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There is increasing recognition that low dissolved oxygen (DO) and low pH
conditions co-occur in many coastal and open ocean environments. Within
temperate ecosystems, these conditions not only develop seasonally as
temperatures rise and metabolic rates accelerate, but can also display strong
diurnal variability, especially in shallow systems where photosynthetic rates
ameliorate hypoxia and acidification by day. Despite the widespread, global
co-occurrence of low pH and low DO and the likelihood that these conditions
may negatively impact marine life, very few studies have actually assessed the
extent towhich the combination of both stressors elicits additive, synergistic or
antagonistic effects in marine organisms. We review the evidence from
published factorial experiments that used static and/or fluctuating pH and
DO levels to examine different traits (e.g. survival, growth, metabolism), life
stages and species across a broad taxonomic spectrum. Additive negative
effects of combined low pH and lowDO appear to bemost common; however,
synergistic negative effects have also been observed. Neither the occurrence
nor the strength of these synergistic impacts is currently predictable, and there-
fore, the true threat of concurrent acidification and hypoxia to marine food
webs and fisheries is still not fully understood. Addressing this knowledge
gap will require an expansion of multi-stressor approaches in experimental
and field studies, and the development of a predictive framework. In consider-
ation of marine policy, we note that DO criteria in coastal waters have been
developed without consideration of concurrent pH levels. Given the per-
sistence of concurrent low pH–low DO conditions in estuaries and the
increased mortality experienced by fish and bivalves under concurrent acidifi-
cation and hypoxia compared with hypoxia alone, we conclude that such DO
criteria may leave coastal fisheries more vulnerable to population reductions
than previously anticipated.

1. Ecosystem occurrence of low oxygen and acidification
Low oxygen zones are a common feature within marine ecosystems. Human
colonization of coastal zones has resulted in accelerated nutrient delivery to the
sea that can have multiple negative consequences within coastal zones, including
the degradation and destruction of critical marine habitats and the stimulation of
algal blooms [1]. The respiration of the algal organic matter consumes oxygen,
which can lead to low oxygen or hypoxic conditions in water bodies where
respiration-driven oxygen consumption exceeds the rate at which oxygen is
replenished. The upper threshold of hypoxic conditions typically ranges from
2 to 5 mg l21 (62.5–157 mM), depending on the group defining the standard
[2]. Spatially, hypoxic conditions can be common along coastal zones with elev-
ated nutrient delivery and in deeper water bodies that are stratified owing to
surface freshwater discharge from rivers and/or surface heating. Temporally,
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these conditions most commonly develop in temperate water
bodies in summer when seasonal temperatures are elevated
and thus saturated dissolved oxygen (DO) levels are already
low, thermally induced vertical stratification is more likely to
occur, wind-driven mixing is minimal, and microbial respir-
ation rates are maximal. Hence, hypoxic zones within
temperate latitudes are often seasonal features that dissipate
when temperatures decrease, stratification is disrupted and res-
piration rates decline. Given this link to temperature, there is
the expectation that the intensity, duration, frequency and
number of hypoxic zones will expand with global warming
[3]. More than 400 hypoxic zones have been identified in
coastal zones across the planet [4], with this number increasing
as nutrient loading, temperatures and scientific reporting of
these regions increase with time [3,5]. Owing to the inhibitory
effects that low oxygen has on marine life, hypoxic zones have
been an intense area of focus for both coastal zone managers
and scientists [2,4].

Low oxygen zones also develop within deeper waters of
tropical and temperate oceans, typically at depths between
100 and 1000 m. These ‘oxygen minimum zones’ (OMZ) are
driven by many of the same processes that control coastal
zone hypoxia; hence, ocean regions that experience larger
nutrient inputs to euphotic zones (typically via upwelling)
and strong thermal stratification are more likely to harbour
extremely low oxygen levels at depth [5]. There is now a
consensus that greenhouse-induced ocean warming will lead
to a global expansion of OMZs in the coming decades [3,5,6].

Ocean acidification is a more recently studied phenom-
enon, but has garnered significant attention among scientists,
policy-makers and the public during the past decade. While
it had long been assumed that ocean alkalinity would provide
the buffering capacity required to keep ocean pH levels stable
through time, we now know that the rate at which CO2 is enter-
ing world oceans is too rapid for it to be buffered against [5,6].
As a consequence, CO2 entering the oceans is reducing the
availability of carbonate ions and reducing pH,which is largely
controlled by the ratio of carbonic acid to carbonate ions in sea-
water. This process also occurs in regions that experience low
oxygen conditions, but at a greatly accelerated rate. The same
nutrient-enhanced respiration of organic matter that creates
hypoxic and OMZ in the ocean also produces high levels of
CO2 that reacts in a manner identical to the atmospheric CO2

and thus similarly creates low pH and low carbonate ion avail-
ability [7–10]. The issue of coastal acidification is increasingly
recognized, because seasonal levels of pCO2, pH and calcium
carbonate saturation in many coastal zones (pH, 7.7T,
pCO2 . 1000 matm, Varagonite , 1 [9–11]) already exceed
(i) the predicted extremes in the future open ocean [5] and
(ii) the levels known to reduce the growth and survival of
early-life stage bivalves [12] and fish [13].

Acidification and low oxygen conditions are inextricably
linked via the process of respiration and therefore display
highly similar dynamics in ocean ecosystems [7–11]. In tem-
perate coastal zones, both conditions appear during warmer
months when respiration rates are maximal and thermal
stratification is most likely. Further, they both occur at extreme
levels in regions that receive excessive nutrient loads such as
near large coastal cities [9,10] or within eutrophied river
plumes [8]. Estuaries have long been known as net hetero-
trophic ecosystems owing to both allochthonous (imported)
and autochtonous (self-produced) sources of organic carbon;
hence, on a net annual basis they are producing CO2 and

consuming O2 [14]. Beyond the role of excessive nutrient
loads in driving this trend, specific estuarine habitats such as
salt marshes and mangroves are naturally enriched in organic
carbon that is respired and creates hypoxic and acidified
conditions, particularly within warmer waters [11].

The persistence of hypoxia and acidification in coastal
zones can vary from hours to months to years, depending on
the intensity of respiration, the geomorphology of the region,
tidal flushing, the depth and structure of the water column,
and other factors related to the hydrodynamics of a given
water body. In shallow, well-mixed coastal zones with high
rates of respiration, hypoxia and acidification can occur diur-
nally, because maximal photosynthetic rates during the day
result in highDOandpH levels,whereas the cumulative effects
of respiration during night decrease DO and pH levels to a pre-
dawn minimum. The intensity of this process can be related to
the depth of thewater column, given that sediments are known
to be strong sources of CO2 [15] and their influence is likely to
be inversely proportional to the depth of the water column.
Given that most manual measurements of pH and DO are
made during daylight hours, it is likely that the occurrence of
hypoxia and acidification has been underreported in many
ecosystems. Superimposed upon diurnal changes in net meta-
bolism in coastal zones are the actions of tides. In general, low
tides are likely to maximize the influence of local metabolic
rates while high tides may bring less intense metabolism if
the water mass is originating from a region further from land
with lowered amounts of organic matter, respiration and
benthic influence [11,16]. Regardless, within deeper, stratified
ecosystems including OMZs, hypoxic and acidified water can
persist for weeks, months or longer, as benthic and/or deep
water respiration continually consumes oxygen and produces
CO2 faster than it is replenished via diffusion and mixing
from surface waters [10,17].

Despite the strong coupling of hypoxia and acidification
via respiration, there is a series of processes that likely make
acidification more common and persistent in many coastal
zones, both today and in the future. Beyond respiration, there
is a series of coastal processes that promote acidification and
high CO2 conditions but have minor effects on DO levels,
including the discharge of acidified riverine water, acid
deposition, sea ice melting and the lower alkalinity of coas-
tal zones that results in a lower buffering capacity against
acidification compared with ocean regimes. Furthermore, the
differential diffusion and solubility of DO and CO2 cause
oxygen levels in seawater to come to equilibriumwith prevail-
ing atmospheric conditions more rapidly than CO2 [18]. As a
consequence, when deeper waters that are low in pH and
DO are advected to the surface via upwelling, the signature
of acidification can be persistent [7] even to the detriment of
marine life [19], whereas oxygen levels are commonly more
normal. Similarly, when thewater column of temperate, coastal
hypoxic zones cools and destratifies, whole water columns
become normoxic, but low pH conditions can persist for sev-
eral weeks [10]. An additional factor that likely enhances acid
production (lower pH) during times when DO levels are
increasing is the oxidation of anaerobic metabolites. The
reduced constituents (e.g. NH4

þ, HS2, Fe2þ, Mn2þ) that build
up in surface sediments during hypoxia oxidize seasonally
when systems re-oxygenate [20]. These oxidation reactions
produce strong acids that titrate alkalinity and lower pH [15].
For all of these reasons, acidification is likely more persistent
than hypoxia in coastal zones.
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As climate change progresses, the effects of atmospheric
CO2 on coastal acidification will intensify in a nonlinear
fashion, leading to acidification becoming an even more
prominent stressor in coastal zones. Modelling efforts have
shown that under future climate change scenarios, synergistic
interactions may occur between CO2 emanating from atmos-
pheric sources and from the respiration of organic matter. As
a consequence, the buffer capacity of some ocean regions may
be overwhelmed, resulting in a degree of acidification that is
non-additive and greater than would have been predicted
from the CO2 loading by either individual source [21]. This
may make temperate and tropical estuaries even more
vulnerable to coastal acidification, as they warm and experi-
ence the synergistic effects of acidification driven by both
respiration and atmospheric CO2. While oceans are also
expected to deoxygenate under climate change scenarios,
the relative decrease in DO via this process is small compared
with the expected changes in pH and CO2 [5,6] (figure 1).

2. Effects of low dissolved oxygen and low pH
on marine life

Very few studies have assessed the sensitivity of marine
organisms to the combination of low pH and low DO
[22–24]. Pioneering work by Burnett [24] demonstrated that
adult estuarine fish, shrimp or oysters possess astonishing
regulatory capacities in the face of adverse pH and DO con-
ditions, which, however, can make them more vulnerable to
other toxins or parasite infections. An unfortunate limitation
of previous laboratory hypoxia studies is that many adminis-
tered only N2 gas to reduce oxygen levels in experimental
vessels, which also reduces CO2 and therefore raises pH
[23], contrary to the conditions observed in hypoxic zones
[8–10]. Given the tendency for detrimental effects of low

oxygen and low pH individually, the combination of both
stressors is expected to elicit at least additive (no interaction)
or synergistically negative (interaction) effects, likely depend-
ing on exposure time, strength, examined traits, species and
life stages. To explore and predict organismal responses to
multi-stressor environments, existing bioenergetic frame-
works [25,26] provide a useful starting point, because they
focus on aerobic scope as the affected, fundamental trait
(i.e. a proxy for the surplus energy available for growth,
reproduction, predator avoidance, etc.). Pörtner [25]
suggested that an organism’s capacity to sustain aerobic
metabolism is limited to a species- and life-stage-specific
thermal window (figure 2d ). Low oxygen and elevated CO2

levels in the environment are both expected to reduce thermal
windows, by directly depressing the oxygen content of blood
and other body fluids or by decreasing the functional
capacity of pH-sensitive tissues (e.g. pH-sensitive oxygen
binding proteins such as haemoglobin and haemocyanin).
Organisms may also need to spend additional energy on ven-
tilation or acid/base regulation, or activate mechanisms for
protection and damage repair, thereby increasing their
basal metabolism and shrinking the aerobic scope. These
negative effects could be compounded further by reduced
assimilation of food and/or stress-induced impacts on
the aerobic production of ATP [26]. With respect to acidifica-
tion and hypoxia, however, these frameworks remain
largely untested.

3. Factorial low oxygen " low pH experiments
on marine organisms

Factorial experiments are powerful approaches to study the
effects of low DO and low pH environments on marine biota,
because they apply stressors individually and in combination
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Figure 1. Spatial and temporal covariance of hypoxia and acidification in coastal ecosystems. (a) Changes in DO and pH with season, depth and longitude along a west–
east transect through Long island sound (LIS), where low DO and pH predominantly develop during late summer, at depth and in the urbanized western LIS (after [10]).
(b) Seasonal evolution of pH (red) and DO (blue) in a temporal tidal saltmarsh adjacent to LIS, showing long-term (2008–2012) monthly averages of daily minima, means
and maxima. Insets c and d illustrate the typical diel and tidal variability of DO and pH in February and July, respectively (after [11]). NBS, National Bureau of Standards.
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on the same set of individuals. This enables experimenters to
quantify how effects of concurrent (i.e. environmentally realis-
tic) low DO " low pH conditions differ from (i) the effects of
each individual stressor and (ii) the hypothetical sum of the
two stressors, thus testing for interactions. Of particular con-
cern is the potential for synergistic negative effects of low DO
and pH on a wide range of traits and species. At the time of
writing, we found six such factorial experiments that are sum-
marized in table 1. These studies employed various treatment
levels, and measured different traits in different life stages of
species across a broad taxonomic spectrum. They comprise
starting points of a much needed research effort, while still
allowing few generalizations.

(a) Molluscs
Five independent studies so far have assessed a total of six
commercially and ecologically important mollusc species,
including four bivalves [23,29,30] and two gastropods
[27,28]. Measured traits included survival, metabolism,
growth, activity and metamorphosis in either larvae/juveniles
or adults. In larval bay scallops (Argopecten irradians) and
juvenile hard clams (Mercenaria mercenaria) survival and
growth were sensitive to low DO, low pH and low DO " low
pH [23]. While low DO conditions (1.0–1.6 mg l21) reduced

larval scallop growth but not survival, low pH conditions
(7.65–7.70) reduced survival but had no effect on growth.
Both stressors combined elicited additive negative effects on
both traits, while interacting antagonistically on scallop meta-
morphosis (table 1). For quahog juveniles (two months), the
opposite sensitivity pattern emerged, i.e. low DO alone
reduced survival but not growth, low pH conditions reduced
growth but not survival, and the combined treatment again
elicited additive reductions in both traits. However, growth
in older quahog juveniles (four months) appeared robust to
either low DO or low pH, but was synergistically reduced by
both stressors combined (table 1 and figure 2b). The same
study [23] also showed that larval scallops were highly sensi-
tive to naturally hypoxic and acidified waters from a local
eutrophic estuary, and that experimentally raising the pH or
the pH " DO levels of these waters significantly improved
larval scallop performance. This finding demonstrated that
current conditions in some estuaries are already having
harmful effects on marine life.

Synergistic negative growth effects of low DO " low pH
conditions were also reported by Kim et al. [28] for abalone
(Haliotis rufescens), a mollusc that regularly experiences acid-
ified and deoxygenated conditions during upwelling events.
The authors exposed juveniles to several episodes of low DO
(5 mg l21) or concurrent low DO " pH conditions (7.65).
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Prolonged, repeated exposures (24 h) to low DO significantly
increased mortality over the following few days, but in the
low DO " pH treatment, survival was not significantly differ-
ent from the controls (table 1). In contrast, concurrent low
DO " pH conditions had a synergistic negative effect on
juvenile abalone growth, whereas low DO alone did not
reduce growth, possibly owing to the relatively short course
of the experiment (15 days, table 1) and the intermittent
nature of the exposure design.

Mostmarine species experiencenaturalDOandpHvariabil-
ity; hence, exposure history likely influences the sensitivity of
current and offspring generations. One study showed that
Baltic clam (Macoma balthica) juveniles had higher growth and
survival rates at low (3mg l21) compared with control DO con-
ditions, whereas acidification (pH 7.35) alone had no effect on
survival [29]. Clam growth was only reduced under combined
low DO " low pH conditions—a significant interactive effect
(table 1). Metabolism, survival and activity in adult Baltic blue
mussels (Mytilus edulis trossulus) appeared to be robust even
to severe acidification (pH ¼ 7.5 and 7.0) and hypoxia
(2.2 mg l21), although the studywas limited by short exposures
and small sample sizes [30]. Similarly, concurrent lowDO (2.8–
3.3 mg l21) " low pH (7.61–7.68) had no effects on early-life
survival and veliger size in two mussel species (Mytilus califor-
nianus, M. galloprovincialis, individual low DO, low pH
treatments were not tested [31]). All three studies [29–31]
argued that local adaptation of bivalves to regular low DO "
low pH conditions in the Baltic sea or the California upwelling
region may partially explain these findings. In addition, some
bivalves undertake anaerobic respiration as DO concentrations
decline, an adaptation that may permit greater resistance to
the combined effects of lowDOand pH [32]. Importantly, how-
ever, the potential importance of anaerobiosis for bivalves
increases with age and can only comprise 10% of total metab-
olism within early individuals [32], a fact that may further
account for the higher vulnerability of early-life stages to
hypoxia and acidification [23].

(b) Marine fish
One study tested the early-life sensitivities of three forage fish
species from the Northwest Atlantic (Atlantic and Inland
silverside Menidia menidia, M. beryllina, sheepshead minnow
Cyprinodon variegatus, [22]) to low DO (1.6–2.5 mg l21) and
low pH (7.5). All three species exhibited different sensi-
tivities. Low pH alone reduced post-hatch survival only in
Inland, but not in Atlantic silversides nor in sheepshead
minnows. Low DO alone reduced survival in both silverside
species, but not in sheepshead minnows. The combined
effects were additive in inland silversides, but synergistically
negative in Atlantic silversides (figure 2c), whereas the survi-
val of sheepshead minnows was resistant to the combination
of both stressors. Larval growth, on the other hand, was
negatively affected by low pH and DO individually only in
inland silversides, with the combination causing an additive
negative effect, whereas in Atlantic silversides and sheeps-
head minnows, growth was sensitive only to low DO, not
to low pH, with the combination of both stressors resulting
in additive negative effects.

(c) Other taxa
One study conducted a taxonomically broad, but short-
term assessment of responses to low DO " pH conditions

in benthic invertebrates from the central Chilean coast [27],
including adults of two anemone species, a gastropod, a
sea urchin (figure 2a) and four crustaceans. After 3–6 days
of exposure to individual and combined conditions of low
pH (7.7–7.8) and low DO (2.6–3.1 mg l21), survival was
unaffected; low DO alone generally resulted in metabolic
depression, whereas low pH levels increased metabolism in
anemones but had generally no effect in the other groups.
Importantly, low DO " low pH elicited metabolic depression
in every species, with either no (four species), synergistic
(three species) or antagonistic (one species) stressor inter-
actions (table 1). However, natural pH conditions at the
time of specimen collection were more acidic (7.6) than the
low pH treatment of the study, hence potentially contributing
to the authors’ conclusion that Chilean species are generally
robust to acidification.

4. A new frontier: effects of pH and dissolved
oxygen fluctuations

How coastal organisms cope with the typically large diel and
seasonal variability in pH and DO conditions [10,11] still
remains largely unstudied. It is thus unclear whether pH and
DO fluctuations primarily afford temporal relief from stressful
conditions, or whether they compound environmental stress
by requiring constant physiological adjustments. For larvae of
two Californian mytilid mussels, Frieder et al.’s [31] study
suggested the former, showing that constant low pH (7.48–
7.51) during 8 days of exposure had a negative effect on
development rate, whereas the fluctuating pH treatment
(+0.15 pH units) was less detrimental. Keppel [33] recently
observed that diel acidification cycles (pH 7.0–7.8 at control
DO) severely reduced growth in oyster spat (Crassostrea
virginica) only at low salinity conditions, whereas severe
hypoxia cycles (0.5–7.2 mg l21 at control pH) always reduced
growth, and combinations of DO " pH fluctuations elicited
additive negative effects. In contrast, Clark [34] found higher
larval mortality in A. irradians and M. mercenaria in response
to diurnally fluctuating DO and pH levels compared with
individuals exposed to static DO and pH conditions. Hence,
there might be significant metabolic costs to adapting to rapid
diurnal changes in pH and DO, which traditional experiments
using static exposures fail to observe.

Although still few, the reviewed studies already hint at the
arduously complex task of trying to understand, let alone pre-
dict multi-stressor effects inmarine organisms and ecosystems.
The scarce evidence suggests that—individually—low DO is a
greater stressor to most marine organisms than low pH con-
ditions. Under environmentally realistic conditions, however,
a real concern is that the addition of low pH to low DO has
worse or even synergistically worse effects than what had
been determined for hypoxia alone. While most traits under
concurrent low DO and low pH appeared to be additively
affected, every study so far also found synergistic interactions
in at least one instance, i.e. when combined stressors elicited
more extreme outcomes than anticipated from the sum of indi-
vidual effects. Why such synergies occur in some traits, life
stages or species, whereas being absent in others, is currently
unclear but truly comprises an urgent research need.

Just as the interaction between pH and salinity in oyster
growth, many other environmental variables have the ability
to interact with organismal responses to concurrent DO" pH
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regimes. Of those, temperature and feeding conditions are
likely the most important, as they can both exacerbate or
mitigate acidification and hypoxia effects [25,35]. While interac-
tive effects between temperature and acidification have already
received considerable attention in several recent reviews and
meta-analyses [36,37], potential interactions with shifting food
sources, salinity or light have yet to be thoroughly explored
and thus caution against predicting real-world consequences
based on the still limited experimental evidence.

Given the common occurrence of low pH and DO
conditions in global ocean ecosystems, the scarcity of multi-
stressor research, and the potential for synergistic negative
effects of low DO " pH (figure 2a–c), there is now an urgent
need for expandingmulti-stressor approaches in experimental,
field and modelling studies. Experiments should first focus on
organisms of high ecosystem or fishery importance and focus
on fitness-relevant traits (e.g. survival, growth, fecundity).
Factorial experiments will be the most useful to understand
stressor interactions and should be designed to allow inferring
reaction norms (i.e. three or more levels per stressor) rather
than control versus treatment conclusions for a given trait.
For organisms living in shallow habitats, examining effects of
diurnal changes in low pH and low DO levels is warranted.
In addition, existing spatial gradients in CO2 andO2 conditions
(e.g. along the US Pacific coast) or field manipulations [38]
should be explored further, as they will likely help translating
laboratory to ecosystem responses and the potential for some
species to adapt.

5. Policy implications for management of coastal
ecosystems

In many coastal zones, ecosystem management plans are
centred on maintaining DO levels above a target concentration
below which adverse effects on marine life may occur [2]. In
contrast, coastal zone management plans rarely, if ever, set
target pH or pCO2 levels or base DO criteria on the concurrent

effects of acidification, despite the fact that many estuaries
experience acidification at levels and durations known to be
harmful to marine life. Given that concurrent exposure to
acidification and hypoxia reduces the survival of fish and
shellfish below the survival observed from hypoxia alone
[22,23], it is likely that water quality standards based on DO
alone have made marine fisheries more vulnerable to popu-
lation reductions than appreciated. While there is currently
not enough information to make quantitative recommen-
dations regarding the precise changes that should be made to
existing DO criteria to better protect ocean animals against
these two stressors, raising DO standards to higher minimums
to accommodate concurrent low pH would be one managerial
approach to address this issue. Were such criteria changes
made, it would lead to an expansion in the criteria-defined
number and spatial extent of hypoxia zones in regions where
such changes were implemented.

Moving forward, ocean acidification from atmospheric CO2

will intensify and temporal refuges from acidification afforded
by tides, diurnal cycles, or seasonal destratification will dimin-
ish. While managerial efforts to reduce nutrient loads may
progressively alleviate respiration-driven oxygen consumption
and acidification in some estuaries, the ability to manage acid-
ification from the atmosphere, ice melt and weathering is far
more complex and less likely. For all of these reasons, careful
monitoring of pH, pCO2 and carbonate chemistry in coastal
zones will be important for better understanding the threat
of acidification to marine life and for setting independent
managerial targets for these parameters as warranted.
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