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1. Introduction

The conforming finite volume element method (FVEM) is a highly effective numerical method for partial differential
equations, and therefore it has been extensively studied and widely applied to different types of problems, see [5,9,10,
19,20,22,23,25,27,49,57,63,74,76] and references therein. The method combines the strengths of the finite volume and finite
element methods. Specifically, as in the finite volume method, the FVEM is based on local conservation of mass, momentum,
or energy. Also, as in the finite element method, the FVEM can easily deal with complicated geometries while also obtaining
the optimal accuracy expected from the polynomials utilized for the finite element basis functions.

We consider the Stokes-Darcy model for coupling fluid flow in conduits with porous media flow. This type of coupled
flow is often involved in many applications, such as subsurface flow problems [14,18,30,47,55], industrial filtrations [44],
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Fig. 1. A sketch of the porous medium domain 2, fluid domain Q2 and interface I'.

and flow in vuggy porous media [2]. The model consists of Stokes equations to govern the flow in conduits, Darcy’s law to
govern the flow in porous media, and three interface conditions to couple these two constituent models together.

Due to the complexity of this model, many methods have been developed to numerically solve the Stokes-Darcy system,
such as coupled finite element methods [12,13,48,52,58,62], domain decomposition methods (DDMs) [16,17,29,31,43,73],
Lagrange multiplier methods [3,37,38,54], multigrid methods [1,11,64,80], discontinuous Galerkin methods [40,51,61,67,68],
discontinuous finite volume element method [59,75], mortar finite element methods [32,35,41], least square methods [33,46,
56,66,72], partitioned time stepping methods [53,65,70], and boundary integral methods [7,8,71], hybridizable discontinuous
Galerkin methods [36], and weak Galerkin methods [24,60]. We consider the conforming FVEM, and show that it is able
to conveniently and efficiently solve sophisticated coupled flow problems while conserving mass and obtaining optimal
convergence rates.

Practitioners often prefer to utilize low-order finite elements, such as Py and P; elements, since they are simple to
implement and can provide enough accuracy for many applications. However, the P1-Pg and P1-P; finite element pairs
are not stable for the Stokes equations since they do not satisfy the inf-sup condition [21,39,42]. We use the idea in [6]
to develop a stabilized finite volume element method for applying the low-order finite element triples P1-P1-P; and
P1-Po-P1 to solve the Stokes-Darcy system, where P; elements are applied to the second order primary formulation of
the Darcy’s law. Implementation of the stabilized scheme relies on projection operators, which only need the standard nodal
data structures and can be conveniently evaluated at the element level.

One might think that the development and analysis of a new method for the Stokes-Darcy model should simply follow
by combining available approaches for the Stokes and Darcy problems; however, this is not the case. As we can see from
the above existing literature for the Stokes-Darcy model, this combination approach only works partially since significant
difficulties and technical issues often arise from the interface conditions. In our work, a major difficulty in the analysis
is to bound the interface integrals arising from the interface conditions. To deal with this, we extend the equivalence
relationship between the stabilized finite volume element method and a stabilized finite element method in [77] to the
coupled Stokes-Darcy problem. The key for proving the equivalence is to handle the interface conditions appropriately. Once
this relationship is established, we utilize existing theoretical results for the stabilized finite element method to analyze the
stabilized finite volume element method for the Stokes-Darcy model, and we obtain optimal convergence rates in both H'
and L2 norms.

Based on the work in [6], we provide implementation techniques for the projection operators Hg and l'[}l which are the
keys for the stabilization. We discuss about l'[g based on two local quadrature rules and H}l based on Clement-like inter-
polation, both of which can be evaluated locally at the element level using standard finite element techniques. As a result,
an existing code package can be easily modified to handle the stabilization procedures. Finally, the theoretical results and
the features of the proposed method will be demonstrated by computational results, such as the optimal accuracy orders,
mass conservation, capability to conveniently deal with complicated geometries, and applicability to realistic parameters
and problems.

The paper is organized as follows: in section 2, we briefly introduce the Stokes-Darcy model and its weak formulation; in
sections 3 and 4, the stabilized finite volume element method is proposed and analyzed; in section 5, some implementation
issues are discussed and a series of numerical experiments are provided; finally, conclusions are presented in section 6.

Throughout the paper, the letter C denotes a positive constant independent of the mesh size and may indicate different
values in different places.

2. A Coupled Stokes-Darcy problem

We consider a coupled Stokes-Darcy model in a bounded domain Q c R?, consisting of a fluid region Qs and a
porous medium region Qp, with interface I' = 3Qf () 9Q,. Both Q¢ and ©, have Lipschitz continuous boundaries. De-
fine I'; = 9Q;\I" for i = f, p. Moreover, let ny denote the unit normal vector of I' pointing from Q to 2, and let T denote
the corresponding unit tangential vector; see Fig. 1.
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In Qp, the fluid flow is assumed to be governed by the Stokes equations:
=V -T(us,ps)=1ff in Qfp, 1)
V. llf =0 in Qf,

where T(uy, pg) = —psI+2vD(uy) is the stress tensor, D(uy) = %(Vuf + (Vuf)T) is the velocity deformation tensor, v is
the kinetic viscosity, uy denotes the fluid velocity, p¢ denotes the kinematic pressure, and f¢ denotes a general body force
term that includes gravitational acceleration.

In Qp, the flow is governed by Darcy’s law:

V.up=fp in Qp, )
up=-KV¢, in Qp,

where u,, is the specific discharge rate in the porous medium, K is the hydraulic conductivity tensor, f}, is a sink/source
term, and ¢, is the hydraulic head. Furthermore, ¢, is linearly related to the dynamic pressure pp: ¢p =z + Z—g, where p
is the density, z is the relative depth from an arbitrary fixed reference height, and g is the gravitational acceleration. By (2),

we obtain
—V.-(KV¢p)=fp in Q. (3)

The key part for this coupled model is the interface conditions that describe how different types of flow interact at the
fluid/porous medium interface I':

uf-ng=u,-ny on T, (4)
—ny - (T(ug, py)-np) =g(¢p —2) on T, (5)
avy/d

—7-(T(uf,pf) - Nf) = ———=7-uf on I, 6
1Py ! J/trace(Il) ! (6)
where d denotes the space dimension, « is the Beavers-Joseph [4]| constant depending on the properties of the porous
medium, and the permeability IT = %. Let P; be the projection onto the tangent space on I" defined as Pr (uf) = (us-7)-7.
The last equation of (6) is called the Beavers-Joseph-Saffman-Jones condition [50,69].

For simplicity, we assume that the hydraulic head ¢, and the fluid velocity uy satisfy homogeneous Dirichlet boundary
conditions except on I'; i.e, ¢, =00n T, and uy =0 on I'y. We also assume that z=0 and K = kI where I is the identity
matrix.

The Sobolev space H¥(D) = W25(D) is defined in the usual way for D = Qy or Qp with the norm and seminorm || - [|s,p
and | - |s,p, respectively. We also define the spaces

Xr={ve[H(Qp)* | v=0 on aQy\TI},

Xp={y e H](Qp) | ¥=0 on 0Q,\T},

Qs ={qel* Q).

In the rest of paper we use u, ¢,andp to replace uy, ¢,,and py for simpler notations in the analysis, in particular, we

use the following notations for the norms:

lullo == a2, Nl = ullx; @),

ollo == lloll2g,) ol == lldllx, @)

lIpllo := ||p||L2(Qf)-

For a domain D (D = Qf or p), let (-,-)p denote the L2 inner product on D and (-, -) denote the L? inner product on
the interface I or the duality pairing between (H(l)[/)z(r‘))/ and H(l)[/)z(r‘).
With these notation, a weak formulation of the coupled Stokes-Darcy problem is given as follows [28,54]: Find (u, p) €
Xr x Qf and ¢ € Xp such that
agu,v) —bs(v,p)+ gap(¢, ¥) +g(¢.v-ng)r — g(u-ngp, ¥)r + %(PT(U),PT(VM
=, Vg, +8(fp. Ve, YVeXp, ¥ eXp, (7)
bs(u,q) =0, Yqe Qy,

where the bilinear forms are defined as
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Fig. 2. Conforming triangulation and its dual.

ag(u,v) =2v(Dw), D(V))gq,,

ap(@,¥) = kVe, Vi)g,,

br(v,q) =(V-v.qgq;.
Define

B((ua D, d))v (V, q, I)[/)) :af(uvv) +gap(¢v W) +g<¢’vnf> —g<U'nf, l/f)

avd
+W<Pr(uxl’r(v» —bg(v,p)+bg(u,q). (8)
Then, we can rewrite the weak formulation (7) as
B((u,p,¢), (v,q,¥)) = (Ef, Vg, + 8(fp. ¥)a,, YV.q,¥)€Xf x Qs x Xp. 9)

3. Stabilized finite volume element method

Let 7p,(i = f, p) be a regular triangulation of €2;, where the mesh parameter h; = m%} diam(K). Let N; be the set
Ke h

of all the nodal points associated with the partition 75, N; be the total number of the nodes in Aj. The dual partition
7;:‘ corresponding to the primal partition 7, is designed by connecting the barycentres of the triangles in 7j, with the
midpoints of their edges as shown in Fig. 2. For each nodal p; € Nj(j =1, 2, ---, N;), there exists a polygonal K;‘f € ThT
surrounding p;. K;‘ is called box or control volume.
We define finite-dimensional subspaces of Xy, Q¢ and X, as follows,
Xp, = (ve C%Qp)? NXy:vike [P1(K)?, VK €Ty},

th:{weco(Qp)ﬂXp:1//|KeP1(](), VKGEP},

0, 2 Q,?f={q€L2(Qf)ﬂQf2q|K€P0(K), VKE’HIf},
h =

f Q,lf:{quO(Qf)ﬂQf:q|KeP1(K), VKE’E[}‘

For the finite element spaces th X th X X, the following approximate properties hold: V(v, q, ¥) € [Hz(Qf)]2 x H1 (Q25) x
HZ(QP), there exist approximations Inv € X, Jay € Xn, and prq € Qp, such that

Iv—Invl; < Ch2 ]2, 1=0.1, (10)
I — Jawlli < Ch2 g lla, =01, (11)
la — pngllo < Chyligls. (12)
Vil < Clvls, (13)
1wl < Clivlh, (14)
londllo < Cligllo- (15)

The test function spaces are defined by
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X;, ={vhe (L2 Vhlis € [Po(KDI?. VKT €T},
X ={n € L) : Ynlk: € Po(K}), YK} €Ty ).

Define interpolation operator Th,: Xp, — X;f by

Ny
Lpva(x) = Z"h(Pj)Xj(X)7 Vx € 25, Vvy € X,
j=1
where
X0 1 ifxeK}.*e h*f’
(x) =
J 0 otherwise,
and interpolation operator I, : Xy, — X;‘]‘p by
NT—’
Thy¥n () =Y Yn(P)Xj(X), Vx€Qp. Vi € Xp, .
j=1
where
1 ifxeKteT*
Xj(x) = J= Ty
i®) { 0 otherwise.
For each nodal p, e Nj(n=1, 2, ---, Nj; i = f, p), we have
NP
Ty ¥n(Pn) = Y Yn(P )X (Pn) = Vi (Pn). (16)
j=1
Ny
Th,Vi(Pn) = Y V(D) X;(Pn) = Vh(Pn)- (17)
j=1

The mappings T, and Ty, satisfy the following properties [57,77]: if vy € Xhs, U € X, then

f (Vi — T, Vi)dx =0, / (W — T Yn)dx =0, (18)
Keﬁf I(e’ﬁ,p
IV — T, Vallo < ChIVa I, 19 — T, ¥allo < Chll 1. (19)

To obtain the discrete formulation, perform the following steps: multiply the first equation in (1) by I'y vy € X,’;f and
integrate over each dual element K;‘f € 771’;(]' =1,2,---, Ny), multiply the second equation in (1) by g, € Qn; and integrate
over each primal element K € 77,),; multiply equation (3) by I'n, ¥ € X,’;‘p and integrate over each dual element K}'.‘ € 7;';(1' =

1, 2, ---, Np); apply integration by parts and interface condition (4)-(6); and add the above equations. The resulting discrete
formulation is to find (uy, py, ¢p) € Xny» Qnyy Xn,) such that

ag(uy, Ty V) + b (Ch Vi, P} + 8ap (@7, Tny¥n) + g(05 Th Vi - 0p)r
—g (W} g, Th, Yn)r + 2l (P (), Pr (Th Vi)

=, Thvi) + &(fp. Tny¥n), YV € Xnyp, Yn € Xpy,,

by(uy, qn) =0, Vqn € Qp,

where bilinear and linear forms are defined as follows:

Ny
dg(uf, Th,Vi) =— Y Va(pj) - / 2vD(uj) -nds, Vuj, vy € Xy,
=1 aKF N Qp\I
Ny
by (T i, pj) =Y _Vn(pj) - f ppnds, Vi € Xy, pp, € Qny,
=1 3K Qp\I
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NP
ap (5. Thy¥n) =~ ¥n(p)) - / kVy -nds,  Vou, ¥n € Xp,,

=1 KT 2p\T
Ny

@i Thwende =Y wpp. [ dingds Vo€ Xy e X,
=1 kN Q; T

NP
(i ng, Do, Yn)r = > Ya(p)) - / u;-ngds, Yy € Xp, . uj; € Xp,,

=1 IKTN QT
Ny
(P (u}), P (Th Vi))r = Y Vn(pj) - / (ui-7)-Tds, Vuj.vy€Xy,,
=1 aKrNQp OT

Ny
(ff,Fthh)=ZVh(Pj)- / frdx, Vvp € Xy,

= ki N2y
Np
(fps Chy¥m) =Y ¥u(p)) / fpdx, VY € X,
=1 K N2

where n is the unit normal outward to dK?. The choice of the low-order FE pairs results in an ill-posed discrete problem
due to the instability arising from violating the inf-sup condition. One way to resolve this problem is to add a stabilization
term G(pn, qn) [6,79], which is defined by

G(pn, qn) = ((I = Hp)pp, (I — Tp)qn), (21)
in the bilinear form. Here the projection operator ITj is defined as
no: L2(Qp) — Q}?f,
= 1. 2 1 (22)
I, . L(Qy) — th.

The projection operators l'[g or l'[,ll are designed in [6], and mainly act on the pressure as a stabilization. In [79], 1'[2 and
l'[; are constructed based on two local quadrature rules and a Clement-like interpolation respectively, which are easy to

compute locally. In this paper, Hg will be used to stabilize the Py-P1-P; finite element triple and H}] will be used to
stabilize the P1-Po-P1 finite element triple. Recall that ITj satisfies the following properties [6,57]

IIMhpllo = ClIpllo, VP € Qy, (23)
IIMap — pllo < Chilplli, ¥peH'()N Q. (24)
Now we define the stabilized FVEM approximation of problem (1)-(6): find (uy, py, ¢p) € Xngs Qngs Xny) such that for
all (i, qn, ¥n) € Ky, Qnys Xny),
af(uz,f‘hfvh)+5f(Fthh,Pﬁ)+g&p(¢,T,thl/fh)+g(¢f§,f‘hf"h “Ng)r
—g(u} ny, Ty e + 2l (P (uf), Pr (T Vi))r
=, Thyvn) +&(fp. Tny¥n),  VVh €Xpy, Yp € Xy,
by (uy, qn) + G(py. qn) =0, Yqn € Q-
Define the bilinear form
Bji(uy, pj. ). (Vh. Gn. ¥h))
=ay(uy, Ty V) +5f(Fthh,PZ) + 8ap(y, Chy ¥n) + &(y, ThyVh - mf)r
avy/d

Jtrace(Il)

Then the above scheme can be rewritten as:

— g(up - nyp, Ty, Yn)r + (P (u), P (Th,vi))r + by (ujy, n) + G(ph, qn)- (26)
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By (W}, pfy 07, (Vhy Gns W) = (B5, Thy Vi) + &(Fp, Thy W), Y(Vh, Ghs ¥n) € Xnps Qnys Xiy)- (27)
4. Error estimates

The goal of this section is to present the error analysis for the stabilized finite volume element discretization scheme (27).
The main idea is to build up a critical equivalence relationship between the stabilized finite volume element method and
the stabilized finite element method [77]. Therefore, we first recall the analysis results for the stabilized finite element
method and then prove the equivalence before we prove the convergence of the stabilized finite volume element method.

4.1. Stabilized finite element approximation

In this article, we choose P1-P1 and P1-Pg pairs for the finite element spaces Xn; x Qp;- Since the two pairs do
not satisfy the discrete inf-sup condition, we recall the following stabilized finite element method [58]: find (up, pp, @) €
(Xn;» Qny, Xn,) such that for all (i, qn, ¥n) € Xn;, Qn;. Xny),

By ((Wh. ph. dn). (Vi . ¥i)) = (5. Vi), + 2(fp. ¥n)e, (28)
where

Bn((up, pn, dn), Vi, Gns ¥h))
=ays(up, Vp) + gap(én, ¥n) + &{dn, Vh - Nf) — g{Uy - Ny, Yp)
N avVd
Vtrace(IT)

For P1-P1-P; finite element scheme, the bilinear form By ((-, -, -), (-, -, -)) satisfies the following continuity and weak coer-
civity properties [58]:

(Pz(up), Py (vy)) — b (Vy, pp) + by (up, qn) + G(Ph. qn)- (29)

Theorem 4.1.1. The bilinear form By, ((uy, p, én), (Vi, Gn, ¥n)) satisfies the continuity property

Bn((an, pn, dn), Wh, qn, ¥n)) < C(luplls + 1pnllo + Idnll) Vet + llgnllo + 1¥nl1), (30)
and the coercivity property

|Bn((Wh. ph. én). Vi, Q. ¥h))| :
sup : . ~r = BUIT + Ipallg + lgnlD)2. (31)
0@ Ui Qg Xug) (VR IIT + g I3 + 1¥m 1172

where 8 is a positive constant depending only on the domain. Moreover, the optimal error estimate for the finite element solution
(up, pr, ¢n) holds for sufficiently small h.

Theorem 4.1.2. Let (u, p, ¢) and (uy, pp, ¢n) be the solutions of (9) and (28), respectively. Then we have

lu—wpll1 + ¢ — @nll1 + IIp — prllo < Ch(llullz + ligll2 + Ipll1)- (32)
Moreover, the L2-error estimate is obtained:
lu—wpllo+ ll¢ — dnllo < CH*(lullz + lI¢ll2 + Ipll1)- (33)

Remark 4.1. For the P1-Pg-P; finite element scheme, one can show that the bilinear form Bj((, -, -), (-, -, -)) also satisfies
(30)-(33) by using the same arguments in [58] for the proof of Theorem 4.1.1 and 4.1.2.

4.2. Equivalence between the stabilized finite volume element method and the stabilized finite element method

In this subsection, we establish the equivalence relationship between the stabilized finite volume element and stabilized
finite element approximations for the coupled steady Stokes-Darcy problem. This relationship will play a key role in the
error estimation of the next subsection.

For a K € Tp,;, let Rjq (j=1,2,3) denote the quadrangle cmjq;.1mj41 as illustrated in Fig. 3 where we consider the
index j+ 3 to be the same as the index j. In order to prove the final equivalence relationship, we need to analyze the main
terms in the finite volume element formulation one by one in the following four lemmas.

Lemma 4.2.1. Let (u}, p;. #;) € Xns  Qns » Xn,) be the solution of (27). For all (vy, qn, ¥h) € Xn; , Qn; , Xn,), we have

Bp (@ Thy ) = 3 (VL Vg + [ (W} 1) (Th, ¥ — Yn)ds.
r

Keﬁp
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Fig. 3. A sketch of one element K.

Proof. For all ¢y, ¥ € Xh,, We can easily see that A¢g; =0, V(¥r(gj+1)) =0 on each element and “ is a constant on
K \T,V K €Tp,. We also recall the following identity [77]:

/ Yr(qjds + / Yr(qjr1)ds = / Ypds. (34)
qjmj () 2p\I mjqj+1 () 2p\T q;iqj+1 (1 2p\I’

Then by using these conclusions together with Green’s formula, (4), and (16), we get

ap @y Chy¥n)

*
==Y mew [ k2P
n=1 3K M 2p\T
3
== 3 Y vn@n / K20 g
KeTh, j=1 mjicm;
3
_ Yy / Ky @pends = Y0 Y tkadg vaasm,
KeTh, j= 1m)q]+1mj+1 KeTh, j=1

- Z(sz,wwh(qﬁo))m,ﬂ

Keﬁp j=1
& oy ¢,,
Y Y [ e -+ Y 5 [ s
KeThy 1=1m;q; 1m0 KEThp J=1m;q; 1m
> 29} ,
=y > k= FWUn(@je) = vwds + 3 (V5 Vink
KeEThp =m;q;,1mj,1\1 KETny
3
+ ) Z / ¢h S (@50 — s + > kAGE, Yk
K€Th, ]:1qu)'+1mj+1 Ar KeTh,
=y Z ¢“ f Yn(qj)ds + / Yn(qj41)ds — / VYnds)
Keﬁp] 1

Qijme\r m;qj+1 () Qp\T qjqj+1 (N 2p\I’

NP
+ > Yn(pn) f u;i~nfd5+/u,’§ g (—ynds+ Y kYo, V)i

n=1 eclal-Nals T KeThy

= 3 VgL, Vi + f (W} -0 ) (T, Y — Y)ds,

KT,

which completes the proof of Lemma 4.2.1. O
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Lemma 4.2.2. Let (4}, p}, ;) € Xn; > Qny , Xnp) be the solution of (27). For all (v, qn, ¥n) € Xn; » Qny , Xny), we have

df(uy, Tpvp) =20 Y (D(u}), D(vh))1<+/(ph 8y) (Chy Vi — Vp) - mgds
Ke771f

avd

———— [ P (u}) - Py (T, vy — Vp)ds.
m 7 ( h) ( hgVh h)
r

Proof. V u}, v, € Xp;, we can easily see that Auy =0, V(Vy(qj+1)) =0 on each element and 1—? is a constant on 9K \ T,
VKe 771f. Similar to (34), we have [77]:

/ vi(qj)ds + / vn(qj+1)ds = / vpds. (35)
qjm;j () 2\ mjqj1 () Qp\I qjqj+1 N2\

By using Green’s formula, (5)-(6), (16), and the above conclusions, we get

ag(uy, Th, Vi)

Ny
== Vn(pn) - / 2vD(u}) - nds
n=1 aKE 2\l

3
== > D @) / 2vD(u}) - nds

KeTn, j=1 mjicm;

3 3
=> > / QD) - mV(gjs)ds —v Y Y (V- (D)), V(gj11)9,,,

KETny i=1m;qj11mjq KeTn, j=1

3
—v Y Y W), VR(G);4

Keﬁf j=1
3 3
=y > / 20D@W}) - nVA(gj1) — Vs + H_ Y / 2vD(u) - nvpds
KEThy 1=1m;q;1mjs KETny 1=1m;q;1mjss

3
Z Z / 20D @) - n(Vh(gj1) —Vids +2v > (D(u}). D(Vy))k
<7,

mﬂj+1mj+1\r I<E77‘f

3
ZZ / 20D} - nf(V(gj1) — Vids +2v Y (D(u}), D(Vh))k
&

K
=lmjqjami OT €Ty

3
-3 Z [ 2D @ - wids 20 3 @) D)
T quj+1mj+1\r Keﬁf

*

Ny
+ th(pn) : / 2vD(uy) -nsds + f v ou, - (—=vp)ds
N r

ong
KN QAT
3
= > ) 2vD}) - n( / vi(qj)ds + / Vi (qjs1)ds — / vpds)
KeTn, j=1 qjmj @\l mjqji1 (1 Q2\L 9jqj+1 QAL

/((Zv]])(uh) ns-ng)-ny+ QvD@y) -ng-7)-7) - (Fhfvh—vh)ds—i— 2v Z (D(up), Dvp)k
Keﬁf
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3
= > ) 2vD@}) - n( f vi(q)ds + / Vi(qjy1)ds — / Vpds)

KeThy j=1 qjmj (1 Qp\I mjqji1 () 2p\T qjqj+1 (1 2p\T
av/d
+ /(p;ﬁ — 89p)(ThVh — Vi) - npds — ———= [ Pr(uy) - Pr(Tp v — Vp)ds
Jtrace(TI y
r ( )r

+2v Z (D(up), D(vp))k
Ke771f

=20 3 @)D+ [ (0 - 88 Thvh — ) myds
1(6771[ r

avv/d

————— | P (u}) - P (T, vy — vp)ds,
m r( h) z( h¢Vh h)
r

which completes the proof of Lemma 4.2.2. O

Lemma 4.2.3. Let (uf, p}, ;) € X, » Q,?f » Xn,) e the solution of (27). For all (vy, qn, ¥n) € Xn; » Qny , Xnp), we have

By (T Vi B) = — (B} V Vi) + / ((Vh = T Vi) - ) pis.
r
Proof. Vv, € X, J IS Q,?f, we can easily get Vpy =0, VVp(qj+1) =0 on each element. By Green’s formula, (35), and (16),
we have

by (Th, Vi, pj)

Ny
= Vn(pn)- / pjnds
n=1 aKE N 2\T

3
=y > / Pivn(qj+1) - nds

K&Thy i=Tmj em;

3 3
=— > > / Vi@j1) mds+ DY (V@) PRy,
Ke’lﬁf j=1 miqji1mjs Keﬁf j=1
3
+ > D k@), VP,
KeTh, j=1
3 3
=— > > / Vn(qj41) —vp) -nds— » Yy pr / Vp, - nds
KeTny i=1 mjqjiimjp KeThp =1 mjq;imip
3 3
== > Y n / (Vh(qj41) = Vi) -nds — Y > (V- Vi, Py,
KETny =1 mjqjyimj\T KeTn, j=1

3 3
+ Z Z / (Vp —Vp(qj41)) -npppds — Z Z(Vh,VPZ)mHl

K j= K i
Thy 1=tnjqj40mj0 AT €Thy J=1

3
=— > > i / Vh(qj)ds + / Vi(qj41)ds — f Vads)

K =
€Ty =1 gmNer mjqj+1 )2\l 9jqj+1 2\l
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Ny
— (P}, V- VR) = ) Vn(Pn) - / p;;nfds+/<vh -np)phds
n=1 aKF N2y NT r

=—(p}, V- V) +/((Vh — Lnyvp) - ny)ppds,
r

which completes the proof of Lemma 4.2.3. O

Lemma 4.2.4. Let (uf, p}, ;) € X, » thf » Xn,) be the solution of (27). For all (Vh, qn, ¥n) € (Xn, , Qn, , Xn,), we have

Bf(Fthh, pp) =—(ph. V-vp) + /((Vh — Lnyvp) - nyg)ppds.
r

Proof. Vv, € Xy, e p; € Q,}f, we can easily get Vpy is a constant on each element, by Green'’s formula, together with (18),
we have

E’f(rhfvh» py)

Ny
= Vn(pn)- / pjnds
n=1 Ok N 2/\T
Ny Ny
=Y Vi(pn)- / pinds — Y Vi (pn) - / pjnds
n=1 Y eratel n=1 TeialTaals

Ny !
= Z / V - Vh(pn)pidx + Z / Vi(pn) - Vphdx — /(Fhf"h “nf)phds
r

=l N o, =l Ao,

=> /rhfvh.Vp;dx—/(rhfvhmf)p,tds
KeTnp r

= Z /(Fhfvh—vhpr;;dx—i— Z /vh-Vp;dx—/(l“hfvh-nf)p;;ds
KeTh, KeTn; r

=—(pp V-Vh) + /((Vh — ThyVi) -nf)phds,
r

which completes the proof of Lemma 4.2.4. O

Combining the above four lemmas, we obtain the following equivalence relationship between the stabilized finite volume
element and stabilized finite element approximations for the coupled steady Stokes-Darcy problem:

Theorem 4.2.1. Let (u}, p}:. ¢}) € (Xn, . Qn, . Xn,) be the solution of (27). For all (Vi gn. Y1) € (Xn; . Qn, » Xn, ), we have
By ((ay:, pi. #1). (Vh. Gn. W) = B ((f, Dji. 70, (Vo G, ¥n)). (36)
Proof. By using the definition of E‘;((-, -+), (-,+,+)) in (26) and the above four lemmas, we have
By ((u}. D, 97+ (Vh. Gn. Y)

=ay(uy, Ch,vi) +Bf(rhfvha pp) + 8ap(¢ys Th,¥n) + (804, ThyVin - myp)r

—g(uy -ng, Ty, Yn)r + (P (up), Pr (T vi))r + by (uh, qn) + G(ppy. qn)

av/d
Jtrace(Il)
=2v Y (D(u}), D(Vh))k +/(p7$ — &) (ThyVh — Vp) - ngds
I<e771f r
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avd

— ———— [ Pr(u})) - P (T, Vi — Vp)ds — (pj;, V- Vi) + b (W}, qn) + G(p,
Jtrace(IT) o (W) - Pr ( hy¥h n) (Pp h) £ Wy, qn) (P> qn)
r

+/((Vh — Thyvp) - nyp)ppds + Z gk(Vfbﬁ,Vl//h)K-i-/guz g (Cp,Yn — Pn)ds
r

Keﬁp r

avv/d
Jtrace(Il)

Re-organizing the terms in the above equation and using the definition of Br((-,+, ), (-, -, ) in (29), we get

+ (8¢h. Tny Vi -mp)r — g(uy g, Th Yp)r + (P (uy), P (Th Vi)

BE((uf, pi, 61, (Vs Qs Yh))

av/d
=2v D(u}), D(v +/ v, -nrds + ———— [ Pyu’ - Prvids
KEZﬁ( W), DVp)k + | gpjvh - nf ey ) PrU Pev
f r r

— Py Vv + Y gk(Ve, Vim)k —/gUE-nfwhdSerf(uZ,qh)+G(p;§,qh)
K€Th, r

+ /Pﬁ(rhfvh — V) -npds + /((Vh — Th,Vh) -nf)PZdS]
T r
[ avdd avVd

_m(l’r(uh),l’r(rhﬂh))r— Jirace(m Pr(“h)-Pr(Fthh)dS]
r

+ | (84 Th; Vi 'nf>F+/(_g¢}T)(Fthh)'nfd5i| + [/guij Ny Th, Ynds — g(uy ~ﬂf,th1ﬁh)r]
- r r

av/d
=2v D(u;), D(v +/ v -nrds + ———— [ Prul - Ppvpds
K;% (D(uy), D(vp)) g gbpVh -y frace(I) Wy - FrVp
f r r

— ;. V-vp) + Z gk(Vor, V) —/gll?;'nfllfhds-l-bf(uﬁ,%)+G(Pf,,Qh)
KeThy r

= Bn((u}, P}, 07, (Vo Gn, Y1),

which completes the proof of Theorem 4.2.1. O

Remark4.2.1. In Theorem 4.2.1, we prove the equivalence relationship for the Stokes-Darcy model with the Beavers-Joseph-
Saffman-Jones interface condition. If one uses the Beavers-Joseph interface condition [4] instead of the Beavers-Joseph-
Saffman-Jones interface condition, the proof will be similar with the same steps. The major difficulty of adopting the
Beavers—Joseph interface condition arises from the coercivity of the bilinear form. But this difficulty was already addressed
in [13-15,34]. Specifically, in the proof we only need to replace the interface term P; (u}) by P (u; +KV¢;}) for Beavers-
Joseph interface condition and then apply the well-posedness theory in [14] to deal with this additional term.

Remark 4.2.2. Most existing finite volume methods of Stokes equations are restricted to the cases where the velocity and
pressure fields are approximated by piecewise linear or piecewise constants polynomials [27,57,77,78]. The linear finite vol-
ume scheme can be considered as a small perturbation of its corresponding finite element scheme, and the corresponding
difference term was well estimated in the literature. This leads to the equivalence between the linear finite volume scheme
and the linear finite element scheme. However, this is not the case for the high order finite volume schemes. Hence the es-
timate of the difference term is a challenging task. In fact, the necessary and sufficient conditions for the uniform ellipticity
of the bilinear forms of the higher-order finite volume schemes need to be established in terms of geometric requirements
on triangle meshes [76]. Another main difficulty in the analysis for higher-order finite volume schemes of Stokes equation
is to verify the inf-sup conditions for the discrete systems. Hence it is an interesting future work to study the higher-order
finite volume schemes for the Stokes-Darcy model.
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4.3. Convergence analysis

In this subsection, we show the optimal error estimates for the velocity, pressure, and hydraulic head. Note that from
the equivalence relationship between the stabilized finite volume element and stabilized finite element approximations in
the Theorem 4.2.1, we can obtain the following results about the bilinear form B} ((-, -, -), (-, -, ).

Theorem 4.3.1. The bilinear form B;((ul’;, pr #p)s Vi, qn, ¥n)) satisfies the continuity property

B ((uy, piss #1), (ho G, ¥m)) < gl + Nl + Ip3llo) Uil + I1¥mll + llgnllo), (37)

and the coercive property

| By ((uh. pj. 63). (Vi Gh- ¥n)| )
sup T S = AU+ IpEIE + eI, (38)
0 (Wh-an-Yn)€Xn - Qup- Xnp)  ([[VallT + 11gnllg + 11¥mllT)2

for all (uf, py, 7)), (Vh, qn, V) € Xns Qns s Xy, where B is a positive constant depending only on domain.
Now we will show the main convergence analysis result as follows.

Theorem 4.3.2. Let (u, p, ¢) and (uf, py, ¢y) be the solutions of (9) and (27), respectively. Then we have

la—uplls +1Ip — ppllo+ ¢ — @l < Ch(llallz + lIplla + I@ll2 + Ifrllo + 1l fpllo), (39)

and

I —willo + ¢ — 5 llo < ChR>(llull2 + [Pl + Ipll2 + ¢l + 11 fpll)- (40)

Proof. Choose (v, q, V) = (v, qn, ¥p) in (9). By subtracting (27) from (9) and using (36), we have

By((u—u},p—pi,d— @), (Vh.qn. Y1) — G(p, qn) = (Ff, vy — Th, Vi) + &(fp, ¥ — Thy, ¥n)- (41)
Using Cauchy-Schwarz inequality and (19), we have
|(Fr.Vh — Th Vi) + &(fp. ¥n — T, Y| < Ch(lifgllolivalls + 1 fplloll¥nll)- (42)

Setting (e,n,&) = (Inu — wy, ppp — pj, Jnd — ¢;) and using Cauchy-Schwarz inequality, (21), (30), (42), (23)-(24), and
(10)-(12), we deduce that
Bi((e.n.€). (Vh. qn. )
=G(p,qn) + (s, v — T, Vi) + 8(fp. ¥n — T, ¥n)
— Bn((—Iyu, p — onp, ¢ — Jnd). (Vi G, ¥n))
<16, qn)| + 1€, vh — Tn;Vh) + 8(fp, ¥ — T, ¥in)l
+|Br (@~ Iy, p — onp. & — Jn). (Vi Gn. ¥n)|
< Clip — OpplloClignllo + ITThgnllo) + Ch(lifsllolvilla + Il fpllo1¥nll1)
+ C(lu = Iqully +1Ip — prpllo + 1@ — Jndll) VAl + lignllo + 1¥nll1)
= Chliplilignlio + Ch(lifsllollvalls + Il fplloll¥nlin)
+ Ch(llallz + lIpllt + @ l12) VAl + lIgnllo + 1¥nll1)
< Ch(llullz + lIplls + i@l + s llo + Il fpllo) VAl + lignllo + 1¥mll1). (43)
Using (31) and (43), we deduce that
Bllel + Inli3 + 1§13 < sup P10, 8). W G V)
0 an Y€K+ Qng Xinp) (V1§ + [1gn 1§ + 1¥mlI) 2
< Ch(llullz + lIplls + l¢ll2 + IIfsllo + 1 fpllo)- (44)
Using the triangle inequality and (10)-(12), we have
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lu—uills +1Ip — ppllo + ¢ — By Il
= lu—Iyu+Ipu—uplly + Ip — pnp + pup — Ppllo + 1 — Jnd + Jng — By Il
< lla=TIpulls +Ip = pnpllo + lp — Jadllr + llells + lInllo + 1§11
< Ch(lullz +lIpll1 + ll¢ll2 + Ifsllo + I fpllo)-
Thus, we obtain (39). O

The L%-error estimate is obtained using the Aubin-Nitsche duality argument. Let (u, p, ¢) and (up, py, #y) be the solu-
tions of (9) and (27), respectively. The dual problem is to find (w,r,£) € Xy x Q5 x Xp, such that, V(v,q, ¥) € Xy x Qf x Xj,

B((v,q,¥), (w,1,§)) = /(U—uZ)V+/(¢—¢;‘,‘)w. (45)
Qf Qp

The solution of the dual problem (45) has the regularity:

Iwllz + lIrlls + 1€ ]2 < C(l¢ — ¢y llo + lu — ujllo). (46)

Subtracting (27) with (vy, qp, ¥p) = (Ihw, ppr, Jpé€) from (9) with (v, q, ¥) = (Iyw, ppr, Jp€) and using (36), we have

Bp((u—uf,p—pi, ¢ — ), UnW, par, Jn))
=G(p, pnr) + (€5, [hnW — Th 1nW) + &(fp, Jn€ — Tn, Jné). (47)

Choosing (v.q, V) = (u—u}, p — py, ¢ — ¢;) in (45) and using (47), we obtain

lu— w13 + 1o — o7 113
=B((u—uy,p—pp. ¢ —¢p), (W,1,§))
=Bp((u—uj,p—pj.¢—¢p). (W, r,8) —G(p—pji.1)
=By((u—uj.p—pj.d— ). (W—IyW.r — pr.& — Jpf))
+ Bp((u—uj. p— pi. ¢ — ). UnW. ppr, Jn&)) — G(p — pj.1)
=By((u—uj, p—pj.d— ). (W—IyW.T — ppr. & — Jpf))
+G(p, pur) + (Bf, InW — Th  Iyw) + &(fp, JnE — Th, Jn) — G(p — pj. 7). (48)
Using (30), (39), (10)-(12) and (46), we have

|Bh((—uj, p— Pir ¢ — ). (W — IaW.T — o1, & — Jn$))]
< C(lu—uglli +1Ip = ppllo + i — Gl (AW — Inwll1 + [Ir — pprllo + 1€ — Jr& 1)
< CR*(lullz + lIpll1 + g ll2 + €5 llo + I fpllod UIwllz + [Tl + 1€112)
< Ch?*(Jullz + Ipll + ll¢l2 + €5 llo + Il fpllo) (I — wi llo + [l — 5 llo). (49)
Using (21), Cauchy-Schwarz inequality and (24), (12), (46), we have

|G(p, pn)I
=1G(p, ppr —1) + G(p, 1]
= Cllp — ppllollpar —rllo + Cllp — HppliollTIh (onr — Mllo + Cllp — Hppllollr — nrllo
= Cllp — Hppllollpar —rllo + Cllp — Hppliollr — Mnrllo
< Ch?liplirlirih
< CR2|Iplli (llu — wfllo + ll¢ — b llo)- (50)
Using (21), Cauchy-Schwarz inequality and (23)-(24), (39), (46), we have
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IG(p — p, 1)
< Clip = pyllollr = Txrllo + CIITIR(p — pp)llollr — TIxrllo
=< Clip = ppllollr — Mxrlo
< Chlip — pyllolirils
< Ch?(lullz + lIplh + lpll2 + I llo + Il Follo) (lu — willo + [l — ¢y llo)- (51)
Using (18)-(19), Cauchy-Schwarz inequality, (22), (24), (13)-(14), and (46), we have

|(f5, InW — Th  InW) + g(fp, JnE — T, Jné)I
= |(Ff — Tpfs, InW — Ty IgW) + g(fp =TI} fp, Jn& — T, Jn6)|
< C(Ify — TpfsllolInw — T InWllo + I|.fp — TIp Fplloll JnE — T'hy, Jn&llo
< CR*(Ifs 1 ITawlls + 1 Fplla 1 JnE N1
< Ch*(Ifs N1 Wiz + I Fplla & 112)
< CR*(IIfs 1l + [l fpll) (lu = wfllo + 16 — &5 llo)- (52)
Plugging (49)-(52) into (48), we obtain (40). O

5. Numerical experiments

In this section, we will give four numerical experiments to illustrate the features of the presented method for the
coupled Stokes-Darcy system, including the optimal accuracy orders, mass conservation, capability to conveniently deal
with complicated geometries, and applicability to realistic parameters and problems.

An implicit treatment of the projection operator I1, was used in [6] for the implementation of the stabilized term.
In this paper we consider another implementation technique, which provides an explicit computation for I, or I — Iy
at the element level with the standard nodal data structures. In the following we will briefly discuss about the explicit
computation for 1'[2 based on two local quadrature rules [57] and 1'1,11 based on Clement-like interpolation [79].

A suitable choice of I — Hg based on two local Gaussian quadrature rules is given by [57]:

1/2
||<1—n2)ph||o={ f (pn)*dx — / (ph)zdx} . YPhe Q. KeTh,. (53)
K.j(j=2) K1
Here
N(k)
/ gdx =" gxnwi,
K.k =1

where x; is the quadrature point, wy is the quadrature weight, and N (k) represents the total number of quadrature points.
Hence it is easy to see that [ — 1'[2 can be explicitly computed at the element level to obtain the results equivalent to that
of the implicit treatment. And the stabilization term can be computed by

Gpn.an) =y { / (ph*qh)dx—/(ph *qh)dX}, VK € Th;, VPh. G € Qp, - (54)
KeThs "k j(jz2) K1

A suitable choice of l'[}l is to define its interpolation by using a projection onto the dual volume associated with each
node [79]. For each node pj e Ny, j=1,2,---, Ny, let S; C Qf denote the union of triangles that share the common
vertex pj, and ¢; denote the continuous, piecewise linear basis function such that ¢;(pm) = §;jm. We define I — H,]] based
on Clement-like interpolation:

I =T pallox =lpn— Y wigjllok, VK €Th; j=1,2,---, Ny. (55)
pjek

w; can be computed by following formula:

 Dkes; VitKOpk

i = , 56
" Zkesj Vi(K) 5o
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Table 1

Errors of the P1-Po-P; with explicit implementation of the stabilization term.
i luy—uflo Jup—ugfli lp—pallo Igp — "o I1dp — "I
4 3.9148E-2 5.4441E-1 1.4616E—1 1.4548E—2 2.9927E—-1
8 1.0092E—2 2.8015E—1 6.9687E—2 3.6620E—3 1.4983E—1
16 2.5360E—3 1.4105E—1 2.8983E—2 9.1678E—4 7.4942E—2
32 6.3399E—4 7.0641E—-2 1.2923E-2 2.2919E—-4 3.7474E-2
64 1.5846E—4 3.5333E-2 6.1567E—3 5.7285E—-5 1.8738E—2
Rate 1.9872 0.9864 11414 1.9971 0.9994

Table 2

Errors of the P1-Po-P; with implicit implementation of the stabilization term.
i luy—uffllo Jup—ugl lp—pallo o — b0 1dp — "I
4 3.9342E-2 5.4427E—1 1.8499E—1 1.4549E—-2 2.9927E—-1
8 1.0117E-2 2.8017E—1 7.9226E—-2 3.6614E—3 1.4983E—-1
16 2.5364E-3 1.4106E—1 3.0841E—-2 9.1657E—4 7.4942E—-2
32 6.3389E—4 7.0642E—2 1.3278E—-2 2.2915E—4 3.7474E-2
64 1.5844E—4 3.5334E-2 6.2281E—3 5.7279E-5 1.8738E—2
Rate 1.9891 0.9864 1.2263 1.9972 0.9994

where pg is the restrict of p; on element K € ’77,f and Vj(K) is the volume of the element K € S;. See [79] for more details
about the construction of l'I,ll. Hence it is easy to see that [ — l'[,l1 can be explicitly computed at the element level. And the
stabilization term can be computed by VK € Thf,Vph, qn € Q,?f

Gpman) =Y ((ph,qh)x — (D wigj.ank — (Pr, Y Widpk+ () widj, ¥ Wj¢j)1<)« (57)

Ke'ﬁ,f pjek pjek pjek pjek

Example 1. We first investigate on the solution errors and convergence rates of the proposed method with different
implementation techniques by using this example with known analytic solutions. Let the computational domain be

Q =1[0,1] x [-1,1], where Qf =[0,1] x [0,1], £, =[0,1] x [-1,0], and I = [0, 1] x {0}. Choose \/% =1v=1,
g=1,z=0, and K =kI, where I is the identity matrix and k = 1. The Dirichlet boundary data and the source terms are
chosen such that the exact solution of the Stokes-Darcy system with the Beavers-Joseph-Saffman-Jones interface boundary
condition is given by

¢p = (e¥ —e7Y)sin(x),
us =[£ sin@2my) cos(x), (—2k + %(sin(ny))z) sin(x)]7, (58)
pr=0.

In Tables 1-3, we provide the solution errors in both L2 and H' norms for the two finite element triples: Pi-Po-P;
and P1-P1-P7. Both the implicit implementation and the explicit implementation are considered for the stabilization term.
These errors demonstrate the optimal convergence rates obtained in Theorem 4.3.2.

For the finite element triples P1-Po-P1, the results of the explicit implementation of the stabilization term in Table 1
are optimal and very close to those of the implicit implementation in Table 2, which numerically validates the convenient
explicit implementation technique. For the finite element triples P;-P1-P1, the results of the implicit implementation of
the stabilization term are the same as those of the explicit implementation in Table 3. This agrees with the theoretical
equivalence between the two types of implementation. We omit the redundant data here in order to shorten the presenta-
tion. Since the explicit implementation is more convenient than the implicit one while reaching the same optimal accuracy,
it is natural in practice to utilize the explicit implementation.

Example 2. We consider a numerical example in [51] to present our computational results of mass conservation and ro-
bustness with respect to the permeability for the proposed finite volume element method. Let the computational domain
be 2 =10,2] x [0, 2], where Qf =[0, 1] x [0,2], 2p =[1,2] x [0,2], and " = {1} x [0, 2]. The Qy is the free-flow domain
with a quadratic inflow profile uy =[y(2 — y), 0] on the left boundary and no-slip boundary conditions uy = [0, 0] on the

top and bottom boundaries. For the Darcy domain €2, Neumann boundary condition V¢, - n=0 is imposed on the top

and bottom boundary and Dirichlet boundary condition ¢, =0 is imposed on the right boundary. Choose \/% =1,

v=1,g=1,2z=0,and K=kI. Let f; =0 in Qf and fy, =0 in ;. To quantify the local mass-conservation characteristics,



18 R. Li et al. / Applied Numerical Mathematics 133 (2018) 2-24

Table 3

Errors of the P1-Pq-P; with explicit (implicit) implementation of the stabilization term.
i luy —u"lo Juyr—u"l llp—pallo gp — "o I1op — "I
4 3.8762E—-2 5.4534E—-1 1.3795E—1 1.4550E—-2 2.9927E—-1
8 9.9243E—-3 2.8036E—1 5.2526E—2 3.6610E—3 1.4983E—1
16 2.4877E-3 1.4109E—1 1.5774E-2 9.1642E—4 7.4942E—2
32 6.2193E—4 7.0646E—2 4.5826E—-3 2.2912E-4 3.7474E-2
64 1.5548E—4 3.5334E-2 1.3725E-3 5.7272E-5 1.8738E—2
Rate 1.9905 0.9871 1.6710 1.9972 0.9994

Table 4

The mass errors of the P1-P1-P; with different k in Example 2.
: k=1 k=10"2 k=10"* k=10"°
4 2.4351E—2 2.2135E—2 2.1228E-2 21211E-2
8 5.8995E—3 5.4333E-3 5.2191E-3 5.2140E—3
16 1.4502E-3 1.3577E-3 1.3041E-3 1.3022E-3
32 3.5768E—4 3.3967E—4 3.2628E—4 3.2553E—4
64 8.8332E-5 8.4834E—5 8.1651E—5 8.1385E—5

we consider the finite element triples P1-P1-P; with the explicit implementation of the stabilization term. The boundary
conditions on top and bottom sides of the whole domain imply that there is no mass lost there. So we intend to use the
difference of integrals of normal flux between left and right sides, namely inflow and out flow sides, to illustrate the mass
conservation of stabilized FVE method, we define the mass balance based on definition in [26] with slight modifications, let

0=| / l.l?; -Mjpds + / de’; - Noyeds|,
Tin Cout

where Iy, and Iy are inflow and out flow sides respectively, and n;;, and n,,s are the corresponding exterior unit normal
vector of I';; and [yye. It’s easy to compute the incoming flux integral equal to %. After a numerical piezometric head
¢y is obtained, then a numerical normal flux —KV¢p - n on the right boundary is computed. In Table 4, we show 6 with
different k =1,1072,1074,107% and h =1/4,1/8,1/16,1/32,1/64. It is easy to observe that # converges to 0 for all k with
the optimal rate O (h?), which well illustrates the mass conservation and the robustness of the method with respect to k.
Second, set h = 1/64 for the uniform mesh, we show the speed and the velocity streamlines for k=1,1072,10~4,107% in

Fig. 4, where the warmer color indicates higher speed of the flow.

Example 3. In this test we are interested in the application of the Stokes-Darcy model and the proposed method to an
industrial filtration system with curved boundaries [26,44].

The computational domain is a circular sector divided into the porous media and free flow sub-domains as shown in
Fig. 5. We impose homogeneous Dirichlet boundary condition on I'p; and homogeneous Neumann boundary condition on
I'p1 and T'p3. On the boundary of the free flow sub-domain, we impose the following Dirichlet boundary condition.

(—x/30,—y/30)", on T'fy,
uf=1 (0,-0.1)7, on Ty, (59)
(=0.1,0)T, on I'f3.

Choose ¢ =0.1, v=1, g=1, z=0, and K=kI. Set ff =0 in Qf, f, =0 in Q,. We divide Q into 45542 triangular
elements, with 17356 elements for Stokes domain and 28186 elements for Darcy domain. Consider the finite element
triples P1-P1-P1 with the explicit implementation of the stabilization term.

First, we consider the permeability in the porous medium is equal to 1078, Fig. 6(a) shows the speed and the streamlines
of the velocity and Fig. 6(b) shows the pressure. Second, we test the lower porous medium permeability, which is equal
to 1011, Fig. 7(a) shows the speed and the streamlines of the velocity and Fig. 7(b) shows the pressure. As we can see in
Figs. 6(b) and 7(b), the lower permeability in the porous medium results in a build up of pressure. The above results are
consistent with those obtained in [26].

To accurately simulating a filtration process, mass conservation is another critical property of the utilized numerical
model. For the above two cases with k= 1076 and k =10~!!, we give the mass balance § = 9.6E—3 and 9.6E—3 respec-
tively, which clearly illustrate the capability of the proposed method to keep the mass conservation.

Example 4. In the last example, we apply the proposed method to a more realistic simulation of the subsurface flow in a
karst aquifer. As shown in Fig. 8(left), the computational domain is a unit square divided into the porous media domain
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Fig. 4. Plot of the speed and the velocity streamlines for different k in Example 2. (For interpretation of the references to color in this figure, the reader is

referred to the web version of this article.)
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Fig. 5. Computational domain of a filtration problem.
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Fig. 6. P1-P;-P; with explicit implementation of the stabilization term for dead-end filter with K = 10~5. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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Fig. 7. P1-P1-P; with explicit implementation of the stabilization term for dead-end filter with K = 10~'". (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Fig. 8. Computational domain of a model problem. (For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.)



R. Li et al. / Applied Numerical Mathematics 133 (2018) 2-24 21

u u
18 16
17 15
16 14
15 13
14 12
13 14
12 1
11 09
1 08
09 07
08 06
07 05
06 0.4
05 03
04 02
03 0.1
02 001
0.1 0.001
0.01 0.0001
0.001 1E-05
0.0001 1E-06
1E-05
1E-06
0.6 . . . 0.6
X X
(a) s1 =1,s0 =125,k = 1076. (b) s1 = 1,82 = 1.0,k = 1076.
1 v 1
R u
19 18
18 1.7
17 16
0.8 16 0.8 15
15 14
14 1.3
13 12
12 14
06 11 06 1
1 09
0.9 08
> 08 > 07
07 06
0.4 06 0.4 05
05 0.4
0.4 03
03 02
02 0.1
0.1 001
02 0.01 02 0.001
0.001 0.0001
0.0001 1E-05
1E-05 1E-06
: 1E-06 o i L L
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
X X
(c) s1 =1,80 =15,k =10"6. (d) s1 =1,k =10"5.
U U
12 12
11 11
1 1
09 09
08 08
07 07
06 06
05 05
0.4 0.4
03 03
02 02
0.1 0.1
0.01 0.01
0.001
0.0001
0.6 0.8 . . 0.6 0.8
X X
(e) s1=1,80 =125k =104, (f) s1 =1,s0 = 1.25,k = 102,

Fig. 9. Streamlines and velocity for P1-P1-P;1 with explicit implementation of the stabilization term. (For interpretation of the references to color in this
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Qp and the free flow domain Q. Let Qf be the bounded curved domain ABCDEFGH with A =(0,0.5), B =(0.3,0.5219),
€ =(0.2,0), D =(0.3,0), E = (0.4,0.5207), F = (1,0.6), G = (1,0.8), and H = (0,0.65), 2 = /. Let ' = QN Q).
Compared with the Y-shape conduit in [45], we particularly consider the curved interface here. Choose o = 0.1, v =1,
g=1,z=0,and K=KI. Set ff =0inQy, f, =0inQp, and ¢, =01in9d2,/T. Let

(s1,0)T, on HA,
ur=1{ (0,517, onCD, (60)
(s2,0)7, on FG.

where s1 and s, are two constants. As shown in Fig. 8(right), we divide  into 17842 triangular elements: 3934 elements
for Stokes domain and 13908 elements for Darcy domain.

In the following, consider the finite element triples P1-P1-P; with the explicit implementation of the stabilization term.
We will first discuss the effect of different inflow and outflow rates. In Fig. 9, the warmer color indicates higher speed of the
flow and the line with arrows is the streamline. We choose s; =1 and s, = 1.25 in Fig. 9(a), sy =1 and s, =1 in Fig. 9(b),
and s; =1 and s; = 1.5 in Fig. 9(c). Compared with 9(a), we can see that (1) the less outflow rate in Fig. 9(b) causes more
water to be pushed out of the conduits into the porous media, which is what happens during a rain season; (2) the more
outflow rate in Fig. 9(c) causes more water to flow into the conduits from the porous media, which is what happens during
a dry season.

Furthermore, we show the effect of different boundary conditions by comparing Fig. 9(b) with Fig. 9(d). Let

(s1,0)T, on HA,
uf_{ 0,s1)T, on CD, (61)
and we impose the free outflow boundary conditions for the Stokes flow velocity on FG. Choose s; =1 and k =1075. The
simulation results are showed in Fig. 9(d). Compared with Fig. 9(b), the free outflow boundary condition increases the flow
speed in the conduits and hence changes the flow performance in the porous media.
Finally, we test the effect of k on the solution. Figs. 9(e) and 9(f) show the simulation results for k = 10~4,10~2 with
s1 =1 and s, = 1.25. When k becomes smaller, the flow speed in porous media is significantly reduced.

6. Conclusions

A stabilized finite volume element method was proposed to solve the coupled Stokes-Darcy model with two conforming
finite element triples. Rigorous error estimates are proved through an equivalence between the stabilized finite volume
element method and the stabilized finite element method. Implementation techniques for the stabilization are discussed.
Four numerical examples were presented to show that this convenient and efficient method with mass conservation is
optimally convergent, robust, and applicable for the realistic problems of coupling free and porous media flow.
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