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ON STOKES-RITZ PROJECTION AND MULTISTEP BACKWARD
DIFFERENTIATION SCHEMES IN DECOUPLING THE
STOKES-DARCY MODEL*

MAX GUNZBURGER', XIAOMING HE*, AND BUYANG LI}

Abstract. We analyze a parallel, noniterative, multiphysics domain decomposition method for
decoupling the Stokes—Darcy model with multistep backward differentiation schemes for the time
discretization and finite elements for the spatial discretization. Based on a rigorous analysis of the
Ritz projection error shown in this article, we prove almost optimal L? convergence of the numerical
solution. In order to estimate the Ritz projection error on the interface, which plays a key role
in the error analysis of the Stokes—Darcy problem, we derive L°° error estimate of the Stokes—
Ritz projection under the stress boundary condition for the first time in the literature. The k-step
backward differentiation schemes, which are important to improve the accuracy in time discretization
with unconditional stability, are analyzed in a general framework for any k < 5. The unconditional
stability and high accuracy of these schemes can allow relatively larger time step sizes for given
accuracy requirements and hence save a significant amount of computational cost.
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1. Introduction. We consider a coupled Stokes—Darcy system in a polygonal
domain Q = QpUQg C R?, which is divided into subdomains Qp and Qg by a smooth
interface I". In the porous medium region Q2p, the Darcy flow is described by

ip = —-KV¢p,
(1.1) )

where ©p and ¢p denote the unknown fluid discharge rate and hydraulic head, re-
spectively; K is the hydraulic conductivity tensor; and fp is the sink/source term.
Eliminating #p, we obtain a second-order equation for the Darcy flow:

0
(12) 0 -V (KV6p) = f.
In the free-flow region (g, fluid velocity ug is governed by
Oiig -
— — V- T(us, =
(1.3) Bn (is,ps) = [s
V-ig =0,
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where pg is the kinematic pressure, f; denotes the density of external body force,
T(is,ps) = 2vD(is) — psl

denotes the stress tensor, v is the kinematic viscosity, D(iis) = 3(Vis + V7ig) is
the deformation tensor, and I is the identity tensor.

On the interface I', the mass conservation and balance of normal forces require
the following interface conditions:

(1.4) g -l = —ip - fip and —iig - (T(us,ps) - 7is) = g(¢p — 2),

where s and 77p denote the unit outer normal to the free flow and porous medium
regions at the interface I', respectively, and z denotes the vertical Cartesian coordi-
nate. In the tangential direction on the interface, the Beavers—Joseph—Saffman—Jones
interface condition [46, 48, 74]

(1.5) -7 (T(ﬁs,ps) . ﬁs) =BT Ug
is often used, where g = M, 7 denotes the unit tangential vector on the
trace(IT)

interface I" and II denotes the permeability of the porous media.
On the boundary of the domain, we impose no-flux boundary condition on 9Qp\I'
and the free stress condition on 9Qg\I', respectively, i.e.,

(1.6) KV¢D . ﬁD =0 on 8QD\F
T(ﬂ's,ps)ﬁs =0 on 8(23\1“.

To summarize, the Stokes—Darcy system we consider is given by

0 .
% *V(Kvgﬁp) :fD m QD,
(1.8) KVép -itp =0 on Qp\T,
KV¢D~ﬁD:ﬂS‘ﬁS on F,
and
ot . - .
aits—V'T(Us,ps):fs in Qg,
V- -ig=0 in Qg,
(19) 7T(ﬁs,ps)ﬁs =0 on 8QS\f,
—T(is,ps)iis - s = g(¢p —2) on T,
—T(is,ps)iis - T = Piis - T on T,
with certain initial conditions
(110) (]SD(O,.’L',y) = ¢0($,y) and US(O,J?,Z/) :UO(‘ray)

Due to its wide range of applications in groundwater systems [24, 26, 44, 54], in-
dustrial filtrations [29, 42, 68], petroleum extraction [7, 6, 19, 45], etc., many different
numerical methods have been proposed and analyzed for the Stokes—Darcy model,
see [8, 9, 11, 12, 13, 14, 20, 23, 25, 27, 28, 31, 32, 34, 36, 43, 64, 65, 67, 73, 80]
and references therein. It is well known that Ritz projection plays a key role in the
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optimal-order L2-norm error estimates of finite element solutions for parabolic prob-
lems [79, 82, 83]. Therefore, Ritz projections have been often utilized in the existing
articles of the Stokes—Darcy model [15, 16, 17, 18, 21, 49, 55, 66, 72, 78, 81].

On the other hand, a three-step backward differentiation (BDF) scheme was di-
rectly used, without rigorous analysis, for a domain decomposition method of the
Stokes—Darcy model [15, 30]. Compared with the backward Euler scheme analyzed
in [15], this three-step BDF scheme can improve the accuracy in the temporal dis-
cretization to be third order. It can also fully make use of the unconditional stability
to significantly reduce the computational cost with many fewer time iteration steps.
Another third order IMEX-type scheme in time discretization was proposed for the
coupled weak formulation of the Stokes—Darcy model and analyzed for long time sta-
bility and high accuracy in time [22]. And there is no spatial discretization involved in
this analysis. To our best knowledge, for this sophisticated coupled model, there ex-
ists no rigorous analysis on k-step (3 < k < 5) BDF schemes, which rely on a different
multiplier technique compared with the one-step and two-step BDFs. Furthermore,
the analysis of the domain decomposition method with finite element spatial dis-
cretization requires rigorous estimates of the Darcy and Stokes—Ritz projection errors
on the interface, which are also not available in the literature.

In this paper, we analyze a parallel, noniterative, and multiphysics domain de-
composition method which was originally introduced and numerically demonstrated in
[15]. This domain decomposition method decouples the Stokes-Darcy system (1.8)—
(1.9) and makes it convenient to use separate Ritz projections for the Darcy and
Stokes equations, respectively. Instead of the three-step BDF scheme used in [15],
we consider a more general k-step (k < 5) BDF scheme for time discretization in
the analysis, with finite elements for the spatial discretization. As usual, in order to
carry out an analysis of high-order accuracy, the solution of the Stokes—Darcy sys-
tem is assumed to be sufficiently smooth. In particular, we present rigorous analysis
of the L (Qg)-norm and L?(T')-norm error estimates of the Stokes-Ritz projection
and prove almost optimal-order L? convergence of the finite element solutions of the
domain decomposition method.

There are two major difficulties in the analysis: the analysis of the Ritz-projection
errors on the interface and error estimates of the multistep BDF schemes. Instead of
using a joint Ritz projection [15, 16, 21, 78], we consider separate Ritz projections for
the Stokes and Darcy equations, respectively, which are particularly suitable for the
analysis of our decoupled scheme. In particular, we define Ritz projections inside Qp
and Qg, respectively (see (3.1)—(3.3) on the definition of Ritz projections), without
involving any interface terms. Then one major difficulty arises from estimating the
L?(T)-norm errors of Ritz projections on the interface, which will play a key role in the
analysis of the interface terms. To overcome this difficulty, we carry out an L°-norm
estimate of the Stokes—Ritz projection error in the domain under the stress boundary
condition. To our best knowledge, this is the first result for the L°°-norm estimate of
the Stokes—Ritz projection error with the stress boundary condition. Once we obtain
this estimate, we apply it to the L?(I')-norm error estimation of the Stokes-Ritz
projection. Finally, after establishing error estimates for Ritz projections, we analyze
the error of the multistep scheme by utilizing the multiplier technique of Nevanlinna
and Odeh [69], which has been used to analyze parabolic problems recently in [1, 3, 4].
For the recent advances in L and LP estimates for linear parabolic equations, see
[33, 50, 51, 53, 56, 59, 57, 60, 62, 63] and references therein.

The rest of the paper is organized as follows. In section 2, we present the multistep
BDF scheme for the domain decomposition method, which will be recalled from [15],
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and then present the main result of the error estimate. In section 3, we introduce and
analyze Ritz projection as a critical preparation for the error estimate. In section 4,
we prove the almost optimal L2-norm convergence rate of the numerical solution. In
section 5, we conclude our major contributions in this article.

2. Notations and main result. In this section, we briefly recall the parallel,
noniterative, and multiphysics domain decomposition method with finite elements for
the spatial discretization from [15]. But we will consider the more general k-step
BDF instead of the three-step BDF used in [15] for the time discretization. Then we
present the main theoretical result on the error estimate, which will be analyzed in
the next two sections.

Let 0 =1tp <t < --- <ty =T be a uniform partition of the time interval [0, T,
with step size 7 = T/N, and for any function ¢ defined on the time interval [0, 7],
we denote ¢" := ¢(t,,) for simplicity. For a given integer k > 1, the k-step backward
difference operator and extrapolation operator are defined by

k k—1
(21)  Drgpe™™ =) on " TFY and L™= et R,
=0 i=0

respectively, where the coefficients ay, ; and 7y ; are defined by

k k—1
1 )
(2.2) E a2 = g 5 (z—1) and E Y2 =2 — (2 = D
= j=1 =0

Then D, x¢" ™! and I, yp" ! are kth-order approximations of 9;p(t,,+1) and p(t,41),
respectively [2, 41].

With the following three Robin—Robin boundary conditions proposed on the in-
terface for the Stokes and Darcy equations in [15],

(2.3) KVé¢p -iip + g¢p =¢p on I’
(2.4) iis - (T(ts,ps) - fis) +Us-7is=Cs  onT
(2.5) -7 (T(ﬁs,ps) . ﬁs) = ,87_" ’l_is onI

the solution of (1.8)—(1.9) satisfies
(at¢D7<P>QD + (KV¢D7VSD)QD + (gQSDvSD)F
(2.6) = (fp.¥)q, + (€. ¥)r Ve HY(Qp)

(at’JSWU)QS + (2’/]1)(15)71[)(6))93 - (pSaV ' ’U)QS

+ (Us - i, Us - fig)r + (Bis - Ts, Us - Ts)r

(2.7) — fsj)ﬂs + (Cs, 7 7is) 1 Vie  HY (Qg)
(2.8) (V-Us,q)ﬂs =0 Y g€ L*(Qs)
where

(2.9) ¢p = is -7is +gdp

(2.10) (s i=1s - 7is — g(¢p — 2).
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Let the domain 2 be divided into quasi-uniform triangles which fit the interface.
Correspondingly, Q2p and {2g are divided into quasi-uniform triangles, respectively.
For any given integer r > 2, we define the Lagrange finite element spaces V7 (Q2p) C
H'(Qp) and VhT(QS) C H'(Qg), which consist of continuous piecewise polynomials
of degree r, and let V' "'(Qg) C L?*(Qs) denote the Lagrange finite element space
consisting of continuous piecewise polynomials of degree r — 1. It is well known that
the Taylor-Hood finite element space \7,:((25) x VI 1(Qg), with r > 2, satisfies the
inf-sup condition

(2.11) lanllz2(0s) < sup Cltan, V- 5)|

G Yan €V, (Qs).
ThEVT(2s) ||VUh||L2(QS)

For given initial data {(¢},u}) :n =0,...,k — 1}, the k-step BDF scheme seeks
e vin(Qp), @t e V[(QS) and pp ™' € V' 7(Qg), n=k,...,N — 1, such that
(DT,k¢Z+17 Soh)QD + (KV¢Z+17 vgph)QD + (g¢z+1a @h)l"
(2.12) = (5" en)q, + Inkéh™hon)p ¥ on € Vi (Qp),

(DT,kW+l7ﬁh)Qs + (QVD(W+1)7D(Uh))QS - (pz+1a V- ’Uh)ﬂs

+ (@A, Ty ) (Ba T T

(2.13) = (f5" ) g, + (kG - is) e Y B € V7 ()
(2.14) (V@ an)g, =0 Van €V (Qs)

where

(2.15) & =1, - fis + g0y,

(2.16) G =1 - its — g(d), — 2).

In the following, we present our final error estimate for the above scheme, which
will be proved in section 4 by using the Ritz-projection error estimates in section 3
and the multiplier technique of multistep BDFs.

THEOREM 2.1. For 1 < k < b, if the solution of (1.8)-(1.9) is sufficiently
smooth, i.e.,

(2.17) O op € L®(0,T; L*(p)),  ép, dipp € L=(0,T; W TH°(Qp))
2

(2.18) OF g € L=(0,T; L3 (Qs)?), g, dyils € L0, T; W"TH>2(Qg)?)

(2.19) ps € L0, T; W™ (Qg))

then the finite element solution given by (2.12)—(2.14) satisfies

(2.20)

max (195 - bz + 1 — Blzeco)
N N 1
4 (7196~ o tB) e + 3 TV = R 55 o

n==k n=k

< C(t% 4+ A" Inh|) 4+ OTF,
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where

k. n n n -n
T oot (I6h — ¢bllz2(ap) + 1T — @l r2(as))

k—1 k—1 1
(221)  + <Z TI6h — Ru,odpll7n p) + D Tl — Rh,s(ﬁg,pg)@pms))
n=0 n=0

denotes the errors of the initial data, in which Rp p and Ry s are Ritz projections
defined in the next section.

Theorem 2.1 states that the global error of the multistep method is bounded by
an optimal-order error bound plus a constant multiple of the errors of initial data.
Our analysis is based on the following regularity result [5, 38].

LEMMA 2.2. Assume the boundaries of the domains Qp and Qg are either smooth
or piecewise smooth. For the piecewise smooth case, assume the angles of the corners
of Qp and Qg are all between 0 and w. Then any weak solution of the equation

{ -V (KV¢) = fr in Qp,

(2.22)
KVd)'ﬁD:fg on GQD

with the normalization condition fQD o(x)dx = 0 satisfies

Jp
(2.23) 16l m20) < ClfillL2@p) + C D fallazp.,),

j=1

where I'p j, 7 = 1,...,Jp, denote the smooth pieces of the boundary 0Qp, and any
weak solution of the stationary Stokes equation

—

-V (2vD(W) —ql) = f1 in Qsg,
(224) V- -w= fg m Qs,
2wD(B)7 — qit = f3 on 00,

with the normalization fQS Wdx = 0 satisfies

l@lli2c0) + gl sy < C (Millzzs) + I fall s + I1f2/plli2cos)
Js

(2.25) + O3 (1allin s + 13/ Voll s )
j=1

where p(x) denotes the minimal distance between x and the corners of the domain
Qs and I's ;, j = 1,...,Js, denote the smooth pieces of the boundary 0Qg. If the
boundary of Qg is smooth (without corners), then p(x) = 1.

Remark 2.3. The regularity (2.23) is a special case of [5, Lemma 2.4 with §; = 0],
and (2.25) is a special case of [38, Theorem 4.15 with 5 = 0 and ¢ = 1]. In the rest
of this paper, to simplify our notations, we denote by C a generic positive constant
which may have different values at different locations and denote by € an arbitrary
small enough constant such that 0 < e < 1.

3. Ritz projection. In this section, we define and analyze Ritz projections for
the above decoupling method of the Stokes—Darcy model, which is a critical prepara-
tion for the proof of Theorem 2.1 in section 4.
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First, we let Ry p: Hl(QD) — V{(QD) and (Rh,S7Ph,S) : ﬁl(ﬂs) X LZ(QS) —
Vr(Qs) x V' ~1(Qg) be projection operators defined by

(3.1) (KV(¢ - Rh,D¢)7 Vg&h)QD =0 A ©n € V;:‘(QD)

and

(3.2)
(2vD(& — Ra,s(i,p)), D)) = (p = Ph,s(@p), V- 8n) g =0 Y Ty € V()
(3.3)
(V- (@ — Ri,5(@,)),qn), =0 Y ogn € Vi (Qs)

respectively, with the normalization conditions
(3.4) / (0 — Rppp)dz =0 and / (€ — Rp,s(t,p))dz =0
QD QS

for the well-posedness of the projection operators. Unlike the existing literature on the
Stokes—Darcy model, Ritz projections defined above do not contain interface terms.
Therefore, it is well known that the following L? and L™ error estimates hold for the
Poisson-Ritz projection:

(3.5)
¢ — Ru.pdll2(2p) + RIV(6 — Rip®)|r2(02p) < Clldll prmsropyh™ T, 1<m<r
(3.6)
¢ — Rn.pdllL=(ap) + PIV(® — Bapd)l L= (0p)

< Cl|ollwm+1.0 (@)™ In k), 1<m<r

where (3.5) is a standard consequence of the H? estimate (2.23) and (3.6) is a con-
sequence of [33, Theorem A.3] and the standard duality argument used in [71, p. 2]
(as p — oo in the duality argument a logarithmic fact “|Inh|” appears). The corre-
sponding maximum-norm error estimate of Ritz projection with Dirichelt boundary
condition can be found in [75], where we can see that the logarithmic factor can be
removed when r > 2.

Since we do not include the interface terms in Ritz projections, we will need to
control the Ritz-projection errors on the interface I' in the later analysis. For this
purpose, we need the following error estimates of the Stokes—Ritz projection.

THEOREM 3.1. The Stokes—Ritz projection satisfies

|4 — Rn,s(td,p)|| 2(s) + hlld@ — Ry, (@ p) a1 (as) + Plp — Ph.s(@p)ll2(os)
(3.7) < Clull gr+r(as) + HPHHZ(QS))th
(3.8) ||l@— Rh’S(ﬁ’p)HLoo(gzs) <C (||ﬁ||Wz+1,oe(QS) + Hp”Wl,oo(Qs)) hl+1| In h|

forany 1 <I1<r.

Since the maximum-norm error estimate of the Stokes—Ritz projection with the
stress boundary condition has not been proved in the literature, we shall prove The-
orem 3.1 in the next subsection.

For ¢p and g satisfying the requirements of Theorem 2.1, the inequality (3.6),
Theorem 3.1, and trace theory imply



404 MAX GUNZBURGER, XIAOMING HE, AND BUYANG LI

l¢p — Rn,p¢pll2(ry < Cllép — Rr.pdpllL>(9p)
(3.9) < CR™ A éplwrsiap)

lis — Rn s(ts,ps)lzzy < Cllis — Rp,s(ts, ps)llL=(s)
(3.10) < ORI k(s ||l wrr(0g) + IPswree@s))

which are crucial error estimates on the interface for our proof of Theorem 2.1 in
section 4.

In the rest of this section, we will prove the above theorem. We will first prepare
the related concepts and lemmas in subsections 3.1 and 3.2 and then show the proof
of Theorem 3.1 in subsection 3.3.

For the simplicity of notations, we denote @), = Ry, g(t, p) and py, = Pj, s(, p) so
that (in,pp) is a finite element approximation of (@, p) in the sense that

(3.11) (2vD(4 — p), D(0n)) — (p — pn, V - Up) =0 YT, € VI (Qs)
(3.12) (V- (i — i), gn) = 0 Van € Vi (Qs).

By the definition of the projection operators R g and P} g, we also have fQS (d —
t_[h> dx = 0.

3.1. Regularized and discrete Green functions. To estimate the error in
the maximum norm, we consider an arbitrary point xg contained in the mesh element
Kz, and present estimates for |ip(zg) — IIp@(xo)|, where II@ denotes the Fortin
projection of ; see Lemma 3.4. Our estimates will not depend on the point zo or the
element K,,. We choose a regularized delta function 6(z,z0) € C3(K,,) such that

(3.13) (8, xn) = xn(x0) Yxn € Vi (Qs)
(3.14) ddr =1
Qs
(3.15) 18]l wiw gy < CRTIT27P) for 1< p < oo, 1=0,1,2,3.

Existence of such a regularized delta function has been proved in [77], which was also
used in many other works [39, 61, 76]. With this regularized delta function, we can

define a regularized Green function (G, pm) = (C_jm(-,azo),pm(-,mo)), m=1,2,as a
solution of

—V - 2UD(Grn) = Ponl) = (51,5 02,m)0 — o7 (51,m, 62,m) 0 Qs
(3.16) V-G, =0 in Qg,
QVD(Gm ﬁs —pmﬁs =0 on 895,

satisfying the normalization condition st ém dz =0, where §; ,, is the Kronecker
symbol. _

Let d;, be the discrete delta function, i.e., the L? projection of 6§ onto the finite
element space, and let (C_jh,m,ph,m) be the discrete Green function, i.e., the finite
element solution of (3.16). Then
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2vD(Ghm), D(T1)) = (Ph,m, V - Tn)

. 1 .
= (51,m7 52,m) 'Uh(CCo) - (51,ma 52,m) T T Up dx
Qs] Jag
(317) = ((6h - Wg)(dl,mva&m)vﬁh) VUh € V{(QS)
(3.18) (V- Ghman) =0 Yagn € V)7 H(Qs).

Here (éhﬂn,ph,m) is equivalent to the Stokes—Ritz projection of (ém,pm). Let the
corners of Qg be denoted by x; (i = 1,2,...,¢1), define p; = diam(Qg)277 (j =
0,1,2,...), and choose J = [log,(diam(Qs)/(kh))] so that p; ~ kh, where the symbol
~ denotes equivalence. The constant x needs to be large enough, such as k = 32, so
that the Q;, O, and Q7 (j = 0,1,...,J), which are defined below, have no intersection
with the element KCy,. Let the domain Qg be divided into

(3.19) QS = U;-JZOQJ‘ (l‘o) U Q*(l‘o)

with

(3.20) Qj(z) ={x€Qg:p;/2< nggi<nc] dist(z,z;) < p;}

(3.21) Oy (z0) :={zr € Qg : Ogﬁ<n dist(z, z;) < ps/2}.
S1SCr

For simplicity of notations, we shall denote Q; = Q;(zo) and Q. = Q. (x¢) in the rest
of this paper. Then |Q;| ~ p? and || ~ k2h2. Let

Q; :Qj,1UQjUQj+1, Q;/ :QQ;IUQ;‘ UQ;—+1,

(3.22) and QY =Q/ ,UQ/UQL,, j=012,....

We refer the reader to [39, 58, 77] for these notations. In the following (using the
notations of [76]), we denote by 3, the summation over all Q; (j = 1,...,J), ex-
cluding ., and denote by e the summation, including Q.. The generic positive
constant C' in the rest part of this section will be independent of ¢ and « (until « is
determined).

With the notations introduce above, we have the following local energy estimates
for the regularized Green function.

LEMMA 3.2. The regularized Green function satisfies

(3.23) G20,y + Ipmllmi o) < Cojty 5=0,1,2,...
(3.24) 1Gomllzr2(26) + Pl 2 (25) < CAT

where the constant C' does not depend on xo; (3.23) is also true if ; is replaced by
Q% or QF.

Proof. Note that (3.24) is a consequence of the estimate (2.25) together with
(3.15) and (3.16):
(3.25) IGomllrr2(20) + Il 11 (25) < CIIO = 1/1Q8 |l 22(0s) < ChTH + C.

It remains to prove (3.23). To this end, we shall prove that the local H? norm in a
subdomain away from the singular point zy can be controlled by a local L* norm in a
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slightly bigger subdomain (see (3.40) and (3.42)). This can be done by estimating the
H? norm of the Green function on some balls whose union can cover the subdomain
;. For each of these balls, we shall choose a smooth cutoff function which equals 1
on the ball, and perform the standard H? estimate for the Green function multiplied
by the cutoff function.

Note that the subdomain €2; can be covered by a finite number of balls of radius
p;/24, say, B, k = 1,2,..., M, where M is a constant (depending only on the
domain Qg) and Bj ()€, is not empty for each £k = 1,2,..., M. If we let B}k
denote the ball of radius p;/12 (double of the radius of B; ) with the same center as
Bj 1, then by the triangle inequality,

(3.26) dist(Bj 5, z0) > dist(€, z0) — 2radius(B] ;) > p; /2 — pj/6 > p;/3.

We shall derive the estimates for ém and p,, on each of these balls and then combine
them together to obtain (3.23).

Let Bj denote the ball of radius 3p;/48 with the same center as B, . Define
le’k = Bj,k N QNg, Bik = B NQg, and B?,k = B;-,k N Qg. Then by the definition
of Bjk, Bjx, and B}, we obtain that B}, C B?, C B, and dist(B! ;,Q2s\B/}') ~

Pj (l =1, 2)
For I = 1,2, let wé be a smooth cutoff function such that w;» =1in Bé‘,k but
wé- = 0 outside B;j,;l with
l —lal
(3.27) 0%w;| < Cap,

for any multi-index . Such smooth cutoff functions have been widely used in the
literature; see [39, 61, 76, 77, 79]. For any fixed point yg € B}yk, define G,, =

Gm (-, 20) — Gm (Yo, z0). One can easily verify that G, is also a solution of (3.16). In
other words, we have

~V - (2D(Gn) = pm) = (1,5 02.m)0 — 147 (O1,m G2.m) 0 Qs
(3.28) V-Gn=0 in Qg,
QVD(Jm)ﬁS — pmils =0 on 0fNg.

Moreover, due to the product rule D(w}gm) = w}D(ém) + %C;m ®s Vw;} and (3.28),

(w}§m7w]1pm) is the solution of

(3.29)
—V - 2uD(w}Gm) — wipnl) = —20D(G) V! + ppVw! — vV - [G,, @, Vwl]
. . +w]1 (61,771’ 62,m)6 - le' @(51,7717 62,m) in QSa
V- (w}gm) =Gm ijl- in Qg,

2VD(w}gm)ﬁS - w}pmﬁs = V[gm ®s ijl]ﬁs on 0Qg,

where Jm R ijl» = Qm ® ijl» + Vw]l ® Jm, and we have denoted @ ® ¢ as the matrix
with component (4 ® ¥);; = u;v; for any two vectors @ and @.

By the definition of BJZ’ & one can easily see that BJZ’ x C Q; Since « is large enough
such that the ; and ) (j =0,1,...,J) have no intersection with the element Ky,

then B]% , has no intersection with K. Since wj = 0 outside of Bik, then w; =0

on the element KC;,, which is the support of 5. Hence, the term wjl» (01,m, 527m)5~ can
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be removed in (3.29). Applying (2.25) to the equation above (with @ = w}gm -
ﬁ st w} Gy dz and ¢ = wjl»pm) and using (3.27), product rule, and trace inequality,
we have

(3.30)

|} Gnllr2s) + IV (@ pm) [ 22(0s)

1 -
‘QSI as

5 5 1
+ (]| - DGV} + pmVesk = V- [ . VW] - A g 1m, o)

L2(9s)
+ G - Vwillg o) + 1Gom - Vwj/pllr2s)
+ 1§ ©5 Verkl1/2(0020) + IGim @5 Vol /Bl 220005
< ClGnllzaepz,) + €+ Cpi (1G22, + Il iacs2,)
+Cp; |Gl a2,y + Cp; Gl 20025082 )
< 0t (193G lz20) + 3Pl 22
+ ij_lng_)m”L“(Bik) + CP]'_1||gqm||L°°(aQsmB]2.7k)a

where the last inequality is due to w]? =1on BJQ-) . and the Holder inequality.

Now we need to estimate ||V(w]2§m)‘|L2(g)S) + lw?pmllL2(2s) on the right-hand
side of (3.30). In order to do this, integrating the first equation of (3.28) with the
test function (w7)G,,, applying integration by parts and product rule, and using the

second equation in (3.28) and wjz = 0 on the support of g, we obtain
2 (3 25 3\ 2 A 2 29, 2 &
(WD (Gpn), D(w?Gn)) + v (D(Qm)wj G ®s wj) — (P, 20°Vw2 - G

= / (w§)2g_’m : (51,ma 62,m)gd$ — / 1
Qs

0 m(wf)Qg_’m : (61,m7 52,m) CL’E
S

1 N
(3.31) :*/Q m(w?)zgm~(5l,m,527m)dx.
S

Plugging the product rule wsz(gm) = ]D)(w?(jm) - éém ®s ijz into the first two terms
of (3.31), we obtain

> vV, - -
(3.32) 22D Gm) 12 (5) = 51Gm @s Ve I 12(ag) + (Pmy 205 V] - Gm)

1 o
- /Q @u?)@m “(01,m 02,m) d.
S

By using (3.27), wJQ- = 0 outside B;” x» the Cauchy—Schwarz inequality, and Young’s

inequality, the last equation leads to
(3.33)
2D 2() < 5 1Gm @5 VelEay)
+ el + O UIVGE - G220y + ClloGnll )
< ellwipmlliz gy + CG_IP;2||gﬂm||2L2(B;k) + C||W?gm||%2(ns) +C

< elwipmlzaq) + C€_1||gm||2Loo(B;k) +C.
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In order to estimate [[w}pm||72(q,) on the right-hand side above, we replace w} by w?
in (3.29) and multiply the first equation of (3.29) by ¥ — ¢ with a constant vector ¢
to obtain

1 2

(@}, V - )| =|(20D(W]Grm), D(T)) + (51,5 52,m) W2(#(x) - ¢) dz

1] Jag

+ (2vD(Grn)V? — puVw?, 7 — &) + (VG @5 Vw3, VD)

<CID(WIGm) |2 (26) ID(B) | L2(026) + 1T = &l 2(02)
+Cp; H(IVGmll 2o 0 + 1Pl 200 (26)) 1T = &l L2 83 )
+ Cp; Gl 252 ) 1Vl L2(020)
<C(ellwipmll L2 (s) + Ce’lllg_’mllm(ggk) +0O)
IVl L2s) + CllT = ell21(s1 )
+Cp IV Gml 2 () + [Pmll 2.0 (5) 1T = @l 22 (5,
(3:34) T CHg_‘mHL“(Bf',k)||V17||L2(QS),

where we extend @ to be zero outside Qg for any ¥ € Hi(Qs), use the duality between
the two Lorentz spaces L*°°(B3,) and L*>'(B?,), and substitute (3.33) into the

inequality above in estimating ||D(w?§m)||L2(QS). By choosing ¢ = Wlﬂ fB; . vdz,

we have
- — EENTIN
10— dlL2r(my,) < C||1||Lsg(B; T =lzam; < CIBjRIENT — Al

(3.35) < Cpjllv—dlessy,) < CpilVillas,) < CpillVillL2 s,

where the first inequality uses Holder’s inequality for the Lorentz spaces (cf. [52,
Proposition 5.1.1]); the second inequality uses such basic property of the Lorentz

space as ||1||L6'%(B’. 0 < C|B§7k|%, with |B ;| denoting the area of the ball B}, (cf.
J

:

[37, Example 1.4.8]); and the fourth inequality is due to the (3,2)-type Poincdre
inequality (cf. [10, Theorem 5.1]).

Since VGl 12 (qs) + [Pmllz2=(gs) < C (cf. [70, Theorem 1.1]), then (3.34)
and (3.35) lead to

(3.36) (@ pm, V- D) < (Cellwipmllrz(as) + Ce IGmll L= (s2,) + C
+ CHgmHLM(Bjk))||V17||L2(QS)-
Applying the inf-sup condition (2.11) to the last inequality yields

(3.37)
w2 PmllL2(s) < (CGHW?pmHLQ(QS) + C’e—1||gm||Lao(B]3_Yk) +C+ CHgmHLOO(B?Yk)) .

By choosing a sufficiently small ¢, the last inequality implies

(3.38) w2 Pl L2 (02) SC”gAm”L‘X’(B?Yk) +C,
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which together with (3.33) implies
(3.39) IV(@iGm)llL2(s) + lwiPmllzz(es) < ClGmllL=(s2,) +C.

Plugging (3.39) into (3.30) and using the definitions of G,,,, wé—, and Bj‘,k with the
property B]{k C sz,k C B;” &> We obtain

(3.40) 1G5, 005 + [ VPmlla(s, w005) < Co7HIGom (- 20)
— Gnyo, w0)l| o (57, gy + Cpj

A fundamental pointwise estimate for the Green function is (see [70, Theorem 1.1],
which also holds for the regularized Green function)

5 5 Clz — yol*

(3.41) |Gm(z,20) — G (Yo, z0)| < |20 — yol® when [z — yo| > 2|z — yol-

Since (3.26) leads to dist(B; ,zo) > p;/3 = 4radius(B; ;,), it follows that |zg — yo| >
2|lz—yo| when z € B’ ;. Hence, (3.41) implies that |G (-, xo)_dm(y()7x0)||Loo(B; NQ%s)
< C. Then (3.40) implies '

(3.42) Hém||H2(Bj,sz) + ||Pm||H1(Bj,kas) < Cp;l, k=1,2,..., M.

By summing up the estimate above for £k =1,2,..., M, we obtain (3.23).

When £ is large enough, such as & = 32, Q}, Q/, and Q7' (j = 0,1,...,J) also
have no intersection with the element K, . Then based on the definition (3.22), (3.23)
is also true if ; is replaced by (2 or Q7. 0

Remark 3.3. In the proof of Lemma 3.2, we have estimated Gy, := Gy, (-, x0) —
ém(y07xo) by subtracting ém(y07$0) from the solution ém(~,xo). This makes it
possible to control the right-hand side of (3.40) by using the local Holder continuity
estimate (3.41). Without subtracting the constant Gm (Y0, o), we can only have

Gl 22 (3, wr025) + IV Pmll 228, w05y < Co; 1 Gon (s 0) | o (31, ) + C
instead of (3.40). In this case, the best estimate for the right-hand side above is
Hém('axO)HLw(B;.’kas) < CIn(2+1/h),

which is logarithmically worse than the estimate (3.42) proved in Lemma 3.2.

3.2. Two estimates. In order to prove Theorem 3.1, we also need the following
two lemmas. The first one is concerned with the existence of a “Fortin projection
operator” [35, 40].

LEMMA 3.4. There exists a positive constant , independent of the mesh size h,
such that there exists a local projection operator 11, : H'(Qg) — V;"(Qs), called the
Fortin projection, satisfying
(3.43) (V- (7~ 1), qn) =0 Ve HY(Qs), qn € Vi (Qs)

(3.44) |0 — 0l g (o) < Chl‘5|U|H1,(Q;) Ve H(Qg), s=0,1, 1<I<r+1
(3.45) ||F — 0] e sy < O™ |0]riqsy VYT € H(Qs) s=0,1, 1<I<r+1
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(3.46) [0l m1(0s) < Cll0]|m(0s) Vi e H (),
(347) |7 = Tl 1= ) < CR' [Tl () VT €W ™(Qs) 1<I<r+1

and there ezists a local projection operator I, : H'(2s) — V' (Qs) such that
(3.48) lg = Tnallwer,) < OB [Blwin, Vi€ WH(Qs)

forall1<p<ooand0<s<1<[<r+1.

Remark 3.5. The Fortin projection satisfies Il,v}, = v) for o) € V{(QS) (see
[40, proofs of Theorems 3.7 and 4.1]). Let L; denote the Lagrange interpolation
operator. Lemma 3.4 implies the local superapproximation property: If @ = 0 outside
a subdomain D of Qg and |[0°Q| < Cup~ !l for all multi-indices & and any positive
number p > h, then by using (3.46), the Lagrange interpolation error, and the inverse
inequality, we have

|00, — (@) 11 () = l€0Th — Lin(@0h) — W (@0h — Lp(@0)) [ 11 (0s)
< Ot — Lp(0Uh) || 51 0s)
< Z ChT”aa&)a’BﬁhHLz(QS)

lal+|8|=r+1
and |B]<r

<C Z pf\alhﬂrlflﬁlvahHLZ(D)

|| +[B]=r+1
1<[Bl<r

+ Cp™ " T Gn | 2y
=C > (Wp) e MV L)

+C(h/p)" thp™?|[Bnl| L2 ()
(3.49) < Chp Y||VinllL2 (o) + Cho~|[Unll 2oy Vi € Vi (Qs).
Similarly, we have
(3.50) loen — Lun(@pn)l|2@s) < Cho™ionllzz(p) Von € Vi1 (Qs).

We are going to choose D = Q; and p = p; in the following proof.

The second lemma is a local energy error estimate with stress boundary condition.
Similar local energy error estimates have been proved for the Stokes problem with
Dirichlet boundary condition in [39]. Here we will prove it for the stress boundary
condition.

LEMMA 3.6 (local energy error estimates). The following inequality holds for
any € € (0,1):

(3.51)
IV (G — Grn) 22,y + 1P — Proml22(0,)

<e (Hv(ém - éh,m)||L2(Q_;) + lPm —ph,mHLZ(Q;.)> + Ce V(G — Hhém)HLQ(Q;.)
+Ce Mlpm — Inpmll 20 +Ce ;! (||ém —10,Gl| L2 + |G — éh,m||L2(Q;)) :

where j =1,2,...,J.
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Proof. Let w be a smooth cutoff function which equals 0 outside Q; but equals 1
on ); with
(3.52) 0%w| < Capy ™!

for all multi-indices o. Then by using the definition of w, Korn’s inequality (see [47]),
the product rule, the triangle inequality, w = 0 outside 2, and (3.52), we have

(3.53)
IV(Grn — Ghm)llzziey) < IV(Crn — Grm)l220s)
< C (IDL(Gm = Gl 2(20) + 190G = G 20
< C (JwD(Gom = G320
+ G = Crm) VeoliF (g + 190G = G322 )
< C (IB(Grn = G [32(025) + 5 2Cim = Crml3z(ay) ) -
Hence, we need to estimate [|wD(G,, — G_;h,m)HL2(QS) as follows. Using the Cauchy—

Schwarz inequality, the product rule, and Young’s inequality, we obtain

(3.54)

20[|wD (G = G122 (0
=2vw’D (G — Ghom), D(Gr — Gm))
=20 D(Gpn — Ghom), D(Gy — I, Gy )) + (20w D(Gom — Ghm), DI G — Ghom))
<D ~ Crm)E2(020) + YD (G~ TG B

+ (2UD(Gy — Ghom), D[w? (LG — Ghm)])

— (20wD(Gm — Ghm)y (MG — Gm) ®5 V).
The first term on the right-hand side can be absorbed by the left-hand side. Thus,

V]|lwD(Gy, — éh,m)||%2(ﬂs)
<VwD(Cr = TnGn) 2200y + (VD(Grn = i), DIw? (TG — G )])

(3.55)  — (2vwD(Gr — Ghm), (4G — Ghm) @5 Vo).
In order to estimate (2vD(G,, — C_jh,m), D[w? (11, Gy — C_jhm)]) by using the local su-

perapproximation properties (3.49)—(3.50), we consider the following error equations,
which can be obtained from (3.16)—(3.18) and (§ — d, U) = Un(z0) — Un(zo) = 0:

(3.56)  (2vD(Gp — o), D(T1)) = (P — Phom, V- Tn) =0 VT, € V7' (Qs)
(357) (V- (G — Ghm)rqn) =0 Yan € V)71 (Qg).
Choosing o, = I, (w? (Hhém — éh’m)) (3.56),

— (2UD(Grn = G, D[, (w? (1T Ghm))l)

+ (P — T, V - [T (P (TG — G, >>}>

(3.58) + (Ipm = pions V- [T (P (TG, éh,m»}) =0,

we obtain
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Adding (3.58) to (3.55), we obtain

V[|wD(G = Ghom)I32(05) < VIWD (G — ThGon) 13206
+ 2vD(Gpn — Ghom), Dw? (G — Ghom)
— I (W (Th G — Ghm))))
+ (pm = Inpm, V - [ (@ (TG — Gim))])
+ (Inpm = Pt V - M (@ (TR Gy — Ghom))])
— (20wD(Gy — Ghom), TGy — Ghom) ©4 V)
(3.59) =hLh+L+1I3+ 14+ I5.

Now we need to estimate I; (i = 1,...,5) and then plug (3.59) back into (3.53). First,
we have

(3.60)

ChH]D(Gm - Gh,m)”LQ(Q;)

< Ch|| V(G = hGo)[l12(0) + ChIV (1, Gn = Ghm)ll 20

< Ch||V(G,, — Hhém)HL?(Q‘/i) + O, Gy — éh’mHlﬂ(Q/j) (by inverse inequality)

< Ch|[V(Gm = Go) [l 12(2) + ClITWGon = Grnll 20y + Cll G = Gl 2@
Choose @, = Gy — G, @ = w?, D = Q), and p = p; in the local superap-
proximation properties (3.49)—(3.50). Using w = 0 outside Q;», the Cauchy—Schwarz
inequality, (3.49), (3.60), Young’s inequality, (3.46), the product rule, the triangle

inequality, (3.52), (3.43), (3.57), and (3.50), we have the following estimates for the
right-hand side of (3.59):

(3.61) L ZC'HWD(ém - Hhém)HQLQ(QS) < CHV(ém B Hhém)HZLQ(Q;)

(3.62)

I :‘(QVD(ém - éh,m)aD[W2(Hhém - éh,m) - Hh(w2(Hhém o éh’m))])‘
SC”D(ém _ éhﬁm)Hlﬁ(Qs) ||]D)[(A}2(Hhém — éh’m) - Hh(wz(]___[hém - éh,m))} HLZ(QS)
<CRID(Gon = Gl (05 IV (G = G 2201

+ 0 WG = Gl L2(02) (by (3.49))
<CRID(Gon = Grm) p205) (05 IV (G = Gon) 1200
+ 05 M IV (G = G 2202
+ pj—QHHhC_jm _ ém||L2(Q9) + p;2||ém - éh,m”Lz(Q;)
<! (Ch|\V(ém — TGl 22(0) + CITAG o = Gl 202
+C||Gp — éh,mHL?(Q;))
IV TG = Gondllaaten + 19 (G = G ate) + 5 114G = G2

+ 071G = Ghmllizy)  (by (3.60))
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S<06_1h20j_2HV(Gm — IG) 72y + O 05 * TG = G720
+ C G = G320 ) + (VG = G320
+el| V(G — éh,m)||%2(99) +ep; 2L Gy — ém”%‘zm;)
+ 6P}ZHGm - Gh,m||2L2(Qg))
(3.63)
I3 :|(pm —Iypm, V- [Hh(WZ(HhC_jm - C_jh,m))])|
<lpm = Il 200 IV - (@ (MhG = Gm))l 22(0)
<Cllpm = Inpml 2206) IV W (MG = Gl 22(02s) - (By (3.46))
<Cllpm — Inpm |l 220 Vw1 Gr = Gh)]ll L2 (52
+ 05w (MG = Gl L202)
(by product rule, triangle inequality, (3.52), and w = 0 outside (27)
<Cllpm — IhpmHLQ(Q;-)(HV(Hhém - ém)llm(fz;) + [ V[w(Gm — éh,m)]llm(n;)
+ 0 NG = Gl 2 () + 051G = i) 2202
<Ce M pm = InpmlFagay) + (IVWGon = Gon) 320
+ €| V[w(Gr — Gh,m)]||2L2(Q_;))
+ 03 2 TG = G320y + €07 21Gon = Crom 320 )
(3.64)
1y :|(Ihpm — Pm,h> V- [Hh(wz(nhé7rz - éh,m))])|
|(Ihpm - pm,ha V. [w2(Hhém - C_jh,m)]”
|(Tnpm = P &V - (G = G + 20V - (MG = G|

s

(by product rule)

— —

:|(w2(Ihpm - pm,h) - Lh[WZ(Ihpm - pm,h)L V- (Hth - Gh,m))
(by (3.43) and (3.57))

+ (Inpm — Pmop 20Vw - (I, G — G|

L2 IV - (1,G — éfL,7rz)||L2(Q;)

+ Cp; I npm — pm,thmg)HHhém - éh,mHL?(Q;)
(by (3.50), (3.52) and w = 0 outside Q;)

<Chp; ' [Inpm — Pm.n

<Cp; M [Tnpm = pmpll 2 M0 G = Grmll L2y (by inverse inequality)
<Cp;  (Hnpm — Pl 20y + 1Pm — Prapll 22 (02r))

(MG = Gl 2oy + 1Gm = Gl z2(a))
<ellpm — pm,h||2L2(Q;) + (C(lP;QHHhém - ém”%?(n;)

+C€ 92| Cia = G 32 ) + Ce P — Pl 2(a2

+ (GP]‘_QHHth - GM||%2(Q;) + epj‘_QHGm - Gh,mH%P(Q;.))
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(3.65) I5 = |(2vwD(Grm = Grm), MhGr — Gim) ®4 V)|
< C/);lHV(ém - éh,m)”Lz(Q’j)HHhém - éh,m”L%Q})
< e|V(Gm — éh,m)H%?(Qg) + CG_lp}2||Hhém - éh,m||2L2(Q;)
< €|V(Gm — éh,m)”%?(ﬂ;.) + CG*IPJ'_QHHhém - ém”%zm;)
+Ce ;2| G — éh7m||%2(§2;)
where € € (0, 1) is arbitrary. Since p; = diam(Qg)277, j =0,1,2,...,J, and p; ~ rh,
we have hpj_1 < C. Plugging (3.61)—(3.65) into (3.59), plugging (3.59) into (3.53),
and using hpj_1 < C and w = 0 outside Q;, we obtain
IV [w(Gm — éh,m)m%zms) < €| Vw(Gn — éh,m)]H%Q(QS) + €llpm — pm,h||2L2(Q;)
+ €| V(G — éh,m)H%Q(Q;)
+Cepm — IhpmH%?(Q;.)
+Ce V(G — Hhém)H%?(Q;)
+Ce ;2 G — Hhémﬂimz;)
(3.66) +Ce 2| Gmn — Ghmliaar)-

When e is chosen to be small enough such that 0 < = < 1, the term €| V[w(Gpm —

Ghom)] H%z(QS) can be absorbed by the left-hand side of (3.66) since = can be defined
to be a new € in the following proof. Furthermore, w was defined as a smooth cutoff
function which equals 0 outside Q; but equals 1 on §2;. Then the inequality above

and (3.53) lead to

IV (G = G120,y < IVW(Gim = Grm)ll 7200
< elpm — Pm,h||%2(g;) +e|V(Gm — éh,m)”%?((‘l;)
+ e Hlpp — IhpmH%?(Q;) + Ce M| V(G — Hhém)HQm(Q;)
+Ce ' p; 2| G — Hhém||%2(sz;)
(3.67) +Cep; |G — éh,m||2L2(Q;)-

This proves the estimate of |V(G, — G_;h,m)HLQ(Qj) in Lemma 3.6.
It remains to prove the estimate of ||y, — phmll22(q,) in Lemma 3.6. To this end,

we consider (3.56) with @, € V;(€2s) such that supp(@,) C ;. For such @, (3.56)
leads to

|(Ihpm — Ph,m> V- Eh)| = |(2VD(ém - éh,m)7D(Uh)) - (pm - Ihpm; A 17h)‘
< O(IV(Gm = G220y
(3.68) + 1P = Inpmll 22, IV (Uh) |2 ;)

Then the local inf-sup condition [35, Lemma 3.1] implies

(3.69) | Inpm — Prmllzzia,) < CUIV(Gm = Ghm)llzz@,) + 1Pm — Inpmllr2(0y))-
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Substituting (3.67) into (3.69) and using the triangle inequality

lPm — PromllL2;) < IPm = Inpmllz2(Q;) + HhPm — PhomllL2 ;)

we obtain the estimate of ||pm — phmllz2(n,) and hence complete the proof of
Lemma 3.6. 1]

3.3. Proof of Theorem 3.1. The L? and H' estimates in (3.7) are standard
once we have the H? estimate (2.25). This subsection is devoted to the maximum-
norm error estimate (3.8), for which we need to investigate the error at an arbitrary
point xo by using the properties of the regularized/discrete delta function and equa-
tions (3.16)—(3.17) of the regularized Green function and discrete Green function.

Denote @ by (u1,u2) and @, by (up1,unz2), and denote 5, as the L? projection
of & onto the finite element space V7. Then by the definition of 65 and (61,m,d2,m),
we have
1

[Qs] Ja.
:‘ ((5,L 1) (Bt B i — nha')\
=|(2vD(Gh,m), D(ity, — y@)) = (P V - (@ — 1y D))
(by (3.17) with ¥}, = @), — I, 4)
=|2vD(Gm), D(ii — i) — (2vD(Gh ), D — i)
+ (Prym, V - (@ — 1n)) = (Ph,m, V - (@ — 1))

wn,m (o) = (Unt)m(z0) — (un,m(z) = (pt@)m(z)) de

Choosing v}, = éh,m in (3.11), we have
(2vD(Gp,m), D(ii — in)) = (p = pn, V - Ghom)-

Choosing gy, = ph,m in (3.12) and (3.43), we have

(Phm, V- (G —up)) =0 and  (ppm, V- (@ — L)) = 0.

Using the above three equations, we have

o (20) — (M@ (20) — ot | () — (D) () dz
1| Jas
:\(QVD(éh,m)a D(@ — @) — (p— pn, V- Ghm)|
=[(2vD(Gpm), D(@ — @) + (p — Inp, V - (G — Gim))|

—

(by (3.57) and V- G,,, = 0 of (3.16))

By using (3.16) with test function @ — Il @ and (3.43), we have

(2vD(G), D — TT,@))
1

=P V- (@ = T)) + s (@0) = (M@ (0) — 1677 |

(um () = (Hp@)m (2)) dz
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:(pm - Ihpmv V- (ﬁ - Hhﬁ)) + Um(CC()) - (Hhﬁ)m(xo)

1 ,
~ 08 QS(um(@ = (My @) () dz.

By using the last two equations, Holder’s inequality, and Lemma 3.4, we obtain

(3.70)
1

125 Jo. (tn,m(z) = (Up i) (z)) de

U, m (z0) — (IR W) m (x0) —

—

:‘(2VD(éh,m - C_jm)a D(ﬁ - Hhﬁ)) + (p —Ipp,V - (Gm - éh,m))

+ (Pm — Inpm, V - (@ — Tp 1)) + U (20) — (@)1 (20)
_ b
1| Jag

<OV (Ghim — Gm)llLr (s) (IV (@ = TTL) || oo (06) + 1P = Inpll Lo (2s))
+ Cllpm = Inpmll 1 (05) |V (@ = TR t0)|| oo (0g) + CllU — Hp ]| Lo ()
<CIV(Ghm — Gm)llLr (0s) (w100 25y + Pllws.oo (05) )

+ Cllpm = Inpm |l 1 (@s) (@l wrsr.00 (g) + HPHW’C»OC(QS))hk + Clltllwr+1,00(25)

(tm (2) = (Upil)m (2)) dz

hk+1

By using the decomposition Qg=U7_(Q;(x0) U (zo) introduced in (3.20)-(3.21), the
definition of }_, ., the Cauchy—Schwarz inequality, (3.48), (3.23), J=[log,(diam(f2s)/
(kh))], ps ~ kh, (3.7), and (3.24), we have

1npm = PrllLrs) < C D M|z (2,) Hnpm — Pl 20y

I,
< CZP]’HIhpm — Pmllz2(a;)
%
(3.71) <O piblpmlme, < €S h < CIh < C’h‘lng’
=Y poE et = Kh

and

IV (Grm = G l11(05) < € D pilIV (Grm = Gin) 210,
J,*
< Ckh||V(Ghm — C_jm)”Lz(Q*)
+C> pillV(Ghim — Gm)

J

|22(0))

< ORD2 (|Gl 2025) + [1Pmllir (25))

+ CZPJ'HV(éh,m — Grm)llz2(0,)
J

(3.72) < Crh+C>  pilIV(Ghim — Gm)llL2(e))-
J
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By using the Cauchy—Schwarz inequality, (3.7), and (3.45), we obtain
(3.73

b

Substituting the last three estimates into (3.70) yields

|th,m (20) = (Tn@)m (z0)| SCA*|ul| grs1ag)

< Cllunm — Mpid)ml 25y < CRFHull i g)-

)
(un,m () = (Up @) (x)) dz

+ cﬂh’““] <
kh

(Jullwrtr.00 gy + IPllweo (0s))
+ CRF ([l gy + Ipllwe= @g))

(3.74) x> iV (Chm = Gl 220y
J

It remains to prove that

(3.75) > pilV(Ghm — Gm)llL2(,) < Chllnhl.
J

To this end, we apply Lemma 3.6. Multiplying (3.51) by p; and taking the summation
for 5 =1,...,J on both sides, we obtain

> (|V(ém — Ghm)lL2(0,) + lPm —pm,hllm(szj))
J
SGZPJ' <|V(Gm = Ghm)lz2@y) + Pm —pm,h||L2(Q;)>
J
C - -
+— ij IV(Gm = 0nGm)llr2(0s) + Cllpm — Inpm L2 (02)
J
S ()G — G G — G
+ . Z (|| m — m||L2(Q;) + |G — h,mHm(Q;.))

Lzm_f))

+ 6f~€h<||V(C3m — Gh)llz2(.) + IPm — pm,h|L2(Q*)>

J
<330, (nwém — Gl + [P — P
J

C - —
+ €519 = WGz + Clon ~ Tl e
J

C N o - -
(376) + : Z (HGm — Hth||L2(Q;) + HGm — Ghﬂ’ﬂHLQ(Qg)) .
J

By fixing a sufficiently small ¢, the first term on the right-hand side of (3.76) can be
absorbed by its left-hand side. Now we estimate the last three terms on the right-hand
side of (3.76). Recall that J = [log,(diam(€2s)/(xh))] and 3, is the summation over
all Q; (j=1,...,J). Using (3.7), (3.19), and (3.22), we obtain
V(G — éh,m)HL2(Q*) + |Pm = Pk
<NV(Gm = Grom)llL2s) + IPm = Pl 22 (00)
(3.77) < Oh((|Gonll 225 + P | 025 )-

|2 (0.)
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and
1/2 1/2
Z |G — éh,mHLQ(Q;) <C Z 12 Z |G — éh,m”%?(ﬂ’j)
J J J
< C(C+ [Imh)?|Grn — éh,mHL2(QS)
(3.78) < C(C+ A28 ([ Gonllr2(s) + Il 20 )

Using (3.44), (3.48), and (3.77)—(3.78), (3.76) becomes
ij <v(ém - C_jh,m)HLz(Qj) + [|pm _pm,h”LQ(Qj))
J
<Ch? (||ém||H2(Qs) + ||pm||H1<ﬂs>) +CY " pih(IGmll 2 + Pl @)
J

(3.79) +C Y W2|Gullaz@r) + C(C + | Inh|)/?n? (||ém||H2<QS) + ||pm||H1(QS)) :
J

Recall that J = [logy(diam(Qs)/(xh))] and 3_; is the summation over all ; (j =

1,...,J), excluding Q.. With Lemma 3.2 and hpj_1 < C, (3.79) can be further
reduced to

505 (19 = Gl + o = pmalizc,
J
SCRPh™ 4+ C pihp; 't +C > hPp;t + C(C + [Inh])/2h%h
J J
(3.80) <Ch + Ch|Inh|.

This completes the proof of (3.8).

4. Proof of Theorem 2.1. In this section, we prove Theorem 2.1 based on the
Ritz-projection error estimate shown in the last section. The following lemma was
proved in [69] and has been recently introduced in [1, 4] to analyze high-order BDF's
for parabolic equations.

LEMMA 4.1. For 1 < k < 5, there exists i € (0,1) and a symmetric positive
definite matriz G = (g;;) € R¥* such that

k—1
(4.1 (Des ) =) 2 D 3 g+t
i,j=0
forn=k—1,...,N —1, where D, fnt1 .= (fn+l — fn) /7.

Remark 4.2. Since the matrix (g;;) is positive definite, there exists a positive
constant k such that

k—1 k—1
(42) § gijvn+1fzvn+lfj Z K § /‘|vn+171 2.
3,j=0 =0
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Second, we recall Korn’s inequality (see [47]):

(43) 198 2025 < CID@) 2202 +c‘ [ itas).

Considering (2.6)—(2.8) at t,,41 and using the definition of the projection operators
Rh,D and (Rh,s, Ph,S), we obtain

(4.4)
(DrkBpdp ™ 0n) o, + (KVRL DB, Vion) o + (9Rnpdb ™ s en)r
= — (Dra(0p™ = Rupdb ) o) g, — (9(@5T = Rupd™),on)r
+ ( "H,@h) + (Lrwlp™ on)p + (EZH,%)QD + (E?-Ha@h)r
Y on €V, (D)
(4.5)
(Dr iR, s (W, pEt), ) g, +2v (D(Rs, s, pEth), D(Th)) .
— (Pu,s(@eth, p&th), v - ’Uh)Q (Rp,s (@, pet) - iis, Oy - iis) |
+ (BRp,s (@& p&tY) - 7,0 - 7)
= — (Dri(@5™ = Ru,s (@™ p§™)) )

(et — Ry (@&t pat™)) - iis, O, - iis)

(

— (B@T = Rs (@ g 7w A+ (L3
S

(

(L CE B i)+ (B 00) g, + (B, G is) Y 6 € V(2s)
(4.6)
(V- Bus(@™ 05 an)q, =0 Van € V' (s)
where B3t = D, ot at¢"+1 Egtt = ¢t — Lttt Eptt = Dot -

8tu"+1 and E?H C"H I, k("“ are truncation errors due to the time discretiza-
tion, satisfying that

(4.7) ||EZ+1||L2(QD) < Cl0F ™ épllre(0,1:02(00) T
8) IEZ | L2 ry < ClOFEl| Loe 0,702y T
9)

(4.
(1 | B a0 < CllOE+a oy
(4.10) 1B 22y < ClOFC L= 0,220 T
Let
(4.11) eptl = optt — Ry popt!
(4.12) et =t — Ry s(@dt, pitth)
(4.13) ezzl = pZ“ P S("“”“,p@“).
Then the difference between (2.12)—(2.14) and (4.4)—(4.6) can be written as
(4.14)

(Drgenst on)q, + KVt Von) + (geih' on)r
= (Drk¢p™" — Ru.pDrid™, th)QD + (9(d5™ — Ry pds™), on)r
+ (IT k( Pt — ’ﬂ+1) (ph) (E;H_la(ph)QD - (E?Jrlagoh)lv Ph € V{(QD)
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4.15
((DT Ze“”h#,ﬁh)ﬂ +2u(D(ézf}) D(5h)) g, — (epH1 V- Tn)

(G T T (B )

= (Dr (@5 =R s (@, 05™), 0n) o, + (@5 —Ra,s (@5, p5™)) - s, T - is) -
+ (B(ig" — R s (g™, p5*h)) - 7, 0h - 7)p + (Lrk( B =g, T s)r
— (B ), — (B dis) € V()

(4.16)
(Vo&tha),, =0, ane Vi ().

Choose pp = ez’zl — ey 4 in (4.14). We have the inequalities
(KV@Z‘Z}, V(ezzl — 77’“627(25))95,
=(KVepth, Vet — m(KVepth vep 4)

(KV@ZZ},V@"H) ap ~ nk\/(KVeZ+1 Vepth) \/ KV@Z,¢aV€Z,¢)QD

2
> (KVeprt!l, vertl) 1(Hwegj(;,ven“)Q — L (RVef 4, Vel o),

1-
(4.17) —DT< i (wa,w"*l)g» plom (KVeptt vepth),

2 .o
and
(geZ';l, Chy ¢ — Nkeho)p = 9\|€Z;1||2L2(F) — 97k (624(;1, e )
> gllen i Za ) — gmellertH L2y ller ollL2 oy
> gl ey — 2es s ey — LNl oacr
(418) = D0 (T ) + EE e
Using Lemma 4.1, (3.5), (3.9), and (4.17)—(4.18), we obtain
(4.19)
DT< Z gij(ep ™ e;f;l j)QD Tk (KVeZH,Verpl)QD + mkg” en Iz )
i,7=0
n 1 —2772( KVe Z—:ﬁl’ven-’_l)QD + 2 TB)Y ( ) H n+1||L2(F)

<||Dr k¢t — Rp p Dy k! HL2(QD)||eh7¢. — mkeh ollL2p)

+9llos™ = Rupdb e llen ! — meer glloar

A k(T = €5 D2 llen st = mwel ol 2y

1By 2 lents —men gllirz@py + 1B lzemyllenty —men gllzzm)
<CR™ et = meq sllL2p) + O™ nhlllep 5t — nielr o]l 2y

+ 1k (G = €5 D 2y llep st — meeqt gllz2 oy
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+ C’7'k||e”‘|r

- 77k62¢||L2 Qp) T C7'k||€‘nJrl - 77k62¢||L2 r)

<Ce Y (W22 hf? + 1) + Ce M La (67 — €57 2a

+elllen s — men plizqp) + llent’ — men glizm)-

Choose 7, = é'Z’J;l — M€y, in (4.15). We have the identity

(4.20) (ez-;l’ V- (é‘}r:—z — NkEp u))QS =0
and the inequalities s
( (énh—zl)aD(é‘}rLL, o nkéz,u))gs
= (D). DEL) o, — 20 (D@D D) o,
> 2V||D(éztl)||L2 Qs) — 2V77k||]D(€h u )||L2 Qs)||D<eh u)HLQ(QS)
> 2w|D(EEN 172 00) — YIDEEDZ200) — viRIDER D IF 200
a2y =D (R IDE e ) + (- EWIDED
(Bens' - m (st —méh.) T)p
:5||é‘ztl T||L2(F) Bnk(ehu T € 'T)r
> BHE'ZZI 7'||2L2(r) - /877k||é‘221 THL?(F)HéZ,u ) TH%Q(F)
+1 2 +1 2 U%ﬂ 2
= Blley Tl — ||é’;7,7lu T2y — T||éz,u Tl 72
™ IB —n, (1 — 772)5 —n,
am =T ~r||%z<r>) g8 Tl
(it iis, (50— M) - 7is)

Tl 4l = A =13) 1
(4.23) ZDT( kH +1 ”||2L2(r)>+ B) s HehJLl nS||2L2(r)~

Using Lemma 4.1, (3.7), (3.10), and (4.20)—(4.23), we can obtain
(4.24)

k—1
+1-
Do X (@ e ) g, + rRvIDE e
i,5=0

2
. TP | i1 =
+Dr< 2k||ehtl fis|| 2y + — |eh,tl'7-|%2(f‘))

2

(1 - 77/%) ~n+1
)

+ (1= )P 200 + Gt Tl e + Chou

<[\ Drite — Ris(Drii™, Drats ™)l 2o 1655 =m0
@5 — Rus (@, 0§ 2y 1835 — meehull 2oy
+Bllast = Rus (g™ 05" D 21675 — meeh ulle )

(G = G D2 lleh st = meh ullzar)

(1 - 77/%) ” —n+1

sl 72r)
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+ 1B 2o lER ! — meér ol L2 os) + ||EnJr I2yllent — meéi e

<Ce ' (h* | hf? +72k) + O L (G = G2

+ G(Hé"ﬁ - ﬂkéZ,ullemS) + ||éqi:tl - nké‘z,u”m(r))'
Let
k—1
n+1 n+l—i n+l— 1—¢ n+1—
&t = Z {g” (ehe >€ho J)QD +9i (€ Eh ])QJ
i,j=0
+ %( KVe n+1 ven-‘rl) +r 2VHD(€”+1)H2
5 Ch,é s Qb Mk hou JIL2(Q5s)
2
TR | n T ol = TP ont1 =
(4.25) + k le +1||L2 )+ —E ||€th1 H%?(F) + Qk ||€th21 T”i?(ry
Since 0 < < 1, the sum of (4.19) and (4.24) gives that
(4.26)
n 1-— 772 n n —n
D &+ — " (KVepi' Veptl) o+ 1 —mivID(E 512 qy)

2
<Ce (WP Ik + 727) + Ce (| L n (6 = 5Dy

| Lk (G = n+1)||L2(F)) + €(||€nJrl - Wkez,qum(Qs) + Heﬁi;l - nkez,qu%?(r))

+elleny — méh ulliaq) + € — meh uliem),

which hold for arbitrary 0 < e < 1.
Using (2.1), (2.9), (2.15), (3.9)—(3.10), and the trace inequality, we have

IIITk( S ] 7w

<C i, = Rn,s (@, p%)|I72(0) + 9ll6% — Rnpdp |7

> h h,5\Ws,Pg)liL2(r) T 9llPh h,DPDIlL2(T)
j=n+1l-k

1 Ris (@, %) — @5l + 91 Rnp b — hlEar)

<¢ Y (18 leaa + 18 gllozay ) + CR2 42 Inhf?
j=n+1-—k

n
<0 Y (8B +allVEL )
j=n+1-—-k

(21 +C Y (TN sl @+l VE glEe @y ) + CHE AP
j=n+1-k

Similarly, using (2.1), (2.10), (2.16), (3.9)—(3.10), and the trace inequality, we have
HIT k( Rt — n+1)||L2(F)

<0 Y (18 e + a1V )
j=n+1-—k

(4.28) +C zn: (61

j=n+1-k

)+ CRA 2 P
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Summing up (4.26) for n = k — 1,...,m and using the above two inequalities as
well as the trace inequality, we obtain that (with e; = €2)

m "7 n n =M
TR [ VRS Ve, + (= D@
n=k—1
<EFTL 4 Ce YRR Inh? + 72

k—1
Ce Y7 (e ullEe ) + €1V )

18 o320 + €1V ol32 ) )
m

+Ce! Z T (Gfl €7 7205 + €11V Wll72(00)

n=~k

+ T8 o3z ) + 11V 4320

Ce 32 7 (lleh ol + 1€k ol )

n=k—1

+Ce 3 (18 wlzan) + 18R )
n=k—1

+Ce 3 7 (et Baan + IV E e @)
n=k—1

+ Ce Z (Hé’ZTLlHB(QS) + ||VéztlHL2(Qs))
n=k—1

< [Ce*3|I,’f|2 + Ce (W2 Inhf? + T%)}
+Ce 37 (llef o 32y + 1881320 )

e 32 ap) + 18 220 )

>l
+ Ce Zm: (
n=k—1

(429) +Ce 3 7 (IVert e, + IVEE ey )-
n=k—1

By choosing a small €, the last term on the right-hand side of (4.29) can be eliminated
by the left-hand side, and (4.29) reduces to

(4.30)
+1 - 77k +1 +1 (1-— 771%)” 1\(12
g 4 Z [ (KVe €ho s Ve )QD + #HD@Z—Z iz s
n=k—1
<SCe3IZEP + Ce (W2 b + 72%) + Ce > 7 (llef o122 00) + 168 W12 0))
n=k
+ Cer(lle s iz p) + 1ET 17 200))

Ce BT + Ce ' (B T2 Inhf? + 72F) + Ce 2 Y " r&f + CerélM
n=k
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By choosing € small enough and applying the discrete Gronwall inequality, we obtain

(1 — 7]2)1/ —n,
+ E ey 2.,

m - 1- 7’2 n n
(4.31) &+ Z 'r[ 1 E(KVept! Veh:;l)QD

h,¢ >
n=k—1
<C|ZFP? + C(h*" T2 In h|? 4 72F).

The proof of Theorem 2.1 is complete.

5. Conclusion. In this paper, the Stokes—Darcy system is decoupled by a
noniterative, multiphysics domain decomposition method [15] with multistep BDF's
for the time discretization, which allows us to introduce Ritz projections for the Stokes
and Darcy equations, respectively, without involving interface terms. We have proved
the corresponding L error estimates for the Stokes—Ritz projection under the stress
boundary conditions in order to control the Ritz-projection error on the interface.
By using these theoretical results and the multiplier technique of multistep BDF's,
we have proved an almost optimal-order L?-norm convergence rate of the proposed
method. As far as we know, both the L°® error estimate of the Stokes—Ritz projection
(under the stress boundary condition) and the analysis of multistep BDFs with finite
element spatial discretization for the Stokes—Darcy model are new contributions.
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