

Let I' = QpNQg denote the interface between the fluid and porous media regions.
On the interface I', we impose the following three interface conditions:

(2.6) Us-Ms=—up-7p,
1

(2.7) ~Ts- (T(Us,ps) - Ts) + —75 s =g(op — 2),

oa/\/_
(2.8) —7; - (T(W s,ps) - Ws) = i (ds—Up),

trace(H)
where 77 s and 7 p denote the unit outer normal to the fluid and the porous media
regions at the interface I', respectively; 7; (j =1,...,d — 1) denote mutually orthog-
onal unit tangential vectors to the interface I', « is the Beavers—Joseph constant, and
=2

T]ge first interface condition can be easily obtained from the conservation of mass.
The second condition describes the balance of the forces [22, 30]. The third condition
is referred to as the Beavers—Joseph (BJ) interface condition [8]. The BJ interface
condition creates an indefinite leading order contribution to the total energy budget of
the system, which causes a major mathematical difficulty in adopting the BJ interface
condition [19, 18]. More theoretical support for the BJ condition can be found in [24].

In this paper, for simplification we assume that the hydraulic head ¢p and the
fluid velocity Us satisfy the homogeneous Dirichlet boundary condition except on T,
i.e.,, ¢p = 0 on the boundary 0Qp\I'and @ s = 0 on the boundary 00s\I'. Without
loss of generality, we also assume that K is isotropic.
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3. Coupled weak formulation. Let (-,-)p denote the L? inner product on the

domain D (D = Qg or Qp), and let (-,-) denote the L? inner product on the interface

I or the duality pairing between (HégQ (T"))" and Hé({z(l"). Define the spaces

Xg = {76 [Hl(Qs)]d | 720011 893\1“},
QS = L2(Qs)7
Xp={ypec H(Qp) | ¥=0o0n00p\I'}.

Let A = % Then the weak formulation of the coupled Navier—Stokes—Darcy model
(2.3)-(2.8) is given as follows: find (U g, ps, dp) € Xs X Qg x Xp such that

(3.1)
Aes(Us, s, V) +as(d s, T) + Nos(T,ps) — Mos(U s, q) + Agap(ép, )
+Xgop, V- s) — Ag(Us - T s,) + %<Pr(7s +KVép), P 0)

= Ag(fp,¥)ap + /\(?577)95 + Mgz, T - W) ¥V (T, q,%) € Xg x Qs x Xp.

Here the bilinear forms are defined as

ap(¢p,¥) = (KVep, Vih)a,,
as( s, V) = 2(D(U s), D(V))as,
b5(77 q) = —(V : 77 q)QS,

the projection onto the tangent space on I' is defined as
d—1
P-,—7 = 2(7 : 'Tj)’Tj,
j=1

and the trilinear form is defined as

(32) es(7,%,7) = (F -V, Dhas + 3 (V- )T, Doy — (T - T, 7 - 7s),

1
2
which is continuous on the space triplet Xg x Xg x Xg. Furthermore,

es (.7, 7) = (- VT, Do + 5 (V- )T, Doy — 27,7 - )
= 2 (@ VR, Doy — 5 (T VT, D
(3.3) b3 (T ) - (0T ) VLT € X

since $((V - U)W, T )as = 0. Thus, the trilinear term is completely consist with the
present problem (2.3)~(2.8). Obviously, the trilinear term cg(@, w, ¥) satisfies the
following identity:

(3.4) cs(U,d,q)=0VU € Xs.

Remark 3.1. The space Xg = {¥ € [H'(Q5)]? | ¥ = 0 on 8Qs\I'} is large
enough to include both the solutions of the coupled weak formulation and those of
the decoupled formulations in section 5. This is crucial for the analysis in this paper.



5268 XTAOMING FOR, JIAN LI, YANPING LIN, AND JU MING

4. A branch of nonsingular solutions. In this section we will introduce a
branch of the nonsingular solutions for the steady-state Navier—Stokes and Darcy
equations and then utilize it to show the well-posedness of the coupled weak formu-
lation. First, we define

X =Xgs X Qs x Xp,
Y =[H Q)] x H ' (Qp),
Ve ={7 e [H'(Qs)]? | V-7 =0in Qs}

and

(4.1)
B((Us,0p); (V,9)) = as(d s, ) + Agap(¢p, )
+Ag(op, V- Hs) = Ag(T s+ W s,)

avd
+ mm(ﬁs +KV¢p), PV,
(4.2) (F.(T,9) = (F s, Das + 9o, Bap + (92,7 - Ts),
(4.3) C(W, D), V) =cs(d, W, 7).

Pick (7,1) = (€ s, ¢p) in the definition of B((W g, ¢p); (T, v)); we obtain
B((Ts,¢p); (Us,¢p)) = as(Us, Us) + Agap(ép, ép)

avd
(44) +W<PT(7S+KV¢D),P7—75>
Consider
K 0
K=KI= <O K) .

By the coercivity in Lemma 3.2 of [19], when « is small enough, we have

(4.5) B((Ts,¢p); (U s, ¢p)) = C1(|[Tsll + énl?),

where Cy depends on K linearly. Hence, we have

(4.6) B(Ws,¢p); (Us,¢p)) = Cias(Us, Us) + Agap(ép, ép)] ,

where C1 is independent of K.
The weak formulation (3.1) is equivalent to the following problem: given F' € Y,
find a(\) = (s, ps, p) € X such that

(4.7)
B((Ws,¢p); (T, %)) + Mbs(V,ps) — Abs(Us,q) = AF, (U, ¢)) — \C(Us, Us), V)
v (7,q,¢) c X.

Furthermore, a C2-mapping G :R*t x X — Y is introduced as follows:

(4.8) GO\ A(N) = A KCW%’ 75)) - F} .
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Then we define a linear operator T' € L(Y; X) such that the above equation (4.7) is
denoted by

(4.9) a(A) = =TG(\, u(X)).
Then, the system (4.7) (or (3.1)) can be presented as follows:
(4.10) FA a(N) = a(X) + TGN u(N)) = 0.

That is, w(\) = (s, ps, ¢p) is a solution of the problem (4.10) if and only if it is a
solution of (4.7) (or (3.1)). Furthermore, {\,@(\)} is called a branch of nonsingular
solutions if DzG(\, @())) is an isomorphism between X and Y for all A € R [55].
Then for the branch of nonsingular solutions {, @w(\)}, given any @, = (W1, 71, x1) €
X, there exists a unique @w = (W, r, x) € X satisfying

(4.11) Dz F (A u(N)w = w.
Plugging (4.10) into (4.11), we obtain

(4.12) w—w = —TDzG(\, u(N))w.
Using the definition of linear operator T' € L(Y; X) and

DG, a(\)w = A (OW& W) + C(W@, 7s>> |

we can obtain the following equation:

(4.13)  B((W — W1, x — x1); (T, ) + Mos(V,r — 1) — Abs(@ — W1, q)
= Xes(Us, W, V) = hes(W, U, V)V (V,q,0) € X.

Define
(414) A(fv (77 1/’7 Q)) = B((wla X1)7 (73 W) + )\bS(77 Tl) - /\bS(a}h Q)
and

B)\((ﬁvrv X)§ (77 q, ¢)) = B((m7X); (77¢)) + /\b5(777.) - /\bs(ﬁ, (])
(4.15) +)\Cs(75,ﬁ,7) +/\Cs(ﬁ,75,7).

Then (4.13) can be rewritten as
(4.16) BA((W,7,x); (V,4.9)) = M, (T, 4,0)) V (T, 4,9) € X.

On the other hand, D;G(\, @(\)) is an injective mapping from X onto Y for each
A € R*. Then there exists a positive constant 1y > 0 such that

(4.17) 1DaG(\, a(\) Wy > mol| W1 VW € X,

where ||DaG(\, @(\)W||z = sup,ex, (DaG(\,@(\)W, ¥)/||7]li. Then we can
obtain

(4.18)  cs(Ws, W, V) +es(W, Ws, T) > ”—;Wnluﬁnl VI, T e Xg.
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Combining (4.6), (4.15), and (4.18), we have

BA((W, 7, x);: (W, r,x)) = B(W, x): (W, X)) + Aes (U s, W, W) + Aes(W, U s, W)
> B((W,x); (W, x) + ol 7|17
> B((W,x); (W, x))
(4.19) > C [as(Ws, Us) + Agap(dp, dp)] -

Following [12, 55, 64, 76, 77], we can obtain the next proposition based on the
Lax-Milgram theory, (4.6), and (4.16) for the well-posedness of the coupled weak
formulation.

PROPOSITION 4.1. {\ @(\)} is a branch of nonsingular solutions to (4.7) (or
(3.1)) if and only if there holds

(4'20) B)\((ﬁ,r, X); (ﬁ,T‘, X)) > Cy [a5(7Sa 75‘) + )‘gaD(¢D7 ¢D)]
VW € Xg, 1€ Qs, x € Xp,

where the positive constant Cy is independent of K.

5. Multiphysics domain decomposition method. In this section, we will
propose the multiphysics DDM for solving the Naiver—Stokes—Darcy model with BJ
condition.

First, in order to decouple the two physics, the components in the three interface
conditions are directly reorganized to construct the Robin—Robin conditions on the
interface as follows [16]:

(5.1) ’YDKVQZD “HAp+gdp=np onT,
(5.2) s (T (75,1?5) Ts) — —75 s +757S ns=ns onl,

avy/d
trace(]])

Here np, ng, and 757 are given functions defined on I'. vp > 0 and vg > 0 are
two positive relaxation parameters which are important to the convergence of the
iteration of the proposed DDM. These two parameters are specifically designed to
deal with the different velocity scales of the Stokes flow and Darcy flow, which need
to match each other on the interface in the normal direction due to the interface
condition (2.6). These Robin conditions are different from those conditions proposed
n [34, 35, 37, 38, 39], and we consider the BJ interface condition instead of the
Beavers—Joseph—Saffman interface condition or its simplification.

Then the corresponding weak formulation is given as follows: for np € L?(T") and

ns € L2(T) and 75, € LA(T), find ép € Xp, @s € Xs, and ps € Qs such that

(5.3) P (T (75,1?5) s) — _WVC  pWs=Ts onl.

(54) GD($D7¢)+<9¢DM/J>:(fDaw)QD+<Z—§7¢> VwEXD,

(5.5) /\CS(%S,%\S, Tas + aS(%Sa V) + Nbs (U, Ps) — /\bs(%\s, q)
= - - avd
+Ms(Us - T, V- s) + ———m—— trace(ID (P; 75713 )

7s, Das +Ans, T - Ts) = M sr, P2 0) V(7 ,q) € X5 X Qs.
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One advantage of the Robin conditions proposed above is the straightforward
derivation of the following compatibility conditions for the equivalence between the
solutions of the Navier—Stokes—Darcy system and those of the decoupled system. Sim-
ilarly to Lemma 1 in [16], we can obtain the following lemma.

LEMMA 5.1. Let (75,)\p5,¢)D) be the solution of the coupled Navier—Stokes—

Darcy system (3.1), and let (75,)\ps,¢p) be a branch of nonsmgular solutions of

the decoupled Navier-Stokes and Darcy equations (5.4)—(5.5). Then, (75,)\ps,¢p)

= (73,/\p5,¢p) if and only if vs, vp, s, 757, and np satisfy the following com-
patibility conditions:

(5.6) Nnp = ’YD?S s+ 9¢A5D7
(5.7) Ns = 7575 g — QQA5D + gz,
OZV\/E ~
. = ——2 P (KVép).
(5.8) s N (KVép)

These compatibility conditions provide convenient tools to directly predict &p,
&s and Eg, on the interface at each time step based on the results from the previous
time steps. Hence we can propose a multi-physics DDM as follows.
1. Initial values 79, 7% and 7%, are guessed. They may be taken to be zero.
2. For k = 0,1,2,..., independently solve the Darcy and Navier—Stokes equa-
tionss with the Robin boundary conditions on the interface, which are con-
structed in section 5. More precisely, ¢% € Xp is computed from

k k
(5.9 ap@h )+ (E22 gy = ("B gyt (fo.¥)an, Vi€ Xp,
YD YD

and (7§,p’§) € Xg x Qg are computed from:

(5.10)

Aes (U5, W8, D)oy +as(Wh,T) + Mos(T, k) — Abs(W%, q)

sy s, 7)Y bk b

trace([])
_A757 Qs+)‘775a7 nS 75771:)7 (77q)€XSXQS~
3. phtl 77§+1 and ’g;l are updated in the following manner:
(5.11) it = Ll — (0 g0k, + g2,
D YD
(5.12) it = —nk + (vs + )WY - s + gz,
d
(5.13) SRR CYL
trace(]])

6. Convergence of the domain decomposition method. In this section
we will follow the elegant energy method proposed in [79] and the arguments in
[16] to demonstrate the convergence of the proposed DDM for appropriate choice of
parameters vp and vs. The new, major difficulty is the extension of the previous
analysis for the nonlinear advection in the Navier—Stokes equations.
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Let (75,p5, ¢p) denote the solution of the coupled Stokes-Darcy system (3.1)
for a given A € R*. Then we have that (75,]35,(;51)) solves the equivalent decou-
pled system (5.4)—(5.5) with ~vs, vp, np, ns, and 7f g+ satisfying the compatibility
conditions (5.6)—(5.8) with the hats removed. Next, we define the error functions

k k k k k k
€p =MD —1Np, &g =1s —1s, ?57:757—7&’
k k —k k k k
e¢:¢D_¢D7 eu:7S_75’7 €y, =PS — Ps;

and then provide the error equations in the following two lemmas.
LEMMA 6.1. The error functions satisfy

)\Cs( 73,%]6)

u

(6.1) Mep™ IF = Aleglif - 2(vs +p)

+ /\65(75, ?5, —>k) +ags (—>k ?Z)
d
L ovd
trace(]])
k
+A(h =€ sl

(P-(€h + KVeh™), P 2%)

Proof. First, we analyze the errors from trilinear terms:

(6.2)
65(7577577) —cs( ]Ea ]Ea?)
= 65(75,75,7)—65(75,75,7)4—65( ,75,7)—65(7@, g,?)
(CF Us, T) +es(Wh, €8 )
= cs(?ﬁ,ﬁs,ﬁ)—kcs(ﬁs, ek ) —es(ds, @F, V) + es(UE ?ﬁ,
(CF, s, V) +es(Us, @ m?) cs(Ch,EE V).

Subtracting (5.5) from (5.10) and applying (6.2), we obtain

v)

:CS

(6.3)
)\cs( 73,7) +)\cs(75, eu,
+as<eu,7>+Abs(7,eP>—Abs< na)+Ms(Eh s, T s)

avd

* trace(]])
=Mk, V- W)= MTE PV V(V,q) € Xs x Qs.

7) )\Cs(_>k —k 7)

u?

(P.er, P

Note that g, 7 € Xg. Then € @k € Xg and (3.4) lead to

(64) CS(?fw ?a]jv —>k) 0.
Setting (7, q) = (%i, p) n (6.3), we get
(6.5) Aes(€h, W g, @R) + Aes (s, @8, ER) +as (€, €0)
avd
+ Ml €n - Tslf+ ———=(Pr e, P e )
trace(]])

= )‘<‘€]§7?Z : ﬁs> - )‘< ]§7—7PT?Z>'
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Along the interface I', the errors satisfy

(6.6) Zhil = L‘/HPT(KW{;).

trace([])
By (6.5) and (6.6), we have

)\<€]§, ?Z . ﬁs> = /\Cs(?ﬁ, 75, 7) + )\65(75, ?k 7) + as(?ﬁ, ?Z)

u?

vd
(6.7) +;‘TQ®<R(?§+KW’;—1),PT?§> + Ml er 7|2
Furthermore, we have
(6.8) bl = —eb + (ys +p) e s,

which leads to
(6.9) NIl 17 = ekl + (vs +0)21 €% - TslE — 2(vs +v0)(ek, @0 - ).
Plugging (6.7) into (6.9), we obtain
AeBIE = MlegE + A [(vs +70)* — 2(7s +vp)7s) Ies - 7|
—2(vs +p) |Aes(TE, WL, T) + Aes(Wh, T8, ) + as(Eh, EF)

av/d
* trace(]])

which completes the proof of (6.1). O
Furthermore, we recall the following conclusion from [16].
LEMMA 6.2. The error functions satisfy

k — k
(6.10) (Pr(y +KVel ™), P, )

)

(6.11)

2
k e
m;ﬂ%=<ij ek 12+

2
Vs k2 Vs k _k
1—(— e —2 5(1+—) ap(eg,ey).
(“/D) ] llg ¢||F B D gap( & qb)

In the rest of this section, we will carry out the convergence analysis for v = vp
and vs < vp in Theorem 6.3 and Theorem 6.4 separately.

THEOREM 6.3. Under the assumption of Proposition 4.1, if y¢ = yp = v > 0,
K is isotropic, and o is small enough such that (6.15) and (6.19) are satisfied, then
the domain decomposition solution (7’;,19’;,(;5%) converges to the analytic solution
(ds,ps, D).

Proof. From Lemma 6.1, Lemma 6.2, and vg = vp = 7, we have

(6.12)

k k
AR = MebllE — 4y [ Aes(@h, Ws, @8) + Aes(W s, €5, ) +as(@y, €

u?

d
L avd

P + KV, P ek |
trace(H)< ( o) )
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k+1 k2 k _k
(6.13) Alled IR = MleblF - 4\ygap(eg, eg).
Adding the two equations and summing over k from k& = 1 to N, we obtain

(6.14) 0 < Allep ™I+ Alleg ™7

N
= Mlepllp + AlesllF — 49> | Aes(€h, s, €h) + Aes (U s, €%, €h)

k=1
d
+tas(@h,Eh) + Agap(eh,ek) + Lm(?’; +KVek), P eh)
trace(]])
al k
P.(KVei=t —KVek), P,
kz \/trace ( ¢ ¢) >

By Proposition 4.1, when « is small enough, we have
(6.15) Aes(€ 7s, TR+ Aes(Ts, @8, T8 +as(@h, @h) + Ag ap(eh, eb)
trace(H)

> €1 [as(@8, @) + Agan(eh, eb)].

Since we suppose K is isotropic, K = K1, where K is an constant and I is the identity
matrix. Based on (5.36) in [16], we have

Z

N

—k
(616) D (Pr(KVes ™ —KVeh), P Eh) = — oY (12017 + b))
k=1 k=0

where C; depends on K linearly. Hence,
(6.17)

N N

Z - (KVek™! —Kvek), P Z as(€%, €%) + Agap(el, )],

=1

where (5 is also independent of K.
Then plugging (6.15) and (6.17) into (6.14), we get

N
(6.18) 4y <01 - 02¢> > as(Th, Th) + Agap(eh, ef)]
trace([]) ) 7=

< (lleb I + leslI?) +49Ca [as(@

23 ?2) + /\gaD(egv 62))}
for any positive integer N. If « is small enough such that

(6.19) Cy — Cgﬂ >0,

trace(]])

then ?ﬁ and e’; tend to zero by the convergence theorem of series of positive terms.
Hence, we obtain the convergence of ¢’B and 7’; to the hydraulic head ¢p and the
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velocity Us, respectively. The convergence of pk; to the pressure pg then follows from
the inf-sup condition and (6.3). O

Now we turn to the analysis for the case of 0 < vg < yp. In this case, we will
first show the convergence and then derive a geometric convergence rate.

THEOREM 6.4. Under the assumption of Proposition 4.1, if 0 < vs < vp, K
is isotropic, « is small enough such that (6.15) and (6.19) are satisfied, and ~vs and
vp are close to each other such that (6.25) and (6.26) are satisfied, then the domain
decomposition solution (7’;,17@, ®k)) converges to the analytic solution (75,1)5, oD)-

Furthermore, if (6.34) and (6.35) are satisfied, then we have geometric convergence

as
YD *

Proof. Multiplying (6.1) by = and (6.11) by A and adding them together, we get

rate

(6.20)
Vs
A= NeBHIR + AllestH IR
YD

u’ u

_)\_DH SHI‘ z (vs +7p) [)‘Cs( 7Sa_>k)+)\cs(7s,_>k ?k)

d
fas(@ 7 Y p oy KVek1), P e%)
trace(]])

2
Vs k2
1—(— e
(7D> 1 lg ¢HF

Aes(€h, W s, @)

u

vs
A28 (43— 2y 2" - ns||r+/\< )|aD|p+A
YD YD

VS k k s
— 2\ 5<1—|——> ap(eg,es) = —2—(vs +vp
Y D g (¢ ¢) ,\/D(’Y YD)

k —k
+Aes(Us, €8, @8) + as(€,, € ,) + Agap(el, eh)

d
+ Lm(?ﬁ +KVeh), P )
trace([])
s avd k-1 k —k
—2— + — (P, (KVe —KVe}), P, €,
D (s +70) trace(H)< ( ¢ ) )

2
Ys k Ys
A2 (2 2@ Rsl2 + A (1 . (—) ) gk 2
YD YD
vs
+A<—) e+ AZZ b .
YD

Then summing over k from £ =1 to N, we obtain

(6.21)

N
Ys
Z[ - ]|5D||F+AZ[1——}|| b1+ AL R+ A

k=2
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N

k k

= _23_2(’7S+7D)Z )‘CS( 7Sa?k)+/\cs(757 eua eﬁ)—'_as(?u’?u)
k=1

avd

— Y (P(TF +KVer), Pt
trace(H)< ( ) )

u

+/\gap(e§,e’;) +

s — k
—2-2¢ > (P-(KVel ™' —KVek), P e)

u

2 N
Ys Vs
+A<1— (22) >Z|ge’;n%ﬂ(7—[)) Jebil? + 322 b .
k=1

By the trace inequality, Poincaré inequality, and Korn’s inequality we have

(6.22) 1eF . 7|2 < Cyas(Tk, €F),
,Cy

(6.23) lgeb|t < g2 % —ap(ek,eh).
Plugging (6.15), (6.17), (6.22), and (6.23) into (6.21), we get
(6.24)

al v ’Y

S S

02 [—— 75 ]|5D||r +AZ [1 - —} eI+ AZZ e+ 2+ M

s 1D D

N
< 23 (vs +9p)C Z _>k _>k +/\QGD(€¢7€¢)}

a\/a
trace(H)

2 N
Vs 2 C4 Kk
A= )C E FER) 4 5 -3 :
YD 8)Cs ) as(? < ('YD) )g KkzlaD(% )

2
e
+A( )n blp + 222 ek 2
YD

N
+225 (ys +p) Co Y [as(Th, @5) + Agap(eh, b))
YD P

o9 e o VA i 5Y 4+ Agap (eh, eb)]
. ap(es,e
YD Teap b trace(]]) ’ k=1 B
Vs )
+A_2_2C—s +7p) | O = —=—==C as(T 7
o (7D "/S) 3 "/S 7D ( L= trace H) 2) ; S( )
_|_

2 N
Vs Cy s avd ko k
1- [ = — —s5—(vys + C,————=—0C Agap(e;,e
< <’7D) )gK D (15 7D)< ! trace([]) 2>]Z 9ap(e4: %)
2
s s
X (22 b + A28 feb
YD YD

s avd —0 —0 0,0
+2 + Cy las(€,,, €,)+ Agap(ey, e
(vs +vp) trace([D) 2 [ s( )+ Agap(eg ¢,)]
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for any s € (0,2). Suppose s and vp are chosen such that

625 2205 =310~ 52 5+ 70) (a—%&%

w5\ Ci s avd
(6.26) <1 - <7—D) ) 9%~ SV_D(A/S + D) (Cl - m@) <0.

Then we get

(6.27)
N

Vs avd —k —k kE _k
2 - + C) — ——==C as(' €y, €,)+ Agap(ey, e
( 5)7 (Vs 7D)< 1 oD 2)%[ s( )+ Agap(el, ef)]

2
’Y

<A (22) ebl + A2y R

YD

Vs 04\/_ —0 —0 0 0
+2—=(vs + 70 as( €4, €,)+Agap(eq,eq)| -

,yD(WS YD) oD > [as( )+ Agap(eg, e})]

With the same argument as at the end of the proof of Theorem 6.3, we obtain the
convergence if « is small enough such that (6.19) is true.
Now we derive a geometric convergence rate. Plugging (6.11) into (6.1), we have

MebHIE = —2(vs +p) [m( s, @8) + Aes (s, @8, ER) +as (€4, )

d
gV p gty KVek 1), P ey)
trace(]])

+A( )n 2 + A 1—<7—D)]llg’“lr

—2ms(1+j—f))gaz)<e$1 1) £ —2)EE - Rl

ur

—2(ys + D) lxcs( U5, €8+ Aes(Ts, @8, F) +ag(er, @)

\/a k k
FAgap(eht by —2YXE__(p (P L ke ), ek
g D( ¢ ) trace(H)< ( ® ) )
2
s k—1y2
+A +A[1—(— e
( > || ”F <7D) 1 lg b It
(6.28) +2X(vs + D) (1 - —;’Z) gap(eb eb™) + Aah =B Ey - sl

Plugging (6.15), (6.22), and (6.23) into (6.28), we obtain

NS < 2005 7)1 [as(@h, 7+ dgan(el 5] 4 (22) et
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vs ? 04
+A 1—(,\/—D> g* §7as (eilei b
(629 +2\(ys +7p) (1 - j—z) gap( 1 ) 1 A —22)Csas (P, 2H).

For a constant s € (0,2), we have
(6:30) A5 I} + 2= 5)(vs +10)C1 as(@%, @h) + Agap(eh ek )]
2
<\ (%) ek 1R + [A(vh —73)Cs — s(vs +vp)C1] as(eh, @)

+ { 1-— (%)21 g% +2(vs +7p) <1 — ;/—Z> —s(vs +7D)Cl}

)\gaD( k=1 e]; 1).

Choose g and yp such that

(6.31) Ay —8)Cs — s(vs +p)C1 <0,

2
(6.32) [1 - (7—S> ] 9% +2(vs +7p) <1 - :—Z) —5(ys +vp)C1 <0.

YD
Then we obtain

(633) M IE + (2= $)(3s +0)Cr [as(P, T8 + Agap(el 5 ™)

<a(Z )n 2.

This provides the geometric convergence rate ;’—z Here the requirements (6.31)—
(6.32) are equivalent to

801
6.34 —
(6.34) "D =5 < S

sCivh K

6.35 —yg < ———2— |
(6.35) LR re e
Using (6.3), we can obtain the geometric convergence for e’;. O

7. Numerical examples. In this section, we will present three examples to
illustrate the features of the proposed method. Newton iteration will be used to
deal with the nonlinear systems. The Taylor-Hood element pair will be used for the
Navier—Stokes equations, and the quadratic finite element will be used for the second
order formulation of the Darcy equation.

Ezample 1. Consider the model problem (2.3)—(2.8) on = [0,1] x [0,1]. Let
QS be the polygon ABCDEFGHIJ, where A = (0,1), B=1(0,3/4), C = (1/2,1/4),

=(1/2,0), £ = (3/4,0), F = (3/4,1/4),G = (1,1/4), H = (1,1/2), I = (3/4,1/2),
andJ:(1/4,1) Let QD—Q/QS and I' = QDQQS

Choose CW\/_/\/trace =1l,v=1,¢9g=1,2=0, and K = KI, where T is
the identity matrix and K = 1. Let fs=0in Qg, fp =0 in Qp, and ¢p = 0 on
89[)/1—‘ Let
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Fic. 2. Example 1: Plot of the speed and the streamlines of the velocity for s1 =1 and s2 = 1.

(—51,0)" on GH,
Us=1{ (0,s1)" on DE,
(—s2,82)7 on AB and JA,

where s; and s, are two constants. We divide ) into rectangles of height and width
h =1/N, where N denotes a positive integer, and then subdivide each rectangle into
two triangles by drawing a diagonal. N is chosen such that the boundary of Qg is
aligned with the mesh. Clearly, faces of the grids in p and Qg align with and match
at the interface I' = Qp () Qs.

For the proposed DDM, we choose ys = 0.3, yp = 1.2, and N = 64. In the
following, we will first discuss the effect of different boundary data in order to validate
the proposed numerical method. First, Figure 2 shows the simulation results for s; = 1
and so = 1, where the warmer color indicates higher speed of the flow, and the line
with arrows is the streamline. In this case, the total inflow rate is equal to the total
outflow rate. Second, we choose s; = 1 and sy = 1/2, which cause the total inflow
rate to be larger than the total outflow rate. Then the simulation results in Figure
3 show that the flow becomes slower in the left-top quarter of the problem domain.
By comparing the contours and the streamlines in Figure 3 with those in Figure 2, it
is seen that more fluid flows out of the conduit to the porous media region. Indeed,
none of the streamlines, which go from the conduit to the porous media, come back
to the conduit. Third, we choose s; = 1 and sy = 3/2, which cause the total inflow
rate to be larger than the total outflow rate in Figure 4. In the left-top quarter of the
problem domain, the flow becomes faster. Compared with Figure 2, it can be seen
that more fluid flows from a broader porous media area into the free flow region.

Furthermore, we change K to be 1072, 10~%, 107° in this example to test the
effect of smaller K on the solution. Figures 5, 6, and 7 show that the domain decom-
position solutions are convergent for these smaller values of K, and the flow speed
in porous media is significantly reduced when K becomes smaller. Comparing with
Figure 2, the slower flow in porous media also causes a smaller effect of the porous
media flow on the fluid flow in the region around the interface. In order to illus-
trate more details for the porous media flow, smaller scales are used for smaller K in
Figures 6 and 7.



S280 XIAOMING FOR, JIAN LI, YANPING LIN, AND JU MING

Fic. 4. Ezample 1: Plot of the speed and the streamlines of the velocity for s1 = 1, so = 3/2,
and K = 1.

Ezample 2. Consider the model problem (2.3)—(2.8) without the inertial force
%75 . 75 on the interface. The source terms and boundary conditions are chosen
such that the exact solution is given by

op = [2 — wsin(mx)][—y + cos(m(1 — y))],
Ug =222 +e Y, — 22y® + 2 — wsin(rz)] T,
ps = —[2 — wsin(mx)] cos(27y).

The problem domain is Q = [0,1] x [—0.25,0.75], where Qp = [0,1] x [0,0.75] and
Qs = [0,1] x [~0.25,0]. Choose avv/d/+/trace(J[[) =1, v =1, g =1, and K = KT,
where I is the identity matrix and K = 1. We divide Q2p and (g into rectangles of
height and width A = 1/N, where N denotes a positive integer, and then subdivide
each rectangle into two triangles by drawing a diagonal. In this example, we will
illustrate the accuracy order and convergence of the proposed method.
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Fic. 5. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, sa = 1, and
K =102,

Fia. 6. Example 1: Plot of the speed and the streamlines of the velocity for s1 =1, sa =1, and
K =10"%.

For the coupled finite element method corresponding to the coupled weak formu-
lation (3.1), Table 1 provides errors for different choices of h. Using linear regression,
the errors in Table 1 satisfy

I .0 — Wslly = 0.177 h*9%, @ s — Wsh ~ 1.281 h19%,
Ips,n — psll, ~ 1.264 2018,
lép.h — dpllg = 0.545 K392 |ép ), — dp| ~ 4.515 B9,
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Fia. 7. Example 1: Plot of the speed and the streamlines of the velocity for s1 = 1, sa = 1, and
K =1076,

TABLE 1
Ezample 2: Errors of the finite element method.

h [Wsn—dslly | [€sn— sl | [Ips.n —pslly | lop.n — ¢l | 1¢p.n — DI
1/8 3.488 x 10~ 1% 2.009 x 102 | 1.941 x 10~ 2 1.063 x 10=3 | 7.088 x 10~ 2
1/16 4.325 x 10~° 5.012 x 1072 | 4.648 x 1072 | 1.319 x 10~% | 1.796 x 102
1/32 5.424 x 100 1.255 x 1073 | 1.139 x 1073 | 1.645 x 10~° | 4.511 x 10~3
1/64 6.804 x 10~ 7 3.143 x 10~% | 2.831x 10~ | 2.056 x 10~ % [ 1.130 x 10~ %

1/128 | 8.525 x 10~ % 7.866 x 107> | 7.065 x 107> | 2571 x 10~7 | 2.827 x 10~ %
1/256 1.067 x 10~—° 1.968 x 107° | 1.765 x 10> | 3.214 x 10~% | 7.069 x 10~°

These rates of convergence are consistent with the approximation capability of the
Taylor—-Hood element and quadratic element. In particular, we see the third order
convergence rate with respect to the L? norm of Us and ¢p, the second order con-
vergence rates with respect to the H' norm of Ug and ¢p, and the second order
convergence rate with respect to L? norms of pg.

For the DDM with v5 = 0.3 and h = 1/32, Figures 8 and 9 show the L? errors
of hydraulic head, velocity, pressure, and 7g. In order to obtain the convergence of
the DDM, the requirements in Theorem 6.4 need to be satisfied. We can see that for
this example the proposed DDM is convergent for vp = s and vp = 45 but not
YD = %WS.

Remark 7.1. In this section, we remove the error from the initial guess of the
DDM iteration and start from the error of the first DDM iteration step as the “step
0” in the plots.

In addition to the above observation about the convergence, we also observe a

geometric convergence rate ;’—Ii for the case of yg < yp. First, it is observed that

smaller 22 provides faster convergence in Figures 10 and 11 when the requirements

YD
of Theorem 6.4 are satisfied. Then Tables 2 and 3 list some L? errors in velocity,
hydraulic head, pressure, and ng for the proposed DDM with v¢ = 0.3 and yp = 1.2.
Let e(i) denote the error at the ith iteration step. We can see that all the error ratios

4 4
are less than (1 /;V—Ii) = ( %) = 0.0625, which numerically confirms the geometric
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Fic. 8. Example 2: Convergence for the velocity of the free flow (left) and the hydraulic head
of the porous medium flow (right) versus the iteration counter m for the DDM.

10
e = —x— =
; R A v Yp=1/41g
! ° Tp™s e ° Tp™s
10° i _ 10° ey —
| s s s
e X 10° >
e X7 X
10° Ry g’é“; 5 10°¢20°0909090060605060
©%00900900505040, \k«)/@\
ot AR
- “ V\{Q
10 \@/Q\w 10 \é/%&/€<
WA 10° AR
107" 10°
0 5 10 15 20 0 5 10 15 20

Fic. 9. Ezample 2: Convergence for the pressure of the free flow (left) and ns (right) versus
the iteration counter m for the DDM.

=2 —— V=21
+ yD=SyS + yD=SyS
o Yp=HYg o= V=AY
© Yp=bg =6
+"[D=1O'YS 4%11D=10yS

Fic. 10. Ezample 2: Geometric convergence rate of the velocity of the free flow (left) and the
hydraulic head of the porous medium flow (right) for the DDM.

1= ! 1=
+ =3 “ + =3
o Yp=Hg 10° o Yp=Hg
© Yp=6Yg - © Yp=6Yg
——Yp=10vg —o—1p=107g

Fic. 11. Ezample 2: Geometric convergence rate of the pressure of the free flow (left) and ng
(right) versus the iteration counter m for the DDM.



5284 XIAOMING FOR, JIAN LI, YANPING LIN, AND JU MING

TABLE 2
Ezample 2: L2 errors in velocity and hydraulic head for the DDM.

L? velocity errors % L? hydraulic head errors %
e(0) 7.873 x 10~2 7.104 x 1073
e(d) (i=4) 5.023 x 10~ % 0.00638 6.318 x 10—° 0.00889
e(8) (1 = 8) 1.437 x 10 P 0.0286 1727 x 109 0.0273
e(12) (i = 12) 4.801 x 10~7 0.0334 5.298 x 10~5 0.0307
e(16) (1 = 16) 1.846 x 10~ 0.0384 1.864 x 1077 0.0352
e(20) (i = 20) 7.791 x 10~ 10 0.0422 7.399 x 10~ 11 0.0397
TABLE 3

Ezample 2: L? errors in pressure and ng for the DDM.

L? velocity errors e(ez‘(—z)4) L? hydraulic head errors e(ei(—z)4)

e(0) 1.534 x 109 8.468 x 10— 2
e(4) (i=4) 2.394 x 102 0.0156 4.486 x 10~3 0.0530
e(8) (i =238) 7.204 x 10~ % 0.0301 2.454 x 10~ % 0.0547
e(12) (i = 12) 2.586 x 10—° 0.0359 1.386 x 1077 0.0558
e(16) (i = 16) 1.087 x 10~° 0.0420 8.005 x 10~ 7 0.0585
e(20) (i = 20) 5.054 x 10~8 0.0465 4.699 x 10~8 0.0587

convergence rate | /;Y—;.

Additionally, we have similar observations for the errors in other norms, including
the errors of hydraulic head and velocity in the H' norm and discrete maximum norm
and the errors of pressure and 7g in the discrete maximum norm. Hence, we omit the
related data here in order to simplify the presentation.

Ezample 3. Consider the model problem (2.3)-(2.8). The source terms and
boundary conditions are chosen such that the exact solution is given by

¢p = (¥ + e ¥ —2)sin(x), .
Ug = [K (Lsin(2my) — 2y) cos(z), K (Zsin®(ry) — y?) sin(z)] ",
ps =0.

The problem domain is Q = [0, 7] x [-1,1], where Qp = [0, 7] x [-1,0] and Qg =
[0,7] x [0,1]. Choose arvd/y/trace(][) =1, v =1, g = 1, and K = KT, where T is
the identity matrix. We divide Qp and Qg into rectangles of height and width h =
(m/N,1/N), where N denotes a positive integer, and then subdivide each rectangle
into two triangles by drawing a diagonal. In this example, we will illustrate the
influence of the parameter K on the convergence and convergence rate since the given
analytic solutions satisfy the interface conditions (2.6)—(2.8) for arbitrary K. Again,
in the figures we remove the error from the initial guess of the DDM iteration and
start from the error of the first DDM iteration step as “step 0.”

Figures 12-15 show the convergence and convergence rate of the hydraulic head
for different choices on K, vp, and ~g. The figures for the velocity of the free flow
are similar; hence they are omitted here to shorten the presentation. As indicated in
(6.35), we can see that the parameter K does have a significant influence on the choice
of the parameters vp and g for the convergence and convergence rate. Smaller K
requires larger vp and g for a better performance in convergence and convergence
rate, which is consistent with the nonlinear requirement in (6.35). The errors in Fig-
ures 12-15 quickly decrease for K =1, 1072, 10=%, 1075, Therefore the convergence
rate is good for smaller K even though it is not as good as the case of K = 1 due
to some nonlinear effect of the smaller K on the convergence and convergence rate,
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Fic. 12. Ezample 3: Convergence and convergence rate of the hydraulic head for K = 1 with
vs = 0.3 (left) and vs =1 (right).

—x— yD=yS/3 xe yD=yS/3
To=1/2 10? e To=1/2
A T R
— =2V 10 PR Teg | e Tp=2Yg
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o= Vp=3g o S o= =3
o
10°35°°0%0040
\5733»( 0000000000
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10° o DS T
[ Ny
V6 ot
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F1G. 13. Ezample 3: Convergence and convergence rate of the hydraulic head for K = 1072
with vg =1 (left) and vs = 10 (right).

FiG. 14. Ezample 3: Convergence and convergence rate of the hydraulic head for K = 104
with vg = 10 (left) and vs = 1000 (right).

—x— yD=yS/3 xe yD=yS/3
—— Y S/2 +YD=YS/2
o Y=g ° Y=g
YR YR
o= Vp=3g o= Vp=3g
10° 10°

FiG. 15. Ezample 3: Convergence and convergence rate of the hydraulic head for K = 10~
with vg = 10000 (left) and vs = 100000 (right).
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which will lead to some interesting future work.

8. Conclusions. In this paper, the well-posedness of the coupled weak for-
mulation for the stationary Naiver—Stokes—Darcy model with Beavers—Joseph in-
terface condition is illustrated by using a branch of nonsingular solutions. Then a
multiphysics domain decomposition method is proposed and analyzed for this model
based on the Robin boundary conditions constructed from the three physical interface
conditions. The numerical experiments validate the proposed method and verify the
theoretical conclusions.
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