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a b s t r a c t

In this paper, we demonstrate the convergence analysis of Robin–Robin domain

decomposition method with finite element discretization for Stokes–Darcy system

with Beavers-Joseph interface condition, with particular attention paid to the case

which is convergent for small viscosity and hydraulic conductivity in practice.

Based on the techniques of the discrete harmonic extension and discrete Stokes

extension, the convergence is proved and the almost optimal geometric convergence

rate is obtained for the case of γf > γp. Here γf and γp are positive Robin

parameters introduced in Cao et al., 2011, which was not able to show the analysis

for γf > γp but only numerically illustrated its importance to the convergence for

the practical situation with small viscosity and hydraulic conductivity. The analysis

result provides a general guideline of choice on the relevant parameters to obtain

the convergence and geometric convergence rate. The numerical results verify the

theoretical conclusion.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Stokes–Darcy model couples Stokes equations and Darcy equations with suitable interface conditions.

Consider the coupled Stokes–Darcy system on a bounded domain Ω = ΩD ∪ΩS ⊂ R
d, (d = 2, 3), where ΩD

is the porous media domain and ΩS is the free-flow domain. The free flow in ΩS can be governed by steady

Stokes equations: find the fluid velocity uS and the kinematic pressure pS , such that

− ∇ · T(uS , pS) = fS , ∇ · uS = 0, in ΩS , (1)

where T(uS , pS) = 2νD(uS)−pSI is the stress tensor, D(uS) = 1/2(∇uS +∇T uS) is the deformation tensor,

ν is the kinematic viscosity of the fluid, and fS is an given external force. The porous media flow in ΩD can
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be described by primary Darcy equations: find the hydrostatic pressure ϕD, such that

− ∇ · (K∇ϕD) = fD, in ΩD, (2)

where fD is a source term and K is the hydraulic conductivity tensor assumed here to be homogeneous

isotropic, i.e. K = KI with a constant K. On the interface Γ = ΩD ∩ ΩS , the following three interface

conditions are imposed:

− τ j · (T(uS , pS) · nS) = ατ j · (uS + K∇ϕD), (3)

uS · nS = K∇ϕD · nD, − nS · (T(uS , pS) · nS) = g(ϕD − z), (4)

where nS and nD denote the unit outer normal to the fluid and the porous media regions on the interface

Γ , respectively; τ j (j = 1, . . . , d − 1) denote mutually orthogonal unit tangential vectors to the interface

Γ ; α is a constant depending on µ and K. The second condition (3) is the Beavers-Joseph (BJ) interface

condition [1–6], which is more difficult than the simplified Beavers–Joseph–Saffman condition [7]. Denote

the spaces by

XS = ¶v ∈ [H1(ΩS)]d ♣ v = 0 on ∂ΩS\Γ♢, QS = L2(ΩS), XD = ¶ψ ∈ H1(ΩD) ♣ ψ = 0 on ∂ΩD\Γ♢.

For the domain D (D = ΩS or ΩD), (·, ·)D denotes the L2 inner product on the domain D, and ⟨·, ·⟩ denotes

the L2 inner product on the interface Γ or the duality pairing between (H
1/2
00 (Γ ))′ and H

1/2
00 (Γ ). The weak

formulation of the coupled system (1)–(4) is to find (uS , pS) ∈ XS ×QS and ϕD ∈ XD such that

aS(uS ,v) + bS(v, pS) + aD(ϕD, ψ) + ⟨gϕD,v · nS⟩ − ⟨uS · nS , ψ⟩ + α⟨Pτ (uS + K∇ϕD), Pτ v⟩

= (fD, ψ)ΩD
+ (fS ,v)ΩS

+ ⟨gz,v · nS⟩ ∀v ∈ XS , ψ ∈ XD, (5)

bS(uS , q) = 0 ∀ q ∈ QS , (6)

where the bilinear forms are defined as

aD(ϕD, ψ) = (K∇ϕD,∇ψ)ΩD
, aS(uS ,v) = 2ν(D(uS),D(v))ΩS

, bS(v, q) = −(∇ · v, q)ΩS
,

and Pτ denotes the projection onto the tangent space on Γ , i.e. Pτ u =
∑d−1

j=1(u · τ j)τ j .

A parallel Robin–Robin domain decomposition method (DDM) was proposed for the steady Stokes–Darcy

model with BJ condition in [8], based on the corresponding basic work for BJS condition [9]. Then this work

was extended to steady Naiver–Stokes–Darcy model in [10]. The same Robin–Robin transmission conditions

were also utilized to develop a non-iterative domain decomposition method for the unsteady Stokes–Darcy

model [11,12]. Based on the Robin conditions for Stokes and Darcy equations

nS · (T(uS , pS) · nS) + γf uS · nS = ηf on Γ , − Pτ (T(uS , pS) · nS) − αPτ uS = ηfτ on Γ , (7)

γpK∇ϕD · nD + gϕD = ηp on Γ , (8)

and the compatibility conditions of Lemma 1 in [8], the parallel Robin–Robin DDM was proposed in [8]:

1. Give the initial values η0
p ∈ L2(Γ ), η0

f ∈ L2(Γ ) and η0
fτ ∈

]

L2(Γ )
]d

.

2. For k = 0, 1, 2, . . ., independently solve the Stokes and Darcy systems with Robin boundary conditions.

More precisely, uk
S ∈ XS and pk

S ∈ QS are computed from

aS(uk
S ,v) + bS(v, pk

S) + γf ⟨uk
S · nS ,v · nS⟩ + α⟨Pτ uk

S , Pτ v⟩

= ⟨ηk
f ,v · nS⟩ − ⟨ηk

fτ , Pτ v⟩ + (fS ,v)ΩS
∀ v ∈ XS , (9)

bS(uk
S , q) = 0 ∀ q ∈ QS , (10)

and ϕk
D ∈ XD is computed from

aD(ϕk
D, ψ) + ⟨

gϕk
D

γp
, ψ⟩ = ⟨

ηk
p

γp
, ψ⟩ + (fD, ψ)ΩD

∀ψ ∈ XD. (11)
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3. Update ηk+1
p and ηk+1

f :

ηk+1
f =

γf

γp
ηk

p − (1 + a)gϕk
D + gz, ηk+1

fτ = αPτ (K∇ϕk
D), ηk+1

p = −ηk
f + (γf + γp)uk

S · nS + gz. (12)

In [8,10] the convergence of Robin–Robin DDM was proved for γf ≤ γp, and the geometric convergence

rate (γfγ
−1
p )1/2 was obtained when γf < γp. This result works well for the case with moderate viscosity

ν and hydraulic conductivity K. However, for most of the practical coefficients, such as ν = 10−6 and

10−7 ≤ K ≤ 10−2 which may cause severe computational difficulties [13], the Robin–Robin DDM with

finite element discretization seems difficult to converge for γf < γp according to the results in [8]. Although

the numerical experiments in [8] indicate that Robin parameter γf > γp might provide decent convergence

results for small ν and K, there was not a complete analysis to support their observations due to the difficulty

arising from the coupling feature of the model, especially the Beavers-Joseph interface condition. Motivated

by the practical applications and analysis difficulty, we provide a rigorous analysis with novel techniques

based on the discrete harmonic extension and discrete Stokes extension to prove the convergence and the

geometric convergence rate of Robin–Robin algorithm when γf > γp.

2. Convergence analysis for the finite element discretization of the proposed DDM

In this section, we consider the regular triangulation Th with uniform mesh size h for the domain ΩD and

ΩS . Th is assumed to be shape-regular and quasi-uniform as well. The Taylor–Hood finite element pair and

the quadratic finite elements are considered for the Stokes equations and the primary formulation of the

Darcy equations, respectively. The finite element spaces for the coupled Stokes–Darcy problem (1)–(4) are

denoted as XSh ∈ XS , QSh ∈ QS , and XDh ∈ XD. Then the finite element solution space of the decoupled

Stokes–Darcy system (5)–(6) and (9)–(11) are given ϕDh, ϕ
k
Dh ∈ XDh, uSh,u

k
Sh ∈ XSh, and pSh, p

k
Sh ∈ QSh.

Due to the page limitation, we omit the details of the discrete weak formulations which can be obtained from

(5)–(6) and (9)–(11) by adding h in the subscript of all the unknown functions and test functions. Then, we

define the error functions

ek
φ = ϕDh − ϕk

Dh, ek
u = uSh − uk

Sh, e
k
p = pSh − pk

Sh, ε
k
D = ηph − ηk

ph, ε
k
S = ηfh − ηk

fh, εk
Sτ = ηfτh − ηk

fτh,

and derive the error equations

γpaD(ek
φ, ψh) + ⟨gek

φ, ψh⟩ = ⟨εk
D, ψh⟩ ∀ψh ∈ XDh, (13)

aS(ek
u,v) + bS(v, ek

p) + γf ⟨ek
u · nS ,v · nS⟩ + α⟨Pτ ek

u, Pτ v⟩ = ⟨εk
S ,v · nS⟩ − ⟨εk

Sτ
, Pτ vh⟩ ∀ vh ∈ XSh,

(14)

bS(ek
u, qh) = 0 ∀ qh ∈ QSh, (15)

based on (5)–(6), (9)–(11) and their finite element discretization formulations. Similar to Lemma 2 in [8],

we can obtain the following lemma.

Lemma 2.1. The error functions satisfy

∥εk+1
D ∥2

Γ
= ∥εk

S∥2
Γ

+ (γ2
p − γ2

f )∥ek
u · nS∥2

Γ
− 2(γf + γp)as(ek

u, e
k
u) − 2(γf + γp)α⟨Pτ (ek

u + K∇ek−1
φ ), Pτ ek

u⟩,

(16)

∥εk+1
S ∥2

Γ
=

⎤

γf

γp

⎣2

∥εk
D∥2

Γ
+

⎠

1 −

⎤

γf

γp

⎣2
⎜

∥gek
φ∥2

Γ
− 2γf

⎤

1 +
γf

γp

⎣

gaD(ek
φ, e

k
φ). (17)

3
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In (16) and (17), the two terms involving ∥ek
u · nS∥2

Γ
and ∥gek

φ∥2
Γ

are negative when γf > γp, which is

one of the main problems encountered in the original analysis framework [8]. To address such difficulty and

continue the convergence analysis, we introduce key estimates for εD and εS by employing discrete harmonic

extension, discrete Stokes extension and the inverse inequality [14].

Lemma 2.2. Let Ω ⊂ R
d and Vh(Ω) ⊂ H1(Ω) be the finite element space with shape-regular and

quasi-uniform triangulation Th. Then for any uh ∈ Vh(Ω), we have

♣uh♣H1/2,∂Ω ≤ Ch−1/2∥uh∥0,∂Ω . (18)

Lemma 2.3. Assume that K < γ−1
p h and ν < h. Then εk

D satisfies

∥εk
D∥2

Γ
≤

1

1 −Kγph−1
γpaD(ek

φ, e
k
φ) +

1

1 −Kγph−1
∥gek

φ∥2
Γ
. (19)

εk
S satisfies

∥εk
S∥2

Γ
≤

1

1 − νh−1

(

aS(ek
u, e

k
u) + γ2

f ∥ek
u · nS∥2

Γ

[

. (20)

Proof. Let Eεk
D ∈ XDh be the discrete harmonic extension of εk

D [14,15], i.e., Eεk
D = εk

D on Γ and satisfy

(∇Eεk
D,∇ψh)ΩD

= 0, ∀ψh ∈ X0
Dh := XDh ∩H1

0 (ΩD). (21)

Then the discrete harmonic extension Eεk
D satisfies (see Lemma 4.10 in [14])

♣εk
D♣

2

H
1/2

00
,Γ ≈ ♣Eεk

D♣
2

H1/2,∂ΩD
≈ ♣Eεk

D♣
2

1. (22)

Setting ψh = Eεk
D and substituting into (13), we have

⟨εk
D, ε

k
D⟩ = γpaD(ek

φ, Eε
k
D) + ⟨gek

φ, ε
k
D⟩. (23)

Hence, using Cauchy–Schwarz inequality, (22) and (18), we can obtain from (23) that

∥εk
D∥2

Γ
≤ γpaD(ek

φ, e
k
φ)

1

2 aD(Eεk
D, Eε

k
D)

1

2 + ∥gek
φ∥Γ∥εk

D∥Γ

≤ γpaD(ek
φ, e

k
φ)

1

2K
1

2h−1/2∥εk
D∥Γ + ∥gek

φ∥Γ∥εk
D∥Γ

≤ 1/2γpaD(ek
φ, e

k
φ) + 1/2Kγph

−1∥εk
D∥2

Γ
+ 1/2∥gek

φ∥2
Γ

+ 1/2∥εk
D∥2

Γ
, (24)

which completes the proof of (19).

Similarly, let Eεk
S ∈ XSh be the discrete Stokes extension of εk

S [14,16,17], i.e., Eεk
S = εk

SnS and satisfy

aS(Eεk
S ,vh) + bS(Eεk

S , qh) + bS(vh, pS) = 0 ∀vh ∈ X0
Sh, qh ∈ QSh, (25)

with pS ∈ Q0
Sh. Here X0

Sh := XSh ∩ [H1
0 (ΩS)]d, Q0

Sh := QSh ∩ L2
0(ΩS) and L2

0(ΩS) =
{

q ∈ L2(ΩS) :
√

ΩS
q

= 0
}

. Then the solution Eεk
S of (25) satisfies (see Lemma 9.10 in [14])

♣εk
S ♣

2

H
1/2

00
,Γ ≈ ♣Eεk

S ♣
2

H1/2,∂ΩS
≈ ♣Eεk

S ♣
2

1, Pτ Eεk
S = 0, bS(Eεk

S , qh) = 0 ∀qh ∈ QSh. (26)

Setting ψh = Eεk
S and substituting into (14)–(15), we have

⟨εk
S , ε

k
S⟩ = aS(ek

u,Eε
k
S) + γf ⟨ek

u · nS , ε
k
S⟩. (27)

4
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Therefore, using Cauchy–Schwarz inequality, (26) and (18), we can find from (27) that

∥εk
S∥2

Γ
= aS(ek

u,Eε
k
S) + γf ⟨ek

u · nS , ε
k
S⟩

≤ aS(ek
u, e

k
u)1/2aS(Eεk

S ,Eε
k
S)1/2 + γf ∥ek

u · nS∥Γ∥εk
S∥Γ

≤ 1/2aS(ek
u, e

k
u) + 1/2ν♣εk

S ♣
2

H
1/2

00
,Γ + 1/2γ2

f ∥ek
u · nS∥2

Γ
+ 1/2∥εk

S∥2
Γ

≤ 1/2aS(ek
u, e

k
u) + 1/2γ2

f ∥ek
u · nS∥2

Γ
+ 1/2(1 + νh−1)∥εk

S∥2
Γ
, (28)

which leads to (20). □

Following the inequalities (5.35)–(5.36) in [8], when α is small enough, we can similarly obtain

N
∑

k=1

⎞

as(ek
u, e

k
u) + α⟨Pτ (ek

u + K∇ek−1
φ ), Pτ ek

u⟩ + gaD(ek
φ, e

k
φ)
⎡

≥ (C1(K, v) − C2(K)α)
N
∑

k=0

(

∥ek
u∥2

1 + ∥ek
φ∥2

1

[

− C1(K, v)
(

∥e0
u∥2

1 + ∥e0
φ∥2

1

[

, (29)

where C1 depends on K and ν linearly and C2 depends on K linearly.

Now we present the convergence results of the Robin–Robin algorithm for γf > γp.

Theorem 2.1. Assume that K < γ−1
p h, ν < h, and α is small enough such that C1(K, ν) − C2(K)α > 0.

Ci (i = 1, . . . , 5) are constants which depend on K and ν linearly. For γf > γp, the Robin–Robin algorithm

converges in the discrete sense if γf and γp satisfy

γf

γp
≥ 1 + 2δKγph

−1,
γf

γp
≤

h

βγfK
,
γf

γp
≤ 1 +

h

ν

C1(K, ν) − C2(K)α

βK
, (30)

where δ =
⎞

γf

γp

⎡2

− 1 and β = (1 − νh−1)−1 > 1. Further assume that γf and γp satisfy

θ ≥ 1 −
(γf + γp)C4(K, ν)

βν
, θ ≥

2αγpC3(K)

(γf + γp)C5(K)
, (31)

where θ = (1 + ϵ)
⎞

γp

γf

⎡2

and ϵ = δνh−1. Then the geometric convergence rate
√

γp

γf

(

1 +O(Kh−1 + νh−1)
[

is obtained.

Proof. Let δ2 be a positive constant. Multiplying (16) by δ2 and adding into (17), then summing over k

from k = 1 to N and using the fact −2γf

⎞

1 +
γf

γp

⎡

= −2δ2 (γf + γp) − 2 (γf + γp)
⎞

γf

γp
− δ2

⎡

, we deduce

δ2∥εN+1
D ∥2

Γ
+ ∥εN+1

S ∥2
Γ

≤ δ2∥ε1
D∥2

Γ
+ ∥ε1

S∥2
Γ

+

⎠

⎤

γf

γp

⎣2

− δ2

⎜

N
∑

k=1

∥εk
D∥2

Γ
+ (δ2 − 1)

N
∑

k=1

∥εk
S∥2

Γ

−

⎠

⎤

γf

γp

⎣2

− 1

⎜

N
∑

k=1

∥gek
φ∥2

Γ
+ δ2

(

γ2
p − γ2

f

[

N
∑

k=1

∥ek
u · nS∥2

Γ
− 2 (γf + γp)

⎤

γf

γp
− δ2

⎣

g

N
∑

k=1

aD(ek
φ, e

k
φ)

− 2δ2 (γf + γp)
N
∑

k=1

⎞

as(ek
u, e

k
u) + α⟨Pτ (ek

u + K∇ek−1
φ ), Pτ ek

u⟩ + gaD(ek
φ, e

k
φ)
⎡

. (32)

5
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Using (29), we obtain from (32) that

δ2∥εN+1
D ∥2

Γ
+ ∥εN+1

S ∥2
Γ

≤ δ2∥ε1
D∥2

Γ
+ ∥ε1

S∥2
Γ

+

⎠

⎤

γf

γp

⎣2

− δ2

⎜

N
∑

k=1

∥εk
D∥2

Γ
+ (δ2 − 1)

N
∑

k=1

∥εk
S∥2

Γ

−

⎠

⎤

γf

γp

⎣2

− 1

⎜

N
∑

k=1

∥gek
φ∥2

Γ
− δ2

(

γ2
f − γ2

p

[

N
∑

k=1

∥ek
u · nS∥2

Γ
− 2 (γf + γp)

⎤

γf

γp
− δ2

⎣

g

N
∑

k=1

aD(ek
φ, e

k
φ)

− 2δ2 (γf + γp) (C1(K, v) − C2(K)α)

N
∑

k=1

(

∥ek
u∥2

1 + ∥ek
φ∥2

1

[

+ 2δ2C1(K, v) (γf + γp)
(

∥e0
u∥2

1 + ∥e0
φ∥2

1

[

. (33)

Denote δ1 = (1 −Kγph
−1)−1 and restrict

⎞

γf

γp

⎡2

− δ2 > 0. Then from Lemma 2.3, we have

⎠

⎤

γf

γp

⎣2

− δ2

⎜

∥εk
D∥2

Γ
≤

⎠

⎤

γf

γp

⎣2

− δ2

⎜

δ1γpaD(ek
φ, e

k
φ) +

⎠

⎤

γf

γp

⎣2

− δ2

⎜

δ1∥gek
φ∥2

Γ
. (34)

Set δ =
⎞

γf

γp

⎡2

− 1 and then choose δ2 by satisfying the following inequality

0 <

⎠

⎤

γf

γp

⎣2

− δ2

⎜

δ1 ≤ δ, i.e. 1 + δKγph
−1 ≤ δ2 <

⎤

γf

γp

⎣2

. (35)

Substituting (34) and (35) into (33), we obtain

δ2∥εN+1
D ∥2

Γ
+ ∥εN+1

S ∥2
Γ

≤ δ2∥ε1
D∥2

Γ
+ ∥ε1

S∥2
Γ

+ 2δ2C1(K, v) (γf + γp)
(

∥e0
u∥2

1 + ∥e0
φ∥2

1

[

+

⎤

γpδ − 2 (γf + γp)

⎤

γf

γp
− δ2

⎣

g

⎣ N
∑

k=1

aD(ek
φ, e

k
φ) − δ2

(

γ2
f − γ2

p

[

N
∑

k=1

∥ek
u · nS∥2

Γ

+ (δ2 − 1)

N
∑

k=1

∥εk
S∥2

Γ
− 2δ2 (γf + γp) (C1(K, v) − C2(K)α)

N
∑

k=1

(

∥ek
u∥2

1 + ∥ek
φ∥2

1

[

. (36)

Using Lemma 2.3 and setting β = (1 − νh−1)−1 > 1 (when h > ν > 0), we find that

(δ2 − 1) ∥εk
S∥2

Γ
≤ 2νβ(δ2 − 1)∥ek

u∥2
1 + γ2

fβ(δ2 − 1)∥ek
u · nS∥2

Γ
. (37)

Substituting (37) into (36) and re-arranging the terms on the two sides, we have

⎤

2 (γf + γp)

⎤

γf

γp
− δ2

⎣

g − γpδ

⎣ N
∑

k=1

aD(ek
φ, e

k
φ) +

(

δ2

(

γ2
f − γ2

p

[

− γ2
fβ(δ2 − 1)

[

N
∑

k=1

∥ek
u · nS∥2

Γ

+ (2δ2 (γf + γp) (C1(K, v) − C2(K)α) − 2νβ(δ2 − 1))
N
∑

k=1

(

∥ek
u∥2

1 + ∥ek
φ∥2

1

[

+ δ2∥εN+1
D ∥2

Γ
+ ∥εN+1

S ∥2
Γ

≤δ2∥ε1
D∥2

Γ
+ ∥ε1

S∥2
Γ

+ 2δ2C1(K, v) (γf + γp)
(

∥e0
u∥2

1 + ∥e0
φ∥2

1

[

. (38)

Now taking δ2 = 1 + δKγph
−1 and setting g = 1, we consider the following three cases:

• Suppose A1 := 2 (γf + γp)
⎞

γf

γp
− δ2

⎡

g− γpδ ≥ 0. Then we get δ2 ≤ 1
2

⎞

1 +
γf

γp

⎡

for the first condition in

(30).

• Suppose A2 := δ2

⎞

γ2
f − γ2

p

⎡

− γ2
fβ(δ2 − 1) ≥ 0. Then from A2 >

⎞

γ2
f − γ2

p

⎡⎞

1 − γ2
fγ

−1
p βKh−1

⎡

≥ 0, we

have the second condition in (30).

6
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• Suppose A3 := 2δ2 (γf + γp) (C1(K, v) − C2(K)α) − 2νβ(δ2 − 1) ≥ 0. Then using C1(K, v) −

C2(K)α > 0 and A3 > 2 (γf + γp)
⎞

(C1(K, v) − C2(K)α) − β
⎞

γf

γp
− 1
⎡

νKh−1
⎡

≥ 0, we have
γp

γf −γp
≥

βh−1νK
C1(K,v)−C2(K)α , which means the third condition in (30).

Since the right hand side of (38) is uniformly bounded for arbitrary N , then
∑N

k=1

⎞

∥ek
u∥2

1 + ∥ek
φ∥2

1

⎡

is upper

bounded for arbitrary N based on the assumptions of Theorem 2.1. Hence ∥ek
u∥1 and ∥ek

φ∥1 go to 0 when

N goes to infinity, which provides the convergence of uk
Sh and ϕk

Dh.

Now we turn to the proof of the almost geometric convergence rate. Based on the inequality (29), the

coercivity of aS and the trace theorems [18], for small α, we can find that

aS(ek
u, e

k
u) + α⟨Pτ (ek

u + K∇ek−1
φ ), Pτ ek

u⟩ ≥ aS(ek
u, e

k
u) + α∥Pτ ek

u∥2
Γ

− α∥K∇ek−1
φ ∥−1/2,Γ∥Pτ ek

u∥1/2,Γ

≥ aS(ek
u, e

k
u) − αC3(K)

⎞

∥ek−1
φ ∥2

1 + ∥ek
u∥2

1

⎡

≥ C4(K, v)∥ek
u∥2

1 − αC3(K)∥ek−1
φ ∥2

1, (39)

where C3 depends on K linearly and C4 depends on K and ν linearly. By the coercivity of aD, we have

aD(ek
φ, e

k
φ) ≥ C5(K)∥ek

φ∥2
1, (40)

where C5 depends on K linearly. Then splitting ∥εk
S∥2

Γ
= θ∥εk

S∥2
Γ

+(1−θ)∥εk
S∥2

Γ
with 0 ≤ θ ≤ 1, substituting

(17) into (16) and using (19), (20), (39) and (40), we have

∥εk+1
D ∥2

Γ
= θδ2∥εk−1

D ∥2
Γ

+ θ

⎠

⎤

γf

γp

⎣2

− δ2

⎜

∥εk−1
D ∥2

Γ
+ θ

⎠

1 −

⎤

γf

γp

⎣2
⎜

∥gek−1
φ ∥2

Γ

− 2θγf

⎤

1 +
γf

γp

⎣

gaD(ek−1
φ , ek−1

φ )

+ (1 − θ)∥εk
S∥2

Γ
+ (γ2

p − γ2
f )∥ek

u · nS∥2
Γ

− 2(γf + γp)as(ek
u, e

k
u)

− 2(γf + γp)α⟨Pτ (ek
u + K∇ek−1

φ ), Pτ ek
u⟩.

≤ θδ2∥εk−1
D ∥2

Γ
−
((

γ2
f − γ2

p

[

− (1 − θ)γ2
fβ
[

∥ek
u · nS∥2

Γ
− (2(γf + γp)C4(K, ν) − 2(1 − θ)νβ) ∥ek

u∥2
1

−

⎤

2θ(γf + γp)
γf

γp
g − θγpδ

⎣

C5(K)∥ek−1
φ ∥2

1 + 2(γf + γp)αC3(K)∥ek−1
φ ∥2

1. (41)

Setting θ = (1 + ϵ)
⎞

γp

γf

⎡2

and g = 1, we consider the following assumptions

• Suppose B1 :=
⎞

γ2
f − γ2

p

⎡

− (1 − θ)γ2
fβ ≥ 0. Then we find ϵ ≥

⎤

⎞

γf

γp

⎡2

− 1

⎣

β−1
β = δνh−1.

• Suppose B2 := 2(γf + γp)C4(K, ν) − 2(1 − θ)νβ ≥ 0. Then we have the first condition in (31).

• Suppose B3 :=
⎞

2θ(γf + γp)
γf

γp
g − θγpδ

⎡

C5(K) − 2(γf + γp)αC3(K) ≥ 0. Then we obtain the second

condition in (31).

Now choose ϵ = δνh−1 and then for small K and ν we can see that the setting θ = (1 + ϵ)
⎞

γp

γf

⎡2

holds

for the above assumptions of B1, B2 and B3. Finally, from (41), we achieve the almost optimal geometric

convergence rate ρ = (θδ2)1/4 =
√

γp

γf

(

(1 + δKγph
−1)(1 + δνh−1)

[1/4
=
√

γp

γf

(

1 +O(Kh−1 + νh−1)
[

. □

Remark 2.1. From the above proof, we can see that C1 and C4 depend on K and ν linearly while C2, C3,

and C5 depend on K linearly. The coefficients of K and ν in these linear relationships come from the involved

inequalities in the corresponding proof and are usually bounded (not too big or too small) for regular cases.

For example, one can simply take C5 = K and C2 = C3 = cK where c is a constant coming from the upper

bound of the trace inequality. These regular linear relationships together with the other regular parameters

are helpful for finding appropriate γf and γp based on the conditions in Theorem 2.1.

7
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Fig. 1. L2 errors in velocity (left) and hydraulic head (right) versus the number of iterations for the parallel Robin–Robin domain

decomposition method with γf > γp.

Remark 2.2. In the international parameter system, the real-life parameters K and ν are usually very

small [19]. In this case, the right hand side of the first inequality in (30) is not big and the right hand sides

of the last two inequalities in (30) are not small, if other constants and parameters in (30) are regular.

Therefore, it is not hard to find γf and γp, which cannot be too big, to satisfy the three inequalities in (30).

Under the restriction of (30), the two inequalities in (31) are also not hard to be satisfied, if γf and γp are

not too small at the same time. Based on the above general guidelines, more details for choosing γf and

γp with other specific parameters can be discussed case by case. In the numerical experiment of the next

section, the convergence and geometric convergence rate for multiple choices of γf and γp also show that

it is not hard to choose these two parameters when K and ν are small. The theoretical analysis result in

Theorem 2.1 is also consistent with the numerical result of Figure 6 with small K and ν in [8]. Hence the

case of γf > γp, which is the target of this paper, is more useful than the case of γf ≤ γp in practice.

3. Numerical experiment

In this section we present a numerical experiment to verify the presented theoretical convergence analysis.

Consider the domain Ω = (0, 1) × (−0.25, 0.75), where the Darcy region ΩD = (0, 1) × (0, 0.75), the Stokes

region ΩS = (0, 1) × (−0.25, 0) and the interface Γ = [0, 1] × ¶0♢. Set α = 1, g = 1 and z = 0. The boundary

condition data functions and the source terms are chosen to satisfy the Stokes and Darcy equations by the

following solution
∏

⨄

⋃

ϕD = (2 − πsin(πx)) (−y + cos(π(1 − y))) ,
uS =

]

x2y2 + e−y,− 2
3xy

3 + 2 − πsin(πx)
]

,
pS = − (2 − πsin(πx)) cos(2πy),

which exactly satisfy the three interface conditions (3)–(4). Set K = 10−6, ν = 10−6, h = 1/32, and γf = 1.5.

Fig. 1 shows that the Robin–Robin algorithm converges when γf > γp and the detailed data also verifies

the geometric convergence rate
√

γp

γf
. These results confirm Theorem 2.1.

4. Conclusions

For the case γf > γp, we analyze the convergence of the parallel Robin–Robin domain decomposition

alongside a finite element discretization for solving the steady Stokes–Darcy system with BJ interface

condition, based on the discrete harmonic and discrete Stokes extensions. This case is especially important

for the parallel Robin–Robin domain decomposition method since the viscosity ν and hydraulic conductivity

K are usually small in reality. The analysis result also provides a general guideline of choice on the relevant

8
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parameters to obtain the convergence and geometric convergence rate. The numerical results verify the

theoretical conclusion.
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