
ar
X

iv
:1

91
1.

00
59

6v
1 

 [n
uc

l-e
x]

  1
 N

ov
 2

01
9

Methods for a blind analysis of isobar data collected by

the STAR collaboration

J. Adam6, L. Adamczyk2, J. R. Adams39, J. K. Adkins30, G. Agakishiev28,
M. M. Aggarwal40, Z. Ahammed59, I. Alekseev3,35, D. M. Anderson53,
A. Aparin28, E. C. Aschenauer6, M. U. Ashraf11, F. G. Atetalla29,

A. Attri40, G. S. Averichev28, V. Bairathi22, K. Barish10, A. J. Bassill10,
A. Behera51, R. Bellwied20, A. Bhasin27, J. Bielcik14, J. Bielcikova38,

L. C. Bland6, I. G. Bordyuzhin3, J. D. Brandenburg48,6, A. V. Brandin35,
J. Butterworth44, H. Caines62, M. Calderón de la Barca Sánchez8,

D. Cebra8, I. Chakaberia29,6, P. Chaloupka14, B. K. Chan9, F-H. Chang37,
Z. Chang6, N. Chankova-Bunzarova28, A. Chatterjee11, D. Chen10,
J. H. Chen18, X. Chen47, J. Cheng55, M. Cherney13, M. Chevalier10,

S. Choudhury18, W. Christie6, H. J. Crawford7, M. Csanád16, S. Das11,
M. Daugherity1, T. G. Dedovich28, I. M. Deppner19, A. A. Derevschikov42,
L. Didenko6, X. Dong31, J. L. Drachenberg1, J. C. Dunlop6, T. Edmonds43,

N. Elsey61, J. Engelage7, G. Eppley44, R. Esha51, S. Esumi56,
O. Evdokimov12, J. Ewigleben32, O. Eyser6, R. Fatemi30, S. Fazio6,

P. Federic38, J. Fedorisin28, C. J. Feng37, Y. Feng43, P. Filip28, E. Finch50,
Y. Fisyak6, A. Francisco62, L. Fulek2, C. A. Gagliardi53, T. Galatyuk15,

F. Geurts44, A. Gibson58, K. Gopal23, D. Grosnick58, W. Guryn6,
A. I. Hamad29, A. Hamed5, J. W. Harris62, W. He18, X. He26,

S. Heppelmann8, S. Heppelmann41, N. Herrmann19, E. Hoffman20,
L. Holub14, Y. Hong31, S. Horvat62, Y. Hu18, B. Huang12, H. Z. Huang9,
S. L. Huang51, T. Huang37, X. Huang55, T. J. Humanic39, P. Huo51,

G. Igo9, D. Isenhower1, W. W. Jacobs25, C. Jena23, A. Jentsch6, Y. JI47,
J. Jia6,51, K. Jiang47, S. Jowzaee61, X. Ju47, E. G. Judd7, S. Kabana29,

M. L. Kabir10, S. Kagamaster32, D. Kalinkin25, K. Kang55,
D. Kapukchyan10, K. Kauder6, H. W. Ke6, D. Keane29, A. Kechechyan28,
M. Kelsey31, Y. V. Khyzhniak35, D. P. Kiko la 60, C. Kim10, D. Kincses16,

T. A. Kinghorn8, I. Kisel17, A. Kiselev6, A. Kisiel60, M. Kocan14,
L. Kochenda35, L. K. Kosarzewski14, L. Kramarik14, P. Kravtsov35,

K. Krueger4, N. Kulathunga Mudiyanselage20, L. Kumar40,
R. Kunnawalkam Elayavalli61, J. H. Kwasizur25, R. Lacey51, S. Lan11,
J. M. Landgraf6, J. Lauret6, A. Lebedev6, R. Lednicky28, J. H. Lee6,
Y. H. Leung31, C. Li47, W. Li49, W. Li44, X. Li47, Y. Li55, Y. Liang29,

R. Licenik38, T. Lin53, Y. Lin11, M. A. Lisa39, F. Liu11, H. Liu25, P. Liu51,

Preprint submitted to Elsevier November 5, 2019

http://arxiv.org/abs/1911.00596v1


P. Liu49, T. Liu62, X. Liu39, Y. Liu53, Z. Liu47, T. Ljubicic6, W. J. Llope61,
M. Lomnitz31, R. S. Longacre6, N. S. Lukow52, S. Luo12, X. Luo11,
G. L. Ma49, L. Ma18, R. Ma6, Y. G. Ma49, N. Magdy12, R. Majka62,

D. Mallick36, S. Margetis29, C. Markert54, H. S. Matis31, O. Matonoha14,
J. A. Mazer45, K. Meehan8, J. C. Mei48, N. G. Minaev42,

S. Mioduszewski53, B. Mohanty36, M. M. Mondal36, I. Mooney61,
Z. Moravcova14, D. A. Morozov42, M. Nagy16, J. D. Nam52, Md. Nasim22,

K. Nayak11, D. Neff9, J. M. Nelson7, D. B. Nemes62, M. Nie48,
G. Nigmatkulov35, T. Niida56, L. V. Nogach42, T. Nonaka11, G. Odyniec31,
A. Ogawa6, S. Oh62, V. A. Okorokov35, B. S. Page6, R. Pak6, A. Pandav36,

Y. Panebratsev28, B. Pawlik2, D. Pawlowska60, H. Pei11, C. Perkins7,
L. Pinsky20, R. L. Pintér16, J. Pluta60, J. Porter31, M. Posik52,

N. K. Pruthi40, M. Przybycien2, J. Putschke61, H. Qiu26, A. Quintero52,
S. K. Radhakrishnan29, S. Ramachandran30, R. L. Ray54, R. Reed32,
H. G. Ritter31, J. B. Roberts44, O. V. Rogachevskiy28, J. L. Romero8,
L. Ruan6, J. Rusnak38, O. Rusnakova14, N. R. Sahoo48, H. Sako56,

S. Salur45, J. Sandweiss62, S. Sato56, W. B. Schmidke6, N. Schmitz33,
B. R. Schweid51, F. Seck15, J. Seger13, M. Sergeeva9, R. Seto10,

P. Seyboth33, N. Shah24, E. Shahaliev28, P. V. Shanmuganathan6,
M. Shao47, F. Shen48, W. Q. Shen49, S. S. Shi11, Q. Y. Shou49,

E. P. Sichtermann31, R. Sikora2, M. Simko38, J. Singh40, S. Singha26,
N. Smirnov62, W. Solyst25, P. Sorensen6, H. M. Spinka4, B. Srivastava43,
T. D. S. Stanislaus58, M. Stefaniak60, D. J. Stewart62, M. Strikhanov35,

B. Stringfellow43, A. A. P. Suaide46, M. Sumbera38, B. Summa41,
X. M. Sun11, Y. Sun47, Y. Sun21, B. Surrow52, D. N. Svirida3,

P. Szymanski60, A. H. Tang6, Z. Tang47, A. Taranenko35, T. Tarnowsky34,
J. H. Thomas31, A. R. Timmins20, D. Tlusty13, M. Tokarev28,
C. A. Tomkiel32, S. Trentalange9, R. E. Tribble53, P. Tribedy6,

S. K. Tripathy16, O. D. Tsai9, Z. Tu6, T. Ullrich6, D. G. Underwood4,
I. Upsal48,6, G. Van Buren6, J. Vanek38, A. N. Vasiliev42, I. Vassiliev17,

F. Videbæk6, S. Vokal28, S. A. Voloshin61, F. Wang43, G. Wang9,
J. S. Wang21, P. Wang47, Y. Wang11, Y. Wang55, Z. Wang48, J. C. Webb6,

P. C. Weidenkaff19, L. Wen9, G. D. Westfall34, H. Wieman31,
S. W. Wissink25, R. Witt57, Y. Wu10, Z. G. Xiao55, G. Xie31, W. Xie43,
H. Xu21, N. Xu31, Q. H. Xu48, Y. F. Xu49, Y. Xu48, Z. Xu6, Z. Xu9,

C. Yang48, Q. Yang48, S. Yang6, Y. Yang37, Z. Yang11, Z. Ye44, Z. Ye12,
L. Yi48, K. Yip6, H. Zbroszczyk60, W. Zha47, D. Zhang11, S. Zhang47,

S. Zhang49, X. P. Zhang55, Y. Zhang47, Z. J. Zhang37, Z. Zhang6, J. Zhao43,

2



C. Zhong49, C. Zhou49, X. Zhu55, Z. Zhu48, M. Zurek31, M. Zyzak17

1Abilene Christian University, Abilene, Texas 79699

2AGH University of Science and Technology, FPACS, Cracow 30-059, Poland

3Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov
Institute”, Moscow 117218, Russia

4Argonne National Laboratory, Argonne, Illinois 60439

5American University of Cairo, New Cairo 11835, New Cairo, Egypt

6Brookhaven National Laboratory, Upton, New York 11973

7University of California, Berkeley, California 94720

8University of California, Davis, California 95616

9University of California, Los Angeles, California 90095

10University of California, Riverside, California 92521

11Central China Normal University, Wuhan, Hubei 430079

12University of Illinois at Chicago, Chicago, Illinois 60607

13Creighton University, Omaha, Nebraska 68178

14Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic

15Technische Universität Darmstadt, Darmstadt 64289, Germany
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Abstract

In 2018, the STAR collaboration collected data from 96

44
Ru +96

44
Ru and

96

40
Zr +96

40
Zr at

√
sNN = 200 GeV to search for the presence of the chiral

magnetic effect in collisions of nuclei. The isobar collision species alternated
frequently between 96

44
Ru+96

44
Ru and 96

40
Zr+96

40
Zr. In order to conduct blind

analyses of studies related to the chiral magnetic effect in these isobar data,
STAR developed a three-step blind analysis procedure. Analysts are initially
provided a “reference sample” of data, comprised of a mix of events from the
two species, the order of which respects time-dependent changes in run condi-
tions. After tuning analysis codes and performing time-dependent quality as-
surance on the reference sample, analysts are provided a species-blind sample
suitable for calculating efficiencies and corrections for individual ≈ 30-minute
data-taking runs. For this sample, species-specific information is disguised,
but individual output files contain data from a single isobar species. Only
run-by-run corrections and code alteration subsequent to these corrections
are allowed at this stage. Following these modifications, the “frozen” code is
passed over the fully un-blind data, completing the blind analysis. As a check
of the feasibility of the blind analysis procedure, analysts completed a “mock
data challenge,” analyzing data from Au+Au collisions at

√
sNN = 27 GeV,

collected in 2018. The Au+ Au data were prepared in the same manner in-
tended for the isobar blind data. The details of the blind analysis procedure
and results from the mock data challenge are presented.

Keywords:
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1. Introduction

For more than a decade, the STAR Collaboration has been searching for
evidence of chiral magnetic effects (CME) [1, 2, 3]. CME [4, 5] refers to the

induction of an electric current ( ~Je) by the magnetic field ( ~B) in a chiral

system: ~Je ∝ µ5
~B. A chiral system bears a nonzero µ5, which character-

izes the imbalance of right-handed and left-handed fermions in the system.
The discovery of CME in high-energy heavy-ion collisions would confirm
the simultaneous existence of ultra-strong magnetic fields, chiral symmetry
restoration, and topological charge changing transitions in these collisions.
On average, ~B is perpendicular to the reaction plane (ΨRP) that contains the
impact parameter and the beam momenta. CME, therefore, will manifest a
charge transport across the reaction plane.

A set of observables common to CME searches are the charge-separation
fluctuations perpendicular to ΨRP, e.g. with a three-point correlator [6],
γ ≡ 〈cos(φα + φβ − 2ΨRP)〉, where averaging is done over all particles in an
event and over all events. To draw firm conclusions on the presence of CME,
an effective way is needed to disentangle the signal and background contri-
butions, the latter of which are intertwined with collective flow. Collisions
of isobaric nuclei, e.g. 96

44
Ru +96

44
Ru and 96

40
Zr +96

40
Zr, present an opportu-

nity to vary the initial magnetic field while keeping background conditions
approximately the same [7]. Ruthenium-96 and Zirconium-96 each have 96
nucleons but with different numbers of protons, 44 and 40 for Ru and Zr,
respectively. Monte Carlo Glauber simulations indicate 96

44
Ru +96

44
Ru and

96

40
Zr+96

40
Zr collisions at the same beam energy are almost identical in terms

of particle production [8]. The ratio of the multiplicity distributions from
the two collision systems is consistent with unity almost everywhere, except
in 0 − 5% most central collisions, where the slightly larger charge radius of
Ru (R0 = 5.085 fm) plays a role against that of Zr (R0 = 5.02 fm). CME
analyses can focus on the centrality range of 20−60%, where the background
difference due to the multiplicity are negligible. A theoretical calculation us-
ing the HIJING model [8] indicates the relative difference in the square of
the initial magnetic field between 96

44
Ru+96

44
Ru and 96

40
Zr+96

40
Zr collisions ap-

proaches 15−18% for peripheral events and ≈ 13% for central events. These
estimates translate into a relative difference in the CME signal observable
between the two isobars of 3%, assuming an 80% background from elliptic
flow, requiring a minimum of 1.2 × 109 events to pass the various analysis
selection criteria to achieve a result of 5σ significance. Due to the small dif-
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ference in the CME signal observables, of critical importance to the analysis
is control of systematic uncertainties, in particular those related to detector
acceptance and efficiency, which may vary in a time-dependent way.

In 2018, STAR collected data from isobar collisions, 96

44
Ru +96

44
Ru and

96

40
Zr+96

40
Zr, at

√
sNN = 200 GeV. For the first time, the STAR Collaboration

has implemented blind analyses of these data in studies related to CME.
While blind analyses are not uncommon in particle physics, e.g. Ref. [9],
the typical methods were not found to be suitable for the specific needs of
STAR CME analyses. What follows is the description of the blind analysis
procedure for the 2018 isobar collision data. The procedure was accepted
by the STAR Collaboration prior to CME data-taking. While primarily
relevant for CME-related studies, the opportunity for a blind analysis was
open to all STAR analyses of 2018 isobar data. In identifying as a “STAR
blind analysis” for the 2018 isobar running, analysts adhere to the following
procedure. Subsequent STAR publications clearly identify as a blind analysis
or an “un-blind” analysis according to the accepted procedure. The following
procedure takes advantage of frequent switching of the isobar collision species
during 2018 RHIC running to interleave isobar data samples from each species
in a way that respects the time-variation of data running conditions. STAR
collected 6.3 billion isobar events, evenly split between the two species, during
the two months of isobar running. The RHIC isobar stores or “fills” typically
lasted 20 hours, with STAR collecting data during 30-minute “runs” of the
data acquisition system. Accelerator operators adjusted the beam optics
throughout the 20 hour fills to maintain nearly constant collision rates, with
the same target rate for the two isobar species.

2. Blinding Techniques

2.1. General principle

Blind analyses often rely on a “reference sample” and an inability to
differentiate two or more samples or a particular sample from the refer-
ence (see Ref. [9] for a brief overview of blind analyses in particle physics).
The reference sample is often used either to tune an analysis without pre-
determined bias or to provide a reference for evaluating the significance of
a result, e.g. eliminating placebo effects or genetic conditions that may bias
the result of medical studies.

7



2.2. Considerations

While many possibilities exist, the blinding method for a particular anal-
ysis should be well-matched to the specific needs of that analysis. Among
the specific considerations for analysis of the 2018 STAR isobar data are the
following:

• The un-blind data should not be accessible by physics analysts prior to
analysis tuning.

• Accounting for time-dependent detector fluctuations is a critical com-
ponent of analysis quality assurance (Q/A).

• Accounting for run-by-run anomalies is a critical component of final
analysis Q/A.

• Randomizing variables within an event may severely compromise the
quality of analysis Q/A and associated corrections. For example, ran-
domizing the sign of charged particle tracks would prevent charge-
dependent efficiency corrections; and randomizing particle azimuthal
angle would destroy correlations from secondary decays. Because of
these considerations, such methods are not retained as part of this
procedure.

• To ensure the isobar species have statistically comparable behaviors in
terms of luminosity, event trigger composition, energy, vertex distribu-
tion, occupancy of tracks, etc., the 2018 RHIC run involved frequent
switching of the isobar collision species.

• With this consideration in mind, it is feasible to interleave or “mix”
events from the two collision species in a given output data file as an
efficient method to disguise the collision species.

• Certain STAR experts, recused from blind physics analyses, may re-
quire isobar information during RHIC running to ensure data of suffi-
cient quality to achieve target physics goals.

• Calibration experts, who are recused from conducting blind physics
analyses, may need access to un-blind data to ensure sufficiently robust
calibrations and corrections to achieve the desired physics goals.

8



• Runs of quality suitable for inclusion in physics analyses, e.g. not ex-
hibiting large detector inefficiencies, must be selected prior to the mix-
ing of events from different species.

For the blind analysis of isobar data collected in 2018, STAR adopted
a three-step blinding procedure. For the first step, analysts are provided
output data files that mix events from the two isobar collision species, while
respecting the time-dependence of run conditions. Analysts use this data
sample to perform time-dependent Q/A of the data and to tune analysis
codes. At the conclusion of these studies, analysts commit their code to a
repository. In the second step, analysts are provided an “unmixed-blind,”
sample suitable for calculating corrections that vary according to individual
≈ 30-minute data-taking runs. The run identification number are disguised,
but the output data files do not mix events from different runs. Only these
“run-by-run” corrections (e.g. for changing detector efficiencies) and code al-
terations subsequent to these corrections are allowed during this step. At the
conclusion of these studies, the final codes are committed to the repository,
so that differences may be evaluated. After the analysis codes are verified,
the final data analysis pass is completed using these final codes and the fully
un-blind data released.

2.3. Initial procedure

Initial implementation of the analysis blinding procedure began prior to
and during the 2018 RHIC run. To the extent possible, information pertain-
ing to the isobar species was restricted during the run. Access to raw data
for purposes of Q/A during the run was restricted to identified experts, ap-
proximately 5% of the collaboration, recused from blind physics analyses. To
the extent possible, all raw data samples were limited in size below the level
needed for sensitivity to a CME signal, e.g. less than 10000 events. Un-blind
experts produced species-blind performance plots to evaluate data quality
for the run in-progress.

Prior to the software production of the blind data, it was necessary to
set detector calibrations and determine an appropriate list of quality data-
taking runs. Due to the importance of robust calibrations to the physics
analyses, these calibrations were performed by the relevant experts using
un-blind data. These calibration experts were recused from participation in
blinded physics analyses. Additionally, a committee was designated to deter-
mine data-taking runs of sufficient quality for inclusion in physics analyses.
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Members of this run selection committee were also recused from participation
in blinded physics analyses. Production of the blind data commenced after
calibrations and the designation of good runs.

No physics analysis groups are provided with un-blinded data prior to
completion of the un-blinding procedure.

2.4. Blind data production

In the blind production of data, the following information encoded in the
data stream (DST) are obfuscated: the identification numbers for the event,
its particular data-taking run, and RHIC fill; the event timestamp; the event
collision species; and the hit rates for the east and west STAR zero-degree
calorimeters (ZDC) [10] and beam-beam counters (BBC) [11], as well as their
coincidence and background rates. All output data files are assigned a generic
name and pseudo-run-number that monotonically increases with time. The
exact start time of a data production is not known to ensure, e.g. that a
particular pseudo-run-number is not trivially related to a particular isobar
species. The mixing procedure and exact algorithm to re-assign pseudo-run
numbers are encrypted and only known by two experts, who are recused from
performing blind physics analyses. The reference sample, species-separated
samples, and fully unblind samples are provided in a three-step process.

2.5. Step-1: “The Reference”

Analysts are initially provided output files composed of events from a mix
of the two isobar species. The mixing procedure is not a priori known. As
much as possible, the order of events respects temporal changes in running
conditions. Events showing peculiar discrepancies from the initial Q/A are
excluded from the sample, and events from the two species are only combined
if the detector performance, e.g. acceptance, was similar for the two events.
Events are randomly rejected at the level of ∼ 10%, so that “counters,”
e.g. trigger words, cannot be used to determine the species. Analysis code
and time-dependent Q/A are tuned on this reference sample, committed
to the analysis code repository, and kept unchanged at this stage. Among
other aspects, this step enables extraction of time-dependent spectra for Q/A,
detection of time-dependent anomalies, detection of secondary decays and
measurement of peak widths relevant to momentum resolution.
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2.6. Step-2: “The run by run Q/A sample”

After analysis of the reference data, analysts are provided an “unmixed-
blind sample” comprised of files that obscure the true run number (and,
hence, the isobar species) but do not mix events across different runs. The
pseudo-run-number uniquely maps to one true run number and one (un-
known) isobar species. The data are provided in such a way that a mix of
files from each species appear in the same directory. As, in the first step, a
fraction of events from each run is rejected to ensure that simple counting
of events could not decipher the species. This sample enables species-blind
run-by-run Q/A. Only run-by-run corrections and code alteration directly
resulting from these corrections are allowed at this stage. The number of
events provided per file is tuned so that statistics are sufficient for robust
corrections but insufficient for deciphering the isobar species.

2.7. Step-3: Full Un-blinding

Once Q/A is complete and analyses of the run-by-run Q/A data are final,
full un-blinding proceeds. At this stage, physics results are produced with the
previously tuned, vetted, and fixed analysis codes. In this data production,
all information is un-blinded and restored to the data files.

3. Implementation and Timeline for Blinded Analyses

No STAR physics analyses had access to species information prior to
un-blinding. The timelines for un-blinding are estimated by the blind ana-
lysts, who present regular updates to their respective physics working groups
(PWG) to document progress and to inform adjustments to the timeline.
Decisions to un-blind are based upon a review of thoroughly documented
analysis procedures, codes, and analysis reports–including estimates of mea-
surement uncertainty–by the relevant PWG. In addition, for blind analyses of
the isobar data, so-called “godparent committees” or “GPCs,” are set early
and follow analyses closely throughout their development. The GPCs serve
an important role in verifying that analyses are ready to proceed to the next
stages of the blinding procedure. After the step-1 data are available, blind-
data analysts estimate a timeline for completing the necessary analyses for
advancing to step-2. Based on this input from the analysts, management ap-
proves a date for the beginning of the second step. Analysts present regular
updates to document progress. Regardless of progress, un-blinding occurs
no earlier than the original estimate unless all blind analyses are deemed
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ready to proceed by STAR Management. Based upon the progress reports,
un-blinding may be delayed to ensure the quality of the final results. An
analogous timeline procedure is done for the full un-blinding. Prior to the
first un-blinding step, analysts prepare detailed notes documenting the proce-
dures, cuts, corrections, systematic uncertainties, and criteria for any future
run-by-run cuts and corrections. Prior to the second un-blinding step, an-
alysts ensure that the documentation is updated and complete, including
the run-by-run portion of analyses. Prior to each un-blinding step, analysts
provide analysis codes for vetting and Q/A by the GPC in addition to the
standard vetting within the physics working groups.

When the GPC is satisfied that an analysis is ready for un-blinding,
analysts present the status of their analyses to the physics working group
conveners and the physics analysis coordinator. As the un-blinding date
approaches, analysts discuss with STAR management any need for delays to
un-blinding to ensure the quality of results. If an unresolved disagreement
exists between analysts, the decision to un-blind or extend the date lies with
STAR management. After physics results are produced with un-blinded data,
a review is conducted to verify that the frozen analysis code was used to
produce the results.

While un-blinded data are not accessible to physics analyses until the
blinding timeline is completed, management uses discretion in applying blind-
ing to any calibration analysis. To ensure the integrity of calibrations,
e.g. those of the beamline and TPC [12], STAR calibration experts may
require access to un-blind data. Without robust calibrations, the physics
analyses may not be able to achieve the required precision for deciphering a
CME signal. Therefore, the relevant experts are allowed access to the un-
blind data for these tasks. Furthermore, access to un-blind data is restricted
to these experts alone and the experts recuse themselves from participation
in any blind physics analysis.

4. Mock data challenge

As the recommended analysis blinding procedure represents a substantial
departure from that typical for STAR analyses, testing feasibility is critical.
Toward this end, a “mock data challenge” was conducted utilizing data from
Au+Au collisions at

√
sNN = 27 GeV, also collected in 2018. Additionally,

this exercise served as an opportunity for the software and computing team
to develop, tune, and test the machinery necessary for producing the blind

12



data samples. “Blinded” samples of these data were provided to analysts,
utilizing the same techniques intended for blinding the isobar data. One
sample was provided with output data files containing events from a mixture
of data-taking runs, simulating the first stage of blinding, where data files
contain a mix of isobar species. Another sample was provided using output
files containing events from single data-taking runs but still blinding certain
variables that in the isobar data sample could be used to identify the isobar
species. For completeness, a final un-mixed sample was provided with no
information obscured, simulating the fully “un-blind” phase of the analysis.
Analysts used the two mock blind-data samples to perform quality control
studies and appropriately tune analysis codes, selection cuts, and corrections.
Once completed, the analysts then ran the same codes over the un-blind
data sample to verify that the analysis was feasible with the given data
structures and that results were appropriately consistent within the statistical
differences between the samples. Example quality assurance plots for the
three different samples are shown in Fig. 1. Note that the different samples
did not contain identical sets of events.

5. After Un-blinding

After un-blinding, only changes to correct “mistakes,” defined for this
purpose as errors in arithmetic or unintended departures from the approved
and documented analysis procedures, are allowed. If such a correction is
made, the analysis results with the error will also be provided with a detailed
explanation of the specific correction applied and why it was needed. On a
case-by-case basis, the collaboration considers announcing the result from a
blind analysis simultaneously with the submission of the corresponding paper
to the journal and the preprint arXiv. Regardless, only one set of “final”
results from the blind analysis will be released, e.g. there will be no set of
“preliminary” results prior to the “final” results. All STAR publications
of 2018 results state explicitly whether the analysis followed the approved
STAR blinding procedure.

6. Conclusion

The STAR Collaboration has developed a procedure to carry out blind
analyses of isobar collision data, collected in 2018. The procedure described
in this manuscript was accepted by the STAR Council in January 2018, prior
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to the isobar collision runs. The initial step in the procedure is an analysis
of blinded data samples that interleave events from the two collision species,
while the second step involves analysis of blinded data samples that do not
mix events from the two collision species, followed by complete un-blinding of
the data. Prior to commencing with analysis of the isobar data, a mock data
challenge was successfully conducted to demonstrate the feasibility of the
procedure both from an analysis standpoint and a computational standpoint.
Analyses of the blind data are underway, following the procedure outlined in
this manuscript.
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