

Research Data

Potential for maternal effects on offspring CO₂ sensitivities in the Atlantic silverside (*Menidia menidia*)

Jacob T. Snyder, Christopher S. Murray, Hannes Baumann*

University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, 06340 Groton, CT, United States

ARTICLE INFO

Keywords:

Fatty acids
Growth
Log-transformed response ratio
Ocean acidification
Survival

ABSTRACT

For marine fish, the influence of maternal provisioning on offspring sensitivity to high carbon dioxide (CO₂) conditions remains unknown. We separately reared offspring obtained from five wild-caught Atlantic silverside (*Menidia menidia*) females from fertilization to 16 days post hatch under contrasting CO₂ conditions (ambient: ~400 µatm, acidified: ~2,300 µatm), testing whether average survival during the embryo and larval stage, hatch length, final length, and growth rates were affected by CO₂, female identity, or their interaction. Average trait responses did not significantly differ between treatments (CO₂ or female identity), however, significant CO₂ × female identity interactions indicated that females produced offspring with different average CO₂ sensitivities. We then examined whether differential egg provisioning with fatty acids (FA) may partially explain the observed differences in offspring CO₂ sensitivities. Concentrations of 27 FAs in the unfertilized eggs of each female were measured. Cumulative absolute FA levels were negatively related to hatch length and to the log-transformed CO₂ response ratio of hatch length. Eggs with lower concentrations of 20:1n9 and 22:5n3 resulted in offspring where embryo survival was negatively impacted by high CO₂. Eggs with higher concentrations of 18:3n3, 18:4n3, and 22:6n3 produced shorter offspring at hatching under high CO₂ conditions. These results indicate that maternal provisioning might be an additional determinant of CO₂ sensitivity in fish early life stages. Acidification experiments should therefore utilize large numbers of parents from different natural conditions and, where possible, track heritage.

1. Introduction

The extent to which offspring fitness is determined by gene × environment interactions as well as non-genetic parental effects comprises a long-standing research topic in biology (Bernardo, 1996). Maternal effects, where mothers influence offspring fitness via propagule provisioning (Andree et al., 2015; Chambers and Leggett, 1996; Mousseau and Fox, 1998), mate-choice and behavior (Green and McCormick, 2005; Trippel et al., 2005), and transgenerational epigenetic inheritance (Jablonka and Raz, 2009; Räsänen and Kruuk, 2007; Salinas et al., 2013), appear to be ubiquitous across taxa. Maternal effects have important implications in a number of fields, including fisheries, where adequate recruitment likely depends on preserving the age structures in commercial fish stocks because older females produce larger, energy-enriched, and more viable eggs (Berkeley et al., 2004; Johnston and Leggett, 2002; Marteinsdóttir and Steinarsson, 1998; Trippel et al., 2005). Likewise, evaluating climate change impacts on species, populations, and ecosystems requires knowledge of maternal effects because they may obscure or exaggerate responses of individuals to

environmental change including ocean warming and acidification (Munday, 2014).

Ocean acidification, which is part of the larger syndrome of marine climate change (Doney et al., 2009; Pörtner, 2012), has rapidly emerged as a major research topic over the past two decades (Browman, 2016; Busch et al., 2015). Experimental approaches have played a prominent role as a necessary first step to distinguish CO₂ sensitive from CO₂ tolerant marine taxa as well as life-stages and individual trait responses within taxa. To date, the majority of empirical data suggest negative responses to high CO₂ (Harvey et al., 2013; Hendriks et al., 2010; Kroeker et al., 2010; Kroeker et al., 2013), with calcifying invertebrates and early life stages of marine species being the most vulnerable (Baumann et al., 2012; Bednaršek et al., 2014; Kleypas et al., 2006; Waldbusser et al., 2013). However, there is also increasing evidence for non-linear (Ries et al., 2009), neutral (Hurst et al., 2013), and even positive effects of elevated CO₂ exposures (Gooding et al., 2009; Schade et al., 2014) within many of the traits or taxa examined to date, thereby precluding simple answers and generalizations (Browman, 2016; Busch et al., 2015).

* Corresponding author.

E-mail address: hannes.baumann@uconn.edu (H. Baumann).

Despite the strong likelihood of maternal environments and conditions affecting offspring development (Chambers and Leggett, 1996; Donelson et al., 2008; Gagliano and McCormick, 2007; Green, 2008), little has been done to investigate this in ocean acidification experiments, particularly in those that rely on progeny from a limited number of parents (Chambers et al., 2014; Frommel et al., 2012a; Hurst et al., 2013), which have been maintained in captivity prior to their use as a source of offspring. Studies assessing cross-generational CO₂ responses have suggested that parental exposure to high CO₂ either mitigated or neutralized offspring CO₂ sensitivity for some traits, e.g., in Sydney rock oyster (*Saccostrea glomerata*, Parker et al., 2012) or clown fish (*Amphiprion melanopus*, Allan et al., 2014; Miller et al., 2012), while having little or even adverse effects in other species or traits (Griffith and Gobler, 2017; Welch et al., 2014). In the Atlantic silverside (*Menidia menidia*, Atherinopsidae), offspring tolerance to high CO₂ increases seasonally while fish are spawning in late spring to summer months, suggesting transgenerational acclimation as a possible explanation (Murray et al., 2014).

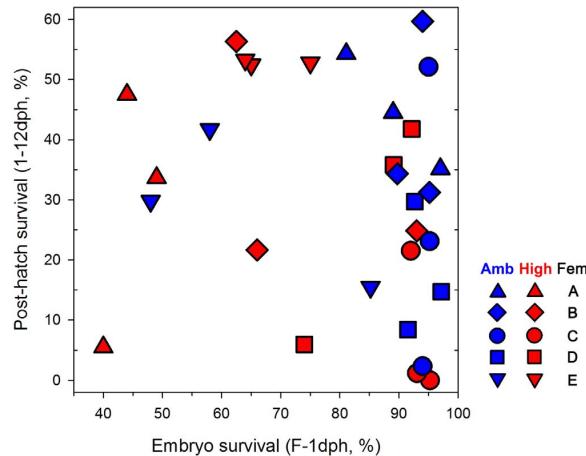
Here we explored whether maternal provisioning can influence offspring CO₂ sensitivity, using *M. menidia* as a model. Given their ecological importance as forage fish and the relative ease of laboratory manipulation, members of the silverside family have become frequent temperate fish models in ocean acidification research (Baumann et al., 2012; Depasquale et al., 2015; Lopes et al., 2016; Malvezzi et al., 2015; Miller et al., 2016; Murray et al., 2017). In addition, maternal and genetic effects on offspring size have previously been demonstrated in this species (Bengtson et al., 1987; Gao and Munch, 2013). Here, wild-caught adults were spawned to test whether offspring from different mothers differ in their average survival and growth responses to elevated CO₂ conditions. Differences in embryonic and larval responses were evaluated for differential provisioning of eggs with fatty acids (FAs). Variations in FA profiles have previously been shown to affect larval fish performance (Fuiman and Ojanguren, 2011) and are likely implicated in metabolic programming (Fuiman and Perez, 2015). As recently demonstrated, FA levels in larval fish can also vary in response to different CO₂ exposures (Díaz-Gil et al., 2015). We thus assumed that FA profiles would afford a more detailed look into the potential relationship between maternal provisioning and offspring CO₂ sensitivity than proxies like egg size (Stephens et al., 2009) or mass (Johnston and Leggett, 2002), which are relatively invariant and unrelated to maternal size in this species (Bengtson et al., 1987).

2. Materials and methods

2.1. Sampling and experimental design

Adult silversides were collected by beach seine (30 × 2-m, 3-mm mesh) at Mumford Cove, Connecticut (41.32°N, 72.02°W) on 1 June 2016, approximately a fortnight after their May full moon spawning peak. Spawners were transported live to the Rankin laboratory (University of Connecticut) and held overnight in aerated 60-l tanks at 20 °C to promote egg hydration. The following day, five randomly selected females were strip-spawned onto cutout sections of window screen (1-mm mesh) that were placed into separate seawater-filled spawning dishes (Murray et al., 2014). To ensure full fertilization success and randomize potential paternal effects, eggs were fertilized with

a mixture of milt from 22 males, thus producing full-sib and maternal half-sib embryos from each female. Adults were measured for total length (TL; mean TL_{male} = 9.14 cm, mean TL_{female} = 10.4 cm) and frozen for later analysis of FA. Mesh screens with attached embryos were subsequently cut into smaller sections to allow precise enumeration, and within 2-h post-fertilization 100 embryos were placed into each of three replicate rearing containers (20 l) per female and CO₂ treatment (i.e., 600 embryos for each of five females, 3 × 100 in ambient and 3 × 100 in acidified treatments). Rearing containers were filled with 1-μm filtered, UV-sterilized seawater (~30 psu) from Long Island Sound and placed in temperature-controlled water baths set to 24 °C, the known thermal optimum for survival and growth in this species (Middaugh et al., 1987). Offspring were reared for 24 d post fertilization under a 15 h light:9 h dark lighting regime. After hatch, larvae were fed ad libitum rations of newly hatched brine shrimp nauplii *Artemia salina* (brineshrimpdirect.com), and 50% of water was replaced every 5 d to ensure safe ammonia levels (< 0.25 ppm). Hatched larvae were counted and subsampled ($n = 10$ per replicate) at 1 d post hatch (dph) by gently scooping them into identical 20 l containers, and final samples were taken at 16 dph. All samples were preserved in 10% buffered formalin for later measurements of larval standard length (SL, 0.01 mm) via calibrated digital images (ImagePro Premier, MediaCybernetics). The experiment thus quantified three related survival and three size traits for each replicate, female, and CO₂ treatment: embryo survival (fertilization to 1 dph), larval survival (1 to 16 dph), overall survival (fertilization to 16 dph), size (SL) at hatch (1 dph), SL at 16 dph, and larval growth rate (GR = (SL_{16dph} – SL_{1dph}) / 15).


2.2. CO₂ regime

Offspring were reared at ambient (~400 μatm, pH_{NBS} = 8.18) and acidified CO₂ conditions (~2300 μatm, pH_{NBS} = 7.50). The higher value was set to a level commonly used in OA research (consistent with projections of future pCO₂ values for open oceans over in the next 200 yr (IPCC, 2007)) and represents current conditions experienced during seasonal extremes by this species in nature (Murray et al., 2014). Ambient conditions were achieved by bubbling partially CO₂-stripped air into each rearing container, thereby offsetting metabolic CO₂ accumulation. Acidified conditions were achieved via gas proportioners (Cole Parmer®) that mixed CO₂ stripped air with 100% bone-dry CO₂ delivered to the bottom of each rearing container via air stones. Target pH and temperature were monitored daily via a handheld pH probe (Hach® HQ40d portable meter with a PHC201 standard pH-probe) calibrated regularly via two-point National Bureau of Standards (NBS) pH buffers (electronic supplementary material, Fig. S1). To characterize actual pCO₂ levels and related water chemistry parameters, water was sampled from four randomly chosen rearing containers per treatment three times over the course of the experiment and immediately measured for total alkalinity (A_T) via endpoint titration (Mettler Toledo™ G20 Potentiometric Titrator). The instrument has previously been shown to quantify A_T in Dr. Andrew Dickson's reference material (batch 147, A_T = 2231.39 μmol kg seawater⁻¹) with an average error of 0.6%. Actual levels of total dissolved inorganic carbon (C_T), partial pressure of CO₂ (pCO₂), fugacity of CO₂ (fCO₂), and carbonate ion concentration were calculated in CO2SYS (<http://cdiac.ornl.gov/ftp/co2sys>) based on measured A_T, pH (NBS), temperature, and salinity

Table 1

Overview of experimental conditions and carbon chemistry. Mean (± SD) pH_{NBS} and temperature (°C) were derived from daily measurements, while mean (± SD) total alkalinity (A_T; μmol kg⁻¹) was measured via endpoint titration from three random seawater samplings during the experiment. Dissolved inorganic carbon (C_T; μmol kg⁻¹), partial pressure of CO₂ (pCO₂; μatm), fugacity of CO₂ (fCO₂; μatm), and carbonate ion concentration (CO₃²⁻; μmol kg⁻¹) were calculated in CO2SYS.

CO ₂	pH _(NBS)	Temp	A _T	C _T	pCO ₂	fCO ₂	CO ₃ ²⁻
Ambient	8.18 ± 0.12	23.28 ± 0.22	2189.09 ± 13.34	1945.79 ± 12.29	403.64 ± 2.55	402.33 ± 2.54	178.18 ± 1.13
High	7.50 ± 0.11	23.57 ± 0.38	2188.24 ± 24.56	2193.44 ± 24.83	2290.11 ± 25.93	2282.72 ± 25.84	44.13 ± 0.50

Fig. 1. *M. menidia*. Relationship between larval survival (1 dph to 16 dph, %) and embryonic survival (fertilization to 1 dph, %) of offspring from five different females (A–E) reared at ambient (blue symbols) and high (red symbols) CO₂ levels. Points represent individual replicates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

using K1 and K2 constants from Mehrbach et al. (1973) refit by Dickson and Millero (1987) and Dickson (1990) for KHSO₄ (Table 1).

2.3. Fatty acid analysis

Gas chromatography was used to quantify the absolute (mg g dry weight⁻¹) and relative concentrations (% of total) of 27 FAs for each of the 5 females (whole individual) and their unfertilized eggs (~1 ml) following the methods of Faulk and Holt (2005) as recently used for this species in Murray et al. (2017). Briefly, frozen samples were shipped on dry ice to the Fisheries and Mariculture Laboratory (University of Texas, Marine Science Institute), where they were first dried and then homogenized in a solution of chloroform-methanol (2:1 v/v) and tricosanoic acid (23:0) as an internal standard for quantification of mg g⁻¹ dry mass of fatty acids. Lipids were cold-extracted from approximately 50 mg of dry mass. Fatty-acid methyl esters were prepared by saponification in potassium hydroxide, followed by transesterification with 14% boron trifluoride in methanol. A Shimadzu GC-2014 gas chromatograph set with a Phenomenex ZB-WAX plus capillary column (30 m long; 0.53 mm ID; 1.0 μ m thick) was used to quantify FAs, and individual FAs were identified by comparison to commercial standards (Supelco, Inc.). Two FAs, 12:0 and 15:1, were below detection limit or invariant across egg batches and were therefore excluded from subsequent analyses.

2.4. Data analysis

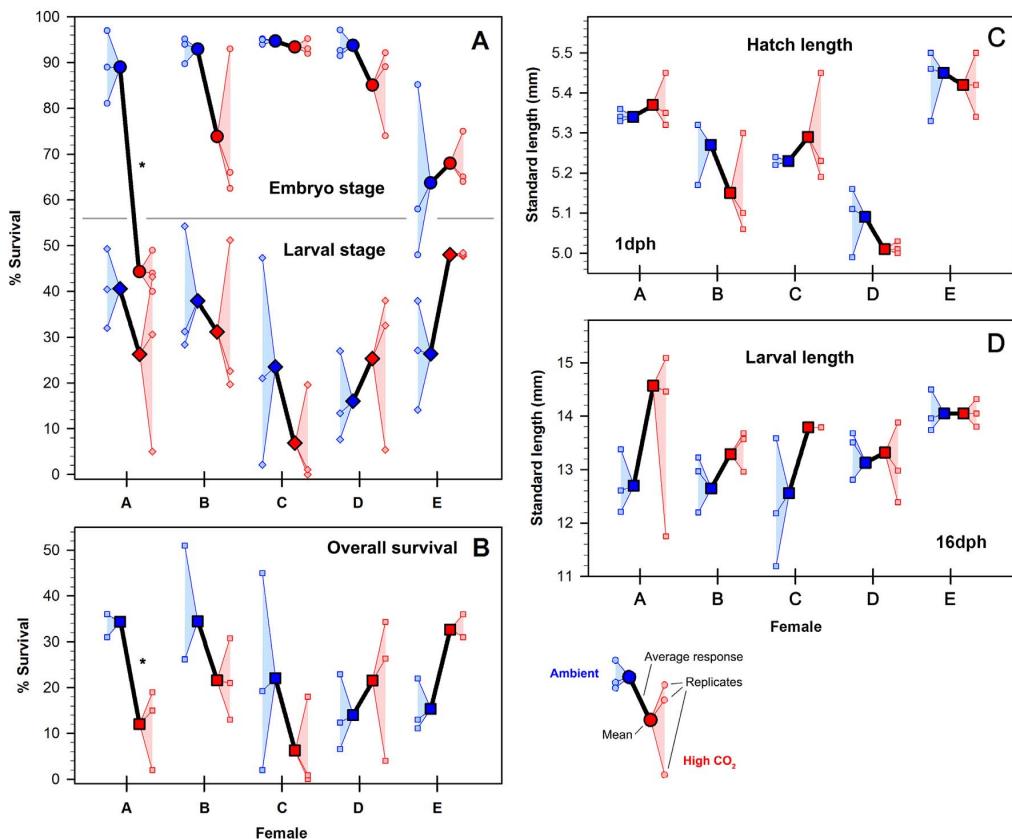
Pearson bivariate correlation analysis was used to test whether embryonic and larval survival rates were related within each CO₂ treatment. Next, multivariate analysis of variance (MANOVA) was used to test for overall effects of female identity, CO₂ treatment (fixed factors) and their interaction on embryonic and larval survival (S), whereas the derived variable 'overall survival' was not included in the model. The MANOVA model had the form.

$$S = CO_2 + \text{female} + CO_2 * \text{female} + \epsilon(\text{error}).$$

A logit transformation [= $\log_{10}(S / (1 - S))$] was applied to survival proportions prior to statistical analysis. Significance was tested using Pillai's trace, the most conservative of commonly used MANOVA test statistics. MANOVA was then followed by ANOVA of the same design to test for CO₂, female, and interaction effects on each survival

measure separately. In a similar manner, MANOVA followed by ANOVA was used to test for overall and separate effects, respectively, of CO₂, female, and their interaction on the two size traits (i.e., hatch SL and final SL; growth was excluded). Unweighted averages were used for hatch SL and final SL. For each trait, five t-tests were computed to examine treatment differences within each female, using a Bonferroni adjustment ($\alpha/5 = 0.01$) to reduce the likelihood of Type I errors. All groups were tested for a normal distribution via Shapiro-Wilk and variance homogeneity using a Levene's test. To characterize the average sensitivity to elevated CO₂ for each of the five offspring sets and enable comparisons to FA provisioning, the log-transformed CO₂ response ratio (lnRR) was calculated for each trait (T) as $\ln RR(T) = \ln(T_{\text{high}}) - \ln(T_{\text{ambient}})$ using replicate averages for each T. lnRRs are common metrics in meta-analyses, because they quantify the proportional change resulting from experimental manipulations, have robust statistical properties, and a straightforward biological interpretation (Hedges et al., 1999; Kroeker et al., 2010). Negative lnRRs would be indicative of a reduction in trait value at high compared to ambient CO₂ levels.

FA profiles of females and their unfertilized eggs were first used to calculate FA-specific (mg g⁻¹ dw) and overall egg enrichment factors (E = FA_{egg} / FA_{fem}), which were then correlated to each lnRR(T) using Pearson bivariate correlation analysis. Secondly, the cumulative absolute FA content was calculated for each egg batch as the sum of all FAs measured, which was then correlated to each lnRR(T) using Pearson bivariate correlation analysis. To explore whether specific FAs in eggs affected the CO₂ sensitivity of resulting offspring traits, we first performed principal component analysis on absolute FA concentrations (mg dw g⁻¹) and subsequently identified specific FAs that had high loadings (> 0.85) on any of the first three principal components (i.e., those with eigenvalues > 1). For this specific subset of FAs, we then used linear regression to relate absolute FA concentration to lnRR(T). All statistical analyses were computed using SPSS (V20, IBM).


3. Results

3.1. Offspring survival

Survival during the embryo and larval stages ranged from 40.0 to 94.1% and 0.0 to 59.9%, respectively. Considering all replicates per treatment, average (\pm SD) embryo survival at ambient and acidified conditions was $86.8 \pm 14.6\%$ and $72.9 \pm 7.7\%$, whereas larval survival was $31.8 \pm 14.6\%$ and $30.3 \pm 25.2\%$, respectively. There was no significant correlation between embryo and larval survival in ambient or acidified treatments (Pearson correlation, $P = 0.3$, Fig. 1). Variability among replicates was high; at ambient CO₂ conditions, the average standard deviation of embryo, larval, and overall survival was 14.5%, 17.0%, and 15.4%, respectively, compared to 19.1%, 20.4%, and 14.0%, respectively, at high CO₂ conditions. Across both survival measures, MANOVA identified significant overall effects of female ($P = 0.002$), CO₂ ($P = 0.002$), and female * CO₂ ($P = 0.026$), the latter indicating that some females produced offspring with divergent average CO₂ sensitivities with respect to survival (Fig. 2A,B, Table 2). Univariate ANOVAs indicated that the majority of these effects were driven by differences in survival during the embryonic stage ($P < 0.03$ for female, CO₂, and their interaction), not during the larval stage (Table 3). Offspring from three females showed some degree of average reduction in embryonic survival at high compared to ambient CO₂ conditions, but only one female (female A) showed a difference that was significant (t-test, $P = 0.004$). Overall survival at high compared to ambient CO₂ conditions was reduced for offspring of female A ($P = 0.01$), but slightly increased for offspring of female E ($P = 0.013$, non-significant after Bonferroni correction, Fig. 2A,B).

3.2. Offspring size

Considering all replicates, average (\pm SD) hatch and larval SL were

Fig. 2. *M. menidia*. Responses to high CO₂ conditions among replicates within and among females: (A) embryo and larval survival; (B) overall survival; (C) SL at hatch; and (D) final SL (16 dph). Patterns of larval growth were nearly identical to panel D and are therefore omitted. Ambient and high CO₂ treatments are denoted by blue and red colors, respectively. Small symbols depict replicate survival (A,B) or replicate average size (C,D), while large symbols depict CO₂ treatment averages for each female. Black lines connect average response for each female. Asterisks represent significant differences ($P < 0.05$) between CO₂ levels within offspring of each female (Bonferroni adjusted *t*-test). Letters denote to females A to E. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2

MANOVA testing for effects of female, CO₂, and their interaction on combined *M. menidia* offspring survival (i.e., logit-transformed embryo and larval survival,) using Pillai's Trace test statistic.

Effect	F	Hypothesis df	Error df	P
Female	3.82	8	40	0.002
CO ₂	8.51	2	19	0.002
Female * CO ₂	2.51	8	40	0.026

Bolded P-values are significant at the 0.05 level.

Table 3

ANOVAs testing the effects of female, CO₂, and their interaction on *M. menidia* offspring embryo and larval survival (logit-transformed).

Survival measure	Effect	F	df	P
Embryo	Female	9.72	4	< 0.001
	CO ₂	16.12	1	0.001
	Female * CO ₂	3.58	4	0.023
Larval	Female	3.59	4	0.023
	CO ₂	0.98	1	0.333
	Female * CO ₂	1.68	4	0.194

Bolded P-values are significant at the 0.05 level.

Table 4

MANOVA testing for effects of female, CO₂, and their interaction on combined *M. menidia* offspring size traits (i.e., hatch length and larval length) using Pillai's Trace test statistic.

Effect	F	Hypothesis df	Error df	P
Female	4.33	8	36	0.001
CO ₂	2.65	2	17	0.099
Female * CO ₂	0.83	8	36	0.581

Bolded P-values are significant at the 0.05 level.

Table 5

ANOVA testing the effects of female, CO₂, and their interaction on *M. menidia* offspring hatch length and larval length.

Measurement	Effect	F	df	P
Hatch length	Female	22.67	4	< 0.001
	CO ₂	1.74	1	0.204
	Female * CO ₂	0.87	4	0.500
Final length	Female	1.36	4	0.289
	CO ₂	2.85	1	0.108
	Female * CO ₂	0.83	4	0.522

Bolded P-values are significant at the 0.05 level.

almost identical between ambient (5.3 ± 0.3 mm, 13.0 ± 1.6 mm, respectively) and acidified treatments (5.2 ± 0.3 mm, 13.7 ± 1.8 mm, respectively, Fig. 2C,D). However, for hatch length, but not final length, there were differences among females, with hatchlings of female E being on average 0.38 mm (7.4%) longer than those of female D. MANOVA on the two size traits showed significant overall effects of female ($P = 0.001$, Table 4), driven largely by the differences in hatch length (ANOVA, $P < 0.001$, Table 5), but no significant effects of CO_2 or $\text{CO}_2 \times$ female (Table 4). Larvae grew at an average rate of 0.54 mm d^{-1} , and similarly, there were no significant effects of female, CO_2 , or their interaction (Table 4), suggesting that offspring of different females did not exhibit differential growth responses to high CO_2 conditions (Table 5).

3.3. Fatty acids

Docosahexaenoic acid (DHA 22:6n3), palmitic acid (16:0) and eicosapentaenoic acid (EPA 20:5n3) together comprised 54% of the total FA concentration in Atlantic silverside eggs (mg dw g^{-1}), while the remaining 22 FAs contributed $\sim 46\%$ (electronic Supplementary material, Fig. S2). Individual FA concentrations in whole females were positively correlated ($R = 0.98$) to concentrations in unfertilized eggs, with eggs being on average $3.6 \times$ richer in each of the 25 FAs (range: 1.1 – 10.5). Average egg enrichment factors varied between $2.52 \times$ (female E) to $4.25 \times$ (female D), but there was no significant correlation to the lnRRs of the six measured traits. Female TL was also unrelated to any of the six lnRRs. In contrast, hatch length in both the ambient and high CO_2 treatments was significantly related to cumulative FA concentrations in unfertilized eggs, and the fitted quadratic regressions explained 77% ($R^2 = 0.77$, $P < 0.001$) and 72% of the variability ($R^2 = 0.72$, $P < 0.001$), respectively (Fig. 3). Cumulative FA concentrations were inversely related to the lnRR of hatch length ($R = -0.748$, $P = 0.03$), suggesting that increasing cumulative FA levels in eggs were associated with smaller hatchlings at high compared to ambient CO_2 conditions (Fig. 3).

PCA extracted 4 PCs that explained 41%, 27%, 17%, and 14% of the variability in the FA data, respectively. Ten specific FAs showed strong positive loadings (> 0.85) on any of the 4 PCs, and six were significantly correlated to lnRRs ($P < 0.05$, Fig. 4). Levels of eicosenoic (20:1n9) and docosapentanoic acid (22:5n3) were positively related to the lnRR of embryo survival (i.e., negative CO_2 effects at low levels of both FAs), while levels of pentadecylc acid (15:0) were positively related to the lnRR of overall survival. In contrast, levels of alpha-linoleic (18:3n3), stearidonic (18:4n3), and docosahexanoic acids (22:6n3, DHA) were negatively related to the lnRR of hatch length (negative CO_2 effects at higher levels of these FAs, Fig. 4).

4. Discussion

This study examined the contribution of maternal egg provisioning and egg FA content to the susceptibility of fish offspring to high CO_2 environments. The data showed that offspring obtained from five Atlantic silverside females had variable average survival rates in response to high CO_2 conditions. Genetic and transcriptomic differences among females (Gao and Munch, 2013), as well as random effects, could plausibly account for this, however, we found that particular FAs in unfertilized eggs correlated with average CO_2 responses in offspring. This suggests that maternal provisioning, which itself could be genetically determined, may also influence CO_2 sensitivities in fish offspring.

Variable CO_2 responses in progeny from different breeding pairs have previously been documented for marine invertebrate model species such as sea urchins and mussels (Foo et al., 2016; Sunday et al., 2011) and attributed to differences in egg size and quality (Foo et al., 2016). For fish, such evidence has so far been lacking, save for incidental observations of variable survival rates in CO_2 exposure experiments; e.g., among three sib-groups of summer flounder

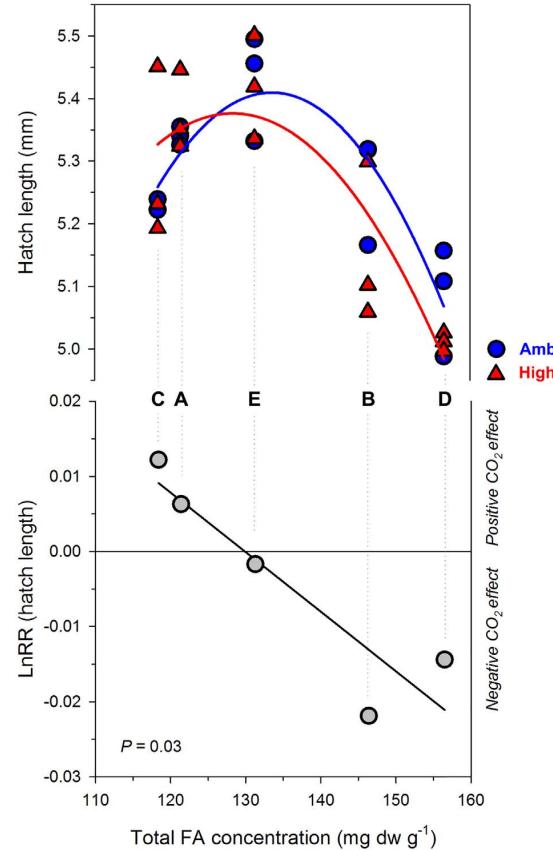
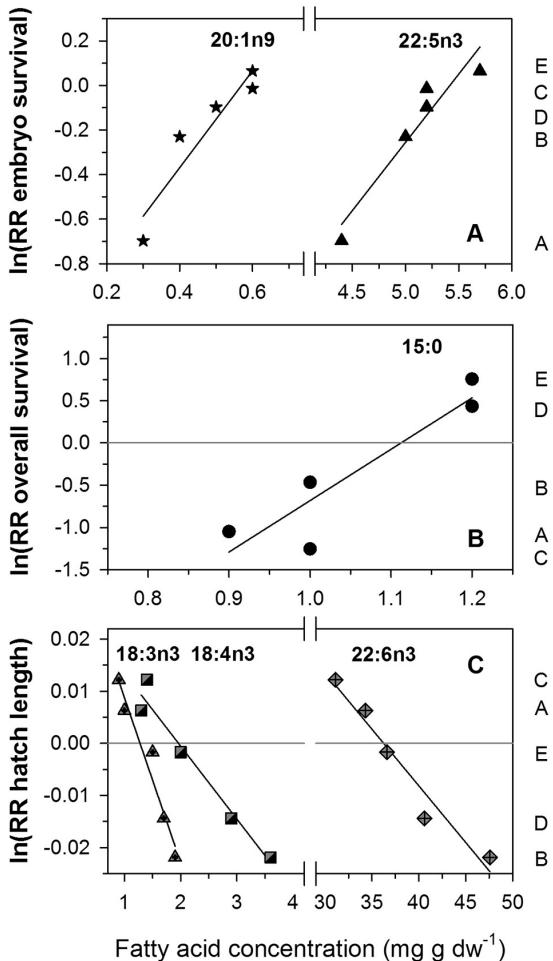



Fig. 3. *M. menidia*. Relationship between embryonic size and total fatty acid concentration in unfertilized eggs [$\Sigma(\text{FA}_{1-27})$] for offspring reared at ambient (blue circles, $\sim 400 \text{ }\mu\text{m}$) and high CO_2 environments (red triangles, $\sim 2300 \text{ }\mu\text{m}$). Upper panel shows replicate means of hatch length (mm) and total FA fitted with quadratic regressions (lines) that were both significant ($P < 0.001$). Lower panel shows log-transformed CO_2 response ratios vs. total FA fitted with a linear regression ($P = 0.03$). Letters denote females A to E. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(*Paralichthys dentatus*, 35–70%, Chambers et al., 2014). In another study, average egg survival in a tropical reef fish (*Amphiprion percula*) appeared to increase by 20% in response to high CO_2 conditions, but the authors noted that this was due to embryo batches produced by a few exceptional breeding pairs (Welch and Munday, 2016). The present study added a more comprehensive characterization of between-female variability in offspring CO_2 responses for the Atlantic silverside, an important forage fish and model in previous ocean acidification experiments.

Differential offspring responses to elevated CO_2 conditions could be adaptive for fish species like the Atlantic silverside, which spawn batches of eggs over an extended period through spring and summer in salt marshes, estuaries, and shallow embayments (Middaugh et al., 1987). These highly productive habitats often exhibit large seasonal fluctuations in oxygen and CO_2 (Gobler and Baumann, 2016), because biological productivity and community metabolism intensify during spring and summer and abate during fall and winter (Baumann and Smith, 2017; Baumann et al., 2015; Wallace et al., 2014). Hence, silverside offspring produced early in the spawning season typically encounter lower and less variable CO_2 (higher pH) conditions than individuals in the same population spawned later in the season. As demonstrated previously, this seasonal change coincides with a rapid shift from CO_2 sensitive to CO_2 tolerant silverside offspring in the wild (Murray et al.,

Fig. 4. *M. menidia*. Relationships between log-transformed CO₂ response ratios (lnRR) of (A) embryo survival, (B) overall survival, (C) hatch length and absolute concentrations (mg dw g⁻¹) of selected fatty acids in unfertilized eggs of five females (A–E, right side of panels). Negative (positive) lnRRs indicate a trait decrease (increase) at high CO₂ conditions.

2014), suggesting that adult spawners can precondition their offspring for the environment they are likely to encounter. While previous findings were based on average responses in offspring pooled across many spawners (> 20 females and males), this experiment followed offspring from individual females. These female (half-sib) groups differed in their CO₂ sensitivities, perhaps because conditioning does not advance uniformly among spawners in a population. Moreover, spawners used in this study were collected from the wild shortly after peak spawning season, when offspring were expected to already be largely CO₂ tolerant. This was evident when examining pooled early-life survival, which was statistically similar between ambient and high CO₂ conditions. Variability in life history traits between offspring from different mothers is likely adaptive for organisms inhabiting rapidly changing environments, which is consistent with ecological theory of the benefits of bet-hedging (Einium and Fleming, 2004; Green, 2008; Marshall and Uller, 2007). However, this has yet to be robustly applied to ocean acidification and the role of within population variability in CO₂ sensitivity (Gaylord et al., 2015).

If offspring responses to high CO₂ are partially determined by parental and particularly maternal environments (Allan et al., 2014; Miller et al., 2012), such transgenerational plasticity could be achieved via

two principal pathways: epigenetic inheritance and maternal provisioning. While the first describes modifications in DNA transcription passed on to the offspring (Jablonska and Raz, 2009; Salinas et al., 2013), the second encompasses modifications of propagules, e.g., in size (Chambers and Leggett, 1996), energy content, or perhaps in specific FAs, the primary component of fish egg lipids (Wiegand, 1996). In Atlantic silversides, egg size is a relatively invariant trait (Bengtson et al., 1987) that was not measured in the present study (see also Fuiman and Ojanguren, 2011). Other potential proxies such as spawner size or overall fatty acid enrichment in eggs compared to adults were found to be unrelated to offspring CO₂ sensitivity. There was, however, a significant effect of female on size at hatch, which is consistent with previous work on this species (Gao and Munch, 2013) and the general paradigm that size variations in early life marine fish arise largely as a result of maternal effects (Chambers and Leggett, 1996; Chambers et al., 1989).

Intriguingly, a dome-shaped relationship between absolute FA levels in unfertilized eggs and the size of newly hatched larvae was found in both treatments, but these relationships differed slightly between low versus ambient CO₂ treatments (Fig. 3). The metabolic pathways responsible for these differences are presently unknown. However, the observation that several embryonic traits that were related to FA profiles is unlikely to be coincidental, because in these pre-feeding stages maternal FA provisions are not yet altered by external food sources.

A small number of specific FAs showed direct correlations to the CO₂ sensitivity of embryonic and larval traits. For example, eggs with lower concentrations of pentadecylic (15:0), eicosenoic (20:1n9), and docosapentanoic acids (22:5n3) resulted in offspring where embryo and overall survival were negatively affected by high CO₂. Since FAs in eggs essentially function as fuel and raw material for tissue and enzyme synthesis, one possible explanation therefore is that these fatty acids play a prominent role in the synthetic pathways of enzymes that determine the acid-base competency in developing embryos. Similarly, CO₂ sensitive metabolic pathways may underlie the finding that eggs with higher concentrations of alpha-linoleic (18:3n3), stearidonic (18:4n3), and docosahexanoic acids (DHA, 22:6n3) produced offspring where hatch length was negatively affected by high CO₂ conditions. DHA has been shown to be important in larval fish membranes, as well as being prominent in organs containing 'excitable cells,' such as eyes and other neural networks (Wiegand, 1996). Targeted ontogenetic experiments are clearly required to elucidate these potential mechanisms and to further understand the mechanistic and structural roles of individual FAs (Rainuzzo et al., 1997).

Our findings suggest that examining maternal FA provisioning of propagules will aid in developing a better mechanistic understanding of CO₂ sensitivities in fish offspring. Such approaches would build on existing evidence that variations in FA composition in eggs comprise a meaningful proxy of maternal investment, particularly in fish like the Atlantic silverside that directly allocate energy to reproduction (income breeders, McBride et al., 2015; Stephens et al., 2009). This in turn can affect critical larval traits such as antipredator performance, e.g., in larval red drum (*Sciaenops ocellatus*, Fuiman and Ojanguren, 2011), a phenomenon known as metabolic programming (Fuiman and Perez, 2015). In addition, metabolic pathways in fish embryos, larvae, and juveniles are evidently sensitive to CO₂ conditions; for example, exposure to high CO₂ has been shown to substantially alter FA profiles in larval red drum (Díaz-Gil et al., 2015) and to a lesser extent in juvenile Atlantic silversides (Murray et al., 2017). In silversides, maternal FA provisioning of propagules might therefore constitute an alternative mechanism underlying the documented seasonal shifts in offspring CO₂ sensitivity, instead or in addition to transgenerational epigenetic inheritance (Murray et al., 2014).

A central goal of CO₂ manipulation experiments is to identify sensitive life history traits in organisms as a first step towards inferring species' vulnerabilities to ocean acidification. Many issues inherent to experiments currently constrain our ability to scale these potential

responses to populations and ecosystems (Busch et al., 2015; McElhany, 2017; Pfister et al., 2014). The current study added to these challenges by suggesting that maternal provisioning and by implication, maternal environments, can influence the outcome of CO₂ exposure experiments. For example, many experiments particularly on commercially important fish species have relied on offspring produced by relatively few females (Bignami et al., 2013; Frommel et al., 2012b; Stiasny et al., 2016), whose maternal contributions may not necessarily represent population averages and thus result in overrepresentation of certain response phenotypes. Furthermore, female spawners are often derived from laboratory broodstocks (Bromhead et al., 2015; Chambers et al., 2014; Stiasny et al., 2016), where feeding and rearing conditions prior to spawning may conceivably influence maternal provisioning and thus result in offspring CO₂ sensitivities that differ from those of wild populations.

A second issue inherent to many assessments of CO₂ sensitivities in fish is their focus on single life stages such as embryos or early larvae. This study quantified embryo and larval survival across many experimental units and found that survival rates were uncorrelated between these two life stages. Our results thus caution against using CO₂ sensitivities of single life stages for broader inferences about species vulnerabilities to elevated CO₂.

A third issue highlighted by the current experiment concerns the substantial between-replicate variability in early life history traits, particularly for post-hatch survival. In this case, triplicates consisted of homogeneously distributed full- and half-sib individuals reared under meticulously controlled conditions, yet in many batches the response of one replicate sharply diverged from the other two (Fig. 2). During fish early life stages, on which CO₂ sensitivity experiments rightly focus (Baumann et al., 2012; Ishimatsu et al., 2008), offspring need to transition from endogenous to exogenous feeding, and this might be a much more stochastic process and thus greater experimental challenge than commonly acknowledged. Increased within- and between-experiment replication may be a solution; however, more work has to be done to identify replicate designs that are still logistically feasible.

The final issue highlighted by the present experiment concerns the generally positive effect of high CO₂ conditions on larval fish growth, which is consistent with a majority of studies to date on this and other fish species (Miller et al., 2012; Munday et al., 2009), but seemingly contrary to the expectation of higher metabolic demands due to increased needs for acid-base regulation. As pointed out by Murray et al. (2017), most experiments provide newly hatched larvae with excess food, which is practical but may enable high CO₂ survivors to compensate or overcompensate for increased metabolic demands by increased ingestion rates (Nowicki et al., 2012). In fish, CO₂ related additional energy demands are likely small (Esbaugh et al., 2016) but experiments administering restricted and carefully controlled food rations have detected growth reductions (Murray et al., 2017) consistent with modeled or theoretical estimates (Heuer and Grosell, 2016).

In summary, the current study suggested that individual silverside females produce offspring with varying average CO₂ sensitivities, likely due to a combination of genetic and non-genetic factors. This variability adds complexity to experimental studies aiming to elucidate the vulnerability of marine organisms to ocean acidification. While no single experiment can predict the fate of future fish populations, the accumulation of continuously improving empirical evidence is critically important to further our understanding of the consequences of a high CO₂ world for marine life.

Acknowledgements

We are grateful to R. Moy-Huwyler, W. Huffman, E. Karamavros, and C. Woods for assistance in the lab, as well as to C. Faulk for measuring FA profiles and L. Fuiman for helpful comments and discussions. C. Chambers provided constructive comments and edits that helped in improving an earlier version of the manuscript.

Funding

This study was funded by a National Science Foundation grant to H.B. (NSF-OCE 1536165).

Conflict of interest

All authors declare no competing or financial interests.

Ethical approval

Experiments were performed under IACUC protocol #A14-032.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.jembe.2017.11.002>.

References

Allan, B.J.M., Miller, G.M., McCormick, M.I., Domenici, P., Munday, P.L., 2014. Parental effects improve escape performance of juvenile reef fish in a high-CO₂ world. *Proc. R. Soc. B Biol. Sci.* 281, 20132179.

Andree, S.R., Feiner, Z.S., Bledsoe, J.W., Cragun, A.M., Höök, T.O., 2015. Ontogenetic variability of maternal effects in an iteroparous fish. *Ecol. Freshw. Fish* 24, 384–396.

Baumann, H., Smith, E.M., 2017. Quantifying metabolically driven pH and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. *Estuar. Coasts* 1–16.

Baumann, H., Talmage, S.C., Gobler, C.J., 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. *Nat. Clim. Chang.* 2, 38–41.

Baumann, H., Wallace, R., Tagliaferri, T., Gobler, C.J., 2015. Large natural pH, CO₂ and O₂ fluctuations in a temperate tidal salt marsh on diel, seasonal and interannual time scales. *Estuar. Coasts* 38, 220–231.

Bednaršek, N., Feely, R.A., Reum, J.C.P., Peterson, B., Menkel, J., Alin, S.R., Hales, B., 2014. *Limacina helicina* shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California current ecosystem. *Proc. R. Soc. B Biol. Sci.* 281, 20140123.

Bengtson, D., Barkman, R., Berry, W., 1987. Relationships between maternal size, egg diameter, time of spawning season, temperature, and length at hatch of Atlantic silverside, *Menidia menidia*. *J. Fish Biol.* 31, 697–704.

Berkeley, S.A., Chapman, C., Sogard, S.M., 2004. Maternal age as a determinant of larval growth and survival in a marine fish, *Sebastes melanops*. *Ecology* 85, 1258–1264.

Bernardo, J., 1996. Maternal effects in animal ecology. *Am. Zool.* 36, 83–105.

Bignami, S., Enochs, I.C., Manzello, D.P., Sponaugle, S., Cowen, R.K., 2013. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function. *Proc. Natl. Acad. Sci. U. S. A.* 110, 7366–7370.

Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., Stein, M., Hoyle, S., Lennert-Cody, C., Williamson, J., Havenhand, J., Ilyina, T., Lehodey, P., 2015. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (*Thunnus albacares*). *Deep-Sea Res. II Top. Stud. Oceanogr.* 113, 268–279.

Browman, H.I., 2016. Applying organized scepticism to ocean acidification research. *ICES J. Mar. Sci.* 73, 529–536.

Busch, D.S., O'Donnell, M.J., Hauri, C., Mach, K.J., Poach, M., Doney, S.C., Signorini, S.R., 2015. Understanding, characterizing, and communicating responses to ocean acidification: challenges and uncertainties. *Oceanography* 28, 30–39.

Chambers, R.C., Leggett, W.C., 1996. Maternal influences on variation in egg sizes in temperate marine fishes. *Am. Zool.* 36, 180–196.

Chambers, R.C., Leggett, W.C., Brown, J.A., 1989. Egg size, female effects, and the correlations between early life history traits of capelin, *Mallotus villosus*: an appraisal at the individual level. *Fish. Bull.* 87, 515–523.

Chambers, R.C., Candelmo, A.C., Habeck, E.A., Poach, M.E., Wieczorek, D., Cooper, K.R., Greenfield, C.E., Phelan, B.A., 2014. Effects of elevated CO₂ in the early life stages of summer flounder, *Paralichthys dentatus*, and potential consequences of ocean acidification. *Biogeosciences* 11, 1613–1626.

Depasquale, E., Baumann, H., Gobler, C.J., 2015. Variation in early life stage vulnerability among Northwest Atlantic estuarine forage fish to ocean acidification and low oxygen. *Mar. Ecol. Prog. Ser.* 523, 145–156.

Dickson, A.G., 1990. Standard potential of the reaction: AgCl (s) + 12H₂ (g) = Ag (s) + HCl (aq), and the standard acidity constant of the ion HSO₄⁻ in synthetic sea water from 27.15 to 318.15 K. *J. Chem. Thermodyn.* 22, 113–127.

Dickson, A., Millero, F., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. *Deep Sea Research Part A. Oceanographic Research Papers* 34, 1733–1743.

Díaz-Gil, C., Catalán, I.A., Palmer, M., Faulk, C.K., Fuiman, L.A., 2015. Ocean acidification increases fatty acids levels of larval fish. *Biol. Lett.* 11, 20150331.

Donelson, J.M., McCormick, M.I., Munday, P.L., 2008. Parental condition affects early life-history of a coral reef fish. *J. Exp. Mar. Biol. Ecol.* 360, 109–116.

Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 2009. Ocean acidification: the other CO₂ problem. *Annu. Rev. Mar. Sci.* 1, 169–192.

Einum, S., Fleming, I.A., 2004. Environmental unpredictability and offspring size:

conservative versus diversified bet-hedging. *Evol. Ecol. Res.* 6, 443–455.

Esbaugh, A.J., Ern, R., Nordi, W.M., Johnson, A.S., 2016. Respiratory plasticity is insufficient to alleviate blood acid–base disturbances after acclimation to ocean acidification in the estuarine red drum, *Sciaenops ocellatus*. *J. Comp. Physiol. B* 186, 97–109.

Faulk, C.K., Holt, G.J., 2005. Advances in rearing cobia *Rachycentron canadum* larvae in recirculating aquaculture systems: Live prey enrichment and greenwater culture. *Aquaculture* 249, 231–243.

Foo, S.A., Dworjanyn, S.A., Poore, A.G.B., Harianti, J., Byrne, M., 2016. Adaptive capacity of the sea urchin *Helicodiscus erythrogramma* to ocean change stressors: responses from gamete performance to the juvenile. *Mar. Ecol. Prog. Ser.* 556, 161–172.

Frommel, A., Schubert, A., Piatkowski, U., Clemmesen, C., 2012a. Egg and early larval stages of Baltic cod, *Gadus morhua*, are robust to high levels of ocean acidification. *Mar. Biol.* 160, 1825–1834.

Frommel, A.Y., Manea, R., Lowe, D., Malzahn, A.M., Geffen, A.J., Falkvold, A., Piatkowski, U., Reusch, T.B.H., Clemmesen, C., 2012b. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. *Nat. Clim. Chang.* 2, 42–46.

Fuiman, L.A., Ojanguren, A.F., 2011. Fatty acid content of eggs determines antipredator performance of fish larvae. *J. Exp. Mar. Biol. Ecol.* 407, 155–165.

Fuiman, L.A., Perez, K.O., 2015. Metabolic programming mediated by an essential fatty acid alters body composition and survival skills of a marine fish. *Proc. R. Soc. B Biol. Sci.* 282.

Gagliano, M., McCormick, M.I., 2007. Maternal condition influences phenotypic selection on offspring. *J. Anim. Ecol.* 76, 174–182.

Gao, J., Munch, S.B., 2013. Genetic and maternal variation in early growth in the Atlantic silverside *Menidia menidia*. *Mar. Ecol. Prog. Ser.* 485, 211–222.

Gaylord, B., Kroeker, K.J., Sunday, J.M., Anderson, K.M., Barry, J.P., Brown, N.E., Connell, S.D., Dupont, S., Fabricius, K.E., Hall-Spencer, J.M., Klinger, T., Milazzo, M., Munday, P.L., Russell, B.D., Sanford, E., Schreiber, S.J., Thiagarajan, V., Vaughan, M.L.H., Widdicombe, S., Harley, C.D.G., 2015. Ocean acidification through the lens of ecological theory. *Ecology* 96, 3–15.

Gobler, C.J., Baumann, H., 2016. Hypoxia and acidification in marine ecosystems: coupled dynamics and effects on ocean life. *Biol. Lett.* 12, 20150976.

Gooding, R.A., Harley, C.D.G., Tang, E., 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. *Proc. Natl. Acad. Sci. U. S. A.* 106, 9316–9321.

Green, B.S., 2008. Maternal effects in fish populations. *Adv. Mar. Biol.* 54, 1–105.

Green, B.S., McCormick, M.I., 2005. Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. *Mar. Ecol. Prog. Ser.* 289, 263–272.

Griffith, A.W., Gobler, C.J., 2017. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors. *Sci. Rep.* 7, 11394.

Harvey, B.P., Gwynn-Jones, D., Moore, P.J., 2013. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. *Ecol. Evol.* 3, 1016–1030.

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. *Ecology* 80, 1150–1156.

Hendriks, I.E., Duarte, C.M., Álvarez, M., 2010. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. *Estuar. Coast. Shelf Sci.* 86, 157–164.

Heuer, R.M., Grosell, M., 2016. Elevated CO₂ increases energetic cost and ion movement in the marine fish intestine. *Sci. Rep.* 6, 34480.

Hurst, T.P., Fernandez, E.R., Mathis, J.T., 2013. Effects of ocean acidification on hatch size and larval growth of walleye pollock (*Theragra chalcogramma*). *ICES J. Mar. Sci.* 70, 812–822.

IPCC, 2007. Summary for Policymakers. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), *Climate Change 2007: The Physical Science Basis*. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Ishimatsu, A., Hayashi, M., Kikkawa, T., 2008. Fishes in high-CO₂ acidified oceans. *Mar. Ecol. Prog. Ser.* 373, 295–302.

Jablonska, E., Raz, G., 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. *Q. Rev. Biol.* 84, 131–176.

Johnston, T.A., Leggett, W., 2002. Maternal and environmental gradients in the egg size of an iteroparous fish. *Ecology* 83, 1777–1791.

Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L., Robbins, L.L., 2006. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: a Guide for Future Research, 88 pp. Report of a Workshop Held 18–20 April 2005, St. Petersburg, FL. (sponsored by NSF, NOAA, and the U.S. Geological Survey, 88 pp.

Kroeker, K.J., Kordas, R.L., Crim, R.N., Singh, G.G., 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. *Ecol. Lett.* 13, 1419–1434.

Kroeker, K.J., Michel, F., Gambi, M.C., 2013. Ocean acidification causes ecosystem shifts via altered competitive interactions. *Nat. Clim. Chang.* 3, 156–159.

Lopes, A.F., Morais, P., Pimentel, M., Rosa, R., Munday, P.L., Gonçalves, E.J., Faria, A.M., 2016. Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. *Mar. Biol.* 163, 243.

Malvezzi, A., Murray, C.S., Feldheim, K.A., Dibattista, J.D., Garant, D., Gobler, C.J., Chapman, D.D., Baumann, H., 2015. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. *Evol. Appl.* 8, 352–362.

Marshall, D.J., Uller, T., 2007. When is a maternal effect adaptive? *Oikos* 116, 1957–1963.

Marteinsdóttir, G., Steinarsdóttir, A., 1998. Maternal influence on the size and viability of Iceland cod *Gadus morhua* eggs and larvae. *J. Fish Biol.* 52, 1241–1258.

McBride, R.S., Sōmarakis, S., Fitzhugh, G.R., Albert, A., Yaragina, N.A., Wueneschel, M.J., Alonso-Fernández, A., Basileone, G., 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. *Fish Fish.* 16, 23–57.

McElhany, P., 2017. CO₂ sensitivity experiments are not sufficient to show an effect of ocean acidification. *ICES J. Mar. Sci.* 74, 926–928.

Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M., 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol. Oceanogr.* 18, 897–907.

Middaugh, D.P., Hemmer, M.J., Goodman, L.R., 1987. In: *Development, O.O.R.A. (Ed.), Methods for Spawning, Culturing and Conducting Toxicity-tests with Early Life Stages of four Atherinid Fishes: The Inland Silverside, Menidia beryllina, Atlantic Silverside, M. menidia, Tidewater Silverside, M. peninsulae and California Grunion, Leuresthes tenuis*. U.S. Environmental Protection Agency, Washington, DC.

Miller, G.M., Watson, S.-A., Donelson, J.M., McCormick, M.I., Munday, P.L., 2012. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. *Nat. Clim. Chang.* 2, 858–861.

Miller, S.H., Breitburg, D.L., Burrell, R.B., Keppel, A.G., 2016. Acidification increases sensitivity to hypoxia in important forage fishes. *Mar. Ecol. Prog. Ser.* 549, 1–8.

Mousseau, T.A., Fox, C.W., 1998. The adaptive significance of maternal effects. *Trends Ecol. Evol.* 13, 403–407.

Munday, P.L., 2014. Transgenerational acclimation of fishes to climate change and ocean acidification. *FI1000Prime Rep.* 6.

Munday, P.L., Donelson, J.M., Dixson, D.L., Endo, G.G.K., 2009. Effects of ocean acidification on the early life history of a tropical marine fish. *Proc. R. Soc. B Biol. Sci.* 276, 3275–3283.

Murray, C.S., Malvezzi, A.J., Gobler, C.J., Baumann, H., 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. *Mar. Ecol. Prog. Ser.* 504, 1–11.

Murray, C.S., Fuiman, L., Baumann, H., 2017. Consequences of elevated CO₂ exposure across multiple life stages in a coastal forage fish. *ICES J. Mar. Sci.* 74, 1051–1061.

Nowicki, J.P., Miller, G.M., Munday, P.L., 2012. Interactive effects of elevated temperature and CO₂ on foraging behavior of juvenile coral reef fish. *J. Exp. Mar. Biol. Ecol.* 412, 46–51.

Parker, L.M., Ross, P.M., O'Connor, W.A., Borysko, L., Raftos, D.A., Pörtner, H.-O., 2012. Adult exposure influences offspring response to ocean acidification in oysters. *Glob. Chang. Biol.* 18, 82–92.

Pfister, C.A., Esbaugh, A.J., Frieder, C.A., Baumann, H., Bockmon, E.E., White, M.M., Carter, B.R., Benway, H.M., Blanchette, C.A., Carrington, E., McClintock, J.B., McCorkle, D.C., McGillis, W.R., Mooney, T.A., Ziveri, P., 2014. Detecting the unexpected: a research framework for ocean acidification. *ES&T* 48, 9982–9994.

Pörtner, H.O., 2012. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. *Mar. Ecol. Prog. Ser.* 470, 273–290.

Rainuzzo, J.R., Reitan, K.I., Olsen, Y., 1997. The significance of lipids at early stages of marine fish: a review. *Aquaculture* 155, 103–115.

Räsänen, K., Kruuk, L., 2007. Maternal effects and evolution at ecological time-scales. *Funct. Ecol.* 21, 408–421.

Ries, J.B., Cohen, A.L., McCorkle, D.C., 2009. Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification. *Geology* 37, 1131–1134.

Salinas, S., Brown, S.C., Mangel, M., Munch, S.B., 2013. Non-genetic inheritance and changing environments. *Non-Genetic Inheritance* 1, 38–50.

Schade, F.M., Clemmesen, C., Wegner, K.M., 2014. Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (*Gasterosteus aculeatus*). *Mar. Biol.* 161, 1667–1676.

Stephens, P.A., Boyd, I.L., McNamara, J.M., Houston, A.I., 2009. Capital breeding and income breeding: their meaning, measurement, and worth. *Ecology* 90, 2057–2067.

Stiasny, M.H., Mittermayer, F.H., Sswat, M., Voss, R., Juffelt, F., Chierici, M., Puwanandran, V., Mortensen, A., Reusch, T.B.H., Clemmesen, C., 2016. Ocean acidification effects on Atlantic cod larval survival and recruitment to the fish population. *PLoS One* 11, e0155448.

Sunday, J.M., Crim, R.N., Harley, C.D.G., Hart, M.W., 2011. Quantifying rates of evolutionary adaptation in response to ocean acidification. *PLoS One* 6, e22881.

Trippel, E.A., Kraus, G., Köster, F.W., 2005. Maternal and paternal influences on early life history traits and processes of Baltic cod *Gadus morhua*. *Mar. Ecol. Prog. Ser.* 303, 259–267.

Waldbusser, G.G., Brunner, E.L., Haley, B.A., Hales, B., Langdon, C.J., Prahl, F.G., 2013. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. *Geophys. Res. Lett.* 40, 2171–2176.

Wallace, R.B., Baumann, H., Grear, J.S., Aller, R.C., Gobler, C.J., 2014. Coastal ocean acidification: the other eutrophication problem. *Estuar. Coast. Shelf Sci.* 148, 1–13.

Welch, M.J., Munday, P.L., 2016. Contrasting effects of ocean acidification on reproduction in reef fishes. *Coral Reefs* 35, 485–493.

Welch, M.J., Watson, S.-A., Welsh, J.Q., McCormick, M.I., Munday, P.L., 2014. Effects of elevated CO₂ on fish behaviour undiminished by transgenerational acclimation. *Nat. Clim. Chang.* 4, 1086–1089.

Wiegand, M.D., 1996. Composition, accumulation and utilization of yolk lipids in teleost fish. *Rev. Fish. Biol. Fish.* 6, 259–286.