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In this paper, we present a stabilized finite volume element method with the conforming 
finite element triples P1–P0–P1 and P1–P1–P1 for approximating the velocity, pressure, 
and hydraulic head of a coupled Stokes–Darcy problem. The proposed method is convenient 
to implement, computationally efficient, mass conserving, optimally accurate, and able 
to handle complex geometries; therefore, this method has great potential to be useful 
for realistic problems involving coupled free flow and porous media flow. To offset the 
lack of the inf-sup condition of the P1–P0 and P1–P1 elements for the Stokes equation, 
a parameter free stabilization term is added to the discrete formulation. Stability and 
optimal error estimates are proved based on a bridge built up between the finite volume 
element method and the finite element method. An element level implementation of 
the stabilization term is discussed so that an existing code package can be conveniently 
modified to handle the stabilization procedures. A series of numerical experiments are 
provided to illustrate the above features of the proposed method, the theoretical results, 
and the realistic applications.

 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The conforming finite volume element method (FVEM) is a highly effective numerical method for partial differential 
equations, and therefore it has been extensively studied and widely applied to different types of problems, see [5,9,10,
19,20,22,23,25,27,49,57,63,74,76] and references therein. The method combines the strengths of the finite volume and finite 
element methods. Specifically, as in the finite volume method, the FVEM is based on local conservation of mass, momentum, 
or energy. Also, as in the finite element method, the FVEM can easily deal with complicated geometries while also obtaining 
the optimal accuracy expected from the polynomials utilized for the finite element basis functions.

We consider the Stokes–Darcy model for coupling fluid flow in conduits with porous media flow. This type of coupled 
flow is often involved in many applications, such as subsurface flow problems [14,18,30,47,55], industrial filtrations [44], 
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Fig. 1. A sketch of the porous medium domain �p , fluid domain � f and interface �.

and flow in vuggy porous media [2]. The model consists of Stokes equations to govern the flow in conduits, Darcy’s law to 
govern the flow in porous media, and three interface conditions to couple these two constituent models together.

Due to the complexity of this model, many methods have been developed to numerically solve the Stokes–Darcy system, 
such as coupled finite element methods [12,13,48,52,58,62], domain decomposition methods (DDMs) [16,17,29,31,43,73], 
Lagrange multiplier methods [3,37,38,54], multigrid methods [1,11,64,80], discontinuous Galerkin methods [40,51,61,67,68], 
discontinuous finite volume element method [59,75], mortar finite element methods [32,35,41], least square methods [33,46,
56,66,72], partitioned time stepping methods [53,65,70], and boundary integral methods [7,8,71], hybridizable discontinuous 
Galerkin methods [36], and weak Galerkin methods [24,60]. We consider the conforming FVEM, and show that it is able 
to conveniently and efficiently solve sophisticated coupled flow problems while conserving mass and obtaining optimal 
convergence rates.

Practitioners often prefer to utilize low-order finite elements, such as P0 and P1 elements, since they are simple to 
implement and can provide enough accuracy for many applications. However, the P1–P0 and P1–P1 finite element pairs 
are not stable for the Stokes equations since they do not satisfy the inf-sup condition [21,39,42]. We use the idea in [6]
to develop a stabilized finite volume element method for applying the low-order finite element triples P1–P1–P1 and 
P1–P0–P1 to solve the Stokes–Darcy system, where P1 elements are applied to the second order primary formulation of 
the Darcy’s law. Implementation of the stabilized scheme relies on projection operators, which only need the standard nodal 
data structures and can be conveniently evaluated at the element level.

One might think that the development and analysis of a new method for the Stokes–Darcy model should simply follow 
by combining available approaches for the Stokes and Darcy problems; however, this is not the case. As we can see from 
the above existing literature for the Stokes–Darcy model, this combination approach only works partially since significant 
difficulties and technical issues often arise from the interface conditions. In our work, a major difficulty in the analysis 
is to bound the interface integrals arising from the interface conditions. To deal with this, we extend the equivalence 
relationship between the stabilized finite volume element method and a stabilized finite element method in [77] to the 
coupled Stokes–Darcy problem. The key for proving the equivalence is to handle the interface conditions appropriately. Once 
this relationship is established, we utilize existing theoretical results for the stabilized finite element method to analyze the 
stabilized finite volume element method for the Stokes–Darcy model, and we obtain optimal convergence rates in both H1

and L2 norms.
Based on the work in [6], we provide implementation techniques for the projection operators �0

h
and �1

h
which are the 

keys for the stabilization. We discuss about �0
h
based on two local quadrature rules and �1

h
based on Clement-like inter-

polation, both of which can be evaluated locally at the element level using standard finite element techniques. As a result, 
an existing code package can be easily modified to handle the stabilization procedures. Finally, the theoretical results and 
the features of the proposed method will be demonstrated by computational results, such as the optimal accuracy orders, 
mass conservation, capability to conveniently deal with complicated geometries, and applicability to realistic parameters 
and problems.

The paper is organized as follows: in section 2, we briefly introduce the Stokes–Darcy model and its weak formulation; in 
sections 3 and 4, the stabilized finite volume element method is proposed and analyzed; in section 5, some implementation 
issues are discussed and a series of numerical experiments are provided; finally, conclusions are presented in section 6.

Throughout the paper, the letter C denotes a positive constant independent of the mesh size and may indicate different 
values in different places.

2. A Coupled Stokes–Darcy problem

We consider a coupled Stokes–Darcy model in a bounded domain � ⊂ R
2 , consisting of a fluid region � f and a 

porous medium region �p , with interface � = ∂� f

⋂

∂�p . Both � f and �p have Lipschitz continuous boundaries. De-
fine �i = ∂�i\� for i = f , p. Moreover, let n f denote the unit normal vector of � pointing from � f to �p and let τ denote 
the corresponding unit tangential vector; see Fig. 1.
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In � f , the fluid flow is assumed to be governed by the Stokes equations:

{

−∇ · T(u f , p f ) = f f in � f ,

∇ · u f = 0 in � f ,
(1)

where T(u f , p f ) = −p f I + 2νD(u f ) is the stress tensor, D(u f ) = 1
2 (∇u f + (∇u f )

T ) is the velocity deformation tensor, ν is 
the kinetic viscosity, u f denotes the fluid velocity, p f denotes the kinematic pressure, and f f denotes a general body force 
term that includes gravitational acceleration.

In �p , the flow is governed by Darcy’s law:

{

∇ · up = f p in �p,

up = −K∇φp in �p,
(2)

where up is the specific discharge rate in the porous medium, K is the hydraulic conductivity tensor, f p is a sink/source 
term, and φp is the hydraulic head. Furthermore, φp is linearly related to the dynamic pressure pp : φp = z + pp

ρg
, where ρ

is the density, z is the relative depth from an arbitrary fixed reference height, and g is the gravitational acceleration. By (2), 
we obtain

−∇ · (K∇φp) = f p in �p . (3)

The key part for this coupled model is the interface conditions that describe how different types of flow interact at the 
fluid/porous medium interface �:

u f · n f = up · n f on �, (4)

−n f · (T(u f , p f ) · n f ) = g(φp − z) on �, (5)

−τ · (T(u f , p f ) · n f ) =
αν

√
d

√
trace(�)

τ · u f on �, (6)

where d denotes the space dimension, α is the Beavers–Joseph [4] constant depending on the properties of the porous 
medium, and the permeability � = Kν

g
. Let Pτ be the projection onto the tangent space on � defined as Pτ (u f ) = (u f ·τ ) ·τ . 

The last equation of (6) is called the Beavers–Joseph–Saffman–Jones condition [50,69].
For simplicity, we assume that the hydraulic head φp and the fluid velocity u f satisfy homogeneous Dirichlet boundary 

conditions except on �; i.e., φp = 0 on �p and u f = 0 on � f . We also assume that z = 0 and K = kI where I is the identity 
matrix.

The Sobolev space H s(D) = W 2,s(D) is defined in the usual way for D = � f or �p with the norm and seminorm ‖ · ‖s,D

and | · |s,D , respectively. We also define the spaces

X f = {v ∈ [H1(� f )]2 | v = 0 on ∂� f \ �},

Xp = {ψ ∈ H1(�p) | ψ = 0 on ∂�p \ �},

Q f = {q ∈ L2(� f )}.

In the rest of paper we use u, φ, and p to replace u f , φp, and p f for simpler notations in the analysis, in particular, we 
use the following notations for the norms:

‖u‖0 := ‖u‖L2(� f )
, ‖u‖1 := ‖u‖X f (� f ),

‖φ‖0 := ‖φ‖L2(�p)
, ‖φ‖1 := ‖φ‖Xp(�p),

‖p‖0 := ‖p‖L2(� f )
.

For a domain D (D = � f or �p), let (·, ·)D denote the L2 inner product on D and 〈·, ·〉 denote the L2 inner product on 

the interface � or the duality pairing between (H1/2
00 (�))′ and H1/2

00 (�).
With these notation, a weak formulation of the coupled Stokes–Darcy problem is given as follows [28,54]: Find (u, p) ∈

X f × Q f and φ ∈ Xp such that

⎧

⎪

⎨

⎪

⎩

a f (u,v) − b f (v, p) + gap(φ,ψ) + g〈φ,v · n f 〉� − g〈u · n f ,ψ〉� + αν
√
d√

trace(�)
〈Pτ (u),Pτ (v)〉�

= (f f ,v)� f
+ g( f p,ψ)�p , ∀v ∈ X f , ψ ∈ Xp,

b f (u,q) = 0, ∀q ∈ Q f ,

(7)

where the bilinear forms are defined as
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Fig. 2. Conforming triangulation and its dual.

a f (u,v) = 2ν(D(u),D(v))� f
,

ap(φ,ψ) = (k∇φ,∇ψ)�p ,

b f (v,q) = (∇ · v,q)� f
.

Define

B((u, p, φ), (v,q,ψ)) = a f (u,v) + gap(φ,ψ) + g〈φ,v · n f 〉 − g〈u · n f ,ψ〉

+
αν

√
d

√
trace(�)

〈Pτ (u),Pτ (v)〉 − b f (v, p) + b f (u,q). (8)

Then, we can rewrite the weak formulation (7) as

B((u, p, φ), (v,q,ψ)) = (f f ,v)� f
+ g( f p,ψ)�p , ∀(v,q,ψ) ∈ X f × Q f × Xp . (9)

3. Stabilized finite volume element method

Let Thi (i = f , p) be a regular triangulation of �i , where the mesh parameter hi = max
K∈Thi

diam(K ). Let Ni be the set 

of all the nodal points associated with the partition Thi , Ni be the total number of the nodes in Ni . The dual partition 
T ∗
hi

corresponding to the primal partition Thi is designed by connecting the barycentres of the triangles in Thi with the 
midpoints of their edges as shown in Fig. 2. For each nodal p j ∈ Ni( j = 1, 2, · · · , Ni), there exists a polygonal K ∗

j
∈ T ∗

hi
surrounding p j . K ∗

j is called box or control volume.

We define finite-dimensional subspaces of X f , Q f and Xp as follows,

Xh f
= {v ∈ C0(� f )

2 ∩ X f : v |K∈ [P1(K )]2 , ∀K ∈ Th f
},

Xhp
= {ψ ∈ C0(�p) ∩ Xp : ψ |K∈ P1(K ) , ∀K ∈ Thp

},

Q h f
�

{

Q 0
h f

= {q ∈ L2(� f ) ∩ Q f : q |K∈ P0(K ), ∀ K ∈ Th f
},

Q 1
h f

= {q ∈ C0(� f ) ∩ Q f : q |K∈ P1(K ), ∀ K ∈ Th f
}.

For the finite element spaces Xh f
×Q h f

× Xhp
, the following approximate properties hold: ∀(v, q, ψ) ∈ [H2(� f )]2×H1(� f ) ×

H2(�p), there exist approximations Ihv ∈ Xh f
, Jhψ ∈ Xhp

and ρhq ∈ Q h f
such that

‖v− Ihv‖l ≤ Ch2−l
f

‖v‖2, l = 0,1, (10)

‖ψ − Jhψ‖l ≤ Ch2−l
p ‖ψ‖2, l = 0,1, (11)

‖q − ρhq‖0 ≤ Ch f ‖q‖1, (12)

‖Ihv‖1 ≤ C‖v‖1, (13)

‖ Jhψ‖1 ≤ C‖ψ‖1, (14)

‖ρhq‖0 ≤ C‖q‖0. (15)

The test function spaces are defined by



6 R. Li et al. / Applied Numerical Mathematics 133 (2018) 2–24

X∗
h f

= {vh ∈ [L2(� f )]2 : vh|K ∗
j
∈ [P0(K

∗
j )]

2, ∀K ∗
j ∈ T

∗
h f

},

X∗
hp

= {ψh ∈ L2(�p) : ψh|K ∗
j
∈ P0(K

∗
j ), ∀K ∗

j ∈ T
∗
hp

}.

Define interpolation operator �h f
: Xh f

→ X∗
h f

by

�h f
vh(x) =

N f
∑

j=1

vh(p j)X j(x), ∀x ∈ � f ,∀vh ∈ Xh f
,

where

X j(x) =
{

1 if x ∈ K ∗
j
∈ T ∗

h f
,

0 otherwise,

and interpolation operator �hp
: Xhp

→ X∗
hp

by

�hp
ψh(x) =

Np
∑

j=1

ψh(p j)X j(x), ∀x ∈ �p,∀ψh ∈ Xhp
,

where

X j(x) =
{

1 if x ∈ K ∗
j
∈ T ∗

hp
,

0 otherwise.

For each nodal pn ∈Ni(n = 1, 2, · · · , Ni; i = f , p), we have

�hp
ψh(pn) =

Np
∑

j=1

ψh(p j)X j(pn) = ψh(pn), (16)

�h f
vh(pn) =

N f
∑

j=1

vh(p j)X j(pn) = vh(pn). (17)

The mappings �h f
and�hp

satisfy the following properties [57,77]: if vh ∈ Xh f
, ψh ∈ Xhp

, then
∫

K∈Th f

(vh − �h f
vh)dx = 0,

∫

K∈Thp

(ψh − �hp
ψh)dx = 0, (18)

‖vh − �h f
vh‖0 ≤ Ch‖vh‖1, ‖ψh − �hp

ψh‖0 ≤ Ch‖ψh‖1. (19)

To obtain the discrete formulation, perform the following steps: multiply the first equation in (1) by �h f
vh ∈ X∗

h f
and 

integrate over each dual element K ∗
j
∈ T ∗

h f
( j = 1, 2, · · · , N f ); multiply the second equation in (1) by qh ∈ Q h f

and integrate 

over each primal element K ∈ Th f
; multiply equation (3) by �hp

ψh ∈ X∗
hp

and integrate over each dual element K ∗
j
∈ T ∗

hp
( j =

1, 2, · · · , Np); apply integration by parts and interface condition (4)–(6); and add the above equations. The resulting discrete 
formulation is to find (u∗

h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q h f
, Xhp

) such that
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ã f (u
∗
h
,�h f

vh) + b̃ f (�h f
vh, p

∗
h
) + gãp(φ

∗
h
,�hp

ψh) + g〈φ∗
h
,�h f

vh · n f 〉�
−g〈u∗

h
· n f ,�hp

ψh〉� + αν
√
d√

trace(�)
〈Pτ (u∗

h
),Pτ (�h f

vh)〉�
= (f f ,�h f

vh) + g( f p,�hp
ψh), ∀vh ∈ Xh f

, ψh ∈ Xhp
,

b f (u
∗
h
,qh) = 0, ∀qh ∈ Q h f

,

(20)

where bilinear and linear forms are defined as follows:

ã f (u
∗
h,�h f

vh) = −
N f
∑

j=1

vh(p j) ·
∫

∂K ∗
j

⋂

� f \�

2νD(u∗
h) · nds, ∀u∗

h,vh ∈ Xh f
,

b̃ f (�h f
vh, p

∗
h) =

N f
∑

j=1

vh(p j) ·
∫

∂K ∗
j

⋂

� f \�

p∗
hnds, ∀vh ∈ Xh f

, p∗
h ∈ Q h f

,
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ãp(φ
∗
h ,�hp

ψh) = −
Np
∑

j=1

ψh(p j) ·
∫

∂K ∗
j

⋂

�p\�

k∇φ∗
h · nds, ∀φ∗

h ,ψh ∈ Xhp
,

〈φ∗
h ,�h f

vh · n f 〉� =
N f
∑

j=1

vh(p j) ·
∫

∂K ∗
j

⋂

� f

⋂

�

φ∗
hn f ds, ∀φ∗

h ∈ Xhp
,vh ∈ Xh f

,

〈u∗
h · n f ,�hp

ψh〉� =
Np
∑

j=1

ψh(p j) ·
∫

∂K ∗
j

⋂

�p

⋂

�

u∗
h · n f ds, ∀ψh ∈ Xhp

,u∗
h ∈ Xh f

,

〈Pτ (u∗
h),Pτ (�h f

vh)〉� =
N f
∑

j=1

vh(p j) ·
∫

∂K ∗
j

⋂

� f

⋂

�

(u∗
h · τ ) · τds, ∀u∗

h,vh ∈ Xh f
,

(f f ,�h f
vh) =

N f
∑

j=1

vh(p j) ·
∫

K ∗
j

⋂

� f

f f dx, ∀vh ∈ Xh f
,

( f p,�hp
ψh) =

Np
∑

j=1

ψh(p j)

∫

K ∗
j

⋂

�p

f pdx, ∀ψh ∈ Xh f
,

where n is the unit normal outward to ∂K ∗
j
. The choice of the low-order FE pairs results in an ill-posed discrete problem 

due to the instability arising from violating the inf-sup condition. One way to resolve this problem is to add a stabilization 
term G(ph, qh) [6,79], which is defined by

G(ph,qh) = ((I − �h)ph, (I − �h)qh), (21)

in the bilinear form. Here the projection operator �h is defined as

�h =
{

�0
h

: L2(� f ) → Q 0
h f

,

�1
h

: L2(� f ) → Q 1
h f

.
(22)

The projection operators �0
h
or �1

h
are designed in [6], and mainly act on the pressure as a stabilization. In [79], �0

h
and 

�1
h
are constructed based on two local quadrature rules and a Clement-like interpolation respectively, which are easy to 

compute locally. In this paper, �0
h

will be used to stabilize the P1–P1–P1 finite element triple and �1
h

will be used to 
stabilize the P1–P0–P1 finite element triple. Recall that �h satisfies the following properties [6,57]

||�hp||0 ≤ C ||p||0, ∀p ∈ Q f , (23)

||�hp − p||0 ≤ Ch||p||1, ∀p ∈ H1(�) ∩ Q f . (24)

Now we define the stabilized FVEM approximation of problem (1)–(6): find (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q h f
, Xhp

) such that for 
all (vh, qh, ψh) ∈ (Xh f

, Q h f
, Xhp

),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ã f (u
∗
h
,�h f

vh) + b̃ f (�h f
vh, p

∗
h
) + gãp(φ

∗
h
,�hp

ψh) + g〈φ∗
h
,�h f

vh · n f 〉�
−g〈u∗

h
· n f ,�hp

ψh〉� + αν
√
d√

trace(�)
〈Pτ (u∗

h
),Pτ (�h f

vh)〉�
= (f f ,�h f

vh) + g( f p,�hp
ψh), ∀vh ∈ Xh f

, ψh ∈ Xhp
,

b f (u
∗
h
,qh) + G(p∗

h
,qh) = 0, ∀qh ∈ Q h f

.

(25)

Define the bilinear form

B̃∗
h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh))

= ã f (u
∗
h,�h f

vh) + b̃ f (�h f
vh, p

∗
h) + gãp(φ

∗
h ,�hp

ψh) + g〈φ∗
h ,�h f

vh · n f 〉�

− g〈u∗
h · n f ,�hp

ψh〉� +
αν

√
d

√
trace(�)

〈Pτ (u∗
h),Pτ (�h f

vh)〉� + b f (u
∗
h,qh) + G(p∗

h,qh). (26)

Then the above scheme can be rewritten as:
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B̃∗
h
((u∗

h
, p∗

h
, φ∗

h
), (vh,qh,ψh)) = (f f ,�h f

vh) + g( f p,�hp
ψh), ∀(vh,qh,ψh) ∈ (Xh f

, Q h f
, Xhp

). (27)

4. Error estimates

The goal of this section is to present the error analysis for the stabilized finite volume element discretization scheme (27). 
The main idea is to build up a critical equivalence relationship between the stabilized finite volume element method and 
the stabilized finite element method [77]. Therefore, we first recall the analysis results for the stabilized finite element 
method and then prove the equivalence before we prove the convergence of the stabilized finite volume element method.

4.1. Stabilized finite element approximation

In this article, we choose P1–P1 and P1–P0 pairs for the finite element spaces Xh f
× Q h f

. Since the two pairs do 
not satisfy the discrete inf-sup condition, we recall the following stabilized finite element method [58]: find (uh , ph, φh) ∈
(Xh f

, Q h f
, Xhp

) such that for all (vh, qh, ψh) ∈ (Xh f
, Q h f

, Xhp
),

B̃h((uh, ph, φh), (vh,qh,ψh)) = (f f ,vh)� f
+ g( f p,ψh)�p , (28)

where

B̃h((uh, ph, φh), (vh,qh,ψh))

= a f (uh,vh) + gap(φh,ψh) + g〈φh,vh · n f 〉 − g〈uh · n f ,ψh〉

+
αν

√
d

√
trace(�)

〈Pτ (uh),Pτ (vh)〉 − b f (vh, ph) + b f (uh,qh) + G(ph,qh). (29)

For P1–P1–P1 finite element scheme, the bilinear form B̃h((·, ·, ·), (·, ·, ·)) satisfies the following continuity and weak coer-
civity properties [58]:

Theorem 4.1.1. The bilinear form B̃h((uh, ph, φh), (vh, qh, ψh)) satisfies the continuity property

B̃h((uh, ph, φh), (vh,qh,ψh)) ≤ C(‖uh‖1 + ‖ph‖0 + ‖φh‖1)(‖vh‖1 + ‖qh‖0 + ‖ψh‖1), (30)

and the coercivity property

sup
0 �=(vh,qh,ψh)∈(Xh f

, Qh f
, Xhp )

|B̃h((uh, ph, φh), (vh,qh,ψh))|
(‖vh‖21 + ‖qh‖20 + ‖ψh‖21)

1
2

≥ β(‖uh‖21 + ‖ph‖20 + ‖φh‖21)
1
2 , (31)

where β is a positive constant depending only on the domain. Moreover, the optimal error estimate for the finite element solution 
(uh, ph, φh) holds for sufficiently small h.

Theorem 4.1.2. Let (u, p, φ) and (uh, ph, φh) be the solutions of (9) and (28), respectively. Then we have

‖u− uh‖1 + ‖φ − φh‖1 + ‖p − ph‖0 ≤ Ch(‖u‖2 + ‖φ‖2 + ‖p‖1). (32)

Moreover, the L2-error estimate is obtained:

‖u− uh‖0 + ‖φ − φh‖0 ≤ Ch2(‖u‖2 + ‖φ‖2 + ‖p‖1). (33)

Remark 4.1. For the P1–P0–P1 finite element scheme, one can show that the bilinear form B̃h((·, ·, ·), (·, ·, ·)) also satisfies 
(30)–(33) by using the same arguments in [58] for the proof of Theorem 4.1.1 and 4.1.2.

4.2. Equivalence between the stabilized finite volume element method and the stabilized finite element method

In this subsection, we establish the equivalence relationship between the stabilized finite volume element and stabilized 
finite element approximations for the coupled steady Stokes–Darcy problem. This relationship will play a key role in the 
error estimation of the next subsection.

For a K ∈ Thi , let R j+1 ( j = 1, 2, 3) denote the quadrangle cm jq j+1m j+1 as illustrated in Fig. 3 where we consider the 
index j + 3 to be the same as the index j. In order to prove the final equivalence relationship, we need to analyze the main 
terms in the finite volume element formulation one by one in the following four lemmas.

Lemma 4.2.1. Let (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q h f
, Xhp

) be the solution of (27). For all (vh, qh, ψh) ∈ (Xh f
, Q h f

, Xhp
), we have

ãp(φ
∗
h ,�hp

ψh) =
∑

K∈Thp

(k∇φ∗
h ,∇ψh)K +

∫

�

(u∗
h · n f )(�hp

ψh − ψh)ds.
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Fig. 3. A sketch of one element K .

Proof. For all φ∗
h
, ψh ∈ Xhp

, we can easily see that 
φ∗
h

= 0, ∇(ψh(q j+1)) = 0 on each element and 
∂φ∗

h

∂n
is a constant on 

∂K \ �, ∀ K ∈ Thp
. We also recall the following identity [77]:

∫

q jm j

⋂

�p\�

ψh(q j)ds +
∫

m jq j+1
⋂

�p\�

ψh(q j+1)ds =
∫

q jq j+1
⋂

�p\�

ψhds. (34)

Then by using these conclusions together with Green’s formula, (4), and (16), we get

ãp(φ
∗
h ,�hp

ψh)

= −
Np
∑

n=1

ψh(pn)

∫

∂K ∗
n

⋂

�p\�

k
∂φ∗

h

∂n
ds

= −
∑

K∈Thp

3
∑

j=1

ψh(q j+1)

∫

m j+1cm j

k
∂φ∗

h

∂n
ds

=
∑

K∈Thp

3
∑

j=1

∫

m jq j+1m j+1

k
∂φ∗

h

∂n
ψh(q j+1)ds −

∑

K∈Thp

3
∑

j=1

(k
φ∗
h ,ψh(q j+1))R j+1

−
∑

K∈Thp

3
∑

j=1

(k∇φ∗
h ,∇(ψh(q j+1)))R j+1

=
∑

K∈Thp

3
∑

j=1

∫

m jq j+1m j+1

k
∂φ∗

h

∂n
(ψh(q j+1) − ψh)ds +

∑

K∈Thp

3
∑

j=1

∫

m jq j+1m j+1

k
∂φ∗

h

∂n
ψhds

=
∑

K∈Thp

3
∑

j=1

∫

m jq j+1m j+1\�

k
∂φ∗

h

∂n
(ψh(q j+1) − ψh)ds +

∑

K∈Thp

(k∇φ∗
h ,∇ψh)K

+
∑

K∈Thp

3
∑

j=1

∫

m jq j+1m j+1
⋂

�

k
∂φ∗

h

−∂n f

(ψh(q j+1) − ψh)ds +
∑

K∈Thp

(k
φ∗
h ,ψh)K

=
∑

K∈Thp

3
∑

j=1

k
∂φ∗

h

∂n
(

∫

q jm j

⋂

�p\�

ψh(q j)ds +
∫

m jq j+1
⋂

�p\�

ψh(q j+1)ds −
∫

q jq j+1
⋂

�p\�

ψhds)

+
Np
∑

n=1

ψh(pn)

∫

∂K ∗
n

⋂

�p

⋂

�

u∗
h · n f ds +

∫

�

u∗
h · n f (−ψh)ds +

∑

K∈Thp

(k∇φ∗
h ,∇ψh)K

=
∑

K∈Thp

(k∇φ∗
h ,∇ψh)K +

∫

�

(u∗
h · n f )(�hp

ψh − ψh)ds,

which completes the proof of Lemma 4.2.1. �
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Lemma 4.2.2. Let (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q h f
, Xhp

) be the solution of (27). For all (vh, qh, ψh) ∈ (Xh f
, Q h f

, Xhp
), we have

ã f (u
∗
h,�h f

vh) = 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K +

∫

�

(p∗
h − gφ∗

h )(�h f
vh − vh) · n f ds

−
αν

√
d

√
trace(�)

∫

�

Pτ (u∗
h) · Pτ (�h f

vh − vh)ds.

Proof. ∀ u∗
h
, vh ∈ Xh f

, we can easily see that 
u∗
h

= 0, ∇(vh(q j+1)) = 0 on each element and 
∂u∗

h

∂n
is a constant on ∂K \ �, 

∀ K ∈ Th f
. Similar to (34), we have [77]:

∫

q jm j

⋂

� f \�

vh(q j)ds +
∫

m jq j+1
⋂

� f \�

vh(q j+1)ds =
∫

q jq j+1
⋂

� f \�

vhds. (35)

By using Green’s formula, (5)–(6), (16), and the above conclusions, we get

ã f (u
∗
h,�h f

vh)

= −
N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f \�

2νD(u∗
h) · nds

= −
∑

K∈Th f

3
∑

j=1

vh(q j+1)

∫

m j+1cm j

2νD(u∗
h) · nds

=
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1

(2νD(u∗
h) · n)vh(q j+1)ds − ν

∑

K∈Th f

3
∑

j=1

(∇ · (D(u∗
h)),vh(q j+1))R j+1

− ν
∑

K∈Th f

3
∑

j=1

(D(u∗
h),∇(vh(q j+1)))R j+1

=
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1

2νD(u∗
h) · n(vh(q j+1) − vh)ds +

∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1

2νD(u∗
h) · nvhds

=
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1\�

2νD(u∗
h) · n(vh(q j+1) − vh)ds + 2ν

∑

K∈Th f

(D(u∗
h),D(vh))K

+
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1
⋂

�

2νD(u∗
h) · n f (vh(q j+1) − vh)ds + 2ν

∑

K∈Th f

(D(u∗
h),D(vh))K

=
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1\�

2νD(u∗
h) · n(vh(q j+1) − vh)ds + 2ν

∑

K∈Th f

(D(u∗
h),D(vh))K

+
N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f

⋂

�

2νD(u∗
h) · n f ds +

∫

�

ν
∂u∗

h

∂n f

· (−vh)ds

=
∑

K∈Th f

3
∑

j=1

2νD(u∗
h) · n(

∫

q jm j

⋂

� f \�

vh(q j)ds +
∫

m jq j+1
⋂

� f \�

vh(q j+1)ds −
∫

q jq j+1
⋂

� f \�

vhds)

+
∫

�

((2νD(u∗
h) · n f · n f ) · n f + (2νD(u∗

h) · n f · τ ) · τ ) · (�h f
vh − vh)ds + 2ν

∑

K∈Th f

(D(u∗
h),D(vh))K
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=
∑

K∈Th f

3
∑

j=1

2νD(u∗
h) · n(

∫

q jm j

⋂

� f \�

vh(q j)ds +
∫

m jq j+1
⋂

� f \�

vh(q j+1)ds −
∫

q jq j+1
⋂

� f \�

vhds)

+
∫

�

(p∗
h − gφ∗

h )(�h f
vh − vh) · n f ds −

αν
√
d

√
trace(�)

∫

�

Pτ (u∗
h) · Pτ (�h f

vh − vh)ds

+ 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K

= 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K +

∫

�

(p∗
h − gφ∗

h )(�h f
vh − vh) · n f ds

−
αν

√
d

√
trace(�)

∫

�

Pτ (u∗
h) · Pτ (�h f

vh − vh)ds,

which completes the proof of Lemma 4.2.2. �

Lemma 4.2.3. Let (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q 0
h f

, Xhp
) be the solution of (27). For all (vh, qh, ψh) ∈ (Xh f

, Q h f
, Xhp

), we have

b̃ f (�h f
vh, p

∗
h) = −(p∗

h,∇ · vh) +
∫

�

((vh − �h f
vh) · n f )p

∗
hds.

Proof. ∀vh ∈ Xh f
, p∗

h
∈ Q 0

h f
, we can easily get ∇p∗

h
= 0, ∇vh(q j+1) = 0 on each element. By Green’s formula, (35), and (16), 

we have

b̃ f (�h f
vh, p

∗
h)

=
N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f \�

p∗
hnds

=
∑

K∈Th f

3
∑

j=1

∫

m j+1cm j

p∗
hvh(q j+1) · nds

= −
∑

K∈Th f

3
∑

j=1

p∗
h

∫

m jq j+1m j+1

vh(q j+1) · nds +
∑

K∈Th f

3
∑

j=1

(∇ · vh(q j+1), p
∗
h)R j+1

+
∑

K∈Th f

3
∑

j=1

(vh(q j+1),∇p∗
h)R j+1

= −
∑

K∈Th f

3
∑

j=1

p∗
h

∫

m jq j+1m j+1

(vh(q j+1) − vh) · nds −
∑

K∈Th f

3
∑

j=1

p∗
h

∫

m jq j+1m j+1

vh · nds

= −
∑

K∈Th f

3
∑

j=1

p∗
h

∫

m jq j+1m j+1\�

(vh(q j+1) − vh) · nds −
∑

K∈Th f

3
∑

j=1

(∇ · vh, p∗
h)R j+1

+
∑

K∈Th f

3
∑

j=1

∫

m jq j+1m j+1
⋂

�

(vh − vh(q j+1)) · n f p
∗
hds −

∑

K∈Th f

3
∑

j=1

(vh,∇p∗
h)R j+1

= −
∑

K∈Th f

3
∑

j=1

p∗
h(

∫

q jm j

⋂

� f \�

vh(q j)ds +
∫

m jq j+1
⋂

� f \�

vh(q j+1)ds −
∫

q jq j+1
⋂

� f \�

vhds)
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− (p∗
h,∇ · vh) −

N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f

⋂

�

p∗
hn f ds +

∫

�

(vh · n f )p
∗
hds

= −(p∗
h,∇ · vh) +

∫

�

((vh − �h f
vh) · n f )p

∗
hds,

which completes the proof of Lemma 4.2.3. �

Lemma 4.2.4. Let (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q 1
h f

, Xhp
) be the solution of (27). For all (vh, qh, ψh) ∈ (Xh f

, Q h f
, Xhp

), we have

b̃ f (�h f
vh, p

∗
h) = −(p∗

h,∇ · vh) +
∫

�

((vh − �h f
vh) · n f )p

∗
hds.

Proof. ∀vh ∈ Xh f
, p∗

h
∈ Q 1

h f
, we can easily get ∇p∗

h
is a constant on each element, by Green’s formula, together with (18), 

we have

b̃ f (�h f
vh, p

∗
h)

=
N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f \�

p∗
hnds

=
N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f

p∗
hnds −

N f
∑

n=1

vh(pn) ·
∫

∂K ∗
n

⋂

� f

⋂

�

p∗
hnds

=
N f
∑

n=1

∫

K ∗
n

⋂

� f

∇ · vh(pn)p∗
hdx+

N f
∑

n=1

∫

K ∗
n

⋂

� f

vh(pn) · ∇p∗
hdx−

∫

�

(�h f
vh · n f )p

∗
hds

=
∑

K∈Th f

∫

K

�h f
vh · ∇p∗

hdx−
∫

�

(�h f
vh · n f )p

∗
hds

=
∑

K∈Th f

∫

K

(�h f
vh − vh) · ∇p∗

hdx+
∑

K∈Th f

∫

K

vh · ∇p∗
hdx−

∫

�

(�h f
vh · n f )p

∗
hds

= −(p∗
h,∇ · vh) +

∫

�

((vh − �h f
vh) · n f )p

∗
hds,

which completes the proof of Lemma 4.2.4. �

Combining the above four lemmas, we obtain the following equivalence relationship between the stabilized finite volume 
element and stabilized finite element approximations for the coupled steady Stokes–Darcy problem:

Theorem 4.2.1. Let (u∗
h
, p∗

h
, φ∗

h
) ∈ (Xh f

, Q h f
, Xhp

) be the solution of (27). For all (vh, qh, ψh) ∈ (Xh f
, Q h f

, Xhp
), we have

B̃∗
h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh)) = B̃h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh)). (36)

Proof. By using the definition of B̃∗
h
((·, ·, ·), (·, ·, ·)) in (26) and the above four lemmas, we have

B̃∗
h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh))

= ã f (u
∗
h,�h f

vh) + b̃ f (�h f
vh, p

∗
h) + gãp(φ

∗
h ,�hp

ψh) + 〈gφ∗
h ,�h f

vh · n f 〉�

− g〈u∗
h · n f ,�hp

ψh〉� +
αν

√
d

√
trace(�)

〈Pτ (u∗
h),Pτ (�h f

vh)〉� + b f (u
∗
h,qh) + G(p∗

h,qh)

= 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K +

∫

�

(p∗
h − gφ∗

h )(�h f
vh − vh) · n f ds
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−
αν

√
d

√
trace(�)

∫

�

Pτ (u∗
h) · Pτ (�h f

vh − vh)ds − (p∗
h,∇ · vh) + b f (u

∗
h,qh) + G(p∗

h,qh)

+
∫

�

((vh − �h f
vh) · n f )p

∗
hds +

∑

K∈Thp

gk(∇φ∗
h ,∇ψh)K +

∫

�

gu∗
h · n f (�hp

ψh − ψh)ds

+ 〈gφ∗
h ,�h f

vh · n f 〉� − g〈u∗
h · n f ,�hp

ψh〉� +
αν

√
d

√
trace(�)

〈Pτ (u∗
h),Pτ (�h f

vh)〉�.

Re-organizing the terms in the above equation and using the definition of B̃h((·, ·, ·), (·, ·, ·)) in (29), we get

B̃∗
h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh))

= 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K +

∫

�

gφ∗
hvh · n f ds +

αν
√
d

√
trace(�)

∫

�

Pτu
∗
h · Pτ vhds

− (p∗
h,∇ · vh) +

∑

K∈Thp

gk(∇φ∗
h ,∇ψh)K −

∫

�

gu∗
h · n f ψhds + b f (u

∗
h,qh) + G(p∗

h,qh)

+
[∫

�

p∗
h(�h f

vh − vh) · n f ds +
∫

�

((vh − �h f
vh) · n f )p

∗
hds

]

+
[

αν
√
d

√
trace(�)

〈Pτ (u∗
h),Pτ (�h f

vh)〉� −
αν

√
d

√
trace(�)

∫

�

Pτ (u∗
h) · Pτ (�h f

vh)ds

]

+
[

〈gφ∗
h ,�h f

vh · n f 〉� +
∫

�

(−gφ∗
h )(�h f

vh) · n f ds

]

+
[∫

�

gu∗
h · n f �hp

ψhds − g〈u∗
h · n f ,�hp

ψh〉�
]

= 2ν
∑

K∈Th f

(D(u∗
h),D(vh))K +

∫

�

gφ∗
hvh · n f ds +

αν
√
d

√
trace(�)

∫

�

Pτu
∗
h · Pτ vhds

− (p∗
h,∇ · vh) +

∑

K∈Thp

gk(∇φ∗
h ,∇ψh)K −

∫

�

gu∗
h · n f ψhds + b f (u

∗
h,qh) + G(p∗

h,qh)

= B̃h((u
∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh)),

which completes the proof of Theorem 4.2.1. �

Remark 4.2.1. In Theorem 4.2.1, we prove the equivalence relationship for the Stokes–Darcy model with the Beavers–Joseph–
Saffman–Jones interface condition. If one uses the Beavers–Joseph interface condition [4] instead of the Beavers–Joseph–
Saffman–Jones interface condition, the proof will be similar with the same steps. The major difficulty of adopting the 
Beavers–Joseph interface condition arises from the coercivity of the bilinear form. But this difficulty was already addressed 
in [13–15,34]. Specifically, in the proof we only need to replace the interface term Pτ (u∗

h
) by Pτ (u∗

h
+K∇φ∗

h
) for Beavers–

Joseph interface condition and then apply the well-posedness theory in [14] to deal with this additional term.

Remark 4.2.2. Most existing finite volume methods of Stokes equations are restricted to the cases where the velocity and 
pressure fields are approximated by piecewise linear or piecewise constants polynomials [27,57,77,78]. The linear finite vol-
ume scheme can be considered as a small perturbation of its corresponding finite element scheme, and the corresponding 
difference term was well estimated in the literature. This leads to the equivalence between the linear finite volume scheme 
and the linear finite element scheme. However, this is not the case for the high order finite volume schemes. Hence the es-
timate of the difference term is a challenging task. In fact, the necessary and sufficient conditions for the uniform ellipticity 
of the bilinear forms of the higher-order finite volume schemes need to be established in terms of geometric requirements 
on triangle meshes [76]. Another main difficulty in the analysis for higher-order finite volume schemes of Stokes equation 
is to verify the inf-sup conditions for the discrete systems. Hence it is an interesting future work to study the higher-order 
finite volume schemes for the Stokes–Darcy model.
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4.3. Convergence analysis

In this subsection, we show the optimal error estimates for the velocity, pressure, and hydraulic head. Note that from 
the equivalence relationship between the stabilized finite volume element and stabilized finite element approximations in 
the Theorem 4.2.1, we can obtain the following results about the bilinear form B̃∗

h
((·, ·, ·), (·, ·, ·)).

Theorem 4.3.1. The bilinear form B̃∗
h
((u∗

h
, p∗

h
, φ∗

h
), (vh, qh, ψh)) satisfies the continuity property

B̃∗
h((u

∗
h, p

∗
h, φ

∗
h ), (vh,qh,ψh)) ≤ C(‖u∗

h‖1 + ‖φ∗
h‖1 + ‖p∗

h‖0)(‖vh‖1 + ‖ψh‖1 + ‖qh‖0), (37)

and the coercive property

sup
0 �=(vh,qh,ψh)∈(Xh f

, Qh f
, Xhp )

|B̃∗
h
((u∗

h
, p∗

h
, φ∗

h
), (vh,qh,ψh))|

(‖vh‖21 + ‖qh‖20 + ‖ψh‖21)
1
2

≥ β(‖u∗
h‖

2
1 + ‖p∗

h‖
2
0 + ‖φ∗

h‖21)
1
2 , (38)

for all (u∗
h
, p∗

h
, φ∗

h
), (vh, qh, ψh) ∈ (Xh f

, Q h f
, Xhp

), where β is a positive constant depending only on domain.

Now we will show the main convergence analysis result as follows.

Theorem 4.3.2. Let (u, p, φ) and (u∗
h
, p∗

h
, φ∗

h
) be the solutions of (9) and (27), respectively. Then we have

‖u− u∗
h
‖1 + ‖p − p∗

h
‖0 + ‖φ − φ∗

h
‖1 ≤ Ch(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0), (39)

and

‖u− u∗
h
‖0 + ‖φ − φ∗

h
‖0 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖1 + ‖ f p‖1). (40)

Proof. Choose (v, q, ψ) = (vh, qh, ψh) in (9). By subtracting (27) from (9) and using (36), we have

B̃h((u− u∗
h
, p − p∗

h
, φ − φ∗

h
), (vh,qh,ψh)) − G(p,qh) = (f f ,vh − �h f

vh) + g( f p,ψh − �hp
ψh). (41)

Using Cauchy–Schwarz inequality and (19), we have

|(f f ,vh − �h f
vh) + g( f p,ψh − �hp

ψh)| ≤ Ch(‖f f ‖0‖vh‖1 + ‖ f p‖0‖ψh‖1). (42)

Setting (e, η, ξ) = (Ihu − u∗
h
, ρhp − p∗

h
, Jhφ − φ∗

h
) and using Cauchy–Schwarz inequality, (21), (30), (42), (23)–(24), and 

(10)–(12), we deduce that

B̃h((e,η, ξ), (vh,qh,ψh))

= G(p,qh) + (f f ,vh − �h f
vh) + g( f p,ψh − �hp

ψh)

− B̃h((u− Ihu, p − ρhp, φ − Jhφ), (vh,qh,ψh))

≤ |G(p,qh)| + |(f f ,vh − �h f
vh) + g( f p,ψh − �hp

ψh)|

+ |B̃h((u− Ihu, p − ρhp, φ − Jhφ), (vh,qh,ψh))|

≤ C‖p − �hp‖0(‖qh‖0 + ‖�hqh‖0) + Ch(‖f f ‖0‖vh‖1 + ‖ f p‖0‖ψh‖1)

+ C(‖u − Ihu‖1 + ‖p − ρhp‖0 + ‖φ − Jhφ‖1)(‖vh‖1 + ‖qh‖0 + ‖ψh‖1)

≤ Ch‖p‖1‖qh‖0 + Ch(‖f f ‖0‖vh‖1 + ‖ f p‖0‖ψh‖1)

+ Ch(‖u‖2 + ‖p‖1 + ‖φ‖2)(‖vh‖1 + ‖qh‖0 + ‖ψh‖1)

≤ Ch(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0)(‖vh‖1 + ‖qh‖0 + ‖ψh‖1). (43)

Using (31) and (43), we deduce that

β(‖e‖21 + ‖η‖20 + ‖ξ‖21)
1
2 ≤ sup

0 �=(vh,qh,ψh)∈(Xh f
,Qh f

,Xhp )

|B̃h((e,η, ξ), (vh,qh,ψh))|
(‖vh‖21 + ‖qh‖20 + ‖ψh‖21)

1
2

≤ Ch(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0). (44)

Using the triangle inequality and (10)–(12), we have
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‖u− u∗
h‖1 + ‖p − p∗

h‖0 + ‖φ − φ∗
h‖1

= ‖u− Ihu+ Ihu− u∗
h‖1 + ‖p − ρhp + ρhp − p∗

h‖0 + ‖φ − Jhφ + Jhφ − φ∗
h‖1

≤ ‖u− Ihu‖1 + ‖p − ρhp‖0 + ‖φ − Jhφ‖1 + ‖e‖1 + ‖η‖0 + ‖ξ‖1
≤ Ch(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0).

Thus, we obtain (39). �

The L2-error estimate is obtained using the Aubin–Nitsche duality argument. Let (u, p, φ) and (u∗
h
, p∗

h
, φ∗

h
) be the solu-

tions of (9) and (27), respectively. The dual problem is to find (w, r, ξ) ∈ X f × Q f × Xp such that, ∀(v, q, ψ) ∈ X f × Q f × Xp ,

B((v,q,ψ), (w, r, ξ)) =
∫

� f

(u− u∗
h)v+

∫

�p

(φ − φ∗
h )ψ. (45)

The solution of the dual problem (45) has the regularity:

‖w‖2 + ‖r‖1 + ‖ξ‖2 ≤ C(‖φ − φ∗
h‖0 + ‖u− u∗

h‖0). (46)

Subtracting (27) with (vh, qh, ψh) = (Ihw, ρhr, Jhξ) from (9) with (v, q, ψ) = (Ihw, ρhr, Jhξ) and using (36), we have

B̃h((u − u∗
h, p − p∗

h, φ − φ∗
h ), (Ihw,ρhr, Jhξ))

= G(p,ρhr) + (f f , Ihw− �h f
Ihw) + g( f p, Jhξ − �hp

Jhξ). (47)

Choosing (v, q, ψ) = (u − u∗
h
, p − p∗

h
, φ − φ∗

h
) in (45) and using (47), we obtain

‖u− u∗
h‖

2
0 + ‖φ − φ∗

h‖20
= B((u − u∗

h, p − p∗
h, φ − φ∗

h ), (w, r, ξ))

= B̃h((u − u∗
h, p − p∗

h, φ − φ∗
h ), (w, r, ξ)) − G(p − p∗

h, r)

= B̃h((u − u∗
h, p − p∗

h, φ − φ∗
h ), (w − Ihw, r − ρhr, ξ − Jhξ))

+ B̃h((u− u∗
h, p − p∗

h, φ − φ∗
h ), (Ihw,ρhr, Jhξ)) − G(p − p∗

h, r)

= B̃h((u − u∗
h, p − p∗

h, φ − φ∗
h ), (w − Ihw, r − ρhr, ξ − Jhξ))

+ G(p,ρhr) + (f f , Ihw− �h f
Ihw) + g( f p, Jhξ − �hp

Jhξ) − G(p − p∗
h, r). (48)

Using (30), (39), (10)–(12) and (46), we have

|B̃h((u− u∗
h, p − p∗

h, φ − φ∗
h ), (w − Ihw, r − ρhr, ξ − Jhξ))|

≤ C(‖u− u∗
h‖1 + ‖p − p∗

h‖0 + ‖φ − φ∗
h‖1)(‖w − Ihw‖1 + ‖r − ρhr‖0 + ‖ξ − Jhξ‖1)

≤ Ch2(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0)(‖w‖2 + ‖r‖1 + ‖ξ‖2)

≤ Ch2(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0)(‖u − u∗
h‖0 + ‖φ − φ∗

h‖0). (49)

Using (21), Cauchy–Schwarz inequality and (24), (12), (46), we have

|G(p,ρhr)|

= |G(p,ρhr − r) + G(p, r)|

≤ C‖p − �hp‖0‖ρhr − r‖0 + C‖p − �hp‖0‖�h(ρhr − r)‖0 + C‖p − �hp‖0‖r − �hr‖0
≤ C‖p − �hp‖0‖ρhr − r‖0 + C‖p − �hp‖0‖r − �hr‖0
≤ Ch2‖p‖1‖r‖1
≤ Ch2‖p‖1(‖u− u∗

h‖0 + ‖φ − φ∗
h‖0). (50)

Using (21), Cauchy–Schwarz inequality and (23)–(24), (39), (46), we have
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|G(p − p∗
h, r)|

≤ C‖p − p∗
h‖0‖r − �hr‖0 + C‖�h(p − p∗

h)‖0‖r − �hr‖0
≤ C‖p − p∗

h‖0‖r − �hr‖0
≤ Ch‖p − p∗

h‖0‖r‖1
≤ Ch2(‖u‖2 + ‖p‖1 + ‖φ‖2 + ‖f f ‖0 + ‖ f p‖0)(‖u − u∗

h‖0 + ‖φ − φ∗
h‖0). (51)

Using (18)–(19), Cauchy–Schwarz inequality, (22), (24), (13)–(14), and (46), we have

|(f f , Ihw− �h f
Ihw) + g( f p, Jhξ − �hp

Jhξ)|

= |(f f − �0
hf f , Ihw− �h f

Ihw) + g( f p − �0
h f p, Jhξ − �hp

Jhξ)|

≤ C(‖f f − �0
hf f ‖0‖Ihw− �h f

Ihw‖0 + ‖ f p − �0
h f p‖0‖ Jhξ − �hp

Jhξ‖0
≤ Ch2(‖f f ‖1‖Ihw‖1 + ‖ f p‖1‖ Jhξ‖1)
≤ Ch2(‖f f ‖1‖w‖2 + ‖ f p‖1‖ξ‖2)
≤ Ch2(‖f f ‖1 + ‖ f p‖1)(‖u − u∗

h‖0 + ‖φ − φ∗
h‖0). (52)

Plugging (49)–(52) into (48), we obtain (40). �

5. Numerical experiments

In this section, we will give four numerical experiments to illustrate the features of the presented method for the 
coupled Stokes–Darcy system, including the optimal accuracy orders, mass conservation, capability to conveniently deal 
with complicated geometries, and applicability to realistic parameters and problems.

An implicit treatment of the projection operator �h was used in [6] for the implementation of the stabilized term. 
In this paper we consider another implementation technique, which provides an explicit computation for �h or I − �h

at the element level with the standard nodal data structures. In the following we will briefly discuss about the explicit 
computation for �0

h
based on two local quadrature rules [57] and �1

h
based on Clement-like interpolation [79].

A suitable choice of I − �0
h
based on two local Gaussian quadrature rules is given by [57]:

‖(I − �0
h)ph‖0 =

{ ∫

K , j( j≥2)

(ph)
2dx−

∫

K ,1

(ph)
2dx

}1/2

, ∀ph ∈ Q 1
h f

, K ∈ Th f
. (53)

Here

∫

K ,k

g(x)dx =
N(k)
∑

I=1

g(xI )w I ,

where xI is the quadrature point, w I is the quadrature weight, and N(k) represents the total number of quadrature points. 
Hence it is easy to see that I − �0

h
can be explicitly computed at the element level to obtain the results equivalent to that 

of the implicit treatment. And the stabilization term can be computed by

G(ph,qh) =
∑

K∈Th f

{ ∫

K , j( j≥2)

(ph ∗ qh)dx−
∫

K ,1

(ph ∗ qh)dx

}

, ∀K ∈ Th f
,∀ph, qh ∈ Q 1

h f
. (54)

A suitable choice of �1
h
is to define its interpolation by using a projection onto the dual volume associated with each 

node [79]. For each node p j ∈ N f , j = 1, 2, · · · , N f , let S j ⊂ � f denote the union of triangles that share the common 
vertex p j , and φ j denote the continuous, piecewise linear basis function such that φ j(pm) = δ j,m . We define I − �1

h
based 

on Clement-like interpolation:

‖(I − �1
h)ph‖0,K = ‖ph −

∑

p j∈K

w jφ j‖0,K , ∀K ∈ Th f
, j = 1, 2, · · · , N f . (55)

w j can be computed by following formula:

w j =
∑

K∈S j
V j(K )pK

∑

K∈S j
V j(K )

, (56)



R. Li et al. / Applied Numerical Mathematics 133 (2018) 2–24 17

Table 1

Errors of the P1–P0–P1 with explicit implementation of the stabilization term.

1
h

‖u f − u f
h‖0 |u f − u f

h |1 ‖p − ph‖0 ‖φp − φp
h‖0 |φp − φp

h |1
4 3.9148E−2 5.4441E−1 1.4616E−1 1.4548E−2 2.9927E−1

8 1.0092E−2 2.8015E−1 6.9687E−2 3.6620E−3 1.4983E−1

16 2.5360E−3 1.4105E−1 2.8983E−2 9.1678E−4 7.4942E−2

32 6.3399E−4 7.0641E−2 1.2923E−2 2.2919E−4 3.7474E−2

64 1.5846E−4 3.5333E−2 6.1567E−3 5.7285E−5 1.8738E−2

Rate 1.9872 0.9864 1.1414 1.9971 0.9994

Table 2

Errors of the P1–P0–P1 with implicit implementation of the stabilization term.

1
h

‖u f − u f
h‖0 |u f − u f

h |1 ‖p − ph‖0 ‖φp − φp
h‖0 |φp − φp

h |1
4 3.9342E−2 5.4427E−1 1.8499E−1 1.4549E−2 2.9927E−1

8 1.0117E−2 2.8017E−1 7.9226E−2 3.6614E−3 1.4983E−1

16 2.5364E−3 1.4106E−1 3.0841E−2 9.1657E−4 7.4942E−2

32 6.3389E−4 7.0642E−2 1.3278E−2 2.2915E−4 3.7474E−2

64 1.5844E−4 3.5334E−2 6.2281E−3 5.7279E−5 1.8738E−2

Rate 1.9891 0.9864 1.2263 1.9972 0.9994

where pK is the restrict of ph on element K ∈ Th f
and V j(K ) is the volume of the element K ∈ S j . See [79] for more details 

about the construction of �1
h
. Hence it is easy to see that I − �1

h
can be explicitly computed at the element level. And the 

stabilization term can be computed by ∀K ∈ Th f
, ∀ph, qh ∈ Q 0

h f

G(ph,qh) =
∑

K∈Th f

(

(ph,qh)K − (
∑

p j∈K

w jφ j,qh)K − (ph,
∑

p j∈K

w jφ j)K + (
∑

p j∈K

w jφ j,
∑

p j∈K

w jφ j)K

)

. (57)

Example 1. We first investigate on the solution errors and convergence rates of the proposed method with different 
implementation techniques by using this example with known analytic solutions. Let the computational domain be 

� = [0, 1] × [−1, 1], where � f = [0, 1] × [0, 1], �p = [0, 1] × [−1, 0], and � = [0, 1] × {0}. Choose αν
√
d√

trace(�)
= 1, ν = 1, 

g = 1, z = 0, and K = kI, where I is the identity matrix and k = 1. The Dirichlet boundary data and the source terms are 
chosen such that the exact solution of the Stokes–Darcy system with the Beavers–Joseph–Saffman–Jones interface boundary 
condition is given by

⎧

⎨

⎩

φp = (ey − e−y) sin(x),

u f = [ k
π sin(2π y) cos(x), (−2k + k

π2 (sin(π y))2) sin(x)]T ,

p f = 0.

(58)

In Tables 1–3, we provide the solution errors in both L2 and H1 norms for the two finite element triples: P1–P0–P1

and P1–P1–P1 . Both the implicit implementation and the explicit implementation are considered for the stabilization term. 
These errors demonstrate the optimal convergence rates obtained in Theorem 4.3.2.

For the finite element triples P1–P0–P1 , the results of the explicit implementation of the stabilization term in Table 1
are optimal and very close to those of the implicit implementation in Table 2, which numerically validates the convenient 
explicit implementation technique. For the finite element triples P1–P1–P1 , the results of the implicit implementation of 
the stabilization term are the same as those of the explicit implementation in Table 3. This agrees with the theoretical 
equivalence between the two types of implementation. We omit the redundant data here in order to shorten the presenta-
tion. Since the explicit implementation is more convenient than the implicit one while reaching the same optimal accuracy, 
it is natural in practice to utilize the explicit implementation.

Example 2. We consider a numerical example in [51] to present our computational results of mass conservation and ro-
bustness with respect to the permeability for the proposed finite volume element method. Let the computational domain 
be � = [0, 2] × [0, 2], where � f = [0, 1] × [0, 2], �p = [1, 2] × [0, 2], and � = {1} × [0, 2]. The � f is the free-flow domain 
with a quadratic inflow profile u f = [y(2 − y), 0] on the left boundary and no-slip boundary conditions u f = [0, 0] on the 
top and bottom boundaries. For the Darcy domain �p , Neumann boundary condition ∇φp · n = 0 is imposed on the top 

and bottom boundary and Dirichlet boundary condition φp = 0 is imposed on the right boundary. Choose αν
√
d√

trace(�)
= 1, 

ν = 1, g = 1, z = 0, and K = kI. Let f f = 0 in � f and f p = 0 in �p . To quantify the local mass-conservation characteristics, 
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Table 3

Errors of the P1–P1–P1 with explicit (implicit) implementation of the stabilization term.

1
h

‖u f − u f
h‖0 |u f − u f

h |1 ‖p − ph‖0 ‖φp − φp
h‖0 |φp − φp

h |1
4 3.8762E−2 5.4534E−1 1.3795E−1 1.4550E−2 2.9927E−1

8 9.9243E−3 2.8036E−1 5.2526E−2 3.6610E−3 1.4983E−1

16 2.4877E−3 1.4109E−1 1.5774E−2 9.1642E−4 7.4942E−2

32 6.2193E−4 7.0646E−2 4.5826E−3 2.2912E−4 3.7474E−2

64 1.5548E−4 3.5334E−2 1.3725E−3 5.7272E−5 1.8738E−2

Rate 1.9905 0.9871 1.6710 1.9972 0.9994

Table 4

The mass errors of the P1–P1–P1 with different k in Example 2.

1
h

k = 1 k = 10−2 k = 10−4 k = 10−6

4 2.4351E−2 2.2135E−2 2.1228E−2 2.1211E−2

8 5.8995E−3 5.4333E−3 5.2191E−3 5.2140E−3

16 1.4502E−3 1.3577E−3 1.3041E−3 1.3022E−3

32 3.5768E−4 3.3967E−4 3.2628E−4 3.2553E−4

64 8.8332E−5 8.4834E−5 8.1651E−5 8.1385E−5

we consider the finite element triples P1–P1–P1 with the explicit implementation of the stabilization term. The boundary 
conditions on top and bottom sides of the whole domain imply that there is no mass lost there. So we intend to use the 
difference of integrals of normal flux between left and right sides, namely inflow and out flow sides, to illustrate the mass 
conservation of stabilized FVE method, we define the mass balance based on definition in [26] with slight modifications, let

θ = |
∫

�in

u∗
h · ninds +

∫

�out

K∇φ∗
h · noutds|,

where �in and �out are inflow and out flow sides respectively, and nin and nout are the corresponding exterior unit normal 
vector of �in and �out . It’s easy to compute the incoming flux integral equal to 4

3 . After a numerical piezometric head 
φ∗
h

is obtained, then a numerical normal flux −K∇φ∗
h

· n on the right boundary is computed. In Table 4, we show θ with 
different k = 1, 10−2, 10−4, 10−6 and h = 1/4, 1/8, 1/16, 1/32, 1/64. It is easy to observe that θ converges to 0 for all k with 
the optimal rate O (h2), which well illustrates the mass conservation and the robustness of the method with respect to k. 
Second, set h = 1/64 for the uniform mesh, we show the speed and the velocity streamlines for k = 1, 10−2, 10−4, 10−6 in 
Fig. 4, where the warmer color indicates higher speed of the flow.

Example 3. In this test we are interested in the application of the Stokes–Darcy model and the proposed method to an 
industrial filtration system with curved boundaries [26,44].

The computational domain is a circular sector divided into the porous media and free flow sub-domains as shown in 
Fig. 5. We impose homogeneous Dirichlet boundary condition on �p2 and homogeneous Neumann boundary condition on 
�p1 and �p3 . On the boundary of the free flow sub-domain, we impose the following Dirichlet boundary condition.

u f =

⎧

⎨

⎩

(−x/30,−y/30)T , on � f 1,

(0,−0.1)T , on � f 2,

(−0.1,0)T , on � f 3.

(59)

Choose α = 0.1, ν = 1, g = 1, z = 0, and K = kI. Set f f = 0 in � f , f p = 0 in �p . We divide � into 45542 triangular 
elements, with 17356 elements for Stokes domain and 28186 elements for Darcy domain. Consider the finite element 
triples P1–P1–P1 with the explicit implementation of the stabilization term.

First, we consider the permeability in the porous medium is equal to 10−6 . Fig. 6(a) shows the speed and the streamlines 
of the velocity and Fig. 6(b) shows the pressure. Second, we test the lower porous medium permeability, which is equal 
to 10−11 . Fig. 7(a) shows the speed and the streamlines of the velocity and Fig. 7(b) shows the pressure. As we can see in 
Figs. 6(b) and 7(b), the lower permeability in the porous medium results in a build up of pressure. The above results are 
consistent with those obtained in [26].

To accurately simulating a filtration process, mass conservation is another critical property of the utilized numerical 
model. For the above two cases with k = 10−6 and k = 10−11 , we give the mass balance θ = 9.6E−3 and 9.6E−3 respec-
tively, which clearly illustrate the capability of the proposed method to keep the mass conservation.

Example 4. In the last example, we apply the proposed method to a more realistic simulation of the subsurface flow in a 
karst aquifer. As shown in Fig. 8(left), the computational domain is a unit square divided into the porous media domain 
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Fig. 4. Plot of the speed and the velocity streamlines for different k in Example 2. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

Fig. 5. Computational domain of a filtration problem.
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Fig. 6. P1–P1–P1 with explicit implementation of the stabilization term for dead-end filter with K = 10−6 . (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

Fig. 7. P1–P1–P1 with explicit implementation of the stabilization term for dead-end filter with K = 10−11 . (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

Fig. 8. Computational domain of a model problem. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)



R. Li et al. / Applied Numerical Mathematics 133 (2018) 2–24 21

Fig. 9. Streamlines and velocity for P1–P1–P1 with explicit implementation of the stabilization term. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)
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�p and the free flow domain � f . Let � f be the bounded curved domain ABCDE FGH with A = (0, 0.5), B = (0.3, 0.5219), 
C = (0.2, 0), D = (0.3, 0), E = (0.4, 0.5207), F = (1, 0.6), G = (1, 0.8), and H = (0, 0.65), �p = �/� f . Let � = � f

⋂

�p . 
Compared with the Y-shape conduit in [45], we particularly consider the curved interface here. Choose α = 0.1, ν = 1, 
g = 1, z = 0, and K = kI. Set f f = 0 in� f , f p = 0 in�p , and φp = 0 in ∂�p/�. Let

u f =

⎧

⎨

⎩

(s1,0)
T , on H A,

(0, s1)
T , on CD,

(s2,0)
T , on F G.

(60)

where s1 and s2 are two constants. As shown in Fig. 8(right), we divide � into 17842 triangular elements: 3934 elements 
for Stokes domain and 13908 elements for Darcy domain.

In the following, consider the finite element triples P1–P1–P1 with the explicit implementation of the stabilization term. 
We will first discuss the effect of different inflow and outflow rates. In Fig. 9, the warmer color indicates higher speed of the 
flow and the line with arrows is the streamline. We choose s1 = 1 and s2 = 1.25 in Fig. 9(a), s1 = 1 and s2 = 1 in Fig. 9(b), 
and s1 = 1 and s2 = 1.5 in Fig. 9(c). Compared with 9(a), we can see that (1) the less outflow rate in Fig. 9(b) causes more 
water to be pushed out of the conduits into the porous media, which is what happens during a rain season; (2) the more 
outflow rate in Fig. 9(c) causes more water to flow into the conduits from the porous media, which is what happens during 
a dry season.

Furthermore, we show the effect of different boundary conditions by comparing Fig. 9(b) with Fig. 9(d). Let

u f =
{

(s1,0)
T , on H A,

(0, s1)
T , on CD,

(61)

and we impose the free outflow boundary conditions for the Stokes flow velocity on FG . Choose s1 = 1 and k = 10−6 . The 
simulation results are showed in Fig. 9(d). Compared with Fig. 9(b), the free outflow boundary condition increases the flow 
speed in the conduits and hence changes the flow performance in the porous media.

Finally, we test the effect of k on the solution. Figs. 9(e) and 9(f) show the simulation results for k = 10−4, 10−2 with 
s1 = 1 and s2 = 1.25. When k becomes smaller, the flow speed in porous media is significantly reduced.

6. Conclusions

A stabilized finite volume element method was proposed to solve the coupled Stokes–Darcy model with two conforming 
finite element triples. Rigorous error estimates are proved through an equivalence between the stabilized finite volume 
element method and the stabilized finite element method. Implementation techniques for the stabilization are discussed. 
Four numerical examples were presented to show that this convenient and efficient method with mass conservation is 
optimally convergent, robust, and applicable for the realistic problems of coupling free and porous media flow.
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