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1. Introduction

Stokes—Darcy model couples Stokes equations and Darcy equations with suitable interface conditions.
Consider the coupled Stokes-Darcy system on a bounded domain 2 = 2p U 25 C RY, (d = 2,3), where 2p
is the porous media domain and {2g is the free-flow domain. The free flow in {2¢ can be governed by steady
Stokes equations: find the fluid velocity ug and the kinematic pressure pg, such that

—V~T(uS7ps)=fS, V-USZO, in Qs, (1)
where T(ug, ps) = 2vD(ug)—psl is the stress tensor, D(ug) = 1/2(Vug+ V7 ug) is the deformation tensor,

v is the kinematic viscosity of the fluid, and fg is an given external force. The porous media flow in 2p can
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be described by primary Darcy equations: find the hydrostatic pressure ¢p, such that
—V'(KV¢D):fD7 in \QD, (2)

where fp is a source term and K is the hydraulic conductivity tensor assumed here to be homogeneous
isotropic, i.e. K = KI with a constant K. On the interface I' = 2p N g, the following three interface
conditions are imposed:

—7; - (T(us,ps) -ms) = at; - (us + KVe¢p), (3)

us-ns =KVép-np, —ns-(T(us,ps) ns)=g(ép — 2), (4)
where ng and np denote the unit outer normal to the fluid and the porous media regions on the interface
I', respectively; 7; (j = 1,...,d — 1) denote mutually orthogonal unit tangential vectors to the interface
I'; a is a constant depending on p and K. The second condition (3) is the Beavers-Joseph (BJ) interface
condition [1-6], which is more difficult than the simplified Beavers—Joseph—Saffman condition [7]. Denote
the spaces by

Xs={ve[H (2)]? | v=00n002s\I'}, Qs = L*(2s), Xp={v € H'(2p) | =0 o0n d2p\I'}.

For the domain D (D = 25 or £2p), (+,-)p denotes the L? inner product on the domain D, and (-, -) denotes
the L? inner product on the interface I' or the duality pairing between (Héo/z( I'))" and HI/Q(F). The weak
formulation of the coupled system (1)—(4) is to find (us,ps) € Xs x Qs and ¢p € Xp such that

as(us,v) +bs(v,ps) + ap(ép,¥) + (9¢p,v - ng) — (ug - ng, ) + a(P-(us + KVep), Prv)
- (fDaw)QD (.f,5'7 ) <gZ v- nS> Vv S XSa ¢ S XDa (5)
bs(us,q) =0  Vqe€Qs, (6)

where the bilinear forms are defined as

aD(¢D7w) = (KV¢D7vw)QD’ aS(uS’v) = 2V(D<u5)7D(U))Qsa bS(v7Q) = —(V : va)Qs’

and P, denotes the projection onto the tangent space on I', i.e. Pru = Zj i(u Ti)Tj

A parallel Robin-Robin domain decomposition method (DDM) was proposed for the steady Stokes—Darcy
model with BJ condition in [8], based on the corresponding basic work for BJS condition [9]. Then this work
was extended to steady Naiver—Stokes—Darcy model in [10]. The same Robin—Robin transmission conditions
were also utilized to develop a non-iterative domain decomposition method for the unsteady Stokes—Darcy
model [11,12]. Based on the Robin conditions for Stokes and Darcy equations

ns - (T(us,ps) - ns) +yrus -ns =ny on ', — P (T(us,ps) ns) —aPrus=mns, on I,  (7)
WKVép -np +g¢p =n, on I, (8)
and the compatibility conditions of Lemma 1 in [8], the parallel Robin—Robin DDM was proposed in [8]:
. s d
1. Give the initial values 7 € L*(I'), } € L*(I') and 0%, € [L*(I)]".

2. For £k =0,1,2,..., independently solve the Stokes and Darcy systems with Robin boundary conditions.
More precisely, u’fg € Xg and pg € Qg are computed from

ag(u§, v) + bs(v,p§) + 75 (u§ - ng, v - ng) + a(Pruf, Pro)
= (nf,v-ns) — (N}, Pro) + (f5,0) 05 Vv € Xs, (9)
b(%q)—o Vg€ Qs, (10)
and ¢% € Xp is computed from
k k
an(@h9) + (L2 0y = (B g) 4 (fp,0)ay V€ Xp. (11)

T Tp
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3. Update n*! and 77’;-“:

o
it = Tfnﬁ — (1+a)gdh + gz, mit" = aPr(KVeD), nitt = —nf + (vs + wp)ul - ns + g2 (12)
p

In [8,10] the convergence of Robin-Robin DDM was proved for v¢ < 7,, and the geometric convergence
rate (v, )"/?
v and hydraulic conductivity K. However, for most of the practical coefficients, such as v = 1076 and
1077 < K < 1072 which may cause severe computational difficulties [13], the Robin-Robin DDM with
finite element discretization seems difficult to converge for v¢ < 7, according to the results in [8]. Although

was obtained when vy < «,. This result works well for the case with moderate viscosity

the numerical experiments in [8] indicate that Robin parameter v, > -, might provide decent convergence
results for small v and K, there was not a complete analysis to support their observations due to the difficulty
arising from the coupling feature of the model, especially the Beavers-Joseph interface condition. Motivated
by the practical applications and analysis difficulty, we provide a rigorous analysis with novel techniques
based on the discrete harmonic extension and discrete Stokes extension to prove the convergence and the
geometric convergence rate of Robin—Robin algorithm when 5 > ~,,.

2. Convergence analysis for the finite element discretization of the proposed DDM

In this section, we consider the regular triangulation 7, with uniform mesh size h for the domain {2 and
£2s. Ty is assumed to be shape-regular and quasi-uniform as well. The Taylor-Hood finite element pair and
the quadratic finite elements are considered for the Stokes equations and the primary formulation of the
Darcy equations, respectively. The finite element spaces for the coupled Stokes—Darcy problem (1)—(4) are
denoted as Xgp € Xg, Qsn € Qs, and Xpp, € Xp. Then the finite element solution space of the decoupled
Stokes—Darcy system (5)—(6) and (9)—(11) are given ¢pn, &%), € Xph, uSh,u’fgh € Xsn, and psmp’éh € Qsh.
Due to the page limitation, we omit the details of the discrete weak formulations which can be obtained from
(5)—(6) and (9)—(11) by adding h in the subscript of all the unknown functions and test functions. Then, we
define the error functions

k k k k k k k k k k k k
€p = ®Dh — Ppps €y = USh — Ugp, €p = DPSh —PSh> €D = Tlph — Nphs €5 = Nfh — Nfns €57 = Nfrh — Nfrhs

and derive the error equations

an (e, ¥n) + (gel, ¥n) = (€h,¥n)  Yn € Xpn, (13)

as(ek,v) + bg(v, e’;) +7p(el ng,v-ng) + a(Prek, Pv) = (¥, v ng) — (e, Pv) Vo, € Xan,
(14)

bs(es,qn) =0 Vau € Qsn, (15)

based on (5)—(6), (9)—(11) and their finite element discretization formulations. Similar to Lemma 2 in [8],
we can obtain the following lemma.

Lemma 2.1. The error functions satisfy

el 17 = eSlT + (3 —vP)llel - nslF — 2037 +p)as(er, en) — 2077 +7p)alPr (el + KVey™), Prel),

(16)
2 2
v . v 8l
ekt2 = (j) ek 12 + (1 - (j) ) lgeh1% — 2y (1 t j) gan(eh, cb). (a7)
P P P

3
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In (16) and (17), the two terms involving ||e* - ng||% and ngé”% are negative when y¢ > ~,, which is
one of the main problems encountered in the original analysis framework [8]. To address such difficulty and
continue the convergence analysis, we introduce key estimates for e p and g by employing discrete harmonic
extension, discrete Stokes extension and the inverse inequality [14].

Lemma 2.2. Let 2 C R? and Vi, (2) C H'Y(R2) be the finite element space with shape-regular and
quasi-uniform triangulation Tp. Then for any up, € Vi (§2), we have

—1/2

[unlgrr2 g < Ch™ 77 [unllo,00- (18)

Lemma 2.3. Assume that K <y, 'h and v < h. Then &%, satisfies

1 1
k2 < k ok k2, 19
lepllT < 1 K,yph,l%aD(%a%) + 1— Kyph 1 ||9€¢||F (19)
ek satisfies
1
Ik < —— s (as(ek eh) +2leh -ns]3) (20)

Proof. Let Eeck, € Xpj, be the discrete harmonic extension of €% [14,15], i.e., Eek =%, on I' and satisfy

(VEe, Vin)ap =0, Vin € Xy, == Xpn N Hy(2p). (21)
Then the discrete harmonic extension Ee¥, satisfies (see Lemma 4.10 in [14])
2 2 2
bl =~ LB [ o0 ~ BB (22)

Setting vy, = Ee¥, and substituting into (13), we have

(eh.€b) = man (e, Beh) + (geg, €h).- (23)

Hence, using Cauchy—Schwarz inequality, (22) and (18), we can obtain from (23) that

1 1
IebIIT < wpap(el, ef)2ap(Eeh, Eeh)? + llgesllrllen |l r
i
< pap(el, eb)2K2h 2| Eh I r + |lgebllrlleh |l r
< 1/2vpap(ef, €f) + 1/2Ky,h ™ eb T+ 1/2llgel 17 + 1/20eb 17 (24)

which completes the proof of (19).
Similarly, let Eek € Xgp, be the discrete Stokes extension of X [14,16,17], i.e., Eck = ekng and satisfy

as(Ee§,vp) + bs(Bek, qn) + bs(vn,ps) =0 Vo, € Xg),, qn € Qsn, (25)
with pg € Q?S‘h' Here Xg'h = Xgn N [H&(Qs)]d7 %h = Qgsp N Lg(ﬁs) and L%(Qs) = {q eL? Qs fQ
= 0}. Then the solution Eck of (25) satisfies (see Lemma 9.10 in [14])
2 2 2
|Eg|H(%27F R~ |E€§’|Hl/27ags ~ |Eek|], PEet =0, bs(Eckt, q,) =0 Vqu € Qsn. (26)
Setting v, = Ee¥ and substituting into (14)—(15), we have

(e%,c%) = as(el, Be§) + v (el - mg,€6). (27)
4



Y. Liu, Y. He, X. Li et al. Applied Mathematics Letters 119 (2021) 107181

Therefore, using Cauchy—Schwarz inequality, (26) and (18), we can find from (27) that

€517 = as(el, Be§) + vs (el - ns,€6)

<as(el, eb)*as(Bely, B<§)? + yrllel - ns|rllekllr

< 1/2as(ey, ey) + 1/2V|€s|H r+ 129 les - ms|T + 1/2]|e5 1
< 1/2as(e, ey) +1/277 e nSHQF +1/2(1+vh™) el 7, (28)

which leads to (20). O

Following the inequalities (5.35)—(5.36) in [8], when « is small enough, we can similarly obtain

N
>~ (aslel,eb) +a(P (el + KVl ™). Prel) + gap(eh.ch))
k=1

N
> (C1(K,v) )a) > (llenlld + lleflIT) = Ca(i,v) (Xl + ) (29)
k=0

where C7 depends on K and v linearly and Cy depends on K linearly.
Now we present the convergence results of the Robin-Robin algorithm for v¢ > ~,,.

Theorem 2.1. Assume that K < v, 'h, v < h, and o is small enough such that Cy(K,v) — C2(K)a > 0.
C; (i =1,...,5) are constants which depend on K and v linearly. For vy > ~,, the Robin-Robin algorithm
converges in the discrete sense if vy and v, satisfy

Wf < h o WG Y) = Co(K)a

RFAES -1
W51 4 25Ky,h <1+ , 30
Vp K ByrK’ v BK (30
2
where § = (Z—;) —1and 8= (1—vh™Y) =1 > 1. Further assume that v and vy, satisfy
p>1_ Wt wCEy)  20%Cs(K) (31)

By T () O5(K)

2
where 0 = (1+¢€) ( ’j’) and € = vh~'. Then the geometric convergence rate /;’—’jf (1+O(Kh™t +vh™1))
1s obtained.

Proof. Let J; be a positive constant. Multiplying (16) by 2 and adding into (17), then summing over k
from k =1 to N and using the fact —2v¢ (1 + 3—;;) = =202 (v +7p) —2(vf + ) (— - (52) we deduce

2 N N
7.
SalleN % + e N+1||ps52|sb||%+||sg|%+((;‘) —52>Zs’5||p +(02-1) ) lebl?
k=1
N N
—(( ) )an%um vaHe nsl3 = 20y + 1) (— 2>gZaD<e’;,e;z>

N
28 (5 + %) _ (as(ehs eh) + a(Pr(el + KVek™), Prek) + gan(eh,eh)) (32)
k=1
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Using (29), we obtain from (32) that
7 2 N N
N N k k
Sl I3 + 1N 3 < Salleb 13 + llekll3 + ((f —6z> > lleblF + 62 = 1) Y s
k=1 k=1
N N
- (( ) ) S loehlf = (5 =77) D ek sl =215 +3) (2 -6) s Y anteheh)
k=1 k=1

N
=202 (77 + ) (C1(K, v) )a) > (et llF + €5l + 202C1 (K, v) (s +70) (ledllF + leg 1) - (33)
k=1

2
Denote 6; = (1 — K~y,h™1)~! and restrict (%) — d2 > 0. Then from Lemma 2.3, we have

2 2 2
Y
((W) 52> I I3 < ((”) 52) mpap(e’;,e’;H((f) 52> Silgehl  (34)
Yp Yp Tp

2
Set 6 = (%) — 1 and then choose §, by satisfying the following inequality
2 2
0< (W> — 8, ) 61 <6, ie 1+0Kyh™ <52<(7f> . (35)
Tp Tp

Substituting (34) and (35) into (33), we obtain
Slen ™I + leg THIF < allenllF + ||€§||2r +28:C1 (K, v) (77 + ) (lealli + lleg 1)

N
+ (%5— 2 (vt +p) (7 —(52) ) Zap e¢,e¢ Z lek - ns|%

k=1

N
+(02—1) ZHﬁer =202 (77 + ) (CL(K, ) )a) Y (llenlld + llefllf) - (36)
k=1 k=1

Using Lemma 2.3 and setting 8 = (1 —vh=1)~! > 1 (when h > v > 0), we find that
(62 = 1) |57 < 208(32 — D) legllF +7F8(02 — 1)llel; - mes]|F- (37)
Substituting (37) into (36) and re-arranging the terms on the two sides, we have
y N
(2000 (=)o) > ZaD eh.5) (02 (43 ~92) ~ 13802~ 1) 3 [lek - ms|
2 k=1
N
+ (205 (7 + 1) (CL(E, v) = Co(K)a) —2v8(52 — 1)) > (lebll} + lle5[I?) + alleN 17 + lle§ 117
k=1
<ballepllF + lleslIF +202C1 (K, v) (vs +7) (leall + llegll?) - (38)

Now taking o = 1 + 6K~,h ™! and setting g = 1, we consider the following three cases:

o Suppose A1 =2 (y; + ) (— — 52) g—p0 > 0. Then we get do < (1 + Z—i) for the first condition in
(30).

e Suppose Ay = Jy (’y? - 'y%) —778(62 —1) > 0. Then from Ay > ('y? - fyg) (1 i, BER™ ) >0, we
have the second condition in (30).
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e Suppose Az = 202 (v +7p) (C1(K,v) — Co(K)a) — 2v3(02 — 1) > 0. Then using Cy(K,v) —
Co(K)a > 0 and Ag > 2 (5 + ) ((Cl(K,v) — Cy(K)a) — 8 (:—i — ) VKh_l) > 0, we have A{fn’fvp >

%, which means the third condition in (30).

Since the right hand side of (38) is uniformly bounded for arbitrary N, then Zszl (Heﬁ”% + ||e’;5||%) is upper
bounded for arbitrary N based on the assumptions of Theorem 2.1. Hence |€¥||; and ||e’;5||1 go to 0 when
N goes to infinity, which provides the convergence of ulgh and qﬁ’th.

Now we turn to the proof of the almost geometric convergence rate. Based on the inequality (29), the
coercivity of ag and the trace theorems [18], for small «, we can find that

as(ek,ek) + alPy (el + KV, Prek) > as(el, ef) + all Prek|: — allKVek ™ || yjo, I Preko.r
> as(el, eh) — aCy(K) (e~ 15 + llek ) = Ca(k, v)llek]l3 — aCs(K)lleh ™12, (39)

where C'5 depends on K linearly and C4 depends on K and v linearly. By the coercivity of ap, we have

an (e, ek) > Cs(K) ek 2, (40)

where Cs depends on K linearly. Then splitting [|€% % = 0[|e%||% + (1 —0)||ek||% with 0 < @ < 1, substituting
(17) into (16) and using (19), (20), (39) and (40), we have

2 2
Y _
JE5H 2 = a1 ||p+o<<7) - )ns ||p+9< (;))nge;ﬁ 1
P P

— 20y (1 f) gaD(e’; ! e]; D)
Tp
k

+ (1= 0)l&7 + (v = vPlles - nsllF — 2(v5 + vp)as(el, el)
—2(vf + ) P- (el + KVel ™), Prel).
<055 E = ((0F —vp) — 1= 0)738) llek - ns||F — (2(v +7)Ca(K,v) — 2(1 — 0)vp) |lek |13

- <29(’Yf + Vp),yfg 9%5) s (K)llef ™ 17 + 2(75 + 7p)aCs(K) [leg " |17. (41)

p

2
Setting 6 = (1 + ¢) (7;’ ) and g = 1, we consider the following assumptions

2
e Suppose By = (’yj% — ’yg) —(1- 9)7;6 > 0. Then we find € > ((Zﬁ) — 1) % =dvhL.
o Suppose By = 2(vf + 7p)Ca(K,v) — 2(1 — §)vB > 0. Then we have the first condition in (31).

e Suppose B3 := (29(71» + 'yp)%g — 97p5> C5(K) — 2(vf + vp)aC3(K) > 0. Then we obtain the second
condition in (31).

Now choose ¢ = dvh~! and then for small K and v we can see that the setting 6 = (1 + ¢) (::;) holds
for the above assumptions of By, Bs and Bs. Finally, from (41), we achieve the almost optimal geometric

convergence rate p = (085)'/* =, /;’—; (1 +6Kv,h™)(1+ (51/h_1))1/4 =, /;/—? (1+O(Kh™t+vh™)). O

Remark 2.1. From the above proof, we can see that C; and Cy depend on K and v linearly while C5, Cj,
and C5 depend on K linearly. The coefficients of K and v in these linear relationships come from the involved
inequalities in the corresponding proof and are usually bounded (not too big or too small) for regular cases.
For example, one can simply take C5 = K and Cy; = C3 = ¢K where c is a constant coming from the upper
bound of the trace inequality. These regular linear relationships together with the other regular parameters
are helpful for finding appropriate v; and -, based on the conditions in Theorem 2.1.

7
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The number of iterations The number of iterations

Fig. 1. L? errors in velocity (left) and hydraulic head (right) versus the number of iterations for the parallel Robin—Robin domain
decomposition method with vy > ,.

Remark 2.2. In the international parameter system, the real-life parameters K and v are usually very
small [19]. In this case, the right hand side of the first inequality in (30) is not big and the right hand sides
of the last two inequalities in (30) are not small, if other constants and parameters in (30) are regular.
Therefore, it is not hard to find v and +y,, which cannot be too big, to satisfy the three inequalities in (30).
Under the restriction of (30), the two inequalities in (31) are also not hard to be satisfied, if v and v, are
not too small at the same time. Based on the above general guidelines, more details for choosing ~; and
vp with other specific parameters can be discussed case by case. In the numerical experiment of the next
section, the convergence and geometric convergence rate for multiple choices of v and +, also show that
it is not hard to choose these two parameters when K and v are small. The theoretical analysis result in
Theorem 2.1 is also consistent with the numerical result of Figure 6 with small K and v in [8]. Hence the
case of vy > vyp, which is the target of this paper, is more useful than the case of vy <+, in practice.

3. Numerical experiment

In this section we present a numerical experiment to verify the presented theoretical convergence analysis.
Consider the domain 2 = (0,1) x (—0.25,0.75), where the Darcy region 2p = (0,1) x (0,0.75), the Stokes
region 2 = (0,1) x (—0.25,0) and the interface I' = [0, 1] x {0}. Set « =1, g = 1 and z = 0. The boundary
condition data functions and the source terms are chosen to satisfy the Stokes and Darcy equations by the

following solution

¢p = (2 — wsin(mx)) (—y + cos(w(1 —y))),

ug = [:E2y2 +e7Y, —%wy?’ +2— Wsin(mc)] ,

ps = — (2 — wsin(mx)) cos(2my),
which exactly satisfy the three interface conditions (3)—(4). Set K = 107%, v = 107%, h = 1/32, and y; = 1.5.
Fig. 1 shows that the Robin-Robin algorithm converges when 7y > <, and the detailed data also verifies

the geometric convergence rate Z—?. These results confirm Theorem 2.1.

4. Conclusions

For the case v¢ > <,, we analyze the convergence of the parallel Robin-Robin domain decomposition
alongside a finite element discretization for solving the steady Stokes—Darcy system with BJ interface
condition, based on the discrete harmonic and discrete Stokes extensions. This case is especially important
for the parallel Robin—Robin domain decomposition method since the viscosity v and hydraulic conductivity
K are usually small in reality. The analysis result also provides a general guideline of choice on the relevant

8
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parameters to obtain the convergence and geometric convergence rate. The numerical results verify the

theoretical conclusion.
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