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a b s t r a c t

Inferring causal effect from observational studies is a central topic in many scientific
fields, including social science, health and medicine. The statistical methodology for
estimating population average causal effect has been well established. However, the
methods for identifying and estimating subpopulation causal effects are relatively less
developed. Part of the challenge is that the subgroup structure is usually unknown,
therefore, methods working well for population level effect need to be modified to
address this. A tree method based on a matched design is proposed to identify subgroups
with differential treatment effects. To remove observed confounding, propensity-score-
matched pairs are first created. Then the classification and regression tree is applied
to the within-pair outcome differences to identify the subgroup structure. This non-
parametric approach is robust to model misspecification, which is important because
it becomes much harder to specify a parametric outcome model in the presence of
subgroup effects. In addition to describing assumptions under which our matching
estimator is unbiased, algorithms for identifying subgroup structures are provided. Sim-
ulation results indicate that the proposed approach compares favorably, in terms of the
percentage of correctly identifying true tree structure, with other competing tree-based
methods, including causal trees, causal inference trees and the virtual twins approach.
Finally the proposed method is implemented to examine the potential subgroup effect
of the timing of Tobramycin use on chronic infection among pediatric Cystic Fibrosis
patients.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Inferring causal effect is a central topic in scientific research. In many fields, including social science, health and
edicine, observational studies provide a rich source of data for examining causal effect, when randomized design is not

easible. The statistical methodology for estimating population average causal effect has been well established (Imbens
nd Rubin, 2015). However, the methods for identifying and estimating subpopulation causal effects are relatively
ess developed. Heterogeneous subpopulation effects are ubiquitous in many studies, as individuals with different
haracteristics may respond differently to a certain intervention (Rothwell, 2005). A major challenge in subgroup analysis
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s that the subgroup structure is often unknown in advance. Ad-hoc analysis of subgroup effect may lead to misleading
indings and more principled data-driven subgroup analysis strategies are desirable (Lipkovich et al., 2017).

A traditional string of literature on subgroup effects focuses on effect modification as interaction terms in pre-
pecified models (Kraemer, 2013; Tian et al., 2014). As these parametric or semi-parametric methods often depend
n certain structure of the interaction terms, they do not lend themselves well to more complex situations with little
nowledge of subgroup structure. Regression tree models are suggested as a good alternative strategy, because of their
onparametric property, natural subgroup interpretation, and ability to accommodate complex data (Loh et al., 2015).
f subgroups are formed by covariates stochastically rather than deterministically, latent subgroup modeling approaches
an be utilized (Lanza and Rhoades, 2013; Altstein and Li, 2013; Kim et al., 2019).
Identifying subgroup structure in observational data presents one more challenge than randomized trials. In observa-

ional studies, patient characteristics could vary substantially across different treatment groups. Strategies for removing
his observed confounding include propensity score adjustment, facilitating score adjustment and outcome modeling.
ausal tree (CT) combines the propensity score weighting and the regression tree to estimate heterogeneous treatment
ffects (Athey and Imbens, 2016). It extends the classification and regression tree (CART) (Stone, 1984) by modifying the
ree splitting criterion to maximizing the mean squared subgroup treatment effect. The subgroup effects are estimated
sing inverse propensity score weighting to control confounding (Bang and Robins, 2005). Causal inference tree (CIT)
roposes a facilitating score to split the tree, where subjects with similar facilitating scores should have similar propensity
cores and treatment effects (Su et al., 2012). Since the facilitating score is related to both treatment assignment and
otential outcomes, a parametric likelihood function needs to be specified in the inference. The virtual twins (VT) method
ims to find the individual treatment effect then apply the classification tree to identify the subgroup structure (Foster
t al., 2011). It predicts the response for the unobserved ‘‘twin’’ for each subject, where the twin refers to the same subject
ith a different treatment assignment (i.e. the unmeasured copy of the potential outcomes). The outcome prediction can
e done with either parametric or nonparametric models.
Matching is another popular way of using propensity score for confounding adjustment in observational studies (Rosen-

aum et al., 2010; Lu et al., 2011). First, it is robust to model misspecification as it uses a nonparametric approach to
alance covariate distributions. Second, it resembles the randomization design, which is easy to understand by a general
udience. Third, it is less prone to model manipulation as the causal effect estimation is conducted only after good matches
re created and the outcome variable is never used in the matching process. Fourth, it avoids the instable estimation of
eighting method when propensity scores are close to 0 or 1, which might be more likely to occur with many subgroups.
ut the use of matching in subpopulation causal effect estimation is quite limited in the literature. Hsu et al. (2013) use

matching design and the classification tree to examine effect modification with a focus on design sensitivity for potential
unmeasured confounding. One reason of limited use of matching design in subgroup analysis is that it is hard to ensure
the matching quality in every subgroup in practice, especially when there are many subgroups. Dong et al. (2020) propose
a subgroup balancing propensity score and discuss its use in matching and weighting. As long as the treated and control
group distributions are reasonably overlapped, matching estimator can be used to estimate the subpopulation effects,
referred to as subgroup average treatment effects for the treated (subgroup ATTs).

In this paper, instead of focusing on balancing covariate distributions in known subgroups, we develop a novel
approach, i.e. matching tree (MT), as a principled data-driven strategy for subgroup identification, when subgroup
indicators are unknown. Individual subjects from different treatment groups are first matched to remove confounding. The
tree-based method is then applied to within-pair outcome differences to identify the subgroup structure, with trimming
strategy to prevent overfitting. The matching based estimator is unbiased for subgroup treatment effect estimation
among people with similar characteristics as the treated subjects, which is also robust to model misspecification. The
resulting subgroup structure may be further utilized by content expert to improve the intervention strategies. The paper
is organized as follows. Section 2 provides justifications for matching based subgroup estimator and details for matching
tree algorithms. Section 3 presents two simulation studies. Section 4 applies the proposed method to study the potential
subgroup effect of the timing of Tobramycin use on chronic infection among pediatric CF patients. Section 5 ends the
paper with discussions on limitation and potential extensions.

2. Matching tree for subpopulation effects

In this section, we first show that matching on the propensity score produces unbiased estimator for subpopulation
causal effects of interest, then present the matching tree algorithm for identifying subpopulations with differential causal
effects.

2.1. Unbiased estimation for subpopulation causal effect

To establish the unbiased subpopulation effect estimation, we follow the potential outcomes framework (Imbens and
Rubin, 2015). With a dichotomous treatment option, T (T = 1 for treated and T = 0 for control or standard care), we
denote (Y 1, Y 0) to be the potential outcomes under treatment and control respectively. Let X be a matrix that contains
the pretreatment covariates and Z be the indicator of subgroups. Our primary interest is the subpopulation average causal
effect for the treated, E(Y 1

−Y 0
|Z), where the expectation integrates over the distribution of treated subjects (Dong et al.,

2020). The estimation hereafter is carried out in such a context.
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Because we cannot observe both potential outcomes for the same subject in a real study, the causal effect identification
needs more assumptions than what are usually required for estimating the effects’ association. Two assumptions are
commonly used (Imbens and Rubin, 2015): (1) Stable Unit Treatment Value Assumption (SUTVA), which dictates no
interference between units and no variation of a specified treatment level; (2) strongly ignorable treatment assignment
assumption, which implies that the probability of receiving treatment should be strictly between 0 and 1 for each subject,
and the treatment assignment is unconfounded given observed covariates. For well executed randomized studies, the
ignorability assumption is guaranteed to hold by design. For observational studies, it is a crucial assumption as the
treatment reception might be compromised by subject level characteristics. In practice, researchers tend to identify and
collect data based on a long list of pre-treatment covariates and make adjustment on them in the analysis to ensure
treatment assignment ignorability.

As shown in Rosenbaum and Rubin (1983), the strongly ignorable treatment assignment for the entire population
can be achieved through adjusting for a scalar propensity score. Next, we establish the same property in the context of
subpopulation causal effects in Lemma 1, following the idea of Rosenbaum and Rubin (the proof is given in Appendix A.1).

Lemma 1. Denote the propensity score as e(X, Z) = P(T = 1|X, Z). If the treatment assignment is strongly ignorable in
subpopulations given a vector of covariates, X, i.e.

(Y 1, Y 0) |= T |X, Z and 0 < P(T = 1|X, Z) < 1,

then the treatment assignment is strongly ignorable in subpopulations given the propensity score, i.e.

(Y 1, Y 0) | = T |e(X, Z), Z and 0 < P(T = 1|e(X, Z), Z) < 1.

Given Lemma 1, we can construct unbiased subpopulation causal effect estimation via the propensity score (the proof
f Proposition 1 is given in Appendix A.2).

roposition 1. Suppose the subpopulation strongly ignorable treatment assignment holds given observed covariates X and
subgroup indicator Z. Denote the propensity score as e(X,Z). Then the propensity-score-adjusted subgroup effect estimator is
unbiased for estimating the subgroup average treatment effect.

In practice, the adjustment of the propensity score can be done in the form of matching, stratification, weighting or
regression modeling. We also note it is not necessary to always include Z in the propensity score model. The propensity
score only needs to include the true confounders, as shown in the following corollary (the proof is given in Appendix A.3).
But when researchers are not certain about whether Z is a confounder, the general advice is to include it in the propensity
score.

Corollary 1. With subpopulation strongly ignorable treatment assignment assumption in Lemma 1, if Z is the subpopulation
indicator but not a confounder, then the subgroup effect estimator adjusted for the propensity score e(X) is unbiased for
estimating the subgroup average treatment effect.

2.2. Matching tree algorithms

When the subgroup indicators are not known in advance, we need to first find out the subgroup composition before we
can estimate the causal effects. Most existing methods for subgroup identification involve potential outcome modeling,
either parametrically or semiparametrically. The major drawback is that they tend to suffer from model misspecification.
To reduce the reliance on parametric modeling, some Virtual Twin methods use tree-based models, e.g. BART or random
forest, to predict the missing potential outcomes for each subject (Chipman et al., 2010). Causal tree approach provides
a different perspective by taking advantage of the propensity score weighting. Since the propensity score possesses a
critical piece of information in causal inference, we propose to combine propensity score matching and classification tree
as an alternative to Virtual Twin methods, as it does not require explicit modeling of the potential outcomes. Within each
pair, the observed outcome of the matched control serves as a natural candidate for the missing potential outcome of the
treated subject.

Specifically, our method takes following steps. First, we estimate the propensity score of treatment reception and
identify a list of possible subgroup defining variables (SDVs). Usually, the propensity score is estimated via a logistic
regression model and the subgroup defining variables are determined by the substantive experts. The covariate design
matrix X contains all relevant covariates and subgroup defining variables. Each column of X presents one variable and
each row of the X presents one subject. Second, we create matched pairs between treated and control groups based on the
estimated propensity scores and the subgroup defining variables. This step is different from the conventional propensity
score matching as we also need to match on subgroup defining variables for subgroup identification. Third, we calculate
the outcome differences within each pair and regress such differences over subgroup defining variables using CART. Lastly,
we prune the tree by examining the Least Square Means (LSmeans) simultaneous confidence intervals (Lin et al., 2019).
The LSmeans method is a general way of estimating multiple subgroup effects with control of overall Familywise Error
3
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Fig. 1. LSmeans prune.

Table 1
LSmeans prune for nodes 2, 4, 5.

LSmeans S.D. α Lower bound Upper bound

X3 = 0 −0.29 0.161 0.0125 −0.65 0.07
X3 = 1 −0.482 0.127 0.0125 −0.77 −0.2

Table 2
LSmeans prune for node 3, 6, 7.

LSmeans S.D. α Lower bound Upper bound

X3 = 0 2.08 0.195 0.0125 1.64 2.52
X3 = 1 4.43 0.154 0.0125 4.08 4.77

Rate. Since we only consider binary trees, for each pruning step, the multiplicity adjustment is basically a Bonferroni
correction with two groups. For two nodes under the same parent, if their confidence intervals overlap, it indicates a
non-significant difference and we prune these two nodes to the parent node. We keep this pruning process till there
is only root node or no confidence interval overlap between the nodes under the same parent. Section 2.2.1 provides a
imulated example for illustrative purpose.

.2.1. A simulated example for illustrating the tree pruning
In this subsection, we show how to use the LSmeans method to prune a small tree. First, we generate a dataset of 2000

ubjects, with three covariates, X1 (standard normal distribution), X2 and X3 (Bernoulli distributions with probability 0.4
and 0.6), respectively. The treatment status is generated from a Bernoulli distribution with probability 0.5. The outcome
is generated from the model Y = −3 + 5 × T + 5 × X1 + 5 × X2 × T + 5 × X2 × X3 × T + ϵ, where ϵ follow the standard
normal distribution. The initial tree structure is presented in Fig. 1.

There are four terminal nodes determined by X2 and X3, named nodes 4 to 7. The nodes 4 and 5 share the same parent
— node 2. The nodes 6 and 7 share the same parent — node 3. For tree pruning, first, we consider the group of nodes
2, 4, and 5. Table 1 shows the LSmeans estimates with the simultaneous 95% confidence interval bounds. The α value is
0.0125 (=0.05/4) since there are two terminal nodes and two-sided tests are used. Because the confidence intervals for
two groups determined by X3 overlap, we prune nodes 4 and 5 to the parent node 2.

Next, we apply the same pruning procedure to the group of nodes 3, 6, and 7. Based on result shown in Table 2,
since two confidence intervals do not overlap, we keep the structure and do not prune. Therefore, the final tree structure
indicates three subgroups — subjects in three terminal nodes 2, 6 and 7.

2.2.2. Algorithms for binary and continuous subgroup indicators
From an implementation perspective, matching on additional variables on top of the propensity score requires

modifications to existing software packages. Matching on continuous variables presents another layer of complexity than
matching on binary variables, because it is almost impossible to match exactly on a continuous variable. Practically, we
have to use a caliper to specify a range of values for acceptable matchings. Therefore, we present the algorithms separately
for binary and continuous variables. The existing optimal matching package can accommodate exact matching with binary
variables, but not the caliper matching with continuous variables. So, to be consistent, we implement nearest neighbor
matching for both binary and continuous variables.

Algorithm 1 delineates the steps for implementing matching tree with possible binary subgroup indicators. Algorithm
2 delineates the steps for implementing matching tree with possible continuous subgroup indicators. The difference is
4
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hat caliper matching for continuous variables is used in Algorithm 2 and subsequently, the covariate values from treated
subjects are used in CART.

Algorithm 1 Matching Tree: Binary Subgroup Indicator

Input Outcome Y , Propensity Score, Binary Covariates Design Matrix X

Output Identified Subgroup Indicators

1: Do 1 − 1 nearest neighbor matching on both propensity score and binary covariates X, with all columns of X exactly

matched.

2: Obtain the matched set S, which contains n pairs.

3: Calculate the difference on the outcome within each pair, denoted as ∆Yi, where i = 1, 2, . . . , n.

4: Regress ∆Yi versus X using CART.

5: while LSmeans confidence intervals overlap between nodes do

6: Prune the tree

7: end while

Algorithm 2 Matching Tree: Continuous Subgroup Indicator

Input Outcome Y , Propensity Score, Continuous Covariates Design Matrix X

Output Identified Subgroup Indicators and Corresponding Cut-off Values

1: Do 1−1 nearest neighbor matching both on the propensity score and continuous covariates X, with columns matched

on the predefined caliper.

2: Obtain the matched set S, which contains n pairs.

3: Calculate the difference on the outcome within each pair, denote as ∆Yi, where i = 1, 2, . . . , n.

4: Regress ∆Yi versus X using CART, where covariate values are taken from the treated subjects.

5: while LSmeans confidence intervals overlap between nodes do

6: Prune the tree

7: end while

When analyzing real data, we would separate potential binary subgroup indicators from potential continuous subgroup
indicators, then run the algorithm for each group of variables. Based on the pruned trees, we could identify candidates for
subgroup indicators. If there are both binary and continuous subgroup indicators, we would combine them to re-run the
matching tree algorithm to see if the tree can be further pruned. For categorical variables with more than two levels, we
may define multiple dummy variables and include them as binary variables. To further simplify the process, we may also
categorize the continuous variables into several meaningful groups, then we only need to run the algorithm for binary
variables. Simulation studies are conducted in the next section to evaluate the empirical performance of our proposed
method, in comparison to several competing approaches.

3. Simulation

In this section, we present two simulation studies: a smaller study for examining the unbiasedness of matching based
subpopulation causal effect estimators, and a larger study for comparing matching tree with causal inference tree, causal
tree, and virtual twins method, in terms of subpopulation structure identification.

3.1. A small simulation for unbiased subpopulation causal effect estimation

To examine whether the matching based subpopulation causal effect estimators are unbiased or not, we first generate
four covariates (two continuous ones and two binary ones) and based on the covariates, we generate the treatment
5
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Table 3
Continuous outcome, subpopulation ignorability.

Subgroup 1 Subgroup 2

%Bias Coverage SD %Bias Coverage SD

Scenario CC1 0.75 95.0 0.09 1.82 94.3 0.11
Scenario CC2 1.91 97.0 0.09 1.37 96.5 0.09
Scenario CC3 0.88 93.1 0.11 1.56 94.5 0.09
Scenario CC4 0.99 93.9 0.09 1.56 97.2 0.11

reception probability via a logistic regression model. Then we generate the outcome variable via either a linear model
(for continuous outcome) or a logistic regression model (for binary outcomes).

Each simulated dataset consists of 2000 observations and the simulation is repeated for 1000 times. The details of
imulation setup are presented as follows:

• Generate X1, X2 independently from the standard Normal distribution N(0, 1).
• Generate X3, X4 from the Bernoulli distribution with probability 0.4, 0.6, respectively.
• Generate the treatment indicator with logit(P(T = 1)) = −1.3 + log(2) × X1 + log(2) × X3, and the coefficients are

chosen to ensure the sample size ratio of 1 : 3 between the treated and control group, approximately.

We consider four scenarios for the continuous outcome and the outcome generating model is Y ∼ N(µ, 1), where
µ = −3.85 + 5 × T + 5 × X1 + X3 + EMF (EMF stands for effect modifier function):

• Scenario CC1: binary non-confounding effect modifier:
EMF = −10 × X4 × T .

• Scenario CC2: binary confounding effect modifier:
EMF = −10 × X3 × T .

• Scenario CC3: continuous non-confounding effect modifier:
EMF = −10 × I(X2 > 0.2) × T .

• Scenario CC4: continuous confounding effect modifier:
EMF = −10 × I(X1 > 0.2) × T .

First, we conduct matching in subgroups defined by the true effect modifier to obtain exact match on the subgroup
indicator. Second, we run a linear regression within each subgroup separately and the model only includes the treatment
indicator to see if matching can remove confounding due to covariates. For example, in scenario CC1, we conduct 1 : 1
optimal propensity score matching without replacement in subgroups X4 = 1 and X4 = 0 separately. The propensity score
model is a logistic regression model including X1 to X4. Within each matched subgroup dataset, we run a simple linear
regression using Y as the outcome and T as the predictor. The percentage bias (%Bias), i.e., (β̂ − 5)/5 × 100%, the 95%
confidence interval coverage (Coverage), and the average standard deviation estimates (SD) are reported in Table 3:

The biases under all scenarios are small (less than 2%). The 95% CI coverages are close to the nominal level. This implies
the matching based method is practically unbiased for estimating subpopulation effects.

We also conduct simulations for four binary outcome scenarios and the findings are similar to the continuous case.
Details are included in the Appendix A (Appendix A.4).

.2. A large simulation for subpopulation structure identification

Next, we examine the empirical performance of matching tree (MT) in comparison to several competing methods.
he other tree-based methods being considered are causal tree (CT), causal inference tree (CIT), virtual twins (VT) with
ayesian additive regression tree (BART) and virtual twins (VT) with causal forest (CF). Among the five methods, Matching
ree is based on matched data, while virtual twins with BART (VT.BART) and virtual twins with causal forest (VT.CF) need
o use full data. Causal tree and causal inference tree have no restrictions regarding the data structure, so we run both
atched data and full data with them.

.2.1. Continuous outcome
To obtain the continuous outcome, first we generate X1, X2, X3, X7 from the Normal distributions, with means 3, −5,

, −1, respectively, standard deviation 1. Next we generate X4, X5, X6, X8 from the Bernoulli distributions with success
robabilities 0.6, 0.5, 0.4, 0.55, respectively.
The treatment assignment is determined by the following logistic regression model:

logit(P(T = 1)) = (0.6 + 0.4 × log(|X1|) + 1.4 ×

√
|X2| − 3.2X4X5).

The outcome is generated as Normal distribution with a standard Normal error term, and there are two scenarios for
he mean term:
6
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Fig. 2. Scenario C1: Subgroup identification.

• Scenario C1 (Binary effect modifier and confounder):
µ = −3.85 + 0.5 × sin(X1) + 2 × exp(X3) + 2 × X4 + 1.5 × X6 + T × (2 + 5 × X4).

• Scenario C2 (Continuous effect modifier and confounder):
µ = −3.85 + 0.5 × sin(X1) + 2 × exp(X3) + 2 × X4 + 1.5 × X6 + T × (2 + 5 × I(X1>2.4)).

There are 2000 observations in each simulated dataset. The simulation is repeated for 1000 times for all scenarios. We
ave also considered cases where the effect modifier is not a confounder (details are presented in Appendix A.5).
To summarize the performance of each method for identifying the subgroup structure, several metrics are reported in

he following two figures:
Fig. 2 presents the results for scenario C1, where the binary subgroup indicator is also a confounder (X4). The x-

xis presents different metrics as defined in the figure legend and the y-axis shows the performance of each metric in
roportions. The left five columns present the final tree after the LSmeans pruning, and the right three columns present
esults without pruning. The first two columns show the overall performance of the method (higher proportion indicates
etter performance). The remaining six columns are the proportions of each individual variable that should not be selected
lower proportion indicates better accuracy). Comparing all seven methods, the performance of accuracy are not very
ifferent, except virtual twins with causal forest. The matching tree and two causal tree methods show better results
ith accuracy around 97% or higher. The before-pruning columns indicate some overfitting issues with causal inference
ree and causal tree methods, as they tend to partition with extra variables before pruning. Matching tree and virtual
wins methods do not seem to overfit much.

Fig. 3 presents the results for scenario C2, where the continuous subgroup indicator is also a confounder (X1). We use
small interval [2.3, 2.5] as an acceptable region for cut-off point identification, since the true cut-off value for X1 is 2.4.
he overall performance, shown in the left two columns, indicates that all methods become much worse in comparison
o scenario C1, except matching tree, which remains a high accuracy of 96%. Both causal inference tree methods are very
ad with little chance of identifying the true subgroup structure. Excluding causal inference tree methods, methods using
atched data tend to perform better. Among methods using full data, virtual twins with BART produces the best result.
verfitting becomes a bigger issue as shown in columns before pruning.
7
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Fig. 3. Scenario C2: Subgroup identification.

3.2.2. Binary outcome
We simulate binary outcomes using the same set of covariates. The true outcome is generated based on the following

models:

• Scenario B1 (Binary effect modifier and confounder):
logit(P(Y = 1)) = −1+ log(1.15)× X1 + log(1.15)× X3 + log(1.5)× X4 + log(1.5)× X6 + T × (log(2)+ log(10)× X4).

• Scenario B2 (Continuous effect modifier and confounder):
logit(P(Y = 1)) = −1+ log(1.15)×X1+ log(1.15)×X3+ log(1.5)×X4+ log(1.5)×X6+T ×(log(2)+ log(10)× I(X1>2.4)).

Since causal inference tree method are based on Normal likelihood and it cannot be used for modeling binary outcomes,
we remove them from comparison in this subsection. We have also considered cases where the effect modifier is not a
confounder (details are presented in Appendix A.6).

Fig. 4 presents the tree identification results for scenario B1, where the binary subgroup indicator is also a confounder
(X4). Consistent with the findings in scenario C1, all methods produce similar results with more than 90% accuracy, except
virtual twins with causal forest. Matching tree and virtual twins with BART are slightly better. Overfitting seems to be an
issue for some methods, especially causal tree with full data, as shown in columns before pruning.

Fig. 5 presents the tree identification results for scenario B2, where the continuous subgroup indicator is also a
confounder (X1). Similar to scenario C2, we use [2.3, 2.5] as an acceptable region for correctly identifying the cut-off point.
All methods show more than 70% accuracy with matching tree and virtual twin with BART above 80%. The before-pruning
results indicate that overfitting is still an issue for most methods.
8
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Fig. 4. Scenario B1: Subgroup identification.

Overall, matching tree is the top choice for matched data and virtual twins with BART is the top choice for full data
ased on our simulations. In the next section, we apply matching tree method to a real data example to study the timing
ffect of Tobramycin use on chronic infections among pediatric Cystic Fibrosis patients.

. Effect of the timing of Tobramycin use on chronic infections among pediatric CF patients

Cystic Fibrosis (CF) is one of the most common, life-shortening genetic diseases among children (Foundation, 2013).
t least 30,000 people are affected by CF in the United States, and about 1000 new cases are diagnosed every year. The
rimary cause of CF is mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This mutation
eads to dysfunction of the CFTR protein, which affects the function of lung, causing difficulty breathing, lung infections,
nd subsequent death. Currently, there is no known cure for CF.
The primary cause of death among CF patients is respiratory failure due to chronic airway infection and loss of

ung function. Pseudomonas aeruginosa (PA) is the most common type of infections in CF patients. Since PA is strongly
ssociated with increased inflammation, higher probability of pulmonary exacerbations, and higher mortality, treating
hronic PA is crucial for treating CF patients (Kosorok et al., 2001). According to the CF Pulmonary Guidelines, Tobramycin
TOBI) is an efficacious drug for treating chronic PA infection in CF patients (Ramsey et al., 1999).

Many studies have examined the use of TOBI among CF patients. Forced expiratory volume in 1 s (FEV1) is a common
easure of lung function, which can be collected from patients six years or older. In a randomized clinical trial setting,
onstan et al. (2014) used the linear mixed-effects model to show that the use of TOBI in CF patients is associated with
mprovement in FEV1. VanDyke et al. (2013) discussed whether TOBI is effective in treating chronic PA infection among CF
atients using observational data. They used a two-stage least square instrumental variable approach, where center-level
rescription was considered as the instrumental variable. The model results showed that the patients with chronic PA
nfection who took TOBI had better FEV1 than those not taking TOBI.

Since more than 75% CF patients are diagnosed before age 2, it is very important to develop treatment plan at early
ges. In our study, we want to investigate whether the use of TOBI can treat the infections in young CF patients, especially
hose younger than one year old. We choose to use body weight increase rate as the outcome since FEV1 can only be
easured after the age of six.
9
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Fig. 5. Scenario B2: Subgroup identification.

4.1. US CF foundation patient registry dataset

The CF Foundation Patient Registry is a comprehensive database containing information on the health status of CF
patients who received care in CF Foundation-accredited care centers and agreed to participate in the Registry. This
information is used to create CF care guidelines and to assist researchers in studying CF treatments and outcomes and
designing CF related clinical studies. We use the registry data from January 1, 1996, to December 31, 2015 to evaluate
two treatment strategies: taking TOBI at the first occurrence of PA infection (early treatment) versus taking TOBI at the
second or later PA infection occurrences (late treatment).

We consider the patients enrolled in the registry under one year of age, including 5657 records. After removing cases
with missing PA infection or weight information, there are 5218 patients in the final analytical file, including 1330 early
treatment and 3888 late treatment patients. The continuous outcome is the weight increase rate within one year after
the first chronic PA infection, defined as

Wt_Percentile_PA1_1y − Wt_Percentile_PA1
Wt_Percentile_PA1

,

where Wt_Percentile_PA1 denotes the weight percentile at the first PA infection, and Wt_Percentile_PA1_1y denotes the
patient’s weight percentile at one year after the first PA infection.

To apply our subgroup identification algorithm, we are particularly interested in if there is one or more subgroups that
present different treatment effects. Therefore, different treatment strategies can be targeted to different subgroups. Given
the observational nature of the registry data, we first use propensity score matching to balance covariate distributions,
then apply matching tree algorithm to identify potential subgroups.

Logistic regression is used to estimate the propensity of TOBI timing status with covariates identified based on clinical
knowledge (Konstan et al., 2007), including sex, insurance coverage, other drugs related to CF, baseline measures for age,
number of bacterial tests, year entered in registry, weight-for-age percentile, and height-for-age percentile. Summary
statistics for covariates by treatment groups are displayed in Table 4.
10
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Table 4
Summary statistics.

All patients Early TOBI patients Late TOBI patients

N 5218 1330 3888
Female, %(n) 45.9 (2399) 46.2 (614) 45.9 (1785)
TOBI_alt, %(n) 6.70 (350) 6.99 (93) 6.61 (257)
Insurance, %(n)
Medicaid 40.2 (2098) 40.1 (533) 40.2 (1565)
Non-Medicate 57.8 (3018) 57.3 (762) 58.0 (2256)
Unknown 1.95 (102) 1.80 (24) 2.00 (78)

Age, mean(SD) 2.39 (2.62) 2.6 (2.84) 2.32 (2.53)
Bacterial, mean (SD) 8.00 (8.27) 9.10 (9.79) 7.61 (7.62)
Year, mean (SD) 2006 (4.87) 2006 (4.85) 2006 (4.88)
Weight percentile, mean (SD) 33.02 (27.66) 34.13 (27.67) 32.63 (27.65)
Height percentile, mean (SD) 35.21 (27.15) 34.39 (26.45) 35.49 (27.39)

Fig. 6. ASD plot.

4.2. Subgroup identification

To investigate whether the early use of TOBI can benefit some subgroup of CF patients, we apply the matching tree
method to identify subgroups. Following the previous literature (Dasenbrook et al., 2008), we consider the covariates
in Table 4 as potential effect modifiers. Nearest neighbor algorithm is used to implement matching and post-matching
balance is examined by checking the absolute standardized differences (ASD) for each covariate. Fig. 6 shows good overall
balance as no ASD is more than 10%. With well-balanced covariates, we can proceed with subgroup identification and
treatment effect estimation.

We apply algorithm 1 to identify subgroups defined by binary covariates and apply algorithm 2 to identify subgroups
defined by continuous covariates. With algorithm 1, gender, insurance and TOBI_alt are considered as potential subgroup
defining variables. We first conduct 1-1 matching on both estimated propensity scores and these three variables, with the
three variables exactly matched. With matched data, we calculate the difference between the weight increase rate within
each pair and regress this difference with gender, insurance, and TOBI_alt, using CART. After tree pruning, it turns out none
of them is picked up, so no binary subgroup defining variables are considered further. With algorithm 2, weight percentile
and height percentile are considered as potential subgroup defining variables. The matching is similarly conducted and
the only difference is that we need to use caliper matching for continuous variables, instead of exact matching. Algorithm
2 finds a tree structure as presented in Fig. 7, where the n values indicate the number of pairs in each subgroup, i.e., the
leftmost leaf node includes 84 pairs of patients (168 individuals). Specifically, the following four subgroups are identified
by the matching tree method:

– height percentile < 4.4% and weight percentile < 3.5%
– height percentile < 4.4% and weight percentile ≥ 3.5%
– height percentile ≥ 4.4% and weight percentile < 4.3%
– height percentile ≥ 4.4% and weight percentile ≥ 4.3%
11
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a

Fig. 7. Subgroup identification.

Table 5
Real data analysis result.

Treatment effect (CI) SD P-value

Hpt < 4.4% & Wpt < 4.3% 0.123 (0.073, 0.173) 0.020 <0.0001*
Hpt < 4.4% & Wpt ≥ 4.3% 0.018 (−0.027, 0.063) 0.018 0.33
Hpt ≥ 4.4% & Wpt < 3.5% −0.02 (−0.063, 0.023) 0.017 0.28
Hpt ≥ 4.4% & Wpt ≥ 3.5% −0.0003 (−0.013, 0.012) 0.005 0.998

4.3. Subgroup effects estimation

With the identified subgroup structure, we estimate the treatment effect in each subgroup by LSmeans method, which
ccounts for the multiplicity in multiple group mean estimation. Lin et al. (2019) discussed the general strategy to

construct simultaneous confidence intervals for both subgroup effects and the overall population effect. Our application
is a special case of their method, which corresponds to a Bonferroni correction, since our four subgroups are independent.
Since the outcome, one-year weight increase rate, is highly skewed, the logarithm transformation is used to make it closer
to a normal distribution. Before the log transformation, we shift individual weight increase rate by adding 20 percentage
points to make sure all values are positive. We use the transformed outcome as Y in the following linear model with T
being the timing of TOBI, A, B, C, D being the four subgroups:

Y = β0 + βT × T + βB × I(B) + βC × I(C) + βD × I(D)
+ βTB × T × I(B) + βTC × T × I(C) + βTD × T × I(D) + ϵ,

where I(B), I(C) and I(D) are indicator variables for groups B, C, and D. The point estimators are βT , βT + βTB, βT + βTC ,
βT + βTD for subgroups A, B, C and D, respectively. We use the R function ‘‘glht’’ (in the package ‘‘multcomp’’) with two
pairwise commands (group and treatment assignment) to produce estimates displayed in Table 5 (‘‘Hpt’’ for the height-
for-age percentile variable and ‘‘Wpt’’ for the weight-for-age percentile variable). The confidence intervals (CI) are 95%
simultaneous confidence intervals calculated by the package with multiplicity adjustment.

The treatment effect is significant in the first subgroup, i.e., small weight and small height babies, showing a beneficial
effect of taking TOBI early. Since the estimation is based on matched data, the interpretation of the treatment effect should
be for those who actually received TOBI at their first PA infection. Among babies who actually were treated with TOBI at
first PA infection, with height percentile less than 4.4% and weight percentile less than 4.3%, the average treatment effect
of log weight increase rate is 0.123 (95% CI, 0.071 to 0.175). To get a better idea about the treatment effect in the original
scale, we also calculated the mean weight increase rate difference between treated and control subjects in the subgroup
showing significant effect, which is 2.16 percentage points. However, for the other three subgroups, no significant effects
for TOBI timing are present. In other words, there is no evidence for benefit of early TOBI treatment for bigger babies (in
terms of either height or weight).

5. Discussion

Discovering subgroups with heterogeneous effects is challenging in observational studies, as subjects in different
treatment groups may have different characteristics. We propose a matching design to first remove confounding, then
12
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pply tree-based methods to identify subgroup structure using within pair outcome differences. It is similar to virtual
wins method in the sense that subjects in each pair resemble twins with different treatment assignment. But the key
ifference is that we use matching design to find the outcomes of the twins, rather than using predictive modeling, which
ay be vulnerable to model misspecification. As a result of the matched design, our estimator should be interpreted as
verage subpopulation treatment effect for the treated, as the group who actually receive the treatment is used as the
eference population (Dong et al., 2020). If the average subpopulation effect for all is of primary interest, we may consider
sing the propensity score weighting based tree method, i.e. causal tree.
One practical issue with matching implementation is that we might not be able to match exactly on all possible effect

odifiers in practice. This is unlikely to be an issue when sample size is large enough and the size ratio between treated
nd control is adequate. However, when the sample size is small to moderate and there are many effect modifiers, exact
atching may not be possible on all covariates. We propose a strategy of splitting the covariates into several groups
nd running Matching tree separately for each of them. The practical issue is that these trees might be constructed with
ifferent matched sets. Consequently, the identification of subgroup structure may not be optimal. We view this as a
rade-off between nonparametric approaches like matching and more parametric predictive modelings. If sample size is
imited, matching tree may not be able to identify all subgroups. On the other hand, finding subgroups via modeling may
lso be questionable, as it relies too much on model structural assumptions.
Another important topic on causal inference in observation data is how to handle unmeasured confounding, as the

trongly ignorable treatment assignment assumption may not always hold. A common strategy in population level
ausal effect evaluation is to use sensitivity analyses, which assess the impact of the potential unobserved confounder
rom a quantitative perspective (Gastwirth et al., 1998; Rosenbaum, 2005; Nattino and Lu, 2018). It is very likely that
nmeasured confounding may exist at subgroup level, future work should gear towards developing appropriate sensitivity
nalysis strategies for tree-based subgroup analysis methods. A good starting point is Hsu and colleague’s work on effect
odification and design sensitivity in observational studies (Hsu et al., 2013).
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ppendix A

This proofs of Lemma 1 and Proposition 1 follow the idea of Rosenbaum and Rubin (1983) where they proved the
trong ignorability for the general population. We extend their results to subpopulations using a similar approach. The
roofs are included here for completeness.

.1. Proof of Lemma 1

roof. First, we can show that P(T = 1|e(X, Z), Z) = e(X, Z). This is because

P(T = 1|e(X, Z), Z) = E(T |e(X, Z), Z) = E[E(T |X, Z)|e(,XZ), Z]

= E[e(X, Z)|e(X, Z), Z] = e(X, Z).

herefore, the positivity inequality holds. Next, we will prove the conditional independence.

P(T = 1|Y 1, Y 0, Z, e(X, Z)) = E(T |Y 1, Y 0, Z, e(X, Z))
= E(E(T |Y 1, Y 0, Z,X)|Y 1, Y 0, Z, e(X, Z)) = E(E(T |X, Z)|Y 1, Y 0, Z, e(X, Z))
= E(e(X, Z)|Y 1, Y 0, Z, e(X, Z)) = e(X, Z).

imilarly, we have:

P(T = 1|Z, e(X, Z)) = E(T |Z, e(X, Z)) = E(E(T |X, Z)|Z, e(X, Z))
= E(e(X, Z)|Z, e(X, Z)) = e(X, Z).

herefore, P(T = 1|Y 1, Y 0, Z, e(X, Z)) = P(T = 1|Z, e(X, Z)). □
13
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.2. Proof of Proposition 1

roof. By Lemma 1, we have (Y 1, Y 0) | = T |e(X, Z), Z . Then,

Ee(X,Z)|Z (E(Y |e(X, Z), T = 1, Z) − E(Y |e(X, Z), T = 0, Z))
= Ee(X,Z)|Z (E(Y 1

|e(X, Z), T = 1, Z) − E(Y 0
|e(X, Z), T = 0, Z))

= Ee(X,Z)|Z (E(Y 1
|e(X, Z), Z) − E(Y 0

|e(X, Z), Z))
= E(Y 1

|Z) − E(Y 0
|Z).

here Ee(X,Z)|Z is the expectation of the distribution of propensity score in the subpopulation defined by Z . □

.3. Proof of Corollary 1

roof. First, for the positively inequality, it is easy to show that P(T = 1|e(X), Z) = e(X) because,

P(T = 1|e(X), Z) = E(T |e(X), Z) = E[E(T |X)|e(X), Z]

= E[e(X)|e(X), Z] = e(X).

Then, for the conditional independence.

P(T = 1|Y 1, Y 0, Z, e(X)) = E(T |Y 1, Y 0, Z, e(X))
= E(E(T |Y 1, Y 0, Z,X)|Y 1, Y 0, Z, e(X)) = E(E(T |X)|Y 1, Y 0, Z, e(X))
= E(e(X)|Y 1, Y 0, Z, e(X)) = e(X).

hus,

P(T = 1|Y 1, Y 0, Z, e(X)) = P(T = 1|Z, e(X)).
(Y 1, Y 0) | = |e(X), Z .

Therefore,

Ee(X)|Z (E(Y |e(X), T = 1, Z) − E(Y |e(X), T = 0, Z))
= Ee(X)|Z (E(Y 1

|e(X), T = 1, Z) − E(Y 0
|e(X), T = 0, Z))

= Ee(X)|Z (E(Y 1
|e(X), Z) − E(Y 0

|e(X), Z))
= E(Y 1

|Z) − E(Y 0
|Z).

where Ee(X)|Z is the expectation of the distribution of propensity score in the subpopulation defined by Z . □

.4. Simulation for unbiased subpopulation causal effect estimation – Binary outcome

The baseline covariates are generated same as the continuous outcome. The binary outcome generating models is

logit(P(Y = 1)) = log(3) + 2 × T + log(1.5) × X1 + log(1.5) × X3 + EMF.

here EMF indicates effect modifier function.

• Scenario BB1: Binary Outcome, Binary non-confounder, effect modifier.
(EF = 3 ×X4 × T )

• Scenario BB2: Binary Outcome, Binary confounder, effect modifier. Binary Outcome, Binary non-confounder, effect
modifier.
(EF = 3 ×X3 × T )

• Scenario BB3: Binary Outcome, Continuous non-confounder, effect modifier.
(EF = 3×I(X2 > 0.2) × T )

• Scenario BB4: Binary Outcome, Continuous confounder, effect modifier.
(EF = 3×I(X1 > 0.2) × T ) (see Table A.6).

.5. Simulation for subpopulation structure identification: Continuous outcome, non-confounding effect modifier

See Tables A.7 and A.8.

.6. Simulation for subpopulation structure identification: Binary outcome, non-confounding effect modifier

See Tables A.9 and A.10.
14
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T
B

able A.6
inary outcome, subpopulation ignorability.
RD Subgroup 1 Subgroup 2

%Bias Coverage SD %Bias Coverage SD

Scenario BB1 1.16 94.2 0.02 1.21 95.3 0.02
Scenario BB2 1.47 95.1 0.02 0.47 95.2 0.03
Scenario BB3 1.57 94.9 0.03 0.76 95.2 0.02
Scenario BB4 1.91 95.0 0.02 0.22 95.3 0.03

RR %Bias Coverage SD %Bias Coverage SD

Scenario BB1 1.37 100 0.08 1.46 99.8 0.09
Scenario BB2 1.69 99.1 0.08 0.41 98.6 0.09
Scenario BB3 1.89 99.2 0.10 0.95 99.9 0.08
Scenario BB4 2.16 99.2 0.08 0.49 99.2 0.10

OR %Bias Coverage SD %Bias Coverage SD

Scenario BB1 1.12 95.5 0.93 2.27 96.6 0.43
Scenario BB2 2.09 98.2 0.96 0.63 95.7 0.35
Scenario BB3 1.08 94.6 0.96 1.06 96.2 0.35
Scenario BB4 1.81 94.9 0.95 1.17 95.5 0.36

Table A.7
Identification-Continuous outcome, binary effect modifier, non-confounder.

Tree after prune Tree before prune

%START %CORR %X4 %X5 %X8 %X4 %X5 %X8

MT (m) 99.9% 97.6% 1.2% 0.7% 0.8% 5.9% 4.1% 5.2%
CIT (m) 99.3% 93.4% 6.1% 5.3% 5.2% 100% 100% 100%
CT (m) 100% 95.6% 4.4% 1.8% 2.5% 100% 45.5% 45.5%
CIT 96.5% 87.1% 12.5% 10.5% 8.7% 100% 100% 99.8%
CT 100% 94.2% 5.8% 2.4% 3.2% 100% 45% 44.9%
VT.BART 99.6% 98.7% 1.1% 0% 0% 38.5% 3.1% 0.2%
VT.CF 76.9% 76.5% 1.2% 4.8% 4.6% 3.2% 12.9% 9.8%

Note: Methods that run with the matched data are denoted with ‘‘(m)’’; otherwise, the methods run with the full data.

Table A.8
Identification–Continuous outcome, continuous effect modifier, non-confounder.

Tree after prune Tree before prune

%START %VAL %CORR %X2 %X3 %X7 %X2 %X3 %X7

MT (m) 100% 98.9% 90.9% 0% 3.4% 0% 0% 22.3% 0%
CIT (m) 100% 84.9% 0% 98.2% 100% 99.1% 100% 100% 100%
CT (m) 100% 78.7% 68.9% 3.8% 2.3% 5.8% 26.8% 53.9% 30.3%
CIT 100% 70.1% 0% 100% 100% 99.2% 100% 100% 100%
CT 99.7% 59.9% 30.1% 11.7% 49.3% 9.9% 52.5% 99.9% 45.8%
VT.BART 100% 99.9% 66.2% 0.1% 0.3% 0% 0.3% 2.5% 0.2%
VT.CF 100% 79.0% 69.8% 12.4% 14.1% 13.7% 65.1% 66.5% 66.3%

Note: Methods that run with the matched data are denoted with ‘‘(m)’’; otherwise, the methods run with the full data.

Table A.9
Identification – Binary outcome, binary effect modifier, non-confounder.

Tree after prune Tree before prune

%START %CORR %X4 %X5 %X8 %X4 %X5 %X8

MT (m) 98.5% 93.5% 6.5% 3.2% 2.7% 9.8% 7.9% 5.6%
CT (m) 99.5% 89.8% 5.4% 4% 3.4% 27.3% 30.4% 30.7%
CT 98.6% 96.8% 0.6% 1.8% 0.7% 10.1% 54.1% 33.8%
VT.BART 99.8% 96.2% 3% 0.8% 0.3% 85.2% 3.7% 1.4%
VT.CF 64.4% 63.9% 5.2% 8.3% 6.1% 12% 16.5% 11.9%

Note: Methods that run with the matched data are denoted with ‘‘(m)’’; otherwise, the methods run with the full data.

Appendix B. Simulation R codes

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2021.107188.
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able A.10
dentification – Binary outcome, continuous effect modifier, non-confounder.

Tree after prune Tree before prune

%START %VAL %CORR %X2 %X3 %X7 %X2 %X3 %X7

MT (m) 92.6% 82.7% 73% 0% 15.7% 0% 0% 17.5% 0%
CT (m) 68.2% 50% 30.2% 16.3% 15.2% 15.1% 36.9% 38.9% 34.5%
CT 96.3% 83.7% 56.7% 15% 11.3% 15.3% 50.1% 36.1% 53.1%
VT.BART 87.3% 55.4% 47.2% 11.8% 33.8% 11.5% 15.9% 48.2% 14.3%
VT.CF 97.7% 67.2% 52% 23.9% 26.2% 26.6% 73.2% 71.8% 73.7%

Note: Methods that run with the matched data are denoted with ‘‘(m)’’; otherwise, the methods run with the full data.
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