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Abstract

Recently, Musco and Woodruff (FOCS, 2017) showed that given an n×n positive semidefinite

(PSD) matrix A, it is possible to compute a (1 + ǫ)-approximate relative-error low-rank approx-

imation to A by querying Õ(nk/ǫ2.5) entries of A in time Õ(nk/ǫ2.5 + nkω−1/ǫ2(ω−1)). They

also showed that any relative-error low-rank approximation algorithm must query Ω̃(nk/ǫ)
entries of A, this gap has since remained open. Our main result is to resolve this question by

obtaining an optimal algorithm that queries Õ(nk/ǫ) entries of A and outputs a relative-error

low-rank approximation in Õ(n ·(k/ǫ)ω−1) time. Note, our running time improves that of Musco

and Woodruff, and matches the information-theoretic lower bound if the matrix-multiplication

exponent ω is 2.

We then extend our techniques to negative-type distance matrices. Here, our input is

a pair-wise distance matrix A corresponding to a point set P � {x1 , x2 , . . . , xn} such that

Ai , j � ‖xi − x j ‖2
2
. Bakshi and Woodruff (NeurIPS, 2018) showed a bi-criteria, relative-error

low-rank approximation for negative-type metrics. Their algorithm queries Õ(nk/ǫ2.5) entries

and outputs a rank-(k + 4) matrix. We show that the bi-criteria guarantee is not necessary and

obtain an Õ(nk/ǫ) query algorithm, which is optimal. Our algorithm applies to all distance

matrices that arise from metrics satisfying negative-type inequalities, including ℓ1 , ℓ2 , spherical

metrics, hypermetrics and effective resistances on a graph. We also obtain faster algorithms for

ridge regression.

Next, we introduce a new robust low-rank approximation model which captures PSD matri-

ces that have been corrupted with noise. We assume that the Frobenius norm of the corruption

is bounded. Here, we relax the notion of approximation to additive-error, since it is information-

theoretically impossible to obtain a relative-error approximation in this setting. While a sample

complexity lower bound precludes sublinear algorithms for arbitrary PSD matrices, we provide

the first sublinear time and query algorithms when the corruption on the diagonal entries is

bounded. As a special case, we show sample-optimal sublinear time algorithms for low-rank

approximation of correlation matrices corrupted by noise.

∗Ainesh Bakshi and David Woodruff acknowledge support in part from NSF No. CCF-1815840.

http://arxiv.org/abs/1912.04177v4


Contents

1 Introduction 1

1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Technical Overview 5

2.1 Sample-Optimal Low-Rank Approximation . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Robust Low-Rank Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Preliminaries and Notation 15

4 Relative Error PSD Low-Rank Approximation 16

4.1 Structured Projections to Low-Rank Approximation . . . . . . . . . . . . . . . . . . . 20

4.2 Spectral Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Sample-Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Negative-Type Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Robust Low-Rank Approximation 45

5.1 Lower Bound for Robust PSD Low-Rank Approximation . . . . . . . . . . . . . . . . 45

5.2 Robust Sublinear Low-Rank Approximation Algorithms . . . . . . . . . . . . . . . . 48



1 Introduction

Low-rank approximation is one of the most common dimensionality reduction techniques,whereby

one replaces a large matrix A with a low-rank factorization U ·V ≈ A. Such a factorization provides

a compact way of storing A and allows one to multiply A quickly by a vector. It is used as an algo-

rithmic primitive in clustering [DFK+04, McS01], recommendation systems [DKR02], web search

[AFKM01, Kle99], and learning mixtures of distributions [AM05, KSV05], and has numerous other

applications.

A large body of recent work has looked at relative-error low-rank approximation, whereby given

an n × n matrix A, an accuracy parameter ǫ > 0, and a rank parameter k, one seeks to output a

rank-k matrix B for which

‖A − B‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F , (1.1)

where for a matrix C, ‖C‖2
F �

∑
i, j C2

i, j
, and Ak denotes the best rank-k approximation to A in

Frobenius norm. Ak can be computed exactly using the singular value decomposition, but takes

time O(nω), where ω is the matrix multiplication constant. We refer the reader to the survey

[Woo14] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (1.1) must spend

at least Ω̃(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A.

Indeed, without reading most of the non-zero entries of A, one could fail to read a single large

entry, thus making one’s output matrix B an arbitrarily bad approximation.

A flurry of recent work [KP16, MW17, BW18, CLW18, Tan19, RSML18, GLT18, IVWW19, SW19,

GSLW19] has looked at the possibility of achieving sublinear time algorithms (classical and quan-

tum) for low-rank approximation. In particular, Musco and Woodruff [MW17] consider the impor-

tant case of positive-semidefinite (PSD) matrices. PSD matrices include as special cases covariance

matrices, correlation matrices, graph Laplacians, kernel matrices and random dot product models.

Further, the special case where the input itself is low-rank (PSD Matrix Completion) has applica-

tions in quantum state tomography [GLF+10]. Subsequently, Bakshi and Woodruff [BW18] consid-

ered low-rank approximation of the closely related family of Negative-type (Euclidean Squared)

distance matrices. Negative-type metrics include as special cases ℓ1 and ℓ2 metrics, spherical met-

rics and hypermetrics, as well as effective resistances in graphs [DL09, TD87, CRR+96, CKM+11].

Negative-type metrics have found various applications in algorithm design and optimization

[ALN08, SS11, KMP14, MST15].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form

achieving (1.1) in Õ(nk/ǫ2.5 + nkω−1/ǫ2(ω−1)) time, while reading only Õ(nk/ǫ2.5) entries of A.

They also showed a lower bound that any algorithm achieving (1.1) must read Ω̃(nk/ǫ) entries,

and closing the gap between these bounds has remained an open question. Similarly, Bakshi and

Woodruff exploit the structure of Negative-type metrics to reduce to the PSD case and obtain

a bi-criteria algorithm that requires Õ(nk/ǫ2.5) queries. The gap in the sample complexity and

the requirement of a bi-criteria guarantee remained open. We resolve these questions here, and

describe our novel technical contributions in Section 2.
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Next we consider PSD matrices that have been corrupted by a small amount of noise. A

drawback of algorithms achieving (1.1) is that they cannot tolerate any amount of unstructured

noise. For instance, if one slightly corrupts a few off-diagonal entries, making the input matrix

A no longer PSD, then it is impossible to detect such corruptions in sublinear time, making the

relative-error guarantee (1.1) information-theoretically impossible. Motivated by this, we also

introduce a new framework where an adversary corrupts the input by adding a noise matrix N to

a psd matrix A. We assume that the Frobenius norm of the corruption is bounded relative to the

Frobenius norm of A, i.e., ‖N‖2
F ≤ η‖A‖2

F. We also assume the corruption is well-spread, i.e., each

row of N has ℓ22-norm at most a fixed constant factor larger than ℓ22-norm of the corresponding row

of A.

This model captures small perturbations to PSD matrices that we may observe in real-world

datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian

pseudoinverses, and systematic measurement errors when computing a covariance matrix. One

important application captured by our model is low-rank approximation of corrupted correlation

matrices. Finding a low-rank approximation of such matrices occurs when measured correlations

are asynchronous or incomplete, or when models are stress-tested by adjusting individual corre-

lations. Low-rank approximation of correlation matrices also has many applications in finance

[Hig02].

Given that it is information-theoretically impossible to obtain the relative-error guarantee (1.1)

in the robust model, we relax our notion of approximation to the following well-studied additive-

error guarantee:

‖A − B‖2
F ≤ ‖A − Ak ‖2

F + (ǫ + η)‖A‖2
F . (1.2)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04], and

triggered a long line of work on low-rank approximation from a computational perspective. Frieze

et al. showed that it is possible to achieve (1.2) in O(nnz(A)) time. Further, given access to an oracle

for computing row norms of A, 1.2 is achievable in sublinear time. More recently, the same notion

of approximation was used to obtain sublinear sample complexity and running time algorithms for

distance matrices [BW18, IVWW19], and a quantum algorithm for recommendation systems [KP16],

which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms

for structured matrices, if we relax to additive-error guarantees and allow for corruption. In

particular, can we obtain additive-error low-rank approximation algorithms for PSD matrices that

achieve sublinear time and sample complexity in the presence of noise? We characterize when

such robust algorithms are achievable in sublinear time.

1.1 Our Results

We begin with stating our results for low-rank approximation for structured matrices. Our main

result is an optimal algorithm for low-rank approximation of PSD matrices:

Theorem 4.1 (Informal Sample-Optimal PSD LRA.) Given a PSD matrix A, there exists an algorithm

2



Problem
Prior Work Our Results Query Lower

Query Run Time Query Run Time Bound

PSD LRA
O

(
nk
ǫ2.5

)
O

(
nkω−1

ǫ2ω−2 +
nk
ǫ2.5

)
O∗

(
nk
ǫ

)
O†

(
nkω−1

ǫω−1

)
Ω

(
nk
ǫ

)
[MW17] Thm. 4.1 [MW17]

PSD LRA
PSD Output

O
(
nk

(
k
ǫ2

+
1
ǫ3

))
O

(
nkω−1

(
k
ǫω +

1
ǫ3ω−3

))
O∗

(
nk
ǫ

)
O†

(
nkω−1

ǫω−1

)
Ω

(
nk
ǫ

)
[MW17] Thm. 4.1 [MW17]

Negative-Type
LRA

O
(

nk
ǫ2.5

)
O

(
nkω−1

ǫ2ω−2 +
nk
ǫ2.5

)
O∗

(
nk
ǫ

)
O†

(
nkω−1

ǫω−1

)
Ω

(
nk
ǫ

)
Bi-criteria, [BW18] No Bi-criteria, Thm. 4.28 [BW18]

Coreset Ridge
Regression

O
(

ns2
λ

ǫ4

)
O

(
nsω
λ

ǫω

)
O∗

(
nsλ
ǫ2

)
O†

(
nsω−1
λ

ǫ2ω−2

)
Ω

(
nsλ
ǫ2

)
[MW17] Thm. 4.31 Thm 4.33

Table 1: Comparison with prior work. The notation O∗ and O† represent existence of matching

lower bounds for query complexity and running time (assuming the fast matrix multiplication

exponent ω is 2) respectively. The notation sλ is used to denote the statistical dimension of ridge

regression. All bounds are stated ignoring polylogarithmic factors in n , k and ǫ.

that queries Õ(nk/ǫ) entries in A and outputs a rank k matrix B such that with probability 99/100,

‖A − B‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F , and the algorithm runs in time Õ(n · (k/ǫ)ω−1).

Remark 1.1. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,

up to logarithmic factors, which shows that any randomized algorithm that outputs a (1+ǫ)-relative-

error low-rank approximation for a PSD matrix A must read Ω̃(nk/ǫ) entries. Our running time

also improves that of Musco and Woodruff and is optimal if the matrix multiplication exponent ω

is 2.

Remark 1.2. We can extend our algorithm such that the low-rank matrix B we output is also PSD

with the same query complexity and running time. In comparison, the algorithm of Musco and

Woodruff accesses Õ(nk/ǫ3 + nk2/ǫ2) entries in A and runs in time Õ(n(k/ǫ)ω + nkω−1/ǫ3(ω−1)).
At the core of our analysis is a sample optimal algorithm for Spectral Regression: minX ‖DX −

E‖2
2 . We show that when D has orthonormal columns and E is arbitrary, we can sketch the

problem by sampling rows proportional to the leverage scores of D and approximately preserve

the minimum cost. This is particularly surprising since our sketch only computes sampling

probabilities by reading entries in D, while being completely agnostic to the entries in E. Here,

we also prove a spectral approximate matrix product guarantee for our one-sided leverage score

sketch, which may be of independent interest. We note that such a guarantee for leverage score

sampling does not appear in prior work, and we discuss the technical challenges we need to

overcome in the subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a

low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)

metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P �

{x1 , x2, . . . , xn} ∈ �d such that Ai, j � ‖xi − x j ‖2
2 . We obtain an optimal algorithm for computing a

low-rank approximation of such matrices:
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Theorem 4.28 (Informal Sample-Optimal LRA for Negative-Type Metrics.) Given a negative-type distance

matrix A, there exists an algorithm that queries Õ(nk/ǫ) entries in A and outputs a rank k matrix B such

that with probability 99/100, ‖A−B‖2
F ≤ (1+ǫ)‖A−Ak ‖2

F , and the algorithm runs in time Õ(n ·(k/ǫ)ω−1).
Remark 1.3. Prior work of Bakshi and Woodruff [BW18] obtains a Õ(nk/ǫ2.5) query algorithm that

outputs a rank-(k + 4) matrix B such that ‖A−B‖2
F
≤ (1+ ǫ)‖A−Ak ‖2

F
. We show that the bi-criteria

guarantee is not necessary, thereby resolving an open question in their paper.

Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation also

leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given a PSD

matrix A, a vector y and a regularization parameter λ, we consider the following optimization

problem: minx∈�n ‖Ax− y‖2
2+λ‖x‖2

2 . This problem is often referred to as Ridge Regression and has

been the focus of numerous theoretical and practical works (see [Gru17] and references therein).

Theorem 4.31 (Informal Ridge Regression.) Given a PSD matrix A, a regularization parameter λ and

statistical dimension sλ � Tr
(
(A2

+ λI)−1A2
)
, there exists an algorithm that queries Õ(nsλ/ǫ2) entries of

A and with probability 99/100 outputs a (1+ ǫ) approximate solution to the Ridge Regression objective and

runs in Õ(n(sλ/ǫ2)ω−1) time.

Remark 1.4. Our result improves on prior work by Musco and Woodruff [MW17], who obtain an

algorithm that queries Õ(ns2
λ
/ǫ4) entries in A and runs in Õ(n(sλ/ǫ2)ω) time.

Remark 1.5. Since our algorithm works for all y simultaneously, we obtain a low-rank coreset of

the design matrix (in factored form) that preserves the Ridge Regression cost up to a (1 + ǫ) factor.

Further, in Theorem 4.33, we prove a matching lower bound on the query complexity for any

coreset construction.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approximation

problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query access

to the corrupted matrix A + N, where A is PSD and N is such that ‖N‖2
F
≤ η‖A‖2

F
. Further, for

all i ∈ [n] ‖Ni,∗‖2
2
≤ c‖Ai,∗‖2

2
, for a fixed constant c. The diagonal of a PSD matrix carries crucial

information since the largest diagonal entry upper bounds all off-diagonal entries. Therefore, a

reasonable adversarial strategy is to corrupt the largest diagonal entries and make them close to the

small diagonal entries, which enables the resulting matrix to have large off-diagonal entries that

are hard to find. Capturing this intuition we parameterize our algorithms and lower bounds by the

largest ratio between a diagonal entry of A and A+N, denoted by φmax � max j∈[n] A j, j/|(A+N) j, j |.

Theorem 5.4. (Informal lower bound.) Let ǫ > η > 0. Given A + N such that A is PSD and N is a

corruption matrix as defined above, any randomized algorithm that with probability at least 2/3 outputs a

rank-k approximation up to additive error (ǫ + η)‖A‖2
F must read Ω̃

(
φ2

maxnk/ǫ
)

entries of A + N.

Remark 1.6. Any algorithm must incur additive error η‖A‖2
F, since A is not even identifiable below

additive-error η‖A‖2
F.
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Remark 1.7. In our hard instance, φ2
max can be as large as ǫn/k, which implies a sample-complexity

lower bound of Ω̃(n2). While this lower bound precludes sublinear algorithms for arbitrary PSD

matrices, we observe that in many applications φmax can be significantly smaller. For instance, if

A is a correlation matrix, we know that the true diagonal entries of A+N are 1 and can ignore any

corruption on them to bound φmax by 1.

Motivated by the aforementioned observation, we introduce algorithms for robust low-rank

approximation, parameterized by the corruption on the diagonal entries. We obtain the following

theorem:

Theorem 5.11 (Informal Robust LRA.) Given A + N, which satisfies our noise model, there exists an

algorithm that queries Õ(φ2
maxnk/ǫ) entries in A + N and computes a rank k matrix B such that with

probability at least 99/100, ‖A − B‖2
F ≤ ‖A − Ak ‖2

F + (ǫ +√
η)‖A‖2

F.

Remark 1.8. While the sample complexity of this algorithm matches the sample complexity in the

lower bound, it incurs additive-error
√
η‖A‖2

F
as opposed to η‖A‖2

F
. An interesting open question

here is whether we can achieve additive-error o(√η‖A‖2
F), though we note that when η2 ≤ ǫ, this

just changes the additive error guarantee of our low-rank approximation by a constant factor.

Remark 1.9. Our techniques extend to low-rank approximation of correlation matrices, and we

obtain a sample complexity of Õ(nk/ǫ), which is optimal. In fact, the hard instance in [MW17]

implies an Ω̃(nk/ǫ) lower bound on the sample complexity, even in the presence of no noise.

Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only

incurs an additive error of
√
η‖A‖2

F
(see Corollary 5.18 for a formal statement).

2 Technical Overview

In this section, we provide an overview of our techniques and supply intuition for our proofs. As a

first step, it is easy to see that theΩ(nnz(A)) lower bound for general matrices does not apply to PSD

matrices, since it proceeds by hiding arbitrarily large entries. Observe that, reading the diagonal

of a PSD matrix certifies an upper bound on all entries of the matrix and thus off-diagonals cannot

be arbitrarily large. With this intuition in mind, we focus on sublinear algorithms.

2.1 Sample-Optimal Low-Rank Approximation

At a high level, our algorithm consists of two stages: first, we use the existing machinery developed

by Musco and Woodruff [MW17] to obtain weak projection-cost preserving sketches for A. Our sketches

are smaller than those obtained by Musco and Woodruff, albeit satisfying a weaker guarantee.

Recall that such sketches reduce the dimensionality of the column (row) space, while ensuring

that the norm of all low-rank projections in the orthogonal complement of the column (row) space

are simultaneously preserved. Constructing such sketches for both the column and row spaces of

A results in a much smaller matrix, which we can afford to query.

At this point our approach diverges from that of Musco and Woodruff, since it is not possible to

follow their strategy and recover a (1 + ǫ)-relative-error low-rank approximation from the weaker

5



sketch we constructed above. However, we show that our sketch has enough information to extract

a structured subspace (represented by an orthonormal basis) for A such that the projection onto the

orthogonal complement of this subspace is comparable to the optimal low-rank approximation

cost, in spectral norm. Note, this guarantee is stronger than the span of the structured subspace

containing a low-rank approximation comparable to the optimal in Frobenius norm, and indeed

the latter does not suffice. In the second stage, we show that we can recover a rank-k matrix in the

span of the structured subspace such that it is a (1 + ǫ)-relative-error low-rank approximation for

A. Further, we show that all these steps can be performed in sublinear time and by reading only

Õ(nk/ǫ) entries in A (see Theorem 4.1 for a precise statement).

We begin by providing a bird’s eye view of the Musco-Woodruff algorithm and how to adapt

parts of it to obtain weak projection-cost preserving sketches (PCPs). For ease of exposition, we ignore

polylogarithmic factors in the subsequent discussion. Their algorithm begins with computing the

so-called ridge leverage scores (Definition 4.7) for A1/2, which approximate the ridge leverage scores

of A up to a
√

n/k-factor. The ridge leverage scores of A1/2 can be approximated efficiently since

we can compute the row norms of A1/2 by simply reading the diagonal of A. It is well known

[CMM17] that sampling k/ǫ2
0

columns of A proportional to its ridge leverage scores results in a

sketch C that preserves the cost of all rank-k projections P:

‖C − PC‖2
F � (1 ± ǫ0)‖A − PA‖2

F (2.1)

In prior work, C is referred to as a projection-cost preserving sketch (PCP). PCP constructions

are useful since a low-rank approximation for C translates to a low-rank approximation for A, while

C has much smaller dimension. Observe that oversampling columns of A proportional to the ridge

leverage scores of A1/2, by a
√

n/k factor, suffices to obtain the guarantee of 2.1 (see Lemma 4.11 for

a precise statement). Note, C may have Ω(n1.5/ǫ2
0
) non-zeros but the algorithm need not query

any entries in C at this stage. Musco and Woodruff then construct a row PCP for C by sampling√
nk/ǫ2.50 rows of C proportional to the rank-(k/ǫ0) ridge leverage scores of A. The resulting matrix

R is a
√

nk/ǫ2.50 ×
√

nk/ǫ20 matrix such that for any rank-k projection P,

‖R − RP‖2
F + O(‖A − Ak ‖2

F) � (1 ± ǫ0)‖C − CP‖2
F (2.2)

Since R is a much smaller matrix, they run an input-sparsity time algorithm to compute

a low-rank approximation for it [CW13]. Using standard regression techniques (described in

[CMM17, MW17, BW18]) along with equations 2.1 and 2.2, setting ǫ0 � ǫ results in a (1 + ǫ)-low-

rank approximation of A by querying O(nk/ǫ4.5) entries. Musco and Woodruff instead use a more

complicated algorithm to get a 1/ǫ2.5 dependence.

Our starting point is to observe that the PCP construction above allows to preserve the projection

of columns of A on all (k/ǫ)-dimensional subspaces, albeit up to a constant factor. Therefore, a

natural approach is to set the error parameter ǫ0 in the PCP constructions to be a small fixed constant,

say 0.1, and the rank parameter k to be k/ǫ, where ǫ is the desired input accuracy. Further, we

observe that the guarantee obtained in Equation 2.1 can be strengthen to a mixed Spectral-Frobenius

PCP guarantee (also introduced by [MW17]): for all rank-(k/ǫ) projection matrices P, the column

6



PCP C satisfies :

(1 − 0.1)‖A − PA‖2
2 −

ǫ

10k
‖A − Ak/ǫ‖2

F ≤ ‖C − PC‖2
2 ≤ (1 + 0.1)‖A − PA‖2

2 +
ǫ

10k
‖A − Ak/ǫ‖2

F (2.3)

For a formal statement refer to Lemma 4.12. Sampling rows of C proportional to the same

distribution results in a row PCP for C such that for all rank-(k/ǫ) projections P,

(1 − 0.1)‖C − CP‖2
2 −

ǫ

10k
‖A − Ak/ǫ‖2

F ≤ ‖R − RP‖2
2 ≤ (1 + 0.1)‖C − CP‖2

2 +
ǫ

10k
‖A − Ak/ǫ‖2

F (2.4)

We then use an input-sparsity spectral-low-rank approximation algorithm by [CEM+15] (Lemma

4.6), to obtain a low-dimensional subspace, represented by a
√

nk/ǫ×k/ǫmatrix Z with orthonormal

columns such that

‖R − RZZ⊤‖2
2 ≤ ǫ

k
‖R − Rk/ǫ‖2

F (2.5)

Following the notation of Clarkson and Woodruff [CW17], we refer to the projection matrix ZZ⊤

as a Spectral-Frobenius (SF) projection (as in Definition 4.13). A key property of an SF projection

is that it spans a (1 + ǫ)-relative-error low-rank approximation to R (Lemma 4.14), i.e. ‖R −
ZZ⊤Rk/ǫZZ⊤‖2

F
≤ (1 + ǫ)‖R − Rk/ǫ‖2

F
Now, using the fact that R is a Spectral-Frobenius PCP,

plugging in P � ZZ⊤ in Equation 2.4, we can bound ‖C − CZZ⊤‖2
2

as follows :

‖C − CZZ⊤‖2
2 ≤ 10

9
‖R − RZZ⊤‖2

2 +
ǫ

9k
‖R − Rk/ǫ‖2

F ≤ ǫ

10k
‖R − Rk ‖2

F +
ǫ

9k
‖R − Rk/ǫ‖2

F

≤ O
( ǫ

k

)
‖C − Ck ‖2

F

(2.6)

where the second inequality follows from Equation 2.5 and the third follows from the fact that PCPs

preserve Frobenius norm up to a constant factor, i.e., ‖R−Rk/ǫ‖2
F � Θ(‖C−Ck/ǫ‖2

F) � Θ(‖A−Ak/ǫ‖2
F).

Therefore, ZZ⊤ is also a Spectral-Frobenius projection for C. Here, we are faced with a few

challenges. First, the relative-error approximation spanned by the subspace has rank k/ǫ. Second,

it is unclear how to obtain any reasonable result for A from the above structural property, given

that even the dimensions of ZZ⊤ do not match A.

We begin by showing that a Spectral-Frobenius projection for A suffices to obtain a low-rank

approximation with O(nk/ǫ) queries. Assuming we are handed a (k/ǫ)-dimensional structured

subspace that contains a relative-error low-rank approximation for A itself. This is represented as

an n × k/ǫ matrix Q with orthonormal columns such that ‖A − QQ⊤A‖2
2 ≤ ǫ/k · ‖A − Ak/ǫ‖2

F . We

prove that given such a structured subspace, we can extract a rank-k relative-error approximation

by reading only nk/ǫ entries in A (Theorem 4.16 in Section 4.1). We provide an overview of the

proof here.

The SF projection property implies ‖A − QQ⊤AkQQ⊤‖2
F
≤ (1 + ǫ)‖A − Ak ‖2

F
. Therefore, it

suffices to solve the following optimization problem:

min
rank(X)≤k

‖A − QXQ⊤‖2
F (2.7)

since X � Q⊤AkQ is always feasible. While we are now optimizing over a k/ǫ × k/ǫ matrix X,

with rank at most k, the problem still seems intractable to solve optimally in sublinear time and

7



queries to A. The key idea here is that Q has orthonormal columns and thus the leverage scores are

precomputed for us. We can then sample columns and rows proportional to the leverage scores of

Q and consider a significantly smaller sketched problem. Therefore, we create sampling matrices

S and T that sample poly(k/ǫ) rows proportional to the leverage scores of Q and consider the

resulting optimization problem:

min
rank(X)≤k

‖SAT − SQXQ⊤T‖2
F (2.8)

Here, we are faced with an intriguing phenomenon: our sketched optimization problem does not

have the property that the minimum cost for Equation 2.8 is a (1+ǫ)-approximation to the minimum

cost for Equation 2.7. The reason is that our sketch incurs a fixed additive shift term, which we

cannot approximate in sublinear time. We note that this is the bottleneck in approximating the

cost of the optimal low-rank approximation, and as mentioned in [MW17], it is open to estimate

this cost in o(n3/2) time.

However, we can apply the structural result in Lemma 4.5 twice, to show that the optimal

solution to Equation 2.8, when plugged in to Equation 2.7 obtains a (1 + ǫ)-approximation to the

minimum cost. Formally, S and T have the property that if X̂ � arg minX ‖SAT−SQXQ⊤T‖2
F
, then

‖A − QX̂Q⊤‖2
F ≤ (1 + O(ǫ)) min

rank(X)≤k
‖A − QXQ⊤‖2

F .

The optimization problem in Equation 2.8 is called Generalized Low-Rank Approximation and

admits a closed form solution [FT07] (Theorem 4.15). Further, since the problem now has all

dimensions independent of n, we can afford to explicitly compute SAT by querying the corre-

sponding entries in A. The resulting closed-form solution can also be computed in poly(k/ǫ) time

(and queries) which only contributes a lower order term. We obtain one factor for the low-rank

approximation for A by simply computing an orthonormal basis for QX̂. In order to compute

the second factor, we set up and approximately solve a regression problem, the details of which

can be found in Algorithm 1. Efficiently solving such a regression problem is now standard in

low-rank approximation literature [CMM17, MW17, BW18]. Therefore, we can output a low-rank

approximation to A by querying only Õ(nk/ǫ) entries.

We have now reduced our problem to computing an SF projection for A, while reading only

nk/ǫ entries. Recall, in Equation 2.6, we obtained a Spectral-Frobenius projection for C but stopped

short since we did not see a natural way to proceed. Here, we observe that if we had a such a

projection for the column-space of C, by Equation 2.1, it would also work for A and we would be

done. To this end, we consider the following optimization problem:

min
W∈�n×k′

‖C − WZ⊤‖2
2 (2.9)

We show that an orthonormal basis Q for an approximate minimizer to Equation 2.9 is an SF

projection for C and in turn A (since C is a column PCP for A). Therefore, we focus on optimiz-

ing Equation 2.9 and refer to this problem as Spectral Regression. We note that unlike standard

regression, here we minimize the Spectral (Operator) norm. While the corresponding problem

for minimizing Frobenius norm is extensively studied and well understood, to the best of our
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knowledge the only relevant related work on Spectral Regression is in the streaming model, by

Clarkson and Woodruff [CW09]. They construct an oblivious sketch, consisting of random entries

in {−1, 1}, for Equation 2.9 that preserves the optimal solution up to a (1± ǫ) factor. Unfortunately,

we cannot use oblivious sketching here, since C may be a dense matrix and we cannot afford to

read all of it.

Here, we emphasize that obtaining a sample-optimal algorithm for the aforementioned Spectral

Regression problem is crucial for our main algorithmic result. Given that C is an n×
√

nk/ǫmatrix,

we cannot query most of it and thus approximating its leverage scores is infeasible. A natural

approach here would be to follow the Affine Embedding idea for Frobenius norm (refer to Lemma

4.5) and hope a similar guarantee holds for the spectral norm as well. Here, one might hope to

obtain a small sketch that preserves the spectral norm cost of all W up to a (1± ǫ) factor. While such

a guarantee would suffice, we note that Z could have rank as large as k/ǫ and we can no longer

afford a (1+ ǫ)-approximate affine embedding even for Frobenius norm, without incurring a larger

dependence on ǫ. This precludes all known approaches for sketching Equation 2.9 to preserve the

optimal cost.

Instead, we relax the notion of approximation for our sketch. We observe that it suffices to

construct a sketch S such that if Ŵ � arg minW ‖CS − WZ⊤S‖2
2 , then

‖C − ŴZ⊤‖2
2 ≤ O(1)

(
min

W∈�n×k/ǫ
‖C − WZ⊤‖2

2 +
ǫ

k
‖C − Ck/ǫ‖2

F

)
(2.10)

Note, this is a weaker guarantee for the sketch S, since we only need to preserve the cost of the

optimal solution up to a mixed relative and additive error. First, we observe such a guarantee

suffices, since we can upper bound the cost from Equation 2.10 by O(ǫ/k) · ‖C − Ck/ǫ‖2
F and

the Spectral-Frobenius PCP from Equation 2.1 incurs this term anyway. In Theorem 4.18, we

show that we can construct such a sketch S satisfying Equation 2.10 by sampling k/ǫ columns

of C proportional to the leverage scores of Z⊤.This is surprising since we completely ignore all

information about C and our sketch is not an oblivious sketch.

The key technical lemma (Lemma 4.25) we prove here is a weak approximate matrix product

for C∗ and Z⊤ where C∗
� C(I − PZ⊤) is the projection onto the orthogonal complement of Z⊤.

While approximate matrix product has been extensively studied [DFK+04, Sar06, CW13], even for

spectral norm [CNW15], it is important to emphasize here that all known constructions are either

oblivious sketches or require sketches that are sampled proportional to both C∗ and Z⊤. Since Z⊤

has no information about the spectrum of C∗, the main challenge here is to control the spectrum

of C∗SS⊤Z⊤.

In order to bound ‖C∗SS⊤Z⊤‖2, we analyze how sampling columns of C∗ proportional to the

leverage scores of Z⊤ affects the spectrum of C∗. An important tool in our analysis is the following

result by Rudelson and Vershynin on how the spectral norm of a matrix degrades when we sample

a uniformly random subset of rows [RV07]. They show that sampling q rows of a matrix M

uniformly at random, indexed by the set Q, results in a matrix M|Q such that

�
[

M|Q




2

]
� O

(√
q

n
‖M‖2 +

√
log(q)‖M‖(n/q)

)
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where ‖A‖(n/q) is the average of the largest n/q ℓ2-norms of columns of A. Here, we prove that

expected spectral norm of C restricted to the columns sampled by S proportional to the leverage

scores of ZT only exceeds that of a random subset by a polylogarithmic factor. This result may be

of independent interest in applications where we would want to bound the spectrum of random

submatrices, where the rows or columns are not sampled uniformly.

Intuitively, there are two technical challenges we overcome in order to apply the Rudelson-

Vershynin result in our setting. First, a leverage score sampling matrix S need not sample columns

uniformly at random, since we have no control over the squared column norms of Z⊤. Given that

the squared column norms of Z⊤ may be lopsided, the subset of columns we select could be far

from a uniform sample in the worst case. Second, the matrix we apply it to is not square and

‖ · ‖(n/q) norm only shrinks substantially when the columns of A have the same ℓ2
2

norm, up to a

constant.

We therefore obtain a variant of Spectral norm decay for rectangular matrices, i.e. for any n×m

matrix M with roughly the same squared column norms, we show that

�
[

M|Q




2

]
� O

(√
q

n
‖M‖2 +

√
log(q)/b‖M‖(n/q)

)
(2.11)

where b � ⌈n/m⌉. To apply the above result, we then partition the rows of C (since S samples

columns of C as opposed to rows) into log(n) groups such that within each group, all rows have

roughly the same squared norm. We then analyze leverage score sampling proportional to the

column norms of Z⊤ on each group independently. We show that we can obtain a coupling between

the two random processes, namely uniform sampling and leverage score sampling, such that we

obtain a decay bound similar to Equation 2.11, up to log factors. We describe our solution in more

detail in Section 4. We note that our results extend to outputting a low-rank PSD matrix as well.

Negative-Type Matrices. We then use the techniques developed above to obtain an optimal

relative-error low-rank approximation for Negative-Type distance matrices. While arbitrary met-

rics do not admit sublinear time algorithms for relative-error low-rank approximation (see The-

orem 7.1 in [BW18]) Bakshi and Woodruff provided a sublinear time algorithm for metrics that

satisfy negative-type inequalities. They obtain a (1 + ǫ)-relative-error approximation, that queries

Õ(nk/ǫ2.5) entries in the input. However, this algorithm outputs a bi-criteria solution, i.e., given a

negative-type matrix A, it outputs a rank-(k + 4) matrix M such that ‖A − B‖2
F
≤ (1 + ǫ)‖A − Ak ‖2

F
.

The key observation they make is that negative-type metrics can be realized as the distances

corresponding to a point setP � {x1 , x2, . . . xn} such that Ai, j � ‖xi−x j ‖2
2 � ‖xi ‖2

2+‖x j ‖2
2−2〈xi , x j〉.

Therefore, A admits the following decomposition: A � R1 + R2 − 2B, where for all j ∈ [n],
(R1)i, j � ‖xi ‖2

2 , R2 � R⊤
1 and B is PSD. Observe that query access to A suffices to obtain query

access to B by simply assuming w.l.o.g. that x1 is centered at the origin and the i-th entry in

the first row corresponds to ‖xi ‖2
2
. Therefore, any PSD low-rank approximation algorithm can be

simulated on the matrix B by only having query access to A. Bakshi and Woodruff show that

obtaining the low-rank approximation for B and appending the column span of R1 and R2 to it

results in a rank-(k + 4) bi-criteria approximation to A. The bi-criteria algorithm can be improved
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to k + 2 using Cauchy’s Interlacing Theorem [Fis05] and observing R1,R2 are rank-1 updates to B,

but this seems to be the limit of such approaches.

We show here that our SF projection framework can be used to obtain a sample-optimal

algorithm for negative-type metrics, and the bi-criteria approximation is not necessary. Recall,

from our discussion above, that an SF projection for A suffices to obtain a low-rank approximation

for A. Our key observation is that we can use the techniques we developed for PSD matrices to

obtain an SF projection, QQT , for B (in the decomposition above), to which we append the column

span of R1,R2 to Q, and the resulting projection (denoted by Ω) is an SF projection for A. To see this,

observe, ‖A−ΩAkΩ‖2
F � ‖A−Ak‖2

F+‖Ak−ΩAkΩ‖2
F+2Tr ((A − Ak)(I − Ω)AkΩ). A simple calculation

using Von-Neumann’s trace inequality bounds the deviation by O(k‖A(I−Ω)‖2
2
). Since Ω spans R1

and R2, and is an SF projection for B, we can bound the above cost by O(ǫ/k)‖B−Bk+2‖F . It is easy to

see that ‖A−Ak ‖2
F � O(‖B−Bk+2‖2

F) and therefore, we conclude ‖A−ΩAkΩ‖2
F ≤ (1+O(ǫ))‖A−Ak ‖2

F

(see Lemma 4.29 for details). Subsequently, we use the sublinear algorithm we developed for PSD

matrices to obtain a low-rank approximation for A.

Ridge Regression. Our techniques also naturally extend to ridge regression, when the design

matrix is PSD. This connection was originally outlined by Musco and Woodruff and they obtain

sublinear time algorithms for solving ridge regression, parametrized by the statistical dimension

sλ. At a high level, we compute a rank-(sλ/ǫ2) spectral approximation to the input and solve ridge

regression on the resulting matrix, i.e., given a PSD matrix A, we compute a low-rank matrix B

such that ‖A − B‖2
2 ≤ O(ǫ/k)‖A − Ak ‖2

F . Further, we observe that the low-rank matrix is in fact a

coreset for the input as it simultaneously preserves the cost of all x and y.

We then obtain a matching query lower bound for constructing coresets for ridge regression.

Our lower bound proceeds by showing that a coreset can output a low-rank approximation on the

instance of Musco and Woodruff with a stronger quadratic, rather than a linear dependence on ǫ.

Intuitively, the hard instance has multiple principle submatrices of all 1s placed randomly over the

matrix. Since a coreset simultaneously preserves the ridge regression cost for all x , y, it suffices to

query the coreset on tuples of (scaled) eigenvectors and learn the positions of the blocks. However,

a priori, we do not know what the eingenvectors of A are. Instead, we query the coreset on every

vector with a bounded support, and pick all vectors with small regression cost. We show that

our resulting set only contains vectors which do not overlap much on the locations of the hidden

blocks and we show this suffices.

2.2 Robust Low-Rank Approximation

The robustness model we consider is as follows: we begin with an n × n PSD matrix A. An

adversary is then allowed to arbitrarily corrupt A by adding a perturbation matrix N such that

‖N‖2
F
≤ η‖A‖2

F
and for all i ∈ [ j], ‖Ni,∗‖2

2
≤ c‖Ai,∗‖2

2
, for a fixed constant c. Note, while the

adversary is unrestricted in the entries of A that it corrupts, the Frobenius norm of the corruption

is bounded in terms of the Frobenius norm of A and the corruption is well-spread. The motivation

for considering such a model is that many matrices that we observe in practice might be close but

not exactly PSD, for instance, small perturbations to PSD matrices.
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It is impossible to obtain a relative-error low-rank approximation in this setting, since we cannot

even identify A after querying all n2 entries of A + N. To see this, consider the case where A is

rank-k, and observe that a relative-error algorithm requires identifying A exactly. However, by

querying all entries of A + N, we can determine the row norms exactly. Therefore, we can run

the algorithm of Frieze-Kannan-Vempala [FKV04] to obtain a rank-k matrix XY⊤ (in factored form)

such that with probability at least 99/100,

‖A + N − XY⊤‖2
F ≤ ‖A + N − (A + N)k ‖2

F + ǫ‖A + N‖2
F

≤ ‖A + N − Ak ‖2
F + ǫ‖A + N‖2

F

≤ ‖A − Ak ‖2
F + ‖N‖2

F + 2〈A − Ak ,N〉 + (3 + η)ǫ‖A‖2
F

≤ ‖A − Ak ‖2
F + O(ǫ +√

η)‖A‖2
F

(2.12)

where the second inequality follows from (A + N)k being the best rank-k approximation to A + N

and Ak is any other rank-k matrix. The third inequality uses ‖A + N‖2
F
≤ 2(‖A‖2

F
+ ‖N‖2

F
), which

follows from ℓ22 distance satisfying triangle-inequality up to a factor of 2. The last inequaliity uses

Cauchy-Schwarz on 2|〈A−Ak ,N〉 | ≤ 2‖A‖F · ‖N‖F ≤ 2
√
η‖A‖2

F, which follows from the assumption

on N. Additionally

‖A + N − XY⊤‖2
F � ‖A − XY⊤‖2

F + ‖N‖2
F + 2〈A − XY⊤,N〉

≥ ‖A − XY⊤‖2
F − 2

√
η‖A‖2

F

(2.13)

Combining Equations 2.12 and 2.13, we have ‖A − XY⊤‖2
F
≤ ‖A − Ak ‖2

F
+ O(ǫ + √

η)‖A‖2
F
. While

this algorithm is far from optimal in terms of sample complexity, it indicates that relaxing our

guarantees to additive-error is amenable to robust algorithms and indicates why we pick up a
√
η

term. The central question we focus on in this section is whether there exists a robust sublinear time

and query algorithm to obtain an additive-error low-rank approximation for PSD matrices.

We begin by showing a sample complexity lower bound if A is an arbitrary PSD matrix. The

intuition from the relative-error setting still applies and the diagonal entries are crucial for sublinear

algorithms. In tune with this intuition, the adversary corrupts large diagonal entries to decrease

their magnitude and thus obfuscate rows that contain large off-diagonal entries. We therefore

parameterize our lower bound and algorithms by the largest ratio between a diagonal entry of A

and A + N, denoted by φmax � max j∈[n] A j, j/|(A + N) j, j |. Recall, we obtain the following lower

bound:

Theorem 5.4. (Informal lower bound.) Let ǫ > η > 0. Given A + N such that A is PSD and N is a

corruption matrix as defined above, any randomized algorithm, that with probability at least 2/3, outputs a

rank-k approximation up to additive error (ǫ + η)‖A‖2
F must read Ω

(
φ2

maxnk/ǫ
)

entries of A + N.

In our hard instance, we have a block matrix A, where we place a random ǫ/η × ǫ/η, rank-1,

non-contiguous block B1 such that each entry in the block is
√
η2n/ǫ and the remaining matrix has

1s on the diagonals and 0s everywhere else. It is easy to see this matrix is PSD. We observe that the

block B1 contributes an ǫ-fraction of the Frobenius norm of A, and the ℓ22 norm of the diagonals

is an η-fraction of the Frobenius norm of A. Therefore, the adversary can afford to corrupt all
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the diagonal entries in B1 and set them to be 1. Such a perturbation is feasible in our model and

successfully obfuscates the large off-diagonal entries. Note, for this perturbation φ2
max � η2n/ǫ.

Let the resulting matrix be denoted by A + N. Here, we observe any ǫ-additive-error low-rank

approximation cannot ignore the block B1. Since the diagonals of A+N now provide no information

about the off-diagonal entries, any algorithm that correctly outputs a low-rank approximation for

both A+N and I must detect at least one entry in B1. Since B1 has ǫ2/η2 non-zeros, any algorithm

must query Ω(η2n2/ǫ2) � Ω(φ2
maxn/ǫ) entries to detect one entry. To obtain a linear dependence

on k, we simply create k independent copies of B1.

Robust Algorithm. Next, we focus on a robust, additive-error low-rank approximation algo-

rithm, where the sample complexity is parameterized by φmax. We begin by introducing a new

sampling procedure to construct projection-cost preserving sketches. Our construction is simple to

state: we sample each column proportional to the corresponding diagonal entry. Computing these

sampling probabilities exactly requires reading only n entries in A + N. We show that sampling

Õ
(
φ2

max

√
nk2/ǫ2

)
columns proportional to this distribution preserves the projection of the columns

of A onto the orthogonal complement of any rank-k subspace, up to additive error (ǫ +√
η)‖A‖2

F
.

Theorem 5.7. (Informal Robust Column PCP.) Let A + N be an n × n matrix following the assumptions

of our noise model. Let k ∈ [n] and ǫ,
√
η > 0. Let q � {q1 , q2 . . . qn} be a probability distribution over the

columns of A such that q j � (A+ N) j, j/Tr (A + N). Construct C by sampling Õ(φ2
max

√
nk2/ǫ2) columns

of A + N proportional to q and rescaling appropriately. Then, with probability at least 1 − c, for any rank-k

orthogonal projection X,

‖C − XC‖2
F � ‖A − XA‖2

F ± (ǫ +√
η)‖A‖2

F

We note that all prior PCP constructions work in the noiseless setting. As a comparison, the

construction of Cohen et. al. [CMM17] works for arbitrary A, but requires nnz(A) time and

queries to compute the approximate ridge-leverage scores of A. Musco and Musco [MM17]

describe how to approximately compute the ridge leverage scores of A1/2 (if A is PSD) using

the Nystrom approximation, where A � A1/2 · A1/2. Musco and Woodruff [MW17] use this

method to compute the ridge leverage scores of A1/2 with Θ(nk) queries and show that the this

provides a (
√

n/k)-approximation to the ridge leverage scores of A. We note that the guarantees

obtained by [CMM17, MW17] are relative error, as opposed to the additive error guarantee in

the theorem above. Finally, Bakshi and Woodruff [BW18] provide an additive-error sublinear

time construction for distance matrices by sampling proportional to column norms. In all the

aforementioned constructions, computing the sampling distribution is a non-trivial task, whereas

we simply sample proportional to the diagonal entries.

We observe that we sample columns of A + N, to obtain C which is an unbiased estimator for

‖A+N‖2
F. The main technical challenge in our construction is to relate the cost of rank-k projections

for the column space of A to that of C, while obtaining an optimal dependence on n and k. Note,

while we do not obtain the correct dependence on ǫ, we do not have to explicitly compute all of C,

only a subset of it.

We then extend the diagonal sampling algorithm to construct a robust row PCP for the matrix C.

We note that the construction for A does not immediately give a row PCP for C since C is no longer
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a corrupted PSD matrix or even a square matrix, and thus there is no notion of a diagonal. Here,

all previous approaches to construct a PCP with a sublinear number of queries hit a roadblock,

since the matrix C need not have any well-defined structure apart from being a scaled subset of

the columns of the original corrupted PSD matrix A + N. However, we show that sampling rows

of C proportional to the diagonal entries of A + N results in a row PCP for C.

Theorem 5.10. (Informal Robust Row PCP.) Let A+N be an n×n matrix corresponding to our noise model

and let C be a column PCP for A as defined above. Let p � {p1 , p2 . . . pn} be a probability distribution over

the rows of C such that p j � (A + N) j, j/Tr (A + N). Construct R by sampling Õ(φmax

√
nk2/ǫ2) rows of

C proportional to p and scaling appropriately. With probability at least 1 − c, for any rank-k orthogonal

projection X,

‖R − RX‖2
F � ‖C − CX‖2

F ± (ǫ +√
η)‖A‖2

F

For our algorithm, we begin by constructing column and row PCPs of A + N, to obtain a

t × t matrix R, where t � Õ(φmax

√
nk2/ǫ2). Instead of reading the entire matrix, we uniformly

sample ǫ3t/k3 entries in each row of R, and query these entries. Note, this corresponds to reading

ǫ3t2/k3
� Õ(φ2

maxnk/ǫ) entries in A + N. Ideally we would want to estimate the ℓ2
2

norms of each

row of R to then use a result of Frieze-Kannan-Vempala to obtain a low-rank approximation for R

[FKV04]. It is well known that to recover a low-rank approximation for R, one can sample rows

of R proportional to row norm estimates, denoted by Yi [FKV04]. As shown in [IVWW19] the

following two conditions are a relaxation of those required in [FKV04], and suffice to obtain an

additive error low-rank approximation :

1. For all i ∈ [t], the corresponding estimate over-estimates the row norm of Ri,∗, i.e., Yi ≥
‖Ri,∗‖2

2
.

2. The sum of the over-estimates is not too much larger than the Frobenius norm of the matrix,

i.e.,
∑

i∈[t] Yi ≤ φ2
maxn/t‖R‖2

F

If the two conditions are satisfied, Frieze-Kannan-Vempala implies sampling s rows of R propor-

tional to Yi results in an s × t matrix S such that the row space of S contains a good rank-k

approximation, where s � O(φ2
maxnk/ǫt), which matches our desired sample complexity. We

show that, unfortunately, such a guarantee is not possible even in the uncorrupted case, where

N � 0 and φmax � 1. Intuitively, R may be a sparse matrix such that many rows have large

norm, and uniform sampling cannot obtain concentration for all such rows, as required by the

aforementioned conditions.

Instead, we settle for a weaker statement,where we show that the estimator obtained by uniform

sampling in each row is accurate with o(1) probability. At a high level, we show that we can design

a sampling process that is statistically close to ℓ2
2

sampling described by Frieze-Kannan-Vempala

[FKV04]. We then open up the analyzes of Frieze-Kannan-Vempala and show that our sampling

process suffices to recover the low-rank approximation guarantee. Given the flurry of recent work

in quantum computing [KP16, CLW18, Tan19, RSML18, GLT18] that uses Frieze-Kannan-Vempala

ℓ2
2

sampling as a key algorithmic primitive, our analysis may be of independent interest.
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Lemma 5.14. (Informal Estimation of Row Norms.) Let R ∈ �t×t be the row PCP as defined above. For all

i ∈ [t] let Xi �
∑

j∈[ǫ3 t/k3]Xi, j such that Xi, j � k3R2
i, j′/ǫ3 with probability 1/t, for all j′ ∈ [t]. Then, for

all i ∈ [t], Xi � (1 ± 0.1) ‖Ri,∗‖2
2

with probability at least min(‖Ri,∗‖2
2
k/ǫn , 1).

We now face two major challenges: first, the probability with which the estimators are accurate

is too small to even detect all rows with norm larger than φ2
maxn‖R‖2

F/t2, and second, there is no

small query certificate for when an estimator is accurate in estimating the row norms. Therefore,

we cannot even identify the rows where we obtain an accurate estimate of norm.

To address the first issue, we make the crucial observation that while we cannot estimate the

norm of each row accurately, we can hope to sample the row with the same probability as Frieze-

Kannan-Vempala [FKV04]. Recall, their algorithm requires sampling row Ri,∗ with probability

at least ‖Ri,∗‖2
2
/‖R‖2

F
, which matches the probability in Lemma 5.14. Therefore, we can focus on

designing a weaker notion of identifiability, that may potentially include extra rows.

We begin by partitioning the rows of R into two sets. Let H �

{
i
�� ‖Ri,∗‖2

2 ≥ φ2
maxn/t2‖R‖2

F

}
be the set of heavy rows and [t] \ H be the remaining rows. Note, |H | � O

(
t2/φ2

maxn
)
�

O
(
k4 log4(n)/ǫ4

)
. We then condition on our estimator having norm at least φ2

maxn‖R‖2
F
/t2. Con-

ditioned on this event, we sample the corresponding row of R with probability 1. As before, we

want to prevent sampling too many spurious rows, but we show only a subset of the rows in H
satisfy this condition. This ensures we identify rows in H with the right probability. For all the

remaining rows, we know the norm is at most φ2
maxn/t2‖R‖2

F
. We show that uniformly sampling

φ2
maxn/t such rows suffices to simulate row norm sampling.

We then open up the analysis of Frieze-Kannan-Vemapala to show that the above sampling

procedure suffices to bound the overall variance, resulting in a relaxation of the conditions required

to obtain an additive error low-rank approximation to R. Once we compute a good low-rank

approximation for R we can follow the approach of [CMM17, MW17, BW18], where we set up two

regression problems, and use the sketch and solve paradigm to compute a low-rank approximation

for A, culminating in Theorem 5.11.

For corrupted correlation matrices, we observe that the true uncorrupted matrix has all diagonal

entries equal to 1. Therefore, we can discard the diagonal entries of A + N and assume they are

1. In this case, no matter what the adversary does to the diagonal, φmax � 1 and we obtain an

Õ(nk/ǫ) query algorithm that satisfies the above guarantee. Further, we show a matching sample

complexity lower bound of Ω(nk/ǫ), to obtain ǫ-additive-error, even in the presence of no noise.

3 Preliminaries and Notation

Given an m × n matrix A with rank r, we can compute its singular value decomposition, denoted

by SVD(A) � UΣV⊤, such that U is an m × r matrix with orthonormal columns, V⊤ is an r × n

matrix with orthonormal rows and Σ is an r × r diagonal matrix. The entries along the diagonal

are the singular values of A, denoted by σ1, σ2 . . . σr . Given an integer k ≤ r, we define the

truncated singular value decomposition of A that zeros out all but the top k singular values of

A, i.e., Ak � UΣkV⊤, where Σk has only k non-zero entries along the diagonal. It is well known
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that the truncated SVD computes the best rank-k approximation to A under the Frobenius norm,

i.e., Ak � minrank(X)≤k ‖A − X‖F . More generally, for any matrix M, we use the notation Mk and

M\k to denote the first k components and all but the first k components respectively. We use

Mi,∗ and M∗, j to refer to the i th row and j th column of M respectively. For an n × n PSD matrix

A, we denote the singular (eigenvalue) decomposition by UΣU⊤. Further, since Σi,i ≥ 0, let

A1/2
� UΣ

1
2 U⊤ be the square root of A. Note that Ai, j � 〈A1/2

i,∗ ,A
1/2
j,∗ 〉. By Cauchy-Schwarz, for

all i , j ∈ [n], A2
i, j

� 〈A1/2
i,∗ ,A

1/2
j,∗ 〉2 ≤ ‖A1/2

i,∗ ‖
2
2 · ‖A1/2

j,∗ ‖
2
2 � Ai,i · A j, j. We use nnz(A) to denote the

number of non-zero entries (sparsity) of A. We use operator and spectral norm interchangeably

to denote ‖M‖2 � max‖y‖2�1 ‖My‖2. We also use the notation M† to denote the Moore-Penrose

pseudoinverse.

4 Relative Error PSD Low-Rank Approximation

In this section, we describe our main algorithm for relative-error PSD Low-Rank Approximation,

where we query only Õ(nk/ǫ) of the input matrix A. This improves the best known algorithm by

Musco and Woodruff that queries Õ(nk/ǫ2.5) and matches their query lower bound ofΩ(nk/ǫ) up

to polylogarithmic factors [MW17]. Formally, we prove the following:

Theorem 4.1. (Sample-Optimal PSD Low-Rank Approximation.) Given an n × n PSD matrix A, an

integer k, and 1 > ǫ > 0, Algorithm 3 samples Õ(nk/ǫ) entries in A and outputs matrices M,N⊤ ∈ �n×k

such that with probability at least 9/10,

‖A − MN‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Further, the algorithm runs in Õ(n(k/ǫ)ω−1
+ (k/ǫ3)ω) time.

We begin by defining various statistical quantities associated with a given matrix, such as the

leverage and ridge-leverage scores. The leverage score of a given row measures the importance

of this row in composing the row span. Leverage scores have found numerous applications

in regression, preconditioning, linear programming and graph sparsification [Sar06, SS11, LS15,

CLM+15]. In the special case of graphs, they are referred to as effective resistances.

Definition 4.2. (Leverage Scores.) Given a matrix M ∈ �n×m , let mi � Mi,∗ be the i-th row of M.

Then, for all i ∈ [n] the i-th row leverage score of M is given by

τi(M) � mi(M⊤M)†m⊤
i

The column leverage scores can be defined analogously. Note, in the special case where M

has orthonormal columns, the row leverage scores of M are simply the ℓ22 norms of the rows i.e.,

τi(M) � ‖mi ‖2
2
. It is well-known that sampling rows of a matrix proportional to the leverage scores

satisfies the subspace embedding property (Spectral Sparsification for Graphs) and leads to faster

algorithms for ℓ2-norm Regression. Recall, for an n×m matrix A, a leverage score sampling matrix

S � DΩ⊤, where D is a t × t diagonal matrix and Ω is an n × t sampling matrix. For all j ∈ [t],
select row index i ∈ [n] with probability pi � τi(A)/∑i τi(A) and set Ωi, j � 1 and D j, j � 1/√tpi.
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Lemma 4.3. (Subspace Embedding.) Given a matrix A ∈ �n×m , ǫ > 0, and a leverage score sampling

matrix S with t � O(mlo1(m)/ǫ2) rows, with probability at least 99/100, for all x ∈ �m

‖SAx‖2
2 � (1 ± ǫ)‖Ax‖2

2

This simply follows from an application of the Matrix Chernoff bound. Observe that the sketch

preserves all the singular values of A up to a factor of 1 ± ǫ. We refer the reader to a recent survey

for more details [Woo14]. Next, we recall that leverage score sampling results in a fast algorithm

for regression.

Lemma 4.4. (Fast Regression, Theorem 38 [CW13].) Given matrices A ∈ �n×m ,B ∈ �n×d such that

rank(A) ≤ r and ǫ > 0, sample O(r log(r) + r/ǫ) rows of A,B proportional to the leverage scores of A to

obtain a sketch S such that Y∗
� arg minY ‖SAY − SB‖2

F. Then, with probability at least 1 − c,

‖AY∗ − B‖2
F ≤ (1 + ǫ)min

Y
‖AY − B‖2

F

for a fixed small constant c. Further, the time to compute Y∗ is O(nnz(A) log(r/ǫ) + (n + d)(r/ǫ)ω−1
+

poly(r/ǫ)).

Note, the terms in the running time follow from using Cohen’s construction for OSNAP [Coh16].

Leverage score sampling matrices also approximately preserve norms in affine spaces, which leads

to faster algorithms for multi-response regression, i.e., minX ‖AX − B‖2
F , where B now has a large

number of columns.

Lemma 4.5. (Affine Embeddings, Theorem 39 [CW13].) Given matrices A ∈ �n×m , such that rank(A) � r,

and B ∈ �n×d , let S be a leverage score sampling matrix with t � O(r/ǫ2) rows. Further, let X∗ be the

optimizer for minX ‖AX−B‖2
F and let B∗

� AX∗−B. Then, with probability at least 1− c, for all X ∈ �m×d

‖SAX − SB‖2
F − ‖SB∗‖2

F � (1 ± ǫ)‖AX − B‖2
F − ‖B∗‖2

F

for a fixed small constant c.

An important application of the above lemma (which we use extensively) is to sketch con-

strained regression problems, for example, when the matrix X has a fixed small rank. Since affine

embeddings approximately preserve the cost of all affine spaces up to a fixed shift, this guarantee

in particular holds for X with small rank. Recall, an important caveat here is that the cost of the

sketched problem is not a relative-error approximation to the cost of the original problem since we

cannot estimate ‖B∗‖2
F in general. However, the upshot here is that the aforementioned guarantee

still suffices for optimization since the fixed shift does not change the optimizer.

The next tool we use is input-sparsity time low-rank approximation. This was achieved by

Clarkson and Woodruff [CW13] and the exact dependence on k , ǫ was improved in subsequent

works [MM13, NN13, BDN15, Coh16]. While the standard low-rank approximation guarantee

achieves relative-error under Frobenius norm, here we will require a spectral norm bound, which

follows from results of [CEM+15, CMM17].
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Lemma 4.6. (Input-Sparsity Spectral LRA [CEM+15, CMM17].) Given a matrix A ∈ �n×d , ǫ, δ > 0

and k ∈ �, let k′ � k/ǫ. Then, there exists an algorithm that outputs a matrix Z⊤ ∈ �k′×n such that with

probability at least 1 − δ,
‖A − AZZ⊤‖2

2 ≤ O
( ǫ

k

)
‖A − Ak/ǫ‖2

F

in time and query complexity Õ
(
nnz(A) + (n + d)poly(k/ǫδ)

)
.

Proof. By Lemma 18 from [CEM+15] it suffices to use any obvious subspace embedding matrix

with ǫ � O(1) and k � k/ǫ. Here, we use OSNAP in the regime that requires Õ(k/ǫ2) rows and

sparsity polylog(k)/ǫ [NN13]. Instantiating this OSNAP construction with ǫ � O(1) and k � k/ǫ
results in Z⊤ with k/ǫ rows in the desired running time. �

Next we define the ridge leverage scores of a matrix. The ridge leverage scores were used

as sampling probabilities in the context of linear regression and spectral approximation [LMP13,

KLM+17, AM15], and low-rank approximation [CMM17, MW17]. Intuitively, the ridge leverage

scores can be thought of as adding a regularization term that attenuates the smaller singular

directions such that they are sampled with proportionately lower probability.

Definition 4.7. (Ridge Leverage Scores.) Given a matrix M ∈ �n×m and an integer k, let mi � Mi,∗ be

the i-th row of M. Then, for all i ∈ [n], the i-th rank-k ridge leverage score of M is

ρk
i (M) � mi

(
M⊤M +

‖M − Mk ‖2
F

k
I

)†
m⊤

i

Since we typically use the row ridge leverage scores to define a probability distribution over the

rows and sample according to this distribution, it is crucial that their sum is small as this controls

the number of rows we would need to sample. This follows from a straightforward calculation:

Lemma 4.8. (Lemma 4 from [CMM17].) Let ρk
i
(M) be the i-th ridge leverage score of M. Then,∑

i∈[n]
ρk

i (M) ≤ 2k

Cohen et. al. [CMM17] show that the ridge leverage scores of a matrix can be approximated

up to a small constant in O(nnz(A)) time, however this involves reading the entire matrix A. For

the special case of A being PSD, Musco and Musco [MM17] show that the ridge leverage scores of

A
1
2 can be approximated up to a small constant using a so-called Nyström approximation.

Lemma 4.9. (Lemma 4 of [MW17].) Given a PSD matrix A ∈ �n×n and integer k, there exists an algorithm

that accesses O(nk log(k/δ)) entries in A and computes ρ̂k
i
(A 1

2 ) for all i ∈ [n], such that with probability

1 − δ,
ρk

i (A
1/2) ≤ ρ̂k

i (A
1/2) ≤ 3ρk

i (A
1/2)

and runs in time O(n(k log(k/δ))ω−1), where ω is the matrix multiplication exponent.
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Note, while it is not known how to compute ridge leverage scores of a PSD matrix in sublin-

ear time, Musco and Woodruff [MW17] show that the ridge leverage scores of A
1
2 are a coarse

approximation to the ridge leverage scores of A.

Lemma 4.10. (Lemma 5 in [MW17].) Given a PSD matrix A ∈ �n×n , for all i ∈ [n],

ρk
i (A) ≤ 2

√
n

k
ρk

i (A
1
2 )

Musco and Woodruff then show that sampling columns of A, according to the corresponding

ridge leverage scores of A
1
2 , suffices to obtain a column projection-cost preserving sketch (PCP), if

we oversample by a
√

n/k factor. Projection-cost preserving sketches were introduced by Feldmen

et. al. [FSS13] and Cohen et. al. [CEM+15] and studied in the context of low-rank approximation

in [CMM17, MW17, BW18].

Lemma 4.11. (Column PCP from [MW17].) Given a PSD matrix A ∈ �n×n , integer k and ǫ > 0, for

all j ∈ [n] let ρ̄k
j
(A 1

2 ) be a constant approximation to the column-ridge leverage scores of A
1
2 . Let q j �

ρ̄k
j
(A 1

2 )/∑ j ρ̄
k
j
(A 1

2 ) and let t � O
(√

n
k

∑
j ρ̄

k
j
(A 1

2 ) log(k/δ)/ǫ2
)
� O

(√
nk log(k/δ)/ǫ2

)
. Construct

C ∈ �n×t by sampling t columns of A and setting each one to be 1√
tq j

A∗, j with probability q j . Then, with

probability 1 − δ, for any rank-k projection matrix X ∈ �n×n ,

(1 − ǫ)‖A − XA‖2
F ≤ ‖C − XC‖2

F ≤ (1 + ǫ)‖A − XA‖2
F

Further, such a C can be computed by accessing Õ(nk) entries in A and in time O(nkω−1).

This result also implies that the resulting matrix C is a Spectral-Frobenius PCP for A (Lemma 24

in [MW17]), i.e., for any rank-k projection matrix X,

(1 − ǫ)‖A − XA‖2
2 −
ǫ

k
‖A − Ak ‖2

F ≤ ‖C − XC‖2
2 ≤ (1 + ǫ)‖A − XA‖2

2 +
ǫ

k
‖A − Ak ‖2

F (4.1)

As noted by Musco and Woodruff, the resulting matrix C is not even square and thus is it unclear

how to sample rows of C to obtain a row-PCP in sublinear time and queries. In particular, the

ridge-leverage scores of rows of C can be an n/k-factor larger than the corresponding ridge-leverage

scores of A
1
2 . Instead, Musco and Woodruff sample rows of C proportional to the rank-k/ǫ2 ridge

leverage scores of A
1
2 . In addition, they show the stronger guarantee that a Spectral-Frobenius PCP

holds (by Lemma 8 of [MW17]) for PSD Matrices.

Lemma 4.12. (Spectral-Frobenius PCP.) Given a PSD matrix A ∈ �n×n , an integer k and ǫ > 0, let

C ∈ �n×t be a column PCP for A, following Lemma 4.11. Let k′ � k/ǫ2. For all i ∈ [n], let ρ̄k′
i
(A 1

2 ) be a

constant approximation to the rank-k′ row ridge leverage scores of A
1
2 . Let pi � ρ̄

k′
i
(A 1

2 )/∑i ρ̄
k′
i
(A 1

2 ) and

let t � O
(√

n
k

∑
i ρ̄

k′
i
(A 1

2 ) log(n)/ǫ
)
� O

(√
nk log(n)/ǫ3

)
. Then, with probability 1 − c, for all rank-k′

projection matrices X,

(1 − ǫ)‖C − CX‖2
2 −
ǫ

k
‖A − Ak ‖2

F ≤ ‖R − RX‖2
2 ≤ (1 + ǫ)‖C − CX‖2

2 +
ǫ

k
‖A − Ak ‖2

F
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We observe that we could compute a low-rank approximation to R in input sparsity time, which

already requires querying Ω(nnz(R)) � Ω(nk/ǫ4) entries in A and is far from optimal in terms of

the dependence on ǫ. It is here that we digress from the approach of Musco and Woodruff. We

observe that the dependence on n and k is optimal and thus we instantiate the aforementioned

column and row PCPs with ǫ � O(1) and k � k/ǫ. While this results in weaker PCP guaranteees,

the resulting matrix R is a
√

nk/ǫ ×
√

nk/ǫmatrix and we can now afford to read all of it and thus

we can compute a rank-k low-rank approximation to R using the input sparsity time algorithm of

Clarkson and Woodruff [CW13].

However, the main technical challenge here is that we can no longer use the approach of

[CMM17, MW17, BW18] to use the low-rank approximation for R and solve regression problems

to recover an ǫ-approximate low-rank matrix for A. In particular, we can now only hope for an

O(1) approximation if we use the standard technique of iteratively solving regression problems.

Our first insight is that computing a Spectral Low-Rank Approximation to R results in a structured

projection matrix for C, from which we can compute a structured projection matrix for A. Further,

this structured projection can be computed with only Õ(nk/ǫ) queries. We first describe how this

structured projection matrix for A results in an efficient low-rank approximation algorithm.

4.1 Structured Projections to Low-Rank Approximation

Our starting point is a structural result based on the Spectral-Frobenius projection (SF) property

introduced by Clarkson and Woodruff in the context of approximating arbitrary matrices with low-

rank PSD matrices [CW17]. In this subsection, we show that if we are given a projection matrix that

satisfies the SF property, we can obtain a query-optimal algorithm for Low-Rank Approximation.

We begin by defining this property:

Definition 4.13. ((ǫ, k)-SF Projection.) Given any matrix A ∈ �n×n , integer k, and ǫ > 0, a projection

matrix P ∈ �n×n is (ǫ, k)-SF w.r.t. A if

‖A − AP‖2
2 ≤ ǫ

k
‖A − Ak ‖2

F

or

‖A − PA‖2
2 ≤ ǫ

k
‖A − Ak ‖2

F

Intuitively, the following structural result of Clarkson and Woodruff relates an (ǫ, k)-SF projec-

tion to a relative-error low-rank approximation. We leverage this connection heavily in subsequent

sections.

Lemma 4.14. (Structured Projections and Low-Rank Approximation [CW17].) Let P ∈ �n×n be an

(ǫ, k)-SF projection w.r.t A, then

‖A − PAkP‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Ignoring computational and query complexity constraints, suppose we were given a matrix

Q ∈ �n×k′ with orthonormal columns such that P � QQ⊤ is an (ǫ, k)-SF Projection, where k′ is
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the dimension of the space P projects onto. Note, for now it suffices to set k′ � poly(k/ǫ). As a

consequence of Lemma 4.14, we observe that solving the following constrained regression problem

suffices to obtain a (1 + ǫ)-relative error solution to the Low-Rank Approximation problem:

min
rank(X)≤k

‖A − QXQ⊤‖2
F (4.2)

Algorithm 1 : Structured Projection to Low-Rank Approximation

Input: A PSD Matrix A ∈ �n×n , integer k, ǫ > 0, an orthonormal matrix Q ∈ �n×k′ such that

the projection matrix P � QQ⊤ satisfies ‖A − PA‖2
2 ≤ ǫ

k ‖A − Ak ‖2
F

1. Consider the optimization problem:

min
rank(X)≤k

‖A − QXQ⊤‖2
F

2. For all i ∈ [n], compute the leverage scores, τi(Q). Since Q has orthonormal columns,

τi(Q) � ‖Qi,∗‖2
2 and can be computed exactly. Let p � {p1 , p2 . . . pn} denote a distribution

over rows of A for which pi � τi(Q)/∑i′ τi′(Q).

3. Let t � k′/ǫ2. Construct a leverage score sampling matrix S by sampling t rows of A, such

that S � DΩ⊤, where D is a t × t diagonal matrix and Ω is an n × t sampling matrix. For

all j ∈ [t], select row index i ∈ [n] with probability pi and set Ωi, j � 1 and D j, j � 1/√tpi .

Repeat this sampling process to construct another leverage score sampling matrix T.

4. Consider the sketched optimization problem :

min
rank(X)≤k

‖SAT − SQXQ⊤T‖2
F

Compute SAT, PSQ, PQ⊤T,(SQ)† and (Q⊤T)†, where PSQ and PQ⊤T are the projections

onto SQ and Q⊤T respectively. Compute SVD(PSQSATPQ⊤T). By Theorem 4.15 the

sketched problem is minimized by X∗
� (SQ)†[PSQSATPQ⊤T]k(Q⊤T)†.

5. Let U∗ ∈ �k′×k be an orthonormal basis for the columns of X∗. Compute an orthonormal

basis M for QU∗. Consider the following regression problem: minY∈�k×n ‖A−MY‖2
F. For

all i ∈ [n], compute τi(M) � ‖Mi,∗‖2
2 . Let q � {q1 , q2, . . . , qn} be a distribution over the

rows of A such that qi � τi(M)/∑i′∈[n] τi′(M). Let W be a leverage score sampling matrix

with k/ǫ rows sampled proportional to q.

6. Consider the sketched regression problem: minY∈�k×n ‖WA − WMY‖2
F. Let N be the

minimizer to this regression problem computed using the algorithm from Lemma 4.4.

Output: M,N⊤ ∈ �n×k such that ‖A − MN‖2
F
≤ (1 + ǫ)‖A − Ak ‖2

F

However, there are several challenges pertaining to this approach. As noted above, it is not

immediately clear how to obtain such a Q with nk/ǫ queries to A. Further, it is not immediately
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clear how to solve Equation 4.2 efficiently. While we have reduced to optimizing over k′ × k′ sized

matrices X with rank at most k, the problem still seems intractable in sublinear time and queries.

We begin by describing how to solve the optimization problem in Equation 4.2 with Õ(nk/ǫ)
queries given that we have access to Q and QQ⊤ is an (ǫ, k)-SF Projection. At a high level, our

approach is to sketch the problem by sampling rows and columns proportional to the row leverage

scores of Q. We observe that since Q has orthonormal columns, the row leverage scores of Q

are simply the ℓ22 norms of corresponding rows. Therefore, we create sampling matrices S and

T that sample poly(k′) rows proportional to the leverage scores of Q and consider the resulting

optimization problem:

min
rank(X)≤k

‖SAT − SQXQ⊤T‖2
F (4.3)

We then show that the minimizer for Equation 4.3 is an approximate minimizer for Equation

4.2. Further, the optimization problem in Equation 4.3 is referred to as Generalized Low-Rank

Approximation and admits a closed form solution:

Theorem 4.15. (Generalized Low-Rank Approximation [FT07].) Let A ∈ �n×n , B ∈ �n×k′ and C ∈ �k′×n

and k ∈ �. Then, the Generalized Low-Rank Approximation problem

min
rank(X)≤k

‖A − BXC‖2
F

is minimized by X � B†[PBAPC]kC†, where PB , PC are the projection matrices onto B and C respectively.

We apply the above theorem to Equation 4.3. Both the query complexity and running time

here contribute a lower-order term and we can afford to compute the SVD for each term. Let X∗

be the solution to the sketched optimization problem in Equation 4.3. Then, we can compute U∗,
an orthonormal column basis for X∗ and consider M, an orthonormal basis for QU∗ ∈ �n×k to be

one of the low-rank factors for A. To find the second factor, we set up the following regression

problem:

min
N∈�k×n

‖A − MN‖2
F (4.4)

Again, M has orthonormal columns and thus we can efficiently compute the corresponding

row leverage scores and sample k/ǫ rows. By Lemma 4.5 this achieves a (1 + ǫ)-approximation to

the optimal cost in Equation 4.4 and obtains an N∗ with Õ(nk/ǫ) queries to A. At this stage, we

have obtained a (1 + ǫ)-approximate rank-k solution to Equation 4.2 and Lemma 4.14 implies that

we are done. We now formalize this argument:

Theorem 4.16. (Structured Projection to Low-Rank Approximation.) Given a rank-k′ projection matrix

P � QQ⊤, such that P is an (ǫ, k)-SF projection, Algorithm 1 queries Õ(nk/ǫ + k′2/ǫ4) entries in A and

with probability 99/100 outputs M,N⊤ ∈ �n×k such that

‖A − MN‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Further, Algorithm 1 runs in time Õ(n(k/ǫ)ω−1
+ nk′ω−1

+ (k′/ǫ2)ω).
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Proof. Since P is an (ǫ, k)-SF projection and Ak is a feasible solution to minrank(Y)≤k ‖A − PYP‖2
F
,

from Lemma 4.14 we have

min
rank(Y)≤k

‖A − PYP‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F (4.5)

Since P � QQ⊤, we can substitute it in Equation 4.5 to get minrank(Y)≤k ‖A − QQ⊤YQQ⊤‖2
F . We

further relax this by optimizing over all rank-k matrices X ∈ �k′×k′ instead of matrices of the form

QYQ⊤. Therefore,

min
rank(X)≤k

‖A − QXQ⊤‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F (4.6)

where we are now optimizing over a k′ × k′ matrix X, which is considerably smaller than Y. Let

S,T⊤ ∈ �k′/ǫ2×n be the leverage score sampling matrices as defined in Algorithm 1. Observe, from

Lemma 4.5 we know S has a sufficient number of rows to be an affine embedding for Equation

4.6. However, we cannot directly apply the affine embedding guarantee since A − QXQ⊤ is not an

affine space. Let H be k′ × n matrix, let H∗
� arg minH ‖A − QH‖2

F and let A∗ be A − QH∗. Then,

with probability at least 1 − c1, for all H,

‖SA − SQH‖2
F − ‖SA∗‖2

F � (1 ± ǫ)‖A − QH‖2
F + ‖A∗‖2

F (4.7)

Since Equation 4.7 holds for all H, in particular it holds for all rank-k matrices X such that H � XQ⊤.

Therefore, with probability at least 1 − c1, for all rank k matrices X,

‖SA − SQXQ⊤‖2
F − ‖SA∗‖2

F � (1 ± ǫ)‖A − QXQ⊤‖2
F + ‖A∗‖2

F (4.8)

Here, we observe that while we cannot estimate ‖A∗‖2
F accurately, it is a fixed matrix independent

of X and thus we can still approximately optimize. Let ζ1 be the event that Equation 4.8 holds. We

now use the sampling matrix T to sketch ‖SA − ZQ⊤‖2
F
. Let Z′

� arg minZ ‖SA − ZQ⊤‖2
F

and let

SA′
� SA − Z′Q⊤. Then, with probability at least 1 − c2, for all Z,

‖SAT − ZQ⊤T‖2
F − ‖SA′T‖2

F � (1 ± ǫ)‖SA − ZQ⊤‖2
F + ‖SA′‖2

F (4.9)

In particular, the above equation holds for all rank-k matrices X such that Z � SQ⊤X. Let ζ2 be the

event that the aforementioned equation holds. Combining equations 4.8 and 4.9 and conditioning

on ζ1 and ζ2, for all rank-k matrices X,

‖SAT − SQXQ⊤T‖2
F − ‖SA′T‖2

F � (1 ± ǫ)2
(
‖A − QXQ⊤‖2

F + ‖SA∗‖2
F + ‖A∗‖2

F

)
+ ‖SA′‖2

F (4.10)

Here, we observe that while the sketch does not preserve the cost of all X up to relative

error (1 + ǫ), the additive error ∆ ≤ (1 + ǫ)
(
‖SA∗‖2

F + ‖A∗‖2
F + ‖SA′‖2

F + ‖SA′T‖2
F

)
is fixed and is

independent of X. Let X∗
� arg minrank(X)≤k ‖SAT − SQXQ⊤T‖2

F . Then, union bounding over ζ1

and ζ2, with probability 1 − c1 − c2,

‖A − QX∗Q⊤‖2
F ≤ (1 + ǫ) min

rank(X)≤k
‖A − SQXQ⊤‖2

F (4.11)

Therefore, it suffices to efficiently compute X∗. By Theorem 4.15, we know that the sketched

optimization problem above is minimized by X∗
� (SQ)†[PSQSATPQ⊤T]k(Q⊤T)†, which can be
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computed exactly as shown in Step 4 of Algorithm 1. We note that we can now explicitly compute

SAT by querying the relevant entries in A. Further, we can compute SQ and Q⊤T without querying

A at all. Recalling equation 4.11 we can approximate the optimal low rank approximation cost:

‖A − QX∗Q⊤‖2
F ≤ (1 + O(ǫ))‖A − Ak ‖2

F

While we have now approximately minimized the optimization problem from Equation 4.2, recall

our goal was to obtain a rank-k approximation to A in factored form i.e., outputting n × k matrices

M,N⊤ such that the low rank approximation is given by MN. Towards this end, we compute U∗,
an orthonormal column basis for X∗ such that X∗

� U∗V∗. Substituting this in the above equation

we have

‖A − QU∗V∗Q⊤‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F (4.12)

Let M � QU∗ ∈ �n×k be one of the low-rank factors for A. To find the second factor, we observe :

min
Y∈�k×n

‖A − MY‖2
F ≤ ‖A − MV∗Q⊤‖2

F (4.13)

and therefore, approximately optimizing minY∈�k×n ‖A−MY‖2
F

suffices. Again, M has orthonormal

columns and thus we can efficiently compute the corresponding leverage scores to create a sketch

W with O(k/ǫ) rows. From Lemma 4.4, with probability at least 1 − c3 for all Y,

‖WA − WMY‖2
F � (1 ± ǫ)‖A − MY‖2

F

Let N be the optimal solution for the sketched problem as defined in Algorithm 1. Then, with

probability at least 1 − c3,

‖A − MN‖2
F ≤

(
1 + ǫ

1 − ǫ

)
min

Y∈�k×n
‖A − MY‖2

F (4.14)

We conclude correctness by union bounding over the failure probabilities of all the sketches and

observing that with probability at least 99/100,

‖A − MN‖2
F ≤ (1 + O(ǫ))‖A − MV∗Q⊤‖2

F ≤ (1 + O(ǫ))‖A − Ak ‖2
F

where the inequalities follow from Equations 4.4, 4.13 and 4.12.

Finally, we analyze the query complexity and running time of our algorithm. Since Algorithm

1 is given Q as input, computing the leverage scores in Step 2 requires no queries to A and

requires O(nk′) time. Next, observe we do not have to explicitly compute SA or AT, since SAT is

simply a submatrix of A with (k′/ǫ2)2 entries appropriately scaled, it suffices to query them. SAT

can be computed in O(k′2/ǫ4) time. Next, we compute SVD(SQ) and SVD(Q⊤T), which requires

no queries to A and time O(k′ω/ǫ2). We can then compute (SQ)† , (Q⊤T)† , PSQ and PQ⊤T from

the aforementioned SVDs. Next, we compute the matrix PSQSATPQ⊤T, which requires no extra

queries to A and time O((k′/ǫ2)ω), which is also the time required to compute its SVD. We can

then compute X∗ in Step 4 with a total of O(k′2/ǫ4) queries to A in time O(nk′ + (k′/ǫ2)ω).
In Step 5, we can compute U∗ by computing the SVD of X∗ and compute M in time O(nk′ω−1

+k′ω)
and do not require any queries to A. In Step 6, computing WA requires O(nk/ǫ) queries to A,
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since W has Õ(k/ǫ) rows. Note, this step contributes the leading term to the query complexity

and it is crucial W does not have more rows. By Lemma 4.4, N can be computed in time Õ(nk/ǫ +
n(k/ǫ)ω−1

+ k3/ǫ). Overall, Algorithm 1 requires Õ(nk/ǫ + k′2/ǫ4) queries to A and runs in time

Õ(n(k/ǫ)ω−1
+ nk′ω−1

+ (k′/ǫ2)ω). �

In light of Theorem 4.16, to obtain a low rank approximation for A, it suffices to obtain an SF

Projection. In particular, it suffices to obtain a matrix Q ∈ �n×k′ , for k′ � poly(k , 1/ǫ) such that

P � QQ⊤ is an (ǫ, k)-SF projection, by querying Õ(nk/ǫ) entries in A. One possible approach to

computing such a Q is to use the following result by Musco and Woodruff:

Theorem 4.17. (Theorem 25, [MW17].) Given a PSD matrix A, integer k, ǫ > 0, there exists an algorithm

that reads Õ(nk/ǫ6 + nk2/ǫ2) entries of A and with probability at least 99/100, outputs M,N⊤ ∈ �n×k

such that

‖A − MN‖2
2 ≤ (1 + ǫ)‖A − Ak ‖2

2 +
ǫ

k
‖A − Ak ‖2

F

Instantiating this theorem with ǫ � O(1) and k � k/ǫ, we obtain a matrix M,N⊤ ∈ �n×k/ǫ such

that

‖A − MN⊤‖2
2 ≤ O(1)‖A − Ak/ǫ‖2

2 + O
( ǫ

k

)
‖A − Ak/ǫ‖2

F

≤ O
( ǫ

k

)
‖A − Ak ‖2

F

where the last inequality follows from observing ‖A − Ak/ǫ‖2
F
≤ ‖A − Ak ‖2

F
and

‖A − Ak ‖2
F �

n∑
j�k+1

σ2
j (A) ≥

(
k

ǫ
− k

)
σ2

k/ǫ ≥
(

k

ǫ
− k

)
‖A − Ak/ǫ‖2

2

We can then compute an orthonormal basis for M and denote it by Q. Here, we observe P � QQ⊤

is an (ǫ, k)-SF projection matrix. Further, the algorithm of Musco and Woodruff instantiated with

the above parameters queries Õ(nk2/ǫ2) entries in A. As a corollary of Theorem 4.16, providing

the rank-k/ǫ projection matrix Q as input to Algorithm 1, implies an algorithm for low rank

approximation which queries Õ(nk2/ǫ2) entries in A. This already improves the ǫ-dependence

in the query complexity of best known algorithm for PSD low-rank approximation, since the

algorithm of Musco and Woodruff requires Õ(nk/ǫ2.5) queries [MW17]. Note, this algorithm has

worse dependence on k. However, our goal is to obtain linear dependence on both k and 1/ǫ.
Towards this end, we focus on obtaining an SF projection with fewer queries to A.

4.2 Spectral Regression

In this subsection, we consider the Spectral Regression problem. This problem is a natural gener-

alization of least-squares regression, when the response variable is a matrix. Spectral Regression

arises in the context of Regularized Least Squares Classification, for instance [CLL+10]. Given ma-

trices A ∈ �n×d , X ∈ �d×m and B ∈ �n×m , the Spectral Regression problem considers the following

optimization problem:

min
X

‖AX − B‖2
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We note that this is natural variant of multi-response regression where we minimize the difference

between AX and B in spectral norm as opposed to the extensively studied and well-understood

Frobenius norm. To the best of our knowledge the only relevant related work on Spectral Regression

is by Clarkson and Woodruff [CW09] and Cohen et. al. [CNW15]. Both these works provide

oblivious sketches to reduce the dimension of the problem, which unfortunately do not suffice for

our application. Instead of Spectral Regression in its full generality we focus on the following special

case:

Given an n × n PSD matrix A, a rank parameter k, and an accuracy parameter ǫ, let C be a

n ×
√

nk/ǫ matrix such that it is a column PCP for A, satisfying the guarantees of Lemma 4.11,

instantiated with k � k/ǫ, and ǫ � O(1). Let Z⊤ be a k/ǫ ×
√

nk/ǫ matrix with orthonormal rows

such that the corresponding projection matrix ZZ⊤ is an (O(1), k/ǫ)-SF Projection for C. Then, we

consider the following Spectral Regression problem:

min
W∈�n×k/ǫ

‖C − WZ⊤‖2 (4.15)

Our main technical contribution here is to obtain a new algorithm to solve this optimization

problem. We subsequently show how understanding this special case is crucial to obtaining optimal

algorithms for low rank approximation of PSD matrices. The techniques we develop here may be

of independent interest and find applications to other problems. Formally, we prove the following:

Algorithm 2 : Approximate Spectral Regression

Input: A PSD Matrix A ∈ �n×n , integer k, and ǫ > 0. C ∈ �n×
√

nk/ǫ , a column PCP for

A satisfying the guarantees of Lemma 4.11 instantiated with k � k/ǫ and ǫ � O(1). Z ∈
�

√
nk/ǫ×k/ǫ be an orthonormal matrix such that ZZ⊤ is an (O(1), k/ǫ)-SF projection for C.

1. Consider the Spectral Regression problem:

min
W

‖C − WZ⊤‖2
2

Let t �

√
nk/ǫ. For all j ∈ [t], compute τ j(Z⊤) � ‖Z j,∗‖2

2
. Let q � {q1 , q2, . . . , qt} be a

distribution of columns of C such that for all j ∈ [t], q j � min(τ j(Z⊤), 1).

2. Construct a sampling matrix S such that CS selects each column C∗, j independently with

probability q j and scales it by 1/√q j . Similarly, construct Z⊤S. Consider the sketched

optimization problem :

min
W

‖CS − WZ⊤S‖2
2

3. Compute (Z⊤S)† � S⊤Z(Z⊤SS⊤Z)−1. Let Ŵ � CS(Z⊤S)† be the solution to the sketched

optimization problem.

Output: Ŵ ∈ �n×k/ǫ such that ‖C − ŴZ⊤‖2
2 ≤ Õ(1)minW ‖C − WZ⊤‖2

F + Õ(ǫ/k)‖C − Ck/ǫ‖2
F
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Theorem 4.18. (Approximate Spectral Regression.) Let C ∈ �n×
√

nk/ǫ be a column PCP for A satisfying

the guarantees of Lemma 4.11 instantiated with k � k/ǫ and ǫ � O(1). Let Z ∈ �
√

nk/ǫ×k/ǫ be an

orthonormal matrix such that ZZ⊤ is an (O(1), k/ǫ)-SF projection for C. Then, Algorithm 2 queries

Õ(nk/ǫ) entries in A and with probability 99/100 computes Ŵ such that

‖C − ŴZ⊤‖2
2 ≤ Õ(1)

(
min

W∈�n×k/ǫ
‖C − WZ⊤‖2

2 +
ǫ

k
‖C − Ck/ǫ‖2

F

)

Further, the algorithm runs in time Õ(nk/ǫ + (k/ǫ)ω).

We begin by characterizing the optimal solution and optimal cost for the Spectral Regression

problem. We prove a structural result that shows the optimal solution for Spectral Regression is

given by projecting C away from the span of Z⊤. This matches the characterization of the optimal

solution to regression under the Frobenius norm, given by the well-known normal equations.

Recall, by definition of the Moore-Penrose pseudoinverse, this projection matrix is (Z⊤)†Z⊤.

Then, the optimal cost for Equation 4.15 is ‖C−C(Z⊤)†Z⊤‖2
2 and is achieved by W∗

� C(Z⊤)†. In-

tuitively, we show that any feasible W must incur the above cost by analyzing ‖y⊤(C−C(Z⊤)†Z⊤)‖2
2

for a fixed vector y. This enables us to exploit the geometry of Euclidean space and instantiate y

as needed to relate it back to the spectral norm.

Lemma 4.19. (Characterizing Opt for Spectral Regression.) Let C and Z be matrices as defined in Theorem

4.18. Let W∗
� C(Z⊤)† � CZ(Z⊤Z)−1, such that W∗Z⊤ is the projection of C on the colspan(Z). Let

C∗
� C − W∗Z⊤ be the projection of C orthogonal to colspan(Z). Then,

‖C∗‖2
2 � min

W
‖C − WZ⊤‖2

2

and the corresponding minimizer is W∗.

Proof. Note, by definition ‖C − W∗Z⊤‖2
2
� ‖C∗‖2

2
and since W∗ is feasible,

min
W

‖C − WZ⊤‖2
2 ≤ ‖C∗‖2

2 .

Therefore, it suffices to show any W must incur cost at least ‖C∗‖2
2
. By definition, we have

C � C(Z⊤)†Z⊤
+ C(I − (Z⊤)†Z⊤) � C(Z⊤)†Z⊤

+ C∗

By definition of spectral norm, ‖C−WZ⊤‖2
2
≥ ‖y⊤C− y⊤WZ⊤‖2

2
, for all y such that ‖y‖2 � 1. Next,

for any unit vector y ∈ �n ,

‖y⊤C − y⊤WZ⊤‖2
2 � ‖y⊤(C(Z⊤)†Z⊤

+ C∗) − y⊤WZ⊤‖2
2

� ‖y⊤C∗ − y⊤(W − W∗)Z⊤‖2
2

� ‖y⊤C∗‖2
2 + ‖y⊤(W − W∗)Z⊤‖2

2 + 2〈y⊤C∗ , y⊤(W − W∗)Z⊤〉
(4.16)

We observe that WZ⊤
� C(Z⊤)†Z⊤ is the projection of C on the rowspan of Z⊤ and C∗ is the

projection of C on the orthogonal complement of rowspan of Z⊤. Therefore, 〈C(Z⊤)†Z⊤ ,C∗〉 � 0.
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Further, for any y, y⊤(W − W∗)Z⊤ is in the row span of Z⊤ and is thus perpendicular to y⊤C∗.
Plugging this back in to Equation 4.16, we have

‖y⊤C − y⊤WZ⊤‖2
2 � ‖y⊤C∗‖2

2 + ‖y⊤(W − W∗)Z⊤‖2
2 ≥ ‖y⊤C∗‖2

2 (4.17)

where the inequality follows from non-negativity of norms. Since Equation 4.17 holds for all y, we

can pick y such that ‖y⊤C∗‖2
2 � ‖C∗‖2

2 . Therefore, ‖C−WZ⊤‖2
2 ≥ ‖y⊤C− y⊤WZ⊤‖2

2 ≥ ‖C∗‖2
2 . This

completes the proof. �

Next, we sketch the Spectral Regression problem from Equation 4.15 such that we approximately

preserve the spectral norm cost of all W ∈ �n×k/ǫ . A natural approach here would be to follow

the Affine Embedding idea for Frobenius norm and hope a similar guarantee holds for spectral

norm as well. However, since Z could have rank as large as k/ǫ and we can no longer obtain a

relative-error (1 + ǫ)-approximate Affine Embedding even for Frobenius norm without incurring

a larger dependence on ǫ. Instead, we relax the notion of approximation for our sketch. We note

that it suffices to construct a sketch S such that if

Ŵ � arg min
W

‖CS − WZ⊤S‖2
2

then

‖C − ŴZ⊤‖2
2 ≤ Õ(1)

(
min

W∈�n×k/ǫ
‖C − WZ⊤‖2

2 +
ǫ

k
‖C − Ck/ǫ‖2

F

)

as stated in Theorem 4.18. Note, here we only need to weakly preserve the cost of the optimal W for

the sketched problem as opposed to preserving the cost of all matrices W. At a high level, this comes

down to analyzing the spectrum of ‖C∗SS⊤‖2 We begin with the definition of the Approximate

Matrix Multiplication (AMM) guarantee and discuss its application in approximately minimizing

Spectral Regression.

Definition 4.20. ((ǫ, k)-Spectral AMM.) Given matrices A ∈ �n×m and B ∈ �m×d , a sketch Π ∈ �m×t

satisfies (ǫ, k)-Spectral AMM if with probability at least 1 − δ,

‖AΠΠ⊤B − AB‖2 ≤ ǫ

√√√(
‖A‖2

2
+

‖A‖2
F

k

)
·
(
‖B‖2

2
+

‖B‖2
F

k

)

Approximate Matrix Multiplication was introduced by Drineas et al. [DKM06] with respect to

the Frobenius norm, as opposed to the spectral norm above. Subsequent work by Cohen et al.

[CNW15] studied the spectral norm bound and showed that any sketch Π that is an oblivious

subspace embedding (i.e., satisfies Lemma 4.3 with Π being an oblivious sketch) implies an AMM

guarantee, as long as Π has Θ(k + log(1/δ)/ǫ2) columns. The Spectral AMM property combined

with an O(1)-Subspace Embedding suffice to approximately minimize the Spectral Regression

problem :
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Theorem 4.21. (Theorem 3, [CNW15]) Let A, B and Π be as defined above. If Π is an (
√
ǫ, rank(A))-Spectral

AMM for UA and (I − PA)B, and an O(1)-Subspace Embedding for A, and X̂ � arg minX ‖ΠAX − ΠB‖2
2 ,

then with probability 99/100,

‖AX̂ − B‖2
2 ≤ (1 + ǫ)‖PAB − B‖2

2 +
ǫ

k
‖PAB − B‖2

F

where UA is an orthonormal basis for A and PA is the projection onto the span of A.

However, all the constructions presented for the sketch in [CEM+15] are either oblivious

sketches or require sampling proportional to both A and B. Applying an oblivious sketch S

in our problem requires computing CS which would query Ω(nnz(C)) � Ω(n1.5
√

k/ǫ) entries in

A. Therefore, the main challenge here is to construct a sampling matrix S while reading Õ(nk/ǫ)
entries in A such that S is an (Õ(1), k/ǫ)-Spectral AMM and an O(1)-Subspace Embedding. We

construct S by sampling Õ(k/ǫ) columns of Z⊤ proportional to the leverage scores of Z⊤. While it

is easy to show S is a Subspace Embedding, observe that our sampling probabilities are computed

without reading C.

Proof of Theorem 4.18. As a starting point, we observe that yet again, since Z⊤ has orthonormal

rows, the leverage scores are simply the ℓ22 norms of the columns of Z⊤. Therefore, one possible

approach is to construct a leverage score sampling sketch S for C, by sampling columns proportional

to the leverage scores of Z⊤. We note we can afford to sample at most Õ(k/ǫ) columns, since our

algorithm queries all entries in the resulting sketched matrix CS.

Further, for reasons to be discussed later, it is crucial that we sample columns of C indepen-

dently, as opposed to the standard way of sampling with replacement we have used thus far.

The independent sampling process can be described as follows: for all j ∈ [
√

nk/ǫ], we sample

C∗
∗, j with probability min(‖Z⊤

∗, j‖
2
2
, 1). We use the following lemma from [CMM17] to show that

independently sampling columns satisfies some desirable properties.

Lemma 4.22. (Lemma 21, [CMM17].) Given a matrix M ∈ �n×m , for all j ∈ [m] let ρ̄k
j
(M) � Θ(ρk

j
(M)

be estimates of the rank-k column ridge-leverage scores of M and let q j � min(ρ̄k
j
(M) log(k/δ)/ǫ2 , 1).

Then, construct MS by selecting each column M∗, j with probability q j and scale it by 1/√q j. Then, with

probability at least 1 − δ, MS has
∑

j∈[m] ρ̄
k
j
· log(k/δ)/ǫ2 columns and

(1 − ǫ)MSS⊤M⊤ − ǫ
k
‖M − Mk ‖2

FI � MM⊤ � (1 + ǫ)MSS⊤M⊤
+
ǫ

k
‖M − Mk ‖2

FI

The above lemma independently samples columns proportional to the ridge leverage scores. In

our setting, we can set the ridge parameter λ � 0, and sample according to the exact leverage

scores of Z⊤. Formally, let q � {q1, q2, . . . , qm} be the corresponding distribution over columns of

Z⊤ such that q j � min(‖Z⊤‖2
2

log(k), 1). Since Z⊤ has k/ǫ orthonormal rows, the leverage scores

sum up to rank(Z⊤) ≤ k/ǫ. We then use Lemma 4.22 by setting ǫ � 1/10, δ � 0.01 and thus with

probability at least 99/100, Z⊤S has
∑

j∈[
√

nk/ǫ] τ j(Z⊤) log(n) � Õ(k/ǫ) rows and

9

10
Z⊤SS⊤Z � Z⊤Z � 11

10
Z⊤SS⊤Z (4.18)
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If the guarantee in Equation 4.18 holds for a sketch S, we refer to S as satisfying an O(1)-Subspace

Embedding property. Observe, this is equivalent to S preserving all singular values of Z⊤ up to a

constant.

We can now obtain a closed form solution for the Spectral Regression problem in the sketched

space. By Lemma 4.19, the optimal solution to the optimization problem in Step 2 of Algorithm 2

is given by Ŵ � CS(Z⊤S)†. Since S satisfies the O(1)-Subspace Embedding property in Equation

4.18, it preserves the rank of Z⊤. Therefore, Z⊤S has full row rank and (Z⊤S)† � S⊤Z(Z⊤SS⊤Z)−1

and thus Ŵ � CSS⊤Z(Z⊤SS⊤Z)−1 is the optimal solution. Next, we bound the cost of Ŵ in the

original problem. Let PZ⊤ � Z†Z⊤ be the orthogonal projection matrix onto Z⊤. Using the fact that

‖M‖2
2
� max‖y‖2�1 ‖y⊤M‖2

2
and the Pythagorean Theorem for Euclidean space we have

‖C − ŴZ⊤‖2
2 � ‖C − CSS⊤Z(Z⊤SS⊤Z)−1Z⊤‖2

2

� max
‖y‖2

2
�1

‖y⊤CPZ⊤ − y⊤CSS⊤Z(Z⊤SS⊤Z)−1Z⊤PZ⊤ ‖2
2+

‖y⊤C(I − PZ⊤) − y⊤CSS⊤Z(Z⊤SS⊤Z)−1Z⊤(I − PZ⊤)‖2
2

(4.19)

Here, we observe y⊤CSS⊤Z(Z⊤SS⊤Z)−1Z⊤ is a vector in the row space of Z⊤ and(I − PZ⊤) is

the projection on the orthogonal complement of rowspan(Z⊤), thus this evaluates to 0. Since

C(I − PZ⊤) � C∗, we can upper bound ‖y⊤C(I − PZ⊤)‖2 by ‖C∗‖2
2
. Similarly, we can upper bound

the first term by its spectral norm. Therefore, plugging this back into Equation 4.19,

‖C − ŴZ⊤‖2
2 ≤ ‖C(Z⊤)†Z⊤ − CSS⊤Z(Z⊤SS⊤Z)−1Z⊤‖2

2 + ‖C∗‖2
2

� ‖
(
C(Z⊤)†Z⊤SS⊤Z − CSS⊤Z

)
(Z⊤SS⊤Z)−1‖2

2 + ‖C∗‖2
2

≤ ‖C(Z⊤)†Z⊤SS⊤Z − CSS⊤Z‖2
2 ‖(Z⊤SS⊤Z)−1‖2

2 + ‖C∗‖2
2

(4.20)

where we use that Z⊤ has orthonormal columns and the sub-multiplicativity of the spectral norm.

From Equation 4.18, it follows that for all i ∈ [k/ǫ], σ2
i
(Z⊤SS⊤Z) � (1 ± 0.1)2σ2

i
(Z⊤Z) � (1 ± 0.1)2.

Therefore, ‖(Z⊤SS⊤Z)−1‖2
2
� 1/σ2

min(Z⊤SS⊤Z) ≤ 100/81. Substituting this back into Equation 4.20,

we have

‖C − ŴZ⊤‖2
2 ≤ O(1)‖(C(Z⊤)†Z⊤ − C)SS⊤Z‖2

2 + ‖C∗‖2
2

≤ O(1)‖C∗SS⊤Z‖2
2 + ‖C∗‖2

2

(4.21)

where the last inequality follows from the definition of C∗. In order to bound the cost above, we

focus on analyzing ‖C∗SS⊤Z‖2
2
. Since we want to compare ‖C∗SS⊤Z‖2

2
to ‖C∗Z‖2

2
, a natural way to

proceed would be to interpret this term as an instance of Approximate Matrix Product. Therefore,

we next show that the leverage score sampling matrix S satisfies the Spectral AMM property for

C∗ and Z⊤. Here, we want to analyze how sampling columns of C∗ proportional to the leverage

scores of Z⊤ affects the spectrum of C∗. An important tool in this analysis is the following result

by Rudelson and Vershynin on how the spectral norm of a matrix degrades when we sample a

uniformly random subset of rows of a matrix:
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Theorem 4.23. ( Theorem 1.8 in [RV07]) Given a matrix A ∈ �n×n , let Q be a uniformly random subset

of [n] s.t. � [Q] � q. Let A|Q denote the submatrix restricted to the rows indexed by Q. Then,

�
[

A|Q




2

]
� O

(√
q

n
‖A‖2 +

√
log(q)‖A‖(n/q)

)

where ‖A‖(n/q) is the average of the largest n/q ℓ2-norms of columns of A.

We extend the above statement to rectangular matrices:

Corollary 4.24 (Spectral Decay for Rectangular Matrices). Given a matrix A ∈ �n×m , s.t. for all

j, j′ ∈ [m], ‖A∗, j‖2
2
� Θ(‖A∗, j′ ‖2

2
). Let Q be a uniformly random subset of [n] s.t. � [Q] � q. Let

b � ⌈n/m⌉ and A|Q denote the submatrix restricted to the rows indexed by Q. Then,

�
[

A|Q




2

]
� O

(√
q

n
‖A‖2 +

√
log(q)/b‖A‖(n/q)

)

Proof. First, consider the case when m ≥ n. To see this, let SVD(A) � UΣV⊤ where UΣ is an n × n

matrix. Now, ‖A‖2 � ‖UΣ‖2 and applying Theorem 4.23 to UΣ, we have

�
[

A|Q




2

]
� �

[

(UΣ)|Q




2

]
� O

(√
q

n
‖UΣ‖2 +

√
log(q)‖UΣ‖(n/q)

)

� O

(√
q

n
‖A‖2 +

√
log(q)‖A‖(n/q)

) (4.22)

where we repeatedly use that VT has orthonormal rows. Here, we note that since the columns of

A have the same squared norm up to a constant,‖A‖(n/q) � Θ(‖A‖1→2), i.e. the max column norm

of A.

Next, consider the case where m < n. Let b � ⌈n/m⌉. In order to analyze the spectral norm

of AQ , we create b copies of A and concatenate them such that the resulting matrix A∗ has more

columns than rows. Applying Equation (4.22) to A∗ and substituting the average with max, we

have

�

[

A∗
|Q




2

]
� O

(√
q

n
‖A∗‖2 +

√
log(q)‖A∗‖1→2

)
(4.23)

Observe, A∗
|Q selects uniformly random rows of A∗ and



A∗
|Q




2
� max‖x‖2�1 ‖x⊤A∗

|Q ‖2 and for any

vector x, ‖x⊤A∗
|Q ‖2 �

√
b‖x⊤A|Q ‖2. Therefore,�

[

A∗
|Q




2

]
�

√
b ·�

[

A|Q




2

]
and ‖A∗‖2 �

√
b · ‖A∗‖2.

Finally, it is easy to see that since the columns of A∗ are copies of columns of A, the max column

norm does not change. Therefore, (4.22) to A∗, we have

�
[

A|Q




2

]
� O

(√
q

n
‖A‖2 +

√
log(q)/b‖A‖1→2

)
� O

(√
q

n
‖A∗‖2 +

√
log(q)‖A∗‖(n/q)

)
(4.24)

and the claim follows. �
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Intuitively, there are two technical challenges in applying Corollary 4.24. First, a leverage score

sampling matrix need not sample columns uniformly at random, since we have no control over the

column norms of Z⊤. Second, the ‖ · ‖(n/q) norm only shrinks when all columns of A have roughly

the same squared norm. We overcome these challenges by partitioning the matrix, first according

to row norms, such that each partition does indeed have the same row norm, up to a factor of

2. Next, we further partition each such matrix according to the sampling probabilities, such that

within each partition, the sampling process is close to uniform sampling. Formally,

Lemma 4.25. (Weak Spectral Approximate Matrix Product.) Let Z,C∗ and S be as defined in Lemma 4.19.

Then, with probability at least 99/100, S satisfies (Õ(1), k/ǫ)-Spectral AMM, i.e.,

‖C∗SS⊤Z‖2
2 ≤ Õ(1)

( ǫ
k
‖C∗‖2

F + ‖C∗‖2
2

)
Proof. By sub-multiplicativity of the spectral norm and S being an O(1)-subspace embedding for

Z⊤, we have

‖C∗SS⊤Z‖2
2 ≤ ‖C∗S‖2

2 · ‖S⊤Z‖2
2

≤ O(1)‖C∗S‖2
2

(4.25)

where the second inequality follows from Z⊤ having orthonormal rows.

We begin by observing that Corollary 4.24 requires the squared row norms of C∗ to be roughly

the same, which need not be the case in general. Note, here the sampling matrix subsamples

columns of C∗, as opposed to rows in Corollary 4.24. Thus, we partition the rows of C∗ into

O(log(n)) blocks such that either the squared column norms are the same up to a factor of 2 or

they are at most ‖C∗‖2
F/poly(n). Formally, for all ℓ ∈ [c log(n)], let

Bℓ �
{

i ∈ [n] :
‖C∗‖2

F

2ℓ+1
≤ ‖C∗

i,∗‖2
2 ≤

‖C∗‖2
F

2ℓ

}

represent the blocks for rows with large squared norm. LetBr � [n]\∪ℓ∈[log(n)]Bℓ be the remaining

rows, which have norm at most ‖C∗‖2
F/poly(n). Since the set of indices in the blocks form a partition

of the rows of C∗, we can write ‖C∗‖2
F �

∑
ℓ∈[log(n)] ‖C∗

Bℓ ‖
2
F + ‖C∗

Br
‖2

F . Similarly, we can bound the

spectral norm as follows:

‖C∗S‖2
2 � max

‖y‖2
2
�1

‖C∗Sy‖2
2 ≤ O

©­«
∑

ℓ∈[log(n)]
‖C∗

BℓSy‖2
2 + ‖C∗

Br
Sy‖2

2

ª®¬
≤ O

©­«
∑

ℓ∈[log(n)]
‖C∗

BℓS‖
2
2 + ‖C∗

Br
S‖2

2

ª®¬
(4.26)

We now handle the two separately. Since S is an unbiased estimator of the squared Frobenius norm

of Z⊤, it is an unbiased estimator of the squared Frobenius norm of C∗. Therefore, with probability

at least 99/100,

‖C∗
|Br

S‖2
2 ≤ ‖C∗

|Br
S‖2

F � O(‖C∗
|Br

‖2
F) ≤

‖C∗‖2
F

poly(n) <<
ǫ

k
‖C∗‖2

F (4.27)
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For the remaining terms, we cannot use this näive analysis as this would only leave us with an

upper bound of ‖C∗‖2
F , which is too large.

If instead of a leverage score sampling matrix, S were a uniform sampling sketch that samples

k/ǫ columns of C∗ in expectation, we could apply Corollary 4.24 for each ℓ, with q � k/ǫ and

n �

√
nk/ǫ and b �

⌈√
nk/(

√
ǫ |Bℓ |)

⌉
, to obtain

�

[

C∗
|BℓS



2

2

]
�

√
nǫ

k
�

[

(C∗
|Bℓ )Q



2

2

]
≤ O

(

C∗
|Bℓ



2

2
+

ǫ log(k/ǫ)|Bℓ |
k



(C∗)⊤|Bℓ


2√
ǫn/k

)

≤ O

(

C∗
|Bℓ



2

2
+

ǫ log(k/ǫ)
k



C∗
|Bℓ



2

F

) (4.28)

where Q is the subset of columns selected by S and the second inequality follows from observing

that the all the row norms of (C∗)|Bℓ are within a factor of 2 of each other and thus the max squared

row norm times the size of the set is the squared Frobenius norm.

Using Equations 4.27 and 4.28 to upper bound the two terms in Equation 4.26 suffices to finish

the proof. Unfortunately, a similar analysis does not immediately go through when we replace

a uniform sampling matrix with a leverage score sketch. Instead, we partition the sketch S into

buckets such that each bucket corresponds to rows in S that scale columns of C∗ within a factor of

2. For notational convenience, let m �

√
nk/ǫ and t � k/ǫ. Recall, we construct S by sampling the

j-th column of Z⊤ independently with probability q j � min(‖Z j,∗‖2
2

log(k), 1) and scale this column

by 1/√q j. We group the scaling factors into buckets. Note, if for some j, q j < 1/n3, we can ignore

the corresponding column.

Let ζ j be the indicator for a column of Z⊤ to be sampled by S. Then, Pr[ζ j � 1] � q j �

min(‖Z⊤
∗, j‖

2
2 log(k), 1). Since q j ≤ 1/n3, we can union bound over at most m such events and

conclude with probability at least 1 − 1/n2, for all j ∈ m, no column Z⊤
∗, j is sampled such that

q j ≤ 1/n3. Further, since q j ≤ 1, 1/√q j ∈ [1, n1.5]. Therefore, it suffices to bucket values in the

range [1, n1.5]. For all h ∈ [c log(n)], let S denote the set of column indices from Z⊤ that were

sampled by the sketch S. Then,

Th �

{
j ∈ S : 2h ≤ 1

√
q j

≤ 2h+1

}

Let STh
be the subset of rows of S which are indexed by the set Th. Since t is fixed and the scaling

factors in Th differ by at most a factor of 2, the corresponding sampling probabilities in D differ by at

most
√

2, which is still not uniform. To fix this, we change the sampling process and independently

sample each column indexed by j ∈ Th with probability 2h+1, while still scaling it by 1/
√

tq j. Let

this new distribution be denoted by q′. Under the new sampling process, we now sample rows

independently and therefore, we are at least as likely to see all the rows sampled by STh
in our new

sampling process. Therefore, it now holds that

�q

[
‖C∗

|BℓSTh
‖2

2

]
≤ �q′

[
‖C∗

|BℓSTh
‖2

2

]
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Further, in the new sampling process, each row restricted to the set Th is uniformly sampled with

probability 1/2(h+1)/2 and thus we can apply Corollary 4.24 to C∗
|BℓSTh

.

�q′

[
‖C∗

|BℓSTh
‖2

2

]
≤ O

(
‖C∗

|Bℓ ‖
2
2 +

ǫ log(k/ǫ)|Bℓ |
k



(C∗
|Bℓ )

⊤


(
√
ǫn/k)

)

≤ O

(
‖C∗

|Bℓ ‖
2
2 +

ǫ log(k/ǫ)
k



C∗
|Bℓ



2

F

) (4.29)

where the second inequality follows from squared row norms in C∗
|Bℓ being equal up to a factor of

2. Therefore, with probability at least 1 − 1/c′ log(n),


C∗

|BℓSTh



2

2
≤ Õ

(
‖C∗

|Bℓ ‖
2
2 +

ǫ log(k/ǫ)
k

‖C∗
|Bℓ ‖

2
F

)
(4.30)

Let ηh be the event that the above bound holds. Then, union bounding over all c log(n) such events,

with probability at least 99/100, simultaneously for all h,

‖C∗
|BℓS‖

2
2 ≤ O

©­«
∑

h∈[c log(n)]
‖C∗

|BℓSTh
‖2

2

ª®¬
≤ Õ

(
‖C∗

|Bℓ ‖
2
2 +
ǫ

k
‖C∗

|Bℓ ‖
2
F

) (4.31)

which follows from Equation 4.30. Substituting this back into Equation 4.26,

‖C∗S‖2
2 ≤ O

©­«
∑

ℓ∈[log(n)]
‖C∗

|BℓS‖
2
2 + ‖C∗

|Br
S‖2

2

ª®¬
≤ Õ

(
‖C∗‖2

2 +
ǫ

k
‖C∗‖2

F

) (4.32)

where the second inequality follows from Equation 4.31 and observing that ‖C∗
Bℓ ‖

2
2
≤ ‖C∗‖2

2
and∑

ℓ ‖C∗
Bℓ ‖

2
F
� ‖C∗‖2

F
, which completes the proof. �

Combining the above lemma with 4.19, and observing that ‖C∗‖2
F
≤ ‖C−Ck/ǫ‖2

F
, we can bound

the cost of Ŵ

‖C − ŴZ⊤‖2
2 ≤ Õ

(
min

W
‖C − WZ⊤‖2

2 +
ǫ

k
‖C − Ck/ǫ‖2

F

)
which completes the correctness proof of Theorem 4.18. Next, we analyze the running time. In

Step 1 of Algorithm 2, we compute a distribution over the columns of Z⊤, which does not require

reading any entries in A and takes time
√

nk/ǫ · k/ǫ �

√
n(k/ǫ)1.5. Step 2 requires computing

CS and Z⊤S. Note since S samples Õ(k/ǫ) columns in C, we have to query n · Õ(k/ǫ) entries

in A to explicitly compute CS and can be computed in as much time. Since Z⊤ has fewer rows

the running time is dominated by computing CS. For Step 3, we compute (Z⊤SS⊤Z)−1, which

requires no queries to A and runs in time Õ((k/ǫ)ω) and thus (Z⊤S)† can be computed in the same

time. Therefore, the total query complexity of Algorithm 2 is Õ(nk/ǫ) and the running time is

Õ(nk/ǫ + (k/ǫ)ω), which concludes the proof.
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4.3 Sample-Optimal Algorithm

In this subsection, we describe our main algorithm for PSD Low-Rank Approximation. Given a

PSD matrix A, our algorithm queries Õ(nk/ǫ) entries in A and runs in time Õ(n(k/ǫ)ω−1
+ (k/ǫ3)ω).

This resolves an open question on the ǫ-dependence of the query complexity and matches the lower

bound of Ω(nk/ǫ) up to polylog factors from [MW17]. At a high level, our algorithm consists of

two stages: first, we use the existing machinery developed by Musco and Woodruff to obtain weak

PCPs by setting ǫ to be a constant. By observing that their algorithms have linear dependence on

the rank, we can afford to rank-(k/ǫ) PCPs instead. This enables us to find a structured subspace

that contains a spectral low-rank approximation for the PCP.

Algorithm 3 : Sample Optimal PSD Low-Rank Approximation

Input: A PSD Matrix A ∈ �n×n , integer k, and ǫ > 0.

1. Let t � c
√

nk
ǫ log(n), for some constant c and let k′ � Õ(k/ǫ). For all j ∈ [n], let ρ̄k′

j
(A1/2)

be the approximate column ridge-leverage scores that satisfy Lemma 4.9. Let q �

{q1 , q2 . . . qn} denote a distribution over columns of A such that q j � ρ
k′
j
(A1/2)/∑ j ρ

k′
j
(A1/2).

2. Construct a column PCP for A by sampling t columns of A such that each column is set

to
A∗, j√

tq j

with probability q j, for all j ∈ [n]. Let C be the resulting n× t matrix that satisfies

the guarantee of Lemma 4.11 instantiated with k � k′ and ǫ � O(1).

3. Construct a row PCP for C by sampling t rows of C such that each row is set to
Ci ,∗√

tq i

with probability qi , for all i ∈ [n]. Let R be the resulting t × t matrix that satisfies the

guarantee of Lemma 4.12 instantiated with k � k/ǫ and ǫ � O(1).

4. Run the input-sparsity algorithm from Lemma 4.6 to compute a rank-k/ǫ matrix Z with

orthonormal columns such that ‖R − RZZ⊤‖2
2
≤ O

(
ǫ
k

)
‖R − Rk/ǫ‖2

F
.

5. Run Algorithm 2 with parameters k, ǫ on the Spectral Regression problem

min
W

‖C − WZ⊤‖2

Let Ŵ be the output of Algorithm 2. Compute an orthonormal basis Q for W. Note,

QQ⊤ is an (O(1), k/ǫ)-SF projection for A.

6. Run Algorithm 1 with input A, Q, k and ǫ to approximately minimize ‖A − QXQ⊤‖2
F

over rank k matrices X. Let M,N be the output of Algorithm 1.

Output: M,N⊤ ∈ �n×k such that ‖A − MN‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Since our PCPs are accurate only up to O(1)-error, we cannot directly extract a (1 + ǫ) relative

error approximation for A. However, we show that the PCPs have enough structure to obtain a
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structured subspace that spans a (1 + ǫ)-approximate solution for A. A key ingredient to recover

this structured subspace is an efficient algorithm for Spectral Regression.

Following the approach of Musco and Woodruff we use the ridge leverage scores of A1/2 to

compute C, a column PCP for A and R a row PCP for C, with a minor tweak: we instantiate

their theorems (Lemmas 4.11 and 4.12) with k � k/ǫ and ǫ � O(1). While the precise guarantees

satisfied by our PCPs are weaker than the PCPs used by Musco and Woodruff, the dimensions of

our PCPs are smaller.

In particular, we obtain a row PCP R, which is a
√

nk/ǫ×
√

nk/ǫmatrix (ignoring polylogarith-

mic factors) and we can afford to read all of it. The input-sparsity time algorithm from Lemma 4.6

queries nnz(R) � Õ(nk/ǫ) entries to obtain a rank-(k/ǫ) matrix Z with orthonormal columns such

that

‖R − RZZ⊤‖2
2 ≤ ǫ

k
‖R − Rk ‖2

F (4.33)

Since R is a Spectral-Frobenius PCP for C, ZZ⊤ satisfies ‖C − CZZ⊤‖2
2 ≤ ǫ

k ‖C − Ck ‖2
F . Since C is

a Spectral-Frobenius PCP for A, it suffices to obtain a projection for the column space of C that

also satisfies the above guarantee. Therefore, we solve the following Spectral Regression problem:

minW ‖C − WZ⊤‖2
2
. Recall, we can approximately optimize this using Algorithm 2. Let Ŵ be the

resulting solution. We can then compute an orthonormal basis for W̃ (denoted by Q) and show

that QQ⊤ is an (O(1), k/ǫ)-SF projection for A. Then, we can obtain a low rank approximation for

A by simply running Algorithm 1.

Proof of Theorem 4.1. Let k′ � Õ(k/ǫ). It follows from Lemma 4.9 that we can compute the

rank-k′ ridge leverage scores of A1/2, up to a constant factor using the algorithm of Musco and

Musco [MM17]. By Lemma 4.10, the ridge leverage scores of A1/2 are a
√
ǫn/k′-approximation to

the ridge leverage scores of A. Let q be a distribution over rows and columns of A as defined in

Algorithm 3. Since we sample t � O(
√

nk/ǫ log(n)) columns of A proportional to q, instantiating

Lemma 4.12 with k � k′ and ǫ � 0.1, we obtain a mixed Spectral-Frobenius column PCP C such

that with probability at least 1 − c1, for all rank-k′ projections X,

9

10
‖A − XA‖2

2 −
1

10k′
‖A − Ak′ ‖2

F ≤ ‖C − XC‖2
2 ≤ 11

10
‖A − XA‖2

2 +
1

10k′
‖A − Ak′ ‖2

F (4.34)

Let ζ1 be the indicator for C satisfying the above guarantee. Similarly, sampling t rows of C

proportional to q, results in a mixed Spectral-Frobenius row PCP for R such that with probability

at least 1 − c2, for all rank-k′ projection matrices X,

9

10
‖C − CX‖2

2 − 1

10k′
‖C − Ck′ ‖2

F ≤ ‖R − RX‖2
2 ≤ 11

10
‖C − CX‖2

2 +
1

10k′
‖C − Ck′ ‖2

F (4.35)

Further, it is well-known that with the same probability ‖R − Rk′ ‖2
F
� ‖C − Ck′ ‖2

F
. Let ζ2 be the

event that R satisfies the above guarantee. Next, we compute a Spectral Low-Rank Approximation

for R, using the algorithm from Lemma 4.6, with k � k′ and ǫ � 0.1. As a result, with probability

at least 1 − c3, we obtain a rank-k′ matrix Z ∈ �t×k , such that ZZ⊤ is a (0.1, k′)-SF projection for R,

i.e.,

‖R − RZZ⊤‖2
2 ≤ 1

10k′
‖R − Rk′ ‖2

F (4.36)
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Let ζ3 be the event that Z satisfies the above guarantee. Union bounding over ζ1, ζ2, ζ3, we know

that all of them hold with probability at least 1− (c1 + c2 + c3). Since R is a Spectral-Frobenius row

PCP for C and ZZ⊤ is a rank-k′ projection matrix, it follows from Equation 4.35

‖C − CZZ⊤‖2
2 ≤ 10

9
‖R − RZZ⊤‖2

2 +
1

9k′
‖R − Rk′ ‖2

F

≤ 1

10k′
‖R − Rk ‖2

F +
1

9k′
‖R − Rk′ ‖2

F

≤ Õ
( ǫ

k

)
‖C − Ck′ ‖2

F

(4.37)

where the second inequality follows from Equation 4.33 and the third follows from the fact that

PCPs preserve Frobenius norm up to a constant factor. While conditioning on ζ3, it follows from

Equation 4.37 that ZZ⊤ is an (Õ(1), k/ǫ)-SF projection for C, our goal is to compute an SF projection

for A. Since ZZ⊤ is a t × t matrix, it does not even match the dimensions of A. Therefore, we set

up the following Spectral Regression problem:

min
W∈�n×k′

‖C − WZ⊤‖2
2 (4.38)

Let Ŵ be the approximate minimizer of the above problem obtained by running Algorithm 2. Then,

it follows from Theorem 4.18 that with probability at least 99/100,

‖C − ŴZ⊤‖2
2 ≤ Õ(1)

(
min

W
‖C − WZ⊤‖2

2 +
ǫ

k
‖C − Ck′ ‖2

F

)
≤ Õ(1)

(
‖C − Ck′ ‖2

2 +
ǫ

k
‖C − Ck′ ‖2

F

)
≤ Õ(1)

( ǫ
k
‖C − Ck′ ‖2

F

) (4.39)

where the second inequality follows from ‖C−CZZ⊤‖2
2
≤ Õ

(
ǫ
k

)
‖C−Ck′ ‖2

F
(by definition of an SF

projection) and observing that W � CZ⊤ is a feasible solution to Equation 4.38. Let ζ4 be the event

that Equation 4.39 holds. Next, let Q be an orthonormal basis for W. We observe that QQ⊤C is the

orthogonal projection of C onto the subspace spanned by Q and the matrix ŴZ⊤ also lies in the

subspace. Therefore, by the Pythagorean Theorem, for any fixed unit vector y,

‖Cy − QQ⊤Cy‖2
2 ≤ ‖Cy − ŴZ⊤y‖2

2 ≤ ‖C − ŴZ⊤‖2
2

Picking y such that ‖Cy − QQ⊤Cy‖2
2 � ‖C − QQ⊤C‖2

2 , and combining it with Equation 4.39 we

have

‖C − QQ⊤C‖2
2 ≤ Õ(1)

( ǫ
k
‖C − Ck′ ‖2

F

)
(4.40)

Conditioning on event ζ1, we know that ‖C−Ck′‖2
F
� ‖A−Ak′ ‖2

F
. Since QQ⊤ is a rank-k′ projection

matrix and C is a mixed Spectral-Frobenius column PCP for A, it follows from Equation 4.34,

‖A − QQ⊤A‖2
2 ≤ 10

9
‖C − QQ⊤C‖2

2 +
1

9k′
‖A − Ak′ ‖2

F

≤ Õ(1)
( ǫ

k
‖A − Ak′ ‖2

F

) (4.41)
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where the last inequality follows from Equation 4.40. Therefore, QQ⊤ is a (0.1, k′)-SF projection

for A. Finally, we run Algorithm 1 on minrank(X)�k ‖A−QXQ⊤‖2
F . Here, we note that for Algorithm

1, a (0.1, k′)-SF projection is equivalent to an (ǫ, k)-SF projection, up to polylogarithmic factors.

Therefore, Theorem 4.16 holds as is. Then, by Theorem 4.16, we know that with probability at least

99/100 Algorithm 1 outputs matrices M,N such that ‖A−MN⊤‖2
F
≤ (1+ ǫ)‖A−Ak ‖2

F
. Let ζ5 be the

event that the aforementioned algorithm succeeds. Then, union bounding over ζ1, ζ2, ζ3, ζ4 and

ζ5, with probability at least 9/10, M,N is a relative-error Low-Rank Approximation for A, which

concludes correctness.

Next, we analyze the query complexity and running time of Algorithm 3. Step 1 computes the

rank-k′ ridge leverage scores of A1/2 and by Lemma 4.9, requires reading O(nk′ log(k′)) � Õ(nk/ǫ)
entries in A and runs in time Õ(n(k/ǫ)ω−1). Steps 2 and 3 require no queries to A and the sampling

can be performed in O(n) time. In step 4, the input sparsity algorithm from Lemma 4.6 queries

nnz(R) � t2
� Õ(nk/ǫ) entries in A and runs in Õ(nk/ǫ+

√
npoly(k/ǫ)) � Õ(nk/ǫ) time. We know

from Theorem 4.16 that Step 5 requires Õ(nk/ǫ) queries to A and runs in Õ(nk/ǫ + (k/ǫ)ω) time.

Finally, in Step 6, we run Algorithm 1 such that Q is a n × k′ matrix. Therefore, it follows from

Theorem 4.16, that the total number of queries to A is Õ(nk/ǫ + k2/ǫ6) and the running time is

Õ(n(k/ǫ)ω−1
+ (k/ǫ3)ω). The final query complexity and running time follows, and this concludes

the proof.

Outputting a PSD Low-Rank Approximation. Here, we extend our algorithm to show that we can

obtain a relative-error low-rank approximation matrix B such that B itself is a PSD matrix, using

the same sample complexity and running time as in Theorem 4.1. Outputting a PSD low-rank

approximation was first considered by Clarkson and Woodruff [CW17], who obtain an input-

sparsity algorithm for arbitrary A. When A is PSD, Musco and Woodruff show that this problem

can be solved with Õ(nk/ǫ3 + nk2/ǫ2) queries, in time Õ(n(k/ǫ)ω + nkω−1/ǫ3(ω−1)).
We run Algorithm 3 till Step 5, i.e., we recover Q such that QQ⊤ is a SF projection for A. We

then modify Algorithm 1 by considering the following optimization problem instead:

min
rank(X)≤k

X�0

‖A − QXQ⊤‖2
F (4.42)

As before, we sketch on both sides by sampling proportional to the leverage scores of Q. Let the

resulting sampling matrices be denotedby S,T. Then, we have the following sketched optimization

problem:

min
rank(X)≤k

X�0

‖SAT − SQXQ⊤T‖2
F (4.43)

Following Step 4 in Algorithm 1, we can compute SAT, PSQ, PQ⊤T. We then compute X̂ �

(SQ)†PSQSATPQ⊤T(Q⊤T)† and X∗
� [(X̂ + X̂⊤)/2]k+, where for any matrix M, [M]k+ is defined by

setting all but the top-k positive eigenvalues to 0. Finally, we output NN⊤ where N � Q(X∗)1/2.

Corollary 4.26. (Outputting a PSD Low-Rank Approximation.) Given an n×n PSD matrix A, an integer

k, and 1 > ǫ > 0, there exists an algorithm that samples Õ(nk/ǫ) entries in A and outputs a rank-k MM⊤
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such that with probability at least 9/10,

‖A − MM⊤‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Further, the algorithm runs in Õ(n(k/ǫ)ω−1
+ (k/ǫ3)ω) time.

Proof. We first note that an extension of Lemma 4.14 holds for outputting a PSD matrix as well.

As a consequence of the following lemma, obtaining an approximate solution to the optimization

problem in Equation 4.42 suffices.

Lemma 4.27. (Structured Projections and PSD LRA [CW17].) Let P ∈ �n×n be an (ǫ, k)-SF projection

w.r.t A, then

‖A − PAk+P‖2
F ≤ (1 + ǫ)‖A − Ak+‖2

F

We then use the analysis of Lemma 15 from [CW17] to conclude that X∗ is the minimizer for

Equation 4.43. Finally, we note that the running time and query complexity is dominated by

computing Q and thus is the same as Theorem 4.1. Computing X∗ requires no additional queries

to A and only contributes a lower order term to the running time. �

4.4 Negative-Type Distances

In this subsection, we consider the problem of computing low-rank approximation for distance

matrices. Here, the input matrix A is formed by the pairwise distances between a set of points

P � {p1 , . . . , pn} in an underlying metric space d, i.e., Ai, j � d(pi , p j). Low-rank approximation for

distance matrices was introduced by Bakshi and Woodruff [BW18] who obtained sublinear time

additive-error algorithms for arbitrary metrics. Subsequently, Indyk et. al. [IVWW19] provided

sample-optimal algorithms for additive-error low-rank approximation. For arbitrary distance

matrices, it is known that relative-error algorithms requireΩ(nnz(A)) queries [BW18].

Here, we focus on the special case of negative-type (Euclidean Squared) metrics [Sch38].

Negative-type metrics have numerous applications in algorithm design since it is possible to

optimize over them using a semidefinite program (SDP). One significant algorithmic application

of negative-type metrics appears in the Arora-Rao-Vazirani algorithm for the Sparsest Cut prob-

lem [ARV09]. We refer the reader to extensive subsequent work on embeddability of such metrics

and the references therein [ALN08, ALN07, CGR05]. It is well-known that negative-type metrics

include ℓ1 and ℓ2 metrics, spherical metrics and hyper metrics [DL09, TD87]. Therefore, our

algorithms extend to distance matrices that arise from all such metrics.

For negative-type metrics, Bakshi and Woodruff obtain a bi-criteria relative-error low-rank

approximation algorithm that queries Õ(nk/ǫ2.5) entries in A and output a rank k + 4 matrix. In

contrast, we obtain a sample-optimal algorithm that does not require a bi-criteria guarantee. As

noted above, our algorithm works for any distance matrix where the distance can be realized as a

negative-type metric.

Theorem 4.28 (Sample-Optimal Negative-Type LRA). Let A ∈ �n×n be a negative-type distance matrix.

Given ǫ > 0 and k ∈ [n], there exists an algorithm that queries Õ(nk/ǫ) entries in A and outputs matrices
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M,N⊤ ∈ �n×k such that with probability 99/100,

‖A − MN‖2
F ≤ (1 + ǫ)‖A − Ak ‖2

F

Further, the algorithm runs in time Õ(n(k/ǫ)ω−1).
To demonstrate the connection between negative-type metrics and PSD matrices, we observe

that a negative-type distance matrix A can be realized as the distances corresponding to a point

set P � {x1 , x2, . . . xn} such that Ai, j � ‖xi − x j ‖2
2
� ‖xi ‖2

2
+ ‖x j ‖2

2
− 2〈xi , x j〉. Therefore, we can

rewrite A as R1 + R2 − 2B, where for all j ∈ [n], (R1)i, j � ‖xi ‖2
2
, R2 � R⊤

1
and B is PSD. Further,

we can obtain query access to B by simply assuming w.l.o.g. that x1 is centered at the origin and

the i-th entry in the first row corresponds to ‖xi ‖2
2 . Therefore, we can simulate our PSD low-rank

approximation algorithms on the matrix B by only having query access to A.

Our main contribution here is to show that if P � QQ⊤ is an (O(1), k/ǫ)-SF projection matrix

for B, then adjoining Q⊤ with the row span of R1 and R2 results in an SF-projection matrix for A.

Here, the row span of R1 is 1⊤/
√

n and R2 is v such that for all i ∈ [n] vi � ‖xi ‖2
2
/∑i ‖xi ‖2

2
. We note

that once we obtain an SF projection for A, we can run Algorithm 1 to output a (1+ ǫ) relative-error

low-rank approximation.

Lemma 4.29 (Structured Projections for Distance Matrices). Let A be a negative-type matrix such that

A � R1 + R2 − 2B, as defined above and let ǫ > 0. Given an (O(1), k/ǫ)-SF projection P � QQ⊤ for B,

let Ω⊤ be a basis for Q⊤ appended with the basis vectors for rowspan(R1) and rowspan(R2). Then, with

probability at least 99/100,

min
rank(X)≤k

‖A − ΩXΩ⊤‖2
2 ≤ (1 + ǫ)‖A − Ak ‖2

F

Proof. By Lemma 7 in [CW17], for any symmetric matrices Y,Z such that (Y−Z)Z � 0 and projection

matrix P, the following holds:

‖Y − PZP‖2
F � ‖Y − Z‖2

F + ‖Z − PZP‖2
F + 2Tr ((Y − Z)(I − P)ZP) (4.44)

Applying Equation 4.44 with Y � A and Z � Ak , for any projection matrix P, we have

‖A − PAkP‖2
F � ‖A − Ak ‖2

F + ‖Ak − PAkP‖2
F + 2Tr ((A − Ak)(I − P)AkP) (4.45)

Next, we bound the ‖Ak − PAkP‖2
F as follows:

‖Ak − PAkP‖2
F ≤ 2‖Ak(I − P)‖2

F

≤ 2k‖Ak(I − P)‖2
2

≤ 2k‖A(I − P)‖2
2

(4.46)

To bound the trace, we use the Von Neuman trace inequality,

2Tr ((A − Ak)(I − P)AkP) � 2Tr
(
(A − Ak)(I − P)2AkP

)
≤ 2

∑
i∈[n]
σi((A − Ak)(I − P))σi((I − P)AkP)

≤ 2k‖(A − Ak)(I − P)‖2‖(I − P)AkP‖2

≤ 2k‖A(I − P)‖2
2

(4.47)
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It suffices to bound ‖A(I − P)‖2
2

for P � ΩΩ⊤. Since A � R1 + R2 − 2B and (R1 + R2)(I − P) � 0, we

have

‖A(I − P)‖2
2 ≤ 2‖B(I − P)‖2

2

≤ 2‖B(I − QQ⊤)‖2
2

≤ O
( ǫ

k

)
‖B − Bk+2‖2

F

To relate ‖B − Bk ‖2
F

back to A, observe

‖A − Ak ‖2
F � ‖R1 + R2 − 2B − Ak ‖2

F � 4‖B − (R1 + R2 − Ak)/2‖2
F

≥ 4‖B − Bk+2‖2
F

Therefore, ‖A(I − P)‖2
2 ≤ O(ǫ/k)‖A − Ak ‖2

F. We can thus bound Equations 4.47 and 4.46 with

O(ǫ)‖A − Ak ‖2
F . Substituting this into Equation 4.45, we conclude that ‖A − PAkP‖2

F ≤ (1 +

O(ǫ))‖A − Ak ‖2
F, for P � ΩΩ⊤ and the claim follows. �

Recall, we can compute an SF projection for the PSD matrix B efficiently using Algorithm 3 and

then solve the optimization problem in Lemma 4.29 using Algorithm 1. We can therefore reduce

low-rank approximation of negative-type matrices to PSD low-rank approximation with only O(n)
additional queries and Theorem 4.28 follows.

4.5 Ridge Regression

We consider the following regression problem: given a PSD matrix A, a vector y and a ridge

parameter λ,

min
x

‖Ax − y‖2
2 + λ‖x‖2

2 .

As a corollary of Theorem 4.1, we obtain a faster algorithm for the aforementioned problem. We

begin with the following simple lemma from [MW17]:

Lemma 4.30 (Lemma 26 in [MW17]). Given a PSD matrix A, vector y, and λ > 0, let B be a matrix

such that ‖A − B‖2
2 ≤ ǫ2λ. Then, for any vector x̃ such that

‖Bx̃ − y‖2
2 + λ‖ x̃‖2

2 ≤ (1 + ǫ′)
(
min

x
‖Bx − y‖2

2 + λ‖x‖2
2

)
we have

‖Ax̃ − y‖2
2 + λ‖ x̃‖2

2 ≤ (1 + ǫ′)(1 + 5ǫ)
(
min

x
‖Ax − y‖2

2 + λ‖x‖2
2

)
Therefore, it suffices to find a rank-k matrix B such that ‖A − B‖2

2 ≤ ǫ2λ. Let s̃λ be an upper

bound on the statistical dimension sλ � Tr
(
(A2

+ λI)−1A2
)

Setting k � s̃λ/ǫ2, we can bound

‖A − Ak ‖2
F as follows:

ǫ2

s̃λ
‖A − Ak ‖2

F ≤ ǫ2
∑n

i�k+1 λ
2
i
(A)∑n

i�1 λ
2
i
(A)/(λ2

i
(A) + λ)

≤ ǫ2
∑n

i�k+1 λ
2
i
(A)∑n

i�k+1 λ
2
i
(A)/(λ2

i
(A) + λ)

≤ cǫ2λ
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We can then solve the regression problem minx ‖Bx − y‖2
2
+ λ‖x‖2

2
exactly in time O(nkω−1) and

obtain the following result:

Theorem 4.31 (Ridge Regression). Given a PSD matrix A, a regularization parameter λ and an upper

bound s̃λ on the statistical dimension sλ � Tr
(
(A2

+ λI)−1A2
)
, there exists an algorithm that queries

Õ(ns̃λ/ǫ2) entries of A and with probability 99/100 outputs x̂ such that for all y ∈ �d ,

‖Ax̂ − y‖2
2 + λ‖ x̂‖2

2 ≤ (1 + ǫ)
(
min

x
‖Ax − y‖2

2 + λ‖x‖2
2

)

Further, the algorithm runs in Õ(n(s̃λ/ǫ2)ω−1) time.

Remark 4.32. Observe that we can derive a data structure from our algorithm that preserves the

objective cost (up to 1 + ǫ) for all x and y simultaneously and thus we obtain a coreset for Ridge

Regression.

To complement the above algorithmic result, we present a new lower bound for coreset con-

structions for ridge regression, which matches our upper bound in all parameters. At a high level,

our hard instance for constant sλ consists of 1/ǫ2 blocks of all 1s, each of size ǫ
√

n × ǫ
√

n, placed

randomly across the matrix. Since any coreset construction must preserve the cost of all x , y,

we pick pairs (x , y) to be the eigenvectors of A (scaled appropriately) and show that in order to

preserve the cost of all pairs, the coreset algorithm must find all the blocks, which requiresΩ(n/ǫ2)
queries to A. Repeating the above construction sλ-times suffices to obtain a linear lower bound in

terms of sλ. Formally,

Theorem 4.33 (Coreset Lower Bound for Ridge Regression). Given a PSD matrix A and ǫ, λ > 0 let

sλ � Tr
(
(A2

+ λI)−1A2
)

denote the statistical dimension of A. Then, any coreset construction C that with

constant probability, preserves the ridge regression cost up to (1 + ǫ) simultaneously for all x , y, must read

Ω(nsλ/ǫ2) entries in A.

We recall the lower bound instance for low rank approximation of PSD matrices shown by

Musco and Woodruff :

Theorem 4.34 (Lower Bound for PSD LRA ([MW17])). Given an n × n PSD matrix A, ǫ0 > 0 and

k0 ∈ [n], any randomized algorithm that outputs a rank k0 matrix B such that with probability at least 9/10,

‖A − B‖2
F ≤ (1 + ǫ0)‖A − Ak0 ‖2

F

must query Ω(nk0/ǫ0) entries in A.

We consider the hard distribution defined by Musco and Woodruff, and show that we can

obtain a low rank approximation to this instance with strengthened parameters by using a coreset

for ridge regression.

Definition 4.35 (Hard Input Distribution for LRA ([MW17])). Let M be an n × n matrix and let

ǫ0 > 0, k0 ∈ [n]. Let γ(n , ǫ0, k0) be a distribution over M such that S ⊂ [n] is a uniformly random

subset of size n/2, which is further partitioned into subsets S1 ,S2, . . .Sk0 such that for all ℓ ∈ [k],
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Sℓ is picked uniformly at random and |Sℓ | � n/(2k0). For each subset Sℓ , let ASℓ denote the

principle submatrix of A indexed by the set Sℓ . Then, with probability 1/2, ASℓ is such that all the

diagonal entries are set to 1 and a uniformly random principle submatrix of ASℓ , indexed by the

set Tℓ , such that |Tℓ | � c
√
ǫ0 |Sℓ | is set to all 1s. With the remaining probability ASℓ is set to the I.

We show that we can derive a low-rank matrix B that satisfies the relative-error guarantee above

from a coreset for ridge regression.

Proof of Theorem 4.33. We show a proof by contradiction, where the high level idea is that a coreset

for ridge regression can be used to derive a low-rank approximation to A, when A is picked from

γ(n ,O(1), sλ/ǫ2) (the hard distribution defined in 4.35). First, we observe that with probability at

least 99/100, the input distribution hasΩ(sλ/ǫ2) blocks that contain a principle submatrix with all

1s. To see this let X1, . . .Xsλ/ǫ2 be indicators for the corresponding blocks ASℓ having a principle

submatrix of all 1s. Then,

�


∑

ℓ∈[sλ/ǫ2]
Xℓ


�
ǫ2n

2sλ
(4.48)

Since the Xℓ’s are independent, by a Chernoff bound we have

Pr


∑

ℓ∈[sλ/ǫ2]
Xℓ ≤ (1 − δ)ǫ

2n

2sλ


≤ exp

(
− cδǫ2n

sλ

)
(4.49)

For n ≥ Ω(sλ/ǫ2), we can bound the above probability by 1/100. We begin by showing that for

our input instance, sλ � Θ(n/λ) and thus the aforementioned equations differ by O(ǫn/sλ). To

see this observe

sλ �
∑
i∈[n]

σ2
i
(A)

σ2
i
(A) + λ

(4.50)

Then, there are sλ/2ǫ2 large eigenvalues, each of magnitude ǫ
√

n/sλ and thus the total contribution

is
sλ
2ǫ2

· (ǫ2n/sλ)
(ǫ2n/sλ) + λ

�
n

ǫ2n/sλ + λ

The remaining eigenvalues simply contribution 1/(1 + λ) to the sum and since there are at most n

of them, the total contribution is n/(1 + λ). Therefore, we can conclude sλ � Θ(n/λ).
For a block in A indexed by ℓ, let x̂ℓ be the eigenvector supported on indices in Sℓ and let

ŷℓ �
√

n/sλ x̂ℓ . For non-identity blocks, Ax̂ℓ � |Tℓ | x̂ℓ �
√
ǫ2n/sλ x̂ℓ and the regression cost is

‖(1 − ǫ)
√

n/sλ x̂ℓ ‖2
2 + λ � (1 − 2ǫ)n/sλ + cn/sλ (4.51)

When the block indexed by ℓ is the identity block, we get Ax̂ℓ � x̂ and the regression cost is

‖(
√

n/sλ − 1)x̂ℓ ‖2
2 + λ � (n/sλ + 1 − 2

√
n/sλ) + cn/sλ (4.52)
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Instead consider a vector that intersects an eigenvector x̃ℓ on a (1 − γ)-fraction of the support and

the rest is arbitrary. Then, when an an all 1s block exists, Ax̃ℓ ≥ (1− γ)2 |Tℓ | x̂ℓ � (1− γ)2
√
ǫ2n/sλ x̂ℓ

and thus the regression cost is at most

(1 − ǫ(1 − 2γ))2n/sλ + cn/sλ

Further, when the block is simply the identity, a similar calculation shows that the regression cost

is at least (1 − 2ǫγ)2n/sλ + cn/sλ. Therefore, the ridge regression cost determines the existence of

a (1 − 2γ)-fraction of an all 1s principle submatrix even when x̂ℓ intersects with an eigenvector on

a (1 − γ)-fraction of coordinates.

Consider a coreset C for the above instance. Since this coreset preserves the ridge regression

objective upto a (1 + ǫ/1000) factor for all x , y, as per our above discussion we can query the

coreset on the tuples (x̂ℓ , ŷℓ), which represent the eigenvectors of each block, to determine if a

block contains a principle submatrix with all 1s. However, a priori we do not know the support of

the eigenvector within each block ASℓ .
Instead we query the coreset on all possible supports and show we can determine the right one

as follows: let x̃ be supported on a set that intersects with a principle submatrix of all 1s on at most

a γ fraction. Observe that Ax̃ ≤ 1
γ

(
γ2ǫx̃

)
and thus the ridge regression cost can be lower bounded

as follows:

(1 − ǫγ)2n/sλ + cn/sλ (4.53)

We therefore take the set of all vectors on which the coreset cost is less than the above cost and

let the resulting list be L. Note, this list must include the eigenvectors and further, only includes

vectors which intersect an all 1’s submatrix on a 1 − γ-fraction. Therefore, picking a set of ǫ2n/sλ
vectors that have maximum support suffices.

Since we detect a (1−γ)-fraction of all principle submatrices in A, it follows that we can output a

1+ c′-approximate low-rank approximation for A, for a fixed small constant c′. To see this, observe

that the optimal low-rank approximation to A is given by the matrix that selects all the principle

submatrices with all 1s and thus ‖A − Ak0 ‖2
F � n − k0 � n − sλ/ǫ2. Further, our approximation to

Ak , denoted by B, matches Ak on a (1 − γ)-fraction of each principle submatrix of all 1s and thus

we match Ak on these entries. Subsequently we bound the additional cost that B incurs which Ak

does not. This includes entries that are 1 in Ak and 0 in B and vice versa.

To bound the cost of the entries that exist in Ak but do not exist in B, observe on each principle

submatrix, B and A intersect in at least (1 − γ)2-fraction of the entries and thus the remaining

entries are at most (1−(1− γ)2) · ǫ2n
csλ

· sλ
ǫ2

� 4γn/c, since the size of each block is ǫ
2n

csλ
and the number

of blocks are at most sλ
ǫ2

. Finally, observe that since we do not pick exact eigenvectors we can have

non-zero off diagonal entries in B that do not exist in Ak . However, we have at most γ-fraction of

the support on each indicator vector remaining and contributing to two rectangular blocks of 1s,

each of size γ · ǫ2n
csλ

· sλ
ǫ2

� γn/c. Therefore, the additional non-zero entries in B that do not appear

in A are 2γn/c in number.

Therefore, the overall cost ‖A − B‖2
F
≤ (1 + 6γ/c)n. By setting the constants γ and c and

observing that sλ/ǫ2 ≪ n, we obtain a (1 + c′)-low-rank approximation to A, for any arbitrary
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small constant c′. Therefore, our reduction suffices to solve the hard instance above and a lower

bound of Ω(nk0/ǫ0) � Ω(nsλ/ǫ2) queries follows. �

5 Robust Low-Rank Approximation

One drawback of relative-error guarantees is that the corresponding algorithms cannot tolerate any

amount of noise. Therefore, we introduce a robust model for low-rank approximation by relaxing

the requirement from relative-error guarantees to additive-error guarantees. In the robustness

model we consider, we begin with an n × n PSD matrix A. An adversary is then allowed to

arbitrarily corrupt A by adding a corruption matrix N such that the corruption in each row is an

fixed constant times the ℓ2
2

row norm of the row and the total corruption is an η-fraction of squared

Frobenius norm of A. While the adversary may corrupt any number of entries of A, the norm of

the corruption matrix is bounded and the algorithm has query access to A + N. We parameterize

our lower bound and algorithms by the largest ratio between a diagonal entry of A and A + N,

denoted by φmax � max j∈[n] A j, j/|(A+N) j, j |. This captures the intuition that the diagonal is crucial

for sublinear time low rank approximation and the sample complexity degrades as we corrupt

larger diagonals entries.

5.1 Lower Bound for Robust PSD Low-Rank Approximation

In this subsection, we show a query lower bound ofΩ(η2n2k/ǫ2) � Ω(φ2
maxnk/ǫ) for any algorithm

that outputs a low rank approximation up to additive-error (ǫ + η)‖A‖2
F. Note, obtaining error

smaller than η‖A‖2
F

is information-theoretically impossible and reflected in the query lower bound.

Our lower bound holds for randomized algorithms, and uses Yao’s minimax principle [Yao77].

The overall strategy is to demonstrate a lower bound for deterministic algorithms on a carefully

chosen input distribution. We construct our input distributions as follows: let A ∈ �n×n be a block

diagonal matrix with such that B1 is 5ǫ/η× 5ǫ/η randomly positioned, non-contiguous block with

all entries
√

nη2/5ǫ and B2 is the identity matrix on the remaining indices. A is clearly a PSD

matrix since each principle submatrix is PSD. Observe ‖A‖2
F
� (25ǫ/η2) · (nη2/5ǫ) + (n − 5ǫ/η) �

(1+ 5ǫ)n − o(n). Further, the dense block B1 contributes a total squared Frobenius norm of at least

4ǫn and the diagonal entry contributes an η/ǫ fraction of each row. Since ǫ ≥ η, the diagonal

contributes at most the entire ℓ22 norm. The corresponding diagonal of B1 also has ℓ22 squared

norm 5ǫ/η · nη2/5ǫ � ηn.

At a high level, the adversary can then corrupt the diagonal and set each diagonal entry

to be 1, making it hard for the algorithm to find rows corresponding to B1. We show that any ǫ-

additive-error low-rank approximation must detect at least one entry in B1 to adaptively sample the

corresponding row and column, but the diagonals no longer provide any useful information. Thus

any algorithm must query most entries in A. Further, in our construction, note φmax �

√
nη2/5ǫ.

We first describe intuitively why a low rank approximation needs to recover many rows from

the block B1. Since A has this block structure, the best rank-1 approximation satisfies ‖A− Ak ‖2
F �

n − |B1 |. Therefore, assuming the cardinality of B1 is negligible, in order to obtain an overall error

bound of ǫ‖A‖2
F ≥ ǫn, the algorithm must find a constant fraction of off-diagonal entries in B1.
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This is because B1 contributes at least 5ǫn norm. However, since the diagonals no longer convey

any information about the off-diagonals, and the block B1 is placed on a random subset of indices,

any deterministic algorithm must read arbitrary off-diagonal entries until it finds a non-zero entry.

Since there are only 25ǫ2/η2 non-zeros in B1, to find one in expectation (over the input distribution)

requires sampling ǫ2n2/η2 entries. While the above serves well as intuition, a rigorous proof

requires many additional steps. We begin by defining a distribution over the input matrices :

Definition 5.1. Given n ∈ �, ǫ > η > 0, let S ⊂ [n] be a uniformly random subset of size ⌈5ǫ/η⌉.
Let µ(n , ǫ, η) be a distribution over matrices M ∈ �n×n such that ∀i ∈ [n], Mi,i � 1 and ∀i , j ∈ S,

Mi, j �
√
η2n/5ǫ. All remaining entries in M are 0.

Next, we show that any M sampled from µ(n , ǫ, η) can be decomposed into A + N such that

A is PSD and ‖N‖2
F ≤ η‖A‖2

F. To see this, let N be a diagonal matrix such that for all i ∈ S,

Ni,i � −
√
η2n/5ǫ and let A � M − N. We give an algebraic proof that A is PSD, but A can also be

decomposed into a rank-1 block of all
√
η2n/5ǫ-s corresponding to all i , j ∈ S and identity on the

remaining indices. For all x ∈ �n ,

xTAx �

∑
i, j∈S

Ai, j xix j +

∑
i, j<S

Ai, j xi x j

�

√
η2n/5ǫ

∑
i, j∈S

xi x j +

∑
i<S

x2
i

�

√
η2n/5ǫ

(∑
i∈S

xi

)2

+

∑
i<S

x2
i

≥ 0

(5.1)

and thus A is PSD. Further, ‖A‖2
F
� (25ǫ2/η2) · (nη2/5ǫ) + (n − 5ǫ/η) � (1 + 5ǫ)n − 5ǫ/η. Then,

‖N‖2
F
� 5ǫ/η · η2n/ǫ � η‖A‖2

F
, as desired. Intuitively, we show that if B is a rank-k matrix that

is a good low-rank approximation for M sampled from µ, then it cannot be a good low-rank

approximation for I. To this end, we consider a distribution where M is drawn from µ(n , ǫ, η)with

probability 1/2 and is In×n with probability 1/2.

Definition 5.2. (Hard Distribution) Given n ∈ �, ǫ > η > 0, let ν(n , ǫ, η) be a distribution over

M ∈ �n×n such that with probability 1/2, M is sampled from µ(n , ǫ, η) and with probability 1/2,

M � In×n .

We now show that a low-rank approximation to M can be used as a certificate to separate the

mixture ν(n , ǫ, η) since it can distinguish between the input being identity or far from it. Thus

if the distributions are close in a statistical sense, any algorithm to distinguish between the two

would require querying many entries in M. Formally,

Lemma 5.3. (LRA as a Distinguisher.) Let M be a matrix drawn from µ(n , ǫ, η) and let B be a rank-k matrix

that is the candidate low-rank approximation to M such that ‖M − B‖2
F ≤ ǫn. Then, ‖M − I‖2

F > 1.1ǫn.
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Proof. Since ‖M − B‖2
F

≤ ǫn, B must have at least 4ǫn mass on the off-diagonal entries of M.

So, B must have at least 10ǫ2/η2 non-zero off-diagonal entries. Therefore, it must have at least

5ǫ2/η2 entries with squared mass ǫn/2. To see why, assume there is a subset of at least 12ǫ2/η2

entries, each being at most
√

nη2/10ǫ. Restricted to only these entries, the squared Frobenius norm

difference between M and B is already at least 1.2ǫn, contradicting our assumption. Given that

there exists a subset of 5ǫ2/η2 off-diagonal entries having squared mass 1.2ǫn, ‖B − I‖2
F
> 1.2ǫn,

and thus B is not an additive error low-rank approximation for I. �

Theorem 5.4. (Lower bound for PSD Matrices.) Let A be a PSD matrix, k ∈ � and ǫ > 0 be any constant.

Let N be an arbitrary matrix such that ‖N‖2
F ≤ η‖A‖2

F. Any randomized algorithm A that only has query

access to A + N, with probability at least 2/3, computes a rank-k matrix B such that

‖A − B‖2
F ≤ ‖A − Ak ‖2

F + ǫ‖A‖2
F

must read Ω
(
φ2

maxnk/ǫ
)

entries of A + N on some input, possibly adaptively, in expectation.

Proof. Let Algorithm A be a deterministic algorithm that outputs a rank-k matrix B such that it is

an additive-error low-rank approximation M. Let T ⊂ [n2] be the subset of entries read by A. Let

L(µ) denote the distribution of T conditioned on M ∼ µ(n , ǫ, η) and L(i) be the distribution of T

conditioned on M � I. By Lemma 5.3, since the output of A can be used to distinguish between

the two distributions, it is well-known that the success probability over the randomness in T is at

most 1/2 + DTV(L(µ), L(i))/2 [BY02]. Since we assume A succeeds with probability at least 2/3,

DTV(L(µ), L(i)) ≥ 1/3 (5.2)

It remains to upper bound DTV in terms of |T |. Recall, S is the random set of indices where

µ(n , ǫ, η) is non-zero. Let Ŝ be the subset of S restricted to the off-diagonal entries of M. When

M ∼ µ(n , ǫ, η), ∀i , j ∈ S̃, Mi, j is non-zero and when M � I, the same entries are 0. Observe, for all

i , j < S̃, Mi, j are fixed. Further, S is a uniform subset of [n]. Therefore,

Pr
[
(i , j) ∈ T | (i , j) ∈ S

]
�

|T |ǫ2
η2n2

(5.3)

Then, with probability at least 1 − |T |ǫ2/η2n2, A queries the same entries for both L(µ) and L(i).
Therefore

DTV(L(µ), L(i)) ≤ |T |ǫ2/η2n2.

Combined with Equation 5.2, if A succeeds with probability at least 2/3, |T |ǫ2/η2n2 ≥ 1/3 and thus

|T | � Ω(η2n2/ǫ2). Given that any deterministic algorithm must query Ω(η2n2/ǫ2) � Ω(φ2
maxn/ǫ)

entries for ν(n , ǫ, η), to now obtain a linear dependence on the rank k, we can use the standard

approach of creating k disjoint copies of the block B1 in the hard distribution, as shown in [MW17].

The theorem follows from Yao’s minimax principle. �
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5.2 Robust Sublinear Low-Rank Approximation Algorithms

In this subsection, we provide a robust algorithm for the model discussed above. We parameterize

our algorithms and lower bound by the largest ratio between a diagonal entry of A and A + N,

denoted by φmax � max j∈[n] A j, j/|(A + N) j, j |. In addition, we provide robust PCP constructions,

by introducing a new sampling procedure to construct projection-cost preserving sketches. Our

sampling procedure is straightforward: we sample each column proportional to the diagonal

entry in that column. This sampling requires n queries to the matrix A to obtain an additive-error

projection cost preservation guarantee. Further, for the special case of correlation matrices, we can

uniformly sample columns of A to obtain a smaller matrix such that all rank k projections in the

column and row space are preserved.

For our algorithms, we assume we know φmax. In practice, this assumption may not hold, but

we can query as many entries in A+N as our budget allows, given that correctness holds only when

the queries are at least Õ(φ2
maxnk/ǫ). Since we read the diagonals of A+N and we know φmax, we

can obtain an upper bound on Ai,i and A j, j. Therefore, whenever we query an off-diagonal entry

in A+N, we can truncate it to φmax

√
|(A + N)i,i | · |(A + N) j, j | without increasing the corruption in

our input.

Robust Projection-Cost Preserving Sketches. Here, we show that diagonal sampling is a

robust sampling procedure to create projection-cost preserving sketches. We begin by relating the ℓ22
row (or column) norms of a PSD matrix to it’s spectral norm. Let A be a PSD matrix and let UΣUT

be the SVD for A.

Lemma 5.5. Given an n × n PSD matrix A, for all i ∈ [n], ‖Ai,∗‖2
2
≤ ‖A‖2 · Ai,i .

Proof. Observe, Ai,∗ � UiΣUT and Ai,i � (Ui,∗ΣUT)i �
∑n

j�1 σ j(A)U2
i, j

. Then,

‖Ai,∗‖2
2 � Ai,∗A

T
i,∗ � Ui,∗ΣUTUΣUT

i,∗ �
n∑

j�1

σ2
j (A)U2

i, j

≤ ‖A‖2

n∑
j�1

σ jU
2
i, j

� ‖A‖2 · Ai,i

�

An immediate consequence of Lemma 5.5 is that the ℓ2
2

norm of a row or column of a PSD matrix

is at most
‖A‖F

Ai ,i
. Note, this precludes matrices where most of the mass in concentrated on a small

number of rows or columns. Recall, we observe as input the matrix A+N and our goal is to obtain

a PCP for this in sublinear time and queries.

Musco and Musco [MM17] describe how to approximately compute the ridge leverage scores

of A
1
2 (if A is PSD) using a Nystrom approximation. [MW17] use this method to compute the

ridge leverage scores of A
1
2 with O(nk) queries, where A � A

1
2 · A

1
2 . However, these approaches

do not apply when we perturb the input and it may no longer be PSD. Therefore, the best known
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construction by Cohen et. al. [CMM17] would require Ω(nnz(A)) time to compute approximate

ridge-leverage scores of A. Note, this does not use the structure that A has.

In contrast, we show that sampling columns proporitional to the diagonal entries suffices to

obtain a PCP. Note, we only need to query the diagonal of A to compute the distribution over

columns exactly. The main technical challenge here is to obtain the correct dependence on n

and k and account for the perturbation to the input, given that our sampling probabilities are

straightforward to compute and do not rely on spectral properties of A+N. Note, the following is

a structural result and while we do not know A, we can still show the following :

Theorem 5.6. (Robust Spectral Bound.) Let A be an n × n PSD matrix and N be an arbitrary matrix

such that ‖N‖2
F ≤ η‖A‖2

F and for all j ∈ [n], ‖N∗, j ‖2
2 ≤ c‖A∗, j‖2

2 , for any fixed constant c. Let

φmax � max j A j, j/(A + N) j, j and let q � {q1 , q2 . . . qn} be a distribution over the columns of A + N such

that for all j, q j � (A + N) j, j/Tr (A + N) and let t � O
(
φmax

√
nk2 log(n/δ)/ǫ2

)
. Then, construct a

sampling matrix T that samples t columns of A+N such that it samples column(A+N)∗, j with probability

q j and scales it by 1/
√

tq j. With probability at least 1 − δ, for any rank-k orthogonal projection X,

AAT −
( ǫ

k

)
‖A‖2

FI � AT(AT)T � AAT
+

( ǫ
k

)
‖A‖2

FI

Proof. First, we note that we cannot explicitly compute AT, but we can show that the sampling

probabilities we have access to result in a PCP for A. Let Y � AT(AT)T − AAT . For notational

convenience let A j � A∗, j . We can then write Y �

∑
j∈[t]

(
C∗, jCT

∗, j −
1
t AAT

)
�

∑
j∈[t] X j, where

X j �
1
t ( 1

q j
A jA

T
j
− AAT) with probability q j. We observe that �[X j] � �[C∗, jCT

∗, j −
1
t AAT] � 0, and

therefore, �[Y] � 0. Next, we bound the operator norm of Y. To this end, we use the Matrix

Bernstein inequality, which in turn requires a bound on the operator norm of X j and variance of Y.

Recall,

‖X j ‖2 �





 1

tq j
A jA j −

1

t
AAT






2

≤ Tr (A + N)
t(A + N) j, j

‖A j ‖2
2 +

1

t
‖A‖2

2

≤ 2Tr (A) + |Tr (N) |
t(A + N) j, j

(
(1 + η)‖A‖2A j, j

)
≤

c(Tr (A) + |Tr (N) |)‖A‖2φmax

t

≤
cφmax

√
n‖A‖F‖A‖2

t

(5.4)

where we use triangle inequality for operator norm to obtain the first inequality, triangle inequality

up to a factor of 2 for ℓ22 norms for the second inequality, ‖N j ‖2
2 ≤ η‖A∗, j‖2

2 and ‖A j ‖2
2 ≤ ‖A‖2 ·A j, j

(from Lemma 5.5) for the third inequality and definition of φmax and η � O(1) for the fourth.

Finally, we relate the trace of A and N to their respective Frobenius norm using Cauchy-Schwarz:

Tr (A) �
n∑

i�1

σi(A) ≤

√√
n∑

i�1

σ2
i
(A) · n �

√
n‖A‖2

F
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and

|Tr (N) | �
�����

n∑
i�1

σi(A)
����� ≤

√√
n∑

i�1

σ2
i
(N) · n �

√
n‖N‖2

F
≤ √

nη‖A‖F

where the last inequality follows from ‖N‖F ≤ √
η‖A‖F. Next, we bound Var[Y] ≤ �

[
Y2

]
.

�
[
Y2

]
� t�

[(
(AT)∗, j(AT)T∗, j −

1

t
AAT

)2
]

� t�

[(
(AT)∗, j(AT)T∗, j

)2

+
1

t2

(
AAT

)2 − 2

t
(AT)∗, j(AT)T∗, jAAT

]

�
1

t

©­«
∑
j∈[n]

(A jA
T
j
)2

q j
+ (AAT)2 −

∑
j∈[n]

2A jA
T
j AATª®¬

� Tr (A + N)
tA j, j

©­«
∑
j∈[n]

(A jA
T
j )

2ª®¬
�

cφmax

√
n‖A‖F‖A‖2

t
AAT

(5.5)

where we use linearity of expectation, (AAT)2 � 0 and ‖A j,∗‖2
2 ≤ ‖A‖2 · A j, j. Applying the Matrix

Bernstein inequality,

Pr
[
‖Y‖2 ≥ ǫ‖A‖2

F

]
≤ 2n exp

©­«
−

ǫ2‖A‖4
F

cφmax
√

n‖A‖F ‖A‖3
2

t +
2φmax

√
n‖A‖F ‖A‖2(ǫ‖A‖2

F)
3t

ª®¬
≤ 2n exp

(
− ǫ2t

cφmax

√
n‖A‖F‖A‖2

(
‖A‖4

F

‖A‖2
2
+ ǫ‖A‖2

F

))

≤ 2n exp

(
− ǫ2t

c′φmax

√
n

)

≤ δ/2

where the last inequality follows from setting t � O(φmax

√
n log(n/δ)/ǫ2). To yield the claim, we

set ǫ � ǫ/k. �

We use the above spectral bound to show that sampling proportional to diagonal entries preserves

the projection cost of the columns of A on to any k-dimensional subspace up to an additive

(ǫ +√
η)‖A‖2

F.

Theorem 5.7. (Column Projection-Cost Preservation.) Given A+N, where A is an n × n PSD matrix and

N is an arbitrary noise matrix as defined above, k ∈ � and ǫ > η > 0, let q � {q1, q2 . . . qn} be a probability

distribution over the columns of A + N such that q j �
(A+N) j, j

Tr(A+N) . Let t � O
(
φmax

√
nk2 log( n

δ )/ǫ2
)
. Then,
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construct C using t columns of A + N and set each one to
(A+N)∗, j√

tq j

with probability q j. With probability at

least 1 − c, for any rank-k orthogonal projection X,

‖C − XC‖2
F � ‖A − XA‖2

F ± (ǫ +√
η)‖A‖2

F

for a fixed constant c.

Proof. Here, the matrix C is actually a matrix we can compute. Observe that we can relate C to the

sampling matrix T as defined in Theorem 5.6 as C � (A + N)T. We follow the proof strategy of

the relative error guarantees in [CMM17] and additive error guarantees in [BW18] but note, our

spectral bounds from Theorem 5.6 apply to matrices that we do not actually compute. Observe,

‖A − XA‖2
F � Tr

(
(� − X)AAT(� − X)

)
. Then,

Tr
(
(� − X)AAT(� − X)

)
� Tr

(
AAT

)
+ Tr

(
XAATX

)
− Tr

(
AATX

)
− Tr

(
XAAT

)
� Tr

(
AAT

)
+ Tr

(
XAATX

)
− Tr

(
AATXX

)
− Tr

(
XXAAT

)
� Tr

(
AAT

)
+ Tr

(
XAATX

)
− Tr

(
XAATX

)
− Tr

(
XAATX

)
� Tr

(
AAT

)
− Tr

(
XAATX

)
(5.6)

where we used the fact that for any projection matrix X � X2 in addition to the cyclic property of

the trace. Similarly,

‖C − XC‖2
F � Tr

(
(� − X)CCT(� − X)

)
� Tr

(
CCT

)
− Tr

(
XCCTX

)
(5.7)

We first relate Tr
(
AAT

)
and Tr

(
CCT

)
. Recall,

�
[
Tr

(
CCT

)]
� �

[
‖C‖2

F

]
� ‖A + N‖2

F ≤ Tr
(
AAT

)
+ 2

√
η‖A‖2

F

Using a scalar Chernoff bound, we show that with probability at least 1 − 1/poly(n), ‖C‖2
F
�

(1 ± ǫ)‖A + N‖2
F . This is equivalent to | ‖C‖2

F − ‖A + N‖2
F | ≤ ǫ‖A + N‖2

F . Observe, for all j ∈ [t],
C∗, j � 1√

q j′ t
(A + N)∗, j′ for some j′ ∈ [n]. Then,

‖C∗, j‖2
2 �

1

q j′ t
‖(A + N)∗, j′ ‖2

2 �
Tr (A + N) ǫ2

φmax

√
nk log(n/δ)(A + N) j′ , j′

‖(A + N)∗, j′ ‖2
2

≤ c
√

n‖A‖Fǫ
2

√
n log(n/δ)

‖A‖2

≤ cǫ2

k log(n/δ) ‖A + N‖2
F

(5.8)

where we use Tr (A) ≤
√

n‖A‖F, Tr (N) ≤ √
ηn‖A‖F and t � O(φmax

√
nk log(n/δ)/ǫ2). Therefore,

k log(n/δ)
ǫ2‖A‖2

F

‖C∗, j‖2
2
∈ [0, 1]. By a Chernoff bound,
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Pr
[
‖C‖2

F ≥ (1 + 2ǫ)‖A + N‖2
F

]
� Pr

[
k log(n/δ)
ǫ2‖A + N‖2

F

‖C‖2
F ≥

k log(n/δ)
ǫ2

(1 + ǫ)
]

≤ exp

(
−

kǫ2 log(n/δ)
ǫ2

)

≤ δ
2

(5.9)

We can repeat the above argument to lower bound ‖C‖2
F. Therefore, with probability 1 − δ, we

have

| ‖C‖2
F − ‖A + N‖2

F | ≤ ǫ‖A + N‖2
F

Here, we can upper bound this by observing ‖A+N‖2
F ≤ ‖‖2

F + ‖N‖2
F + 2〈A,N〉 ≤ ‖A‖2

F + 3
√
η‖A‖2

F.

Therefore,

| ‖C‖2
F − ‖A‖2

F | ≤ ǫ‖A‖2
F + (1 + ǫ)√η‖A‖2

F ≤ (ǫ + 2
√
η)‖A‖2

F (5.10)

Next, we relate Tr
(
XCCTX

)
and Tr

(
XAATX

)
. First, we observe

CCT
� (AT + NT)(AT + NT)T � (AT)(AT)T + (AT)(NT)T + (NT)(AT)T + (NT)(NT)T (5.11)

We begin by first bounding Tr
(
X(AT)(AT)TX

)
. Observe, X is a rank k projection matrix and we

can represent it as ZZT , where Z ∈ �n×k and has orthonormal columns. By the cyclic property of

the trace, we have

Tr
(
ZZT(AT)(AT)TZZT

)
� Tr

(
ZT(AT)(AT)TZ

)
�

∑
j∈[k]

ZT
∗, j(AT)(AT)TZ∗, j

Similarly, Tr
(
ZZTAATZZT

)
�

∑
j∈[k] ZT

∗, jAATZ∗, j. By Theorem 5.6 , we have

∑
j∈[k]

(
ZT
∗, jAATZ∗, j −

( ǫ
k

)
‖A‖2

FZT
∗, jIZ∗, j

)
≤

∑
j∈[k]

(
ZT
∗, j(AT)(AT)TZ∗, j

)

≤
∑
j∈[k]

(
ZT
∗, jAATZ∗, j +

( ǫ
k

)
‖A‖2

FZT
∗, jIZ∗, j

) (5.12)

Since ZT
∗, jZ∗, j � 1 and Tr

(
ZTAATZ

)
� Tr

(
XAATX

)
, we have

Tr
(
XAATX

)
− ǫ‖A‖2

F ≤ Tr
(
X(AT)(AT)TX

)
≤ Tr

(
XAATX

)
+ ǫ‖A‖2

F (5.13)

Next, we focus on Tr
(
X(NT)(NT)TX

)
� ‖XNT‖2

F. Observe, since T is an unbiased estimator of

Frobenius norm, by Markov’s inequality we can show with probability at least 1 − c, ‖XNT‖F �

c‖N‖F � O(√η)‖A‖F. Therefore, we can upper bound Tr
(
X(NT)(NT)TX

)
by O(η)‖A‖2

F. Now, we

focus on the cross terms. By Cauchy-Schwartz, and a Markov bound, with probability at least 1− c,

Tr
(
X(AT)(NT)TX

)
≤ ‖AT‖F · ‖NT‖F ≤ O(√η)‖A‖2

F (5.14)
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Combining equations 5.10, 5.13, 5.14 and union bounding over the success of the random

events, with probability 1 − c,

‖A − XA‖2
F − O(ǫ +√

η)‖A‖2
F ≤ ‖C − XC‖2

F ≤ ‖A − XA‖2
F + O(ǫ + √

η)‖A‖2
F

�

Robust Row Projection Cost Preserving Sketches. We now extend the diagonal sampling algo-

rithm to construct a row projection cost preserving sketch for the matrix C. We note that following

the construction for A does not immediately give a row PCP for C since C is no longer PSD or

even square matrix. Here, all previous approaches to construct a PCP with sublinear queries hit a

roadblock, since the matrix C need not have any well defined structure apart from being a scaled

subset of the columns of a PSD matrix. However, we show that sampling rows of C proportional

to the diagonal entries of A results in a row PCP.

We begin by relating the row norms of C to the row norms of A. Note, we do not expect

to obtain concentration here, since such a sampling procedure would then help us estimate row

norms of A up to a constant and we would be done by using [FKV04]. Therefore, we obtain the

following one-sided guarantee:

Lemma 5.8. Let AT ∈ �n×t be a column projection-cost preserving sketch for A as described in Theorem

5.6. For all i ∈ [n], with probability at least 1 − 1/nc ,

‖(AT)i,∗‖2
2 ≤ O

(
log(n)max

{
‖Ai,∗‖2

2 ,
φmax

√
n‖A‖FAi,i

t

})

where c is a fixed constant.

Proof. Observe that ‖(AT)i,∗‖2
2 �

∑
j∈[t](AT)2

i, j
, where (AT)2

i, j
�

Tr(A+N)
t(A+N) j, j

A2
i, j

with probability
(A+N) j, j

Tr(A+N) .

Then,�[‖(AT)i,∗‖2
2] �

∑n
i�1 A2

i, j
� ‖Ai,∗‖2

2 . Next, we compute the variance of ‖(AT)i,∗‖2
2 . Var

[
‖(AT)i,∗‖2

2

]
�

tVar
[
(AT)2

i, j

]
≤ �

[
(AT)4

i, j

]
. Then,

t�
[
(AT)4i, j

]
�

∑
j∈[n]

1

tq j
A4

i, j ≤
∑
j∈[n]

Tr (A + N)
t(A + N) j, j

A2
i, jAi,iA j, j

≤
Tr (A + N)φmaxAi,i

t
‖Ai,∗‖2

2

≤
(
2φmax

√
n‖A‖FAi,i

t

)2

+ ‖Ai,∗‖4
2 [AM-GM]

where we use A2
i, j

≤ Ai,iA j, j, which follows from applying Cauchy-Schwarz to 〈A1/2
i,∗ ,A

1/2
j,∗ 〉, i.e.,

A2
i, j � 〈A1/2

i,∗ ,A
1/2
j,∗ 〉

2 ≤ ‖A1/2
i,∗ ‖

2
2 ‖A

1/2
j,∗ ‖

2
2 � Ai,iA j, j
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Similarly, we bound

(AT)2i, j �
Tr (A + N)
t(A + N) j, j

A2
i, j ≤

2φmax

√
n‖A‖F

t
Ai,i

Applying Bernstein’s inequality,

Pr

[
| ‖(AT)i,∗‖2

2 − ‖Ai,∗‖2
2 ≥ γmax

{
‖Ai,∗‖2

2 ,
φmax

√
n‖A‖FAi,i

t

}]

≤ 2 exp

©­­­­«
−

γ2 max

{
‖Ai,∗‖4

2
,
(
φmax

√
n‖A‖FAi ,i

t

)2
}

(
2φmax

√
n‖A‖FAi ,i

t

)2

+ ‖Ai,∗‖4
2 + γmax

{
φmax

√
n‖A‖FAi ,i‖Ai ,∗‖2

2

t ,
(

Tr(A)Ai ,i

t

)2
}
ª®®®®¬

≤ 2 exp

©­­­­«
−
γmax

{
‖Ai,∗‖4

2
,
(
φmax

√
n‖A‖FAi ,i

t

)2
}

c′
(
φmax

√
n‖A‖FAi ,i

t

)2

+ c′‖Ai,∗‖4
2

ª®®®®¬
where

φmax
√

n‖A‖FAi ,i

t ‖Ai,∗‖2
2
≤

(
φmax

√
n‖A‖FAi ,i

t

)2

+ ‖Ai,∗‖4
2

follows from the AM-GM inequality. Set-

ting γ � Ω(log(n)) completes the proof.

�

To construct a row projection cost preserving sketch of C, we sample t rows of C proportional

to the corresponding diagonal entries of A. Formally, we consider a probability distribution,

p � {p1 , p2, . . . pn}, over the rows of C such that pi �
Ai ,i

Tr(A) . Let R be a t × t matrix where each row

of R is set to 1√
tpi

Ci,∗ with probability pi . As before, R can be represented as SC � S(AT+NT). We

first obtain a spectral guarantee for SAT, while we cannot actually compute this.

Theorem 5.9. (Spectral Bounds.) Let AT be an n × t matrix constructed as shown in Theorem 5.6.

Let p � {p1 , p2 . . . pn} be a probability distribution over the rows of AT such that pi �
(A+N)i ,i

Tr(A+N) . Let

t � O
(√

nk2

ǫ2
log( n

δ )
)
. Construct a sampling matrix S that samples t rows of AT such that row (AT)i,∗ is

picked with with probability pi and scaled by 1√
tpi

. Then, with probability at least 1 − δ,

(AT)T(AT) − ǫ
k
‖A‖2

FI � (SAT)T(SAT) � (AT)T(AT) + ǫ
k
‖A‖2

FI

Proof. Let Y � (SAT)T(SAT) − (AT)T(AT). For notational convenience let (AT)i � (AT)i,∗ and

(SAT)i � (SAT)i,∗. We can then write Y �

∑
i∈[t]

(
(SAT)T

i
(SAT)i − 1

t (AT)T(AT)
)
�

∑
i∈[t] Xi , where

Xi �
1
t

(
1
pi
(AT)T

i
(AT)i − (AT)T(AT)

)
with probability pi . We observe that�[Xi] � �[(SAT)T

i
(SAT)i−

1
t (AT)T(AT)] � ∑

i
pi

pi
(AT)T

i
(AT)i − (AT)T(AT) � 0, and therefore, �[Y] � 0. Next, we bound the

operator norm of Y. To this end, we use the Matrix Bernstein inequality, which in turn requires a
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bound on the operator norm of Xi and variance of Y. Recall, for some i′ ∈ [n]

‖Xi ‖2 �





 1

tpi′
(AT)Ti′(AT)i′ −

1

t
(AT)T(AT)






2

≤ 1

tpi′
‖(AT)Ti′(AT)i′ ‖2 +

1

t
‖(AT)T(AT)‖2

�

‖(AT)i′ ‖2
2

tpi′
+

‖(AT)‖2
2

t

≤ log(n)
tpi′

max

{
‖Ai′,∗‖2

2 ,
φmax

√
n‖A‖FAi,i

t

}
+

‖(AT)‖2
2

t
[by Lemma 5.8]

≤
log(n)

t
max

{
φmax

√
n‖A‖F‖A‖2,

(φmax

√
n‖A‖F)2
t

, ‖(AT)‖2
2

}
[by Lemma 5.5]

≤
φmax

√
n log(n)‖A‖2

F

t

(
1 +

√
n

t

)
≤

2φmax

√
n log(n)‖A‖2

F

t

(5.15)

where the last inequality uses that t � Ω(
√

n). Next, we bound Var[Y] ≤ �
[
Y2

]
as follows

�
[
Y2

]
� t

©­«
∑
i∈[n]

pi

t2p2
i

((AT)Ti (AT)i)2 +
1

t2
((AT)T(AT))2 −

∑
i∈[n]

2pi

pi t2
(AT)Ti (AT)i(AT)T(AT)ª®¬

�
1

t

©­«
∑
i∈[n]

((AT)T
i
(AT)i)2

pi
+ ((AT)T(AT))2 −

∑
i∈[n]

2(AT)Ti (AT)i(AT)T(AT)ª®¬
� 1

t

©­«
∑
i∈[n]

((AT)T
i
(AT)i)2

pi

ª®¬
� log(n)

t
max

{
φmax

√
n‖A‖F‖A‖2,

(φmax

√
n‖A‖F)2
t

} ©­«
∑
i∈[n]

(AT)Ti (AT)i
ª®¬

�
c log(n)

√
n‖A‖2

F‖(AT)‖2
2

t
In×n

(5.16)

where we again use Lemma 5.5 and Theorem 5.7. Observe,

Applying the Matrix Bernstein inequality with equations 5.15 and 5.16

Pr
[
‖Y‖2 ≥ ǫ‖A‖2

F

]
≤ 2n exp

©­«
−

ǫ2‖A‖4
F

c log(n)
√

nφmax‖A‖2
F
‖(AT)‖2

2

t +
ǫ
√

n log(n)φmax

3t ‖A‖4
F

ª®¬
≤ 2n exp

(
− ǫ2t

c′φmax

√
n log(n)

) (5.17)
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where the second inequality uses Theorem 5.6, to conclude that with probability at least 1 − δ/2

‖AT‖2
2 ≤ ‖A‖2

2 + ǫ/k‖A‖2
F ≤ O(‖A‖2

F). Therefore, it suffices to set t �
c′φmax

√
n log(n))
ǫ2

log(n/δ), to

bound the above probability by δ/2. Union bounding over the error for both PCPs, and setting

ǫ � ǫ/k, we can conclude that with probability at least 1 − δ,

(AT)T(AT) − ǫ
k
‖A‖2

FI � (SAT)T(SAT) � (AT)T(AT) + ǫ
k
‖A‖2

FI

when t � Ω
(
φmax

√
nk2

ǫ2

)
.

�

We use the spectral bound from Theorem 5.9 to obtain a row projection-cost preservation

guarantee. We follow the same proof strategy as Theorem 5.7, while requiring modified version

of the scalar Chernoff bound. We do away with the head-tail split from [CMM17],[MW17] and

[BW18] and analyze the projection-cost guarantee directly. This enables us to obtain a better ǫ

dependence than [MW17] and [BW18]. Note, our ǫ dependence matches that of [CMM17] but our

row projection cost preserving sketch can be computed in sub-linear time, albeit for PSD matrices.

Theorem 5.10. (Row Projection-Cost Preservation.) Given as input A + N let C be an n × t matrix as

defined in Theorem 5.7 such that C � AT + NT. Let p � {p1 , p2 . . . pn} be a probability distribution over

the rows of C such that p j �
(A+N) j, j

Tr(A+N) . Let t � O
(
φmax

√
nk2 log2(n)
ǫ2

)
. Then, construct R using t rows of C and

set each one to
Ci ,∗√

tpi
with probability pi . With probability at least 1 − c, for any rank-k orthogonal projection

X,

‖R − RX‖2
F � ‖C − CX‖2

F ± O(ǫ +√
η)‖A‖2

F

for a fixed constant c.

Proof. Note, R � SC � SAT + SNT, where S and T are the corresponding sampling matrices.

Observe, ‖C − CX‖2
F
� Tr

(
(� − X)CTC(� − X)

)
. Then,

Tr
(
(� − X)CTC(� − X)

)
� Tr

(
CTC

)
+ Tr

(
XCTCX

)
− Tr

(
CTCX

)
− Tr

(
XCTC

)
� Tr

(
CTCT

)
+ Tr

(
XTCTCX

)
− Tr

(
CTCXX

)
− Tr

(
XXCTC

)
� Tr

(
CTC

)
+ Tr

(
XCTCX

)
− Tr

(
XCTCX

)
− Tr

(
XCTCX

)
� Tr

(
CTC

)
− Tr

(
XCTCX

)
� Tr

(
CTC

)
− Tr

(
X(AT + NT)T(AT + NT)X

)
(5.18)

where we used the fact that for any projection matrix X � X2 in addition to the cyclic property

of the trace. Here, for analyzing the cross and tail terms, we observe that with probability 1 − c,

‖X(AT)T ‖F ≤ O(1)‖A‖F and ‖X(NT)T ‖2
F ≤ O(η)‖A‖2

F. Therefore,

Tr
(
X(AT + NT)T(AT + NT)X

)
� Tr

(
X(AT)TATX

)
± O(√η)‖A‖2

F (5.19)

Similarly,

‖R − RX‖2
F � Tr

(
(� − X)RTR(� − X)

)
� Tr

(
RTR

)
− Tr

(
XRTRX

)
� Tr

(
RTR

)
− Tr

(
X(SAT)T(SAT)X

)
± O(√η)‖A‖2

F

(5.20)
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Here, we observe ‖SAT‖2
F

is an unbiased estimator for ‖A‖2
F

and ‖SNT‖2
F

is an unbiased estimator

for ‖N‖2
F. Using the same idea as above, we can bound the cross and tail terms by O(√η)‖A‖2

F.

Our goal is show that Equations 5.18 and 5.20 are related up to additive error O(ǫ +√
η)‖A‖2

F. We

first relate Tr
(
CTC

)
and Tr

(
RTR

)
. Recall, �

[
Tr

(
RTR

)]
� �

[
‖R‖2

F

]
� ‖C‖2

F � Tr
(
CTC

)
. Using a

scalar Chernoff bound, we show that with probability at least 1−1/poly(n), | ‖R‖2
F
−‖C‖2

F
| ≤ ǫ‖A‖2

F
.

Observe, for all i ∈ [t], R∗,i � 1√
pi′ t

Ci′ ,∗ for some i′ ∈ [n]. Then,

‖Ri,∗‖2
2 �

1

pi′ t
‖Ci′,∗‖2

2 �

φmax

√
n‖A‖Fǫ

2

φmax

√
nk log(n) log(n/δ)Ai′,i′

‖Ci′,∗‖2
2

≤ c(1 + η)‖A‖Fǫ
2

√
k log(n/δ)Ai′,i′

max

{
‖Ai′,∗‖2

2 ,
φmax

√
n‖A‖FAi′,i′

t

}

≤ cǫ2
√

k log(n/δ)
max

{
‖A‖2‖A‖F ,

‖A‖2
Fǫ

2

√
k log(n/δ)

}

≤ cǫ2
√

k log(n/δ)
‖A + N‖2

F

(5.21)

where we use Ci′ ,∗ � (AT)i′ ,∗ + (NT)i′ ,∗, ‖(NT)i,∗‖2
2
≤ (η)‖(AT)i,∗‖2

2
for all i and Lemma 5.8 to bound

‖(AT)i,∗‖2
2
. Therefore,

√
k log(n/δ)
cǫ2‖A‖2

F

‖Ri,∗‖2
2
∈ [0, 1]. Note, ‖R‖2

F
is an unbiased estimator for ‖A + N‖2

F
.

Using a Chernoff bound,

Pr
[
‖R‖2

F ≥ (1 + ǫ)‖A + N‖2
F

]
� Pr

[√
k log(n/δ)
ǫ2‖A‖2

F

‖R‖2
F ≥

√
k log(n/δ)
ǫ2

(1 + ǫ)
]

≤ exp

(
−
√

kǫ2 log(n/δ)
ǫ2

)
≤ δ

10

(5.22)

Therefore, with probability at least 1 − δ/10, | ‖R‖2
F − ‖A + N‖2

F | ≤ ǫ‖A + N‖2
F. Note, we can then

bound ‖A + N‖2
F
≤ ‖A‖2

F
+ 2

√
η‖A‖2

F
. Therefore,

| ‖R‖2
F − ‖A‖2

F | ≤ O(ǫ + √
η)‖A‖F

Recall, by equation 5.10, with probability δ/10, ‖A‖2
F
� (1 ± (ǫ + 2

√
η))‖C‖2

F
and thus we have that

‖R‖2
F − ‖C‖2

F ≤ 3ǫ‖A‖2
F. We can repeat the above argument to lower bound ‖R‖2

F. Therefore, with

probability 1 − δ, we have

| ‖R‖2
F − ‖C‖2

F | ≤ O(ǫ +√
η)‖A‖2

F (5.23)

Next, we relate Tr
(
X(SAT)T(SAT)X

)
and Tr

(
X(AT)TATX

)
. Observe, X is a rank k projection

matrix and we can represent it as ZZT , where Z ∈ �n×k and has orthonormal columns. By the

cyclic property of the trace, we have

Tr
(
ZZT(SAT)T(SAT)ZZT

)
� Tr

(
ZT(SAT)T(SAT)Z

)
�

∑
j∈[k]

ZT
∗, j(SAT)T(SAT)Z∗, j
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Similarly, Tr
(
ZZT(AT)TATZZT

)
�

∑
j∈[k] ZT

∗, j(AT)TATZ∗, j. By Theorem 5.9 , we have

∑
j∈[k]

(
ZT
∗, j(AT)TATZ∗, j

)
�

∑
j∈[k]

(
ZT
∗, j(SAT)T(SAT)Z∗, j ±

ǫ

k
‖A‖2

FZT
∗, jIZ∗, j

)
(5.24)

Since ZT
∗, jZ∗, j � 1 and Tr

(
ZT(SAT)T(SAT)Z

)
� Tr

(
X(AT)TATX

)
, we obtain

Tr
(
X(AT)TATX

)
− ǫ‖A‖2

F ≤ Tr
(
X(SAT)T(SAT)X

)
≤ Tr

(
X(AT)TATX

)
+ ǫ‖A‖2

F (5.25)

Combining equations 5.25,5.23, 5.19 and 5.20 with probability 1 − c,

‖C − CX‖2
F − O(ǫ +√

η)‖A‖2
F ≤ ‖R − RX‖2

F ≤ ‖C − CX‖2
F + O(ǫ +√

η)‖A‖2
F

�

Full Algorithm. Next, we describe a sublinear time and query robust algorithm for low-rank

approximation of PSD matrices. We show that querying Õ(φ2
maxnk/ǫ) entries of A suffices. While

we assume we know φmax, in practice this need not be the case. Therefore, given a budget for the

total number of queries, denoted by β, we can run the algorithm by querying a
√
β×

√
β submatrix

(as described in Algorithm 4), but correctness only holds when β ≥ Θ̃(φ2
maxnk/ǫ). Recall, whenever

we read an entry in (A+N)i, j , we can truncate it to φmax

√
|(A + N)i,i | · |(A + N) j, j |. We can compute

these thresholds by simply reading the diagonal of A + N.

We proceed by constructing column and row projection-cost preserving sketches of A + N, to

obtain a t × t matrix R, where t � Õ(φmax

√
nk2/ǫ2). Instead of reading the entire matrix, we

sample ǫ3t/k3 entries in each row of R, and read these entries. Ideally we would want to estimate

ℓ2
2

norms of rows of R to then use a result of Frieze-Kannan-Vempala [FKV04] to show that there

exists an s × t matrix S such that the row space of S contains a good rank-k approximation, where

s � cφ2
maxnk/ǫt, for some constant c. However, we show that is it not possible to obtain accurate

estimates of the row norms of each row of R with high probability.

Instead, we describe a new sampling procedure that ends up sampling rows of R with the same

probability as Frieze-Kannan-Vempala. Once we compute a good low-rank approximation for R

we can follow the approach of [CMM17],[MW17] and [BW18], where we set up two regression

problems, and use fast approximate regression to compute a low rank approximation for A. The

main theorem we prove in this section is as follows:

Theorem 5.11. (Robust PSD LRA.) Let k be an integer and ǫ > η > 0. Given a matrix A+N, where A is

PSD and N is a corruption term such that ‖N‖2
F ≤ √

η‖A‖2
F and for all i ∈ [n] ‖Ni,∗‖2

2 ≤ c‖Ai,∗‖2
2 , for a

fixed constant c, Algorithm 4 samples Õ
(
φ2

maxnk/ǫ
)
entries in A+N and computes matrices M,NT ∈ �n×k

such that with probability at least 99/100,

‖A − MN‖2
F ≤ ‖A − Ak ‖2

F + (ǫ +√
η)‖A‖2

F

58



Algorithm 4 : Robust PSD Low-Rank Approximation

Input: A Matrix A + N, integer k, ǫ > 0 and φmax � max j A j, j/(A + N) j, j

1. Let t �
cφ2

max

√
nk log2(n)
ǫ2

, for some constant c. Let q � {q1 , q2 . . . qn} denote a distribution

over columns of A + N such that q j �
(A+N) j, j

Tr(A+N) . Construct a column PCP for A + N by

sampling t columns of A + N such that each column is set to
(A+N)∗, j√

tq j

with probability q j .

Let C be the resulting n × t matrix that satisfies the guarantee of Theorem 5.7.

2. Let p � {p1 , p2 . . . pn} denote a distribution over rows of C such that pi �
(A+N)i ,i

Tr(A+N) .

Construct a row PCP for C by sampling t rows of C such that each row is set to
Ci ,∗√

tpi

with probability pi . Let R be the resulting t × t matrix that satisfies the guarantee of

Theorem 5.10. Sample Θ(n) entries uniformly at random from A and rescale such that

ṽ2
� Θ(‖A‖2

F).

3. Let µ � φmax

√
|(A + N)i,i | · |(A + N)i′ ,i′ | For all i ∈ [t], let Xi �

∑
j∈[ǫ3 t/k3]Xi, j such

that Xi, j � (k3/ǫ3)R2
i,i′ , with probability 1/t, for all i′ ∈ [t]. Here, we query the entry

corresponding to Ri,i′ in A+N and truncate it to µ. Let τ � φ2
maxnṽ2/t2. IfXi > τ, sample

row Ri,∗ with probability 1. For the remaining rows, sample nk/(ǫt) rows uniformly at

random.

4. Run the sampling algorithm from Frieze-Kannan-Vempala [FKV04] to compute a t × k

matrix S such that ‖R−RSST ‖2
F ≤ ‖R−Rk ‖2

F + ǫ‖R‖2
F. Consider the regression problem

minX∈Rn×k ‖C − XST ‖2
F . Sketch the problem using the leverage scores of ST , as shown

in Lemma 4.4, to obtain a sampling matrix E with O( k
ǫ ) columns. Compute XC �

argminX∈Rn×k ‖CE − XSTE‖2
F
. Let XCST

� UVT be such that U ∈ �n×k has orthonormal

columns.

5. Consider the regression problem minX∈�k×n ‖A − UX‖2
F . Sketch the problem as above,

following Lemma 4.4 to obtain a sampling matrix E′ with O( k
ǫ ) rows. Compute XA �

argminX‖E′A − E′UX‖2
F.

Output: M � U, NT
� XA

We begin with the following simple lemma for approximating the Frobenius norm :

Lemma 5.12. (Approximating Frobenius Norm.) Given as input an n × n matrix A + N, there exists an

algorithm that reads O(φ2
maxn) entries in A and outputs an estimator ṽ such that with probability at least

1 − 1
nc , ṽ � Θ(‖A‖2

F).

Proof. There are multiple ways to see this. Observe, in Theorem 5.10, we show that sampling
φ2

maxn log(n)
ǫ2

entries results in row projection-cost preserving sketch R such that ‖R‖2
F
� (1±ǫ)‖A+N‖2

F
.

Setting ǫ to be a small constant suffices. �
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Next, we provide intuition for why uniformly sampling columns of R does not suffice for

obtaining a sketch that spans a good low rank approximation. For simplicity, we assume there is

no noise (η � 0 and φmax � 1) and show that our techniques to bound the column norms of R

results in an estimate that is too large. We note that this lemma is not required for proving our

result, and is just present for intuition.

Lemma 5.13. Let η � 0. Let R ∈ �t×t be a row projection-cost preserving sketch for C as described in

Theorem 5.10. For all j ∈ [t], with probability at least 1 − 1/nc ,

‖R∗, j‖2
2 ≤ O

(
log(n)max

{
‖C∗, j ‖2

2 ,
n‖A‖2

F

t2

})
� O

(
log(n)max

{√
n‖A‖2

F

t
,

n‖A‖2
F

t2

})

where c is a fixed constant.

Proof. Observe, ‖R∗, j ‖2
2
�

∑
i∈[t] R2

i, j
, where R2

i, j
�

Tr(A)
tAi′,i′

C2
i′, j with probability

Ai′,i′
Tr(A) for all i′ ∈ [n].

Then, �[‖R∗, j ‖2
2] �

∑n
i�1 C2

i, j
� ‖C∗, j‖2

2 . Next, we compute the variance of ‖R∗, j ‖2
2 . Var

[
‖R∗, j ‖2

2

]
�

tVar
[
Ri, j

]
≤ t�

[
R4

i, j

]
. Then,

t�
[
R4

i, j

]
�

∑
i′∈[n]

1

tpi′
C4

i′, j ≤
∑

i′∈[n]

Tr (A)2
t2Ai′ ,i′A j, j

A2
i′, jAi′ ,i′A j, j

≤ Tr (A)2
t2

‖A∗, j ‖2
2

�

Tr (A)
t

‖C∗, j‖2
2

≤
(
Tr (A)

t

)2

+ ‖C∗, j ‖4
2 [AM-GM]

where we use A2
i, j

≤ Ai,iA j, j, which follows from applying Cauchy-Schwarz to 〈A1/2
i,∗ ,A

1/2
j,∗ 〉. Simi-

larly, we bound R2
i, j

≤ Tr(A)
t . Applying Bernstein’s inequality,

Pr

[
| ‖R∗, j‖2

2 − ‖C∗, j ‖2
2 ≥ ηmax

{
‖C∗, j‖2

2 ,
Tr (A)

t

}]

≤ 2 exp

©­­­­«
−

η2 max

{
‖C∗, j‖4

2
,
(

Tr(A)
t

)2
}

(
Tr(A)

t

)2

+ ‖C∗, j‖4
2
+ ηmax

{
Tr(A)‖C∗, j ‖2

2

t ,
(

Tr(A)
t

)2
}
ª®®®®¬

≤ 2 exp

©­­­­«
−
ηmax

{
‖C∗, j‖4

2 ,
(

Tr(A)
t

)2
}

c′
(

Tr(A)
t

)2

+ c′‖C∗, j‖4
2

ª®®®®¬
where we use the AM-GM inequality on

Tr(A)
t ‖C∗, j‖2

2 repeatedly. Setting η � Ω(log(n)) completes

the proof. Finally, observe, for any j ∈ [t], ‖C∗, j‖2
2 �

Tr(A)
tA j′ , j′

‖A∗, j′‖2
2 for some j′ ∈ [n]. We then use

Tr (A) ≤
√

n‖A‖F. �
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It is well-known that to recover a low-rank approximation for R, one can sample rows of R

proportional to row norm estimates, denoted by Yi [FKV04]. As shown in [IVWW19] the following

two conditions are a relaxation of those required in [FKV04], and suffice to obtain an additive error

low-rank approximation :

1. For all i ∈ [t], Yi ≥ ‖Ri,∗‖2
2 .

2.
∑

i∈[t] Yi ≤ n
t ‖R‖2

F

To satisfy the first condition, we need to obtain overestimates for each row. Since it is not immedi-

ately clear how to obtain overestimates for row norms of R, a naïve approach would be to bias the

estimate for each row by an upper bound on the row norm. However, by Lemma 5.13, a row norm

could be as large as
√

n‖A‖2
F
/t. Observe, we cannot afford to bias the estimator of each row, Yi ,

by this amount since
∑

i∈[t] Yi ≥
√

n‖A‖2
F
≥

√
n‖R‖2

F
. Therefore, we would have to sample

√
nk/ǫ

rows of R, resulting in us queryingΩ(nk3/ǫ3) entries in A, even when η � 0.

An alternative strategy would be to bias the estimator for each row by n‖R‖2
F/t2, as this would

satisfy condition 2 above. We can now hope to detect rows of R that have norm larger than

n‖R‖2
F
/t2 by sampling ǫ3t/k3 entries in each row of R, uniformly at random. Note, this way we

can construct an unbiased estimator for the ℓ22 norm of each row. Ideally, we would want to show

a high probability statement for concentration of our row norm estimates around the expectation.

We could then union bound, and obtain concentration for all i simultaneously.

However, this is not possible since it may be the case that a row of R is log(n)-sparse with each

entry being large in magnitude. In this case, uniformly querying the row would not observe any

non-zero with good probability and thus cannot distinguish between such a row and an empty row.

Instead, we settle for a weaker statement, that shows our estimate is accurate with o(1) probability.

All subsequent statements hold for η > 0.

Lemma 5.14. (Estimating large row norms.) Let R ∈ �t×t be the row PCP output by Step 2 of Algorithm

4. For all i ∈ [t] let Xi �
∑

j∈[ǫ3 t/k3] Xi, j such that Xi, j �
k3R2

i , j′

ǫ3
with probability 1

t , for all j′ ∈ [t]. Then,

for all i ∈ [t], Xi �
(
1 ± 1

10

)
‖Ri,∗‖2

2 with probability at least
‖Ri ,∗‖2

2
k

ǫn .

Proof. Observe, Xi is an unbiased estimator of ‖Ri,∗‖2
2 :

� [Xi] �
ǫ3t

k3
�

[
Xi, j

]
�
ǫ3t

k3

∑
j′∈[t]

k3

ǫ3n
R2

i, j′ � ‖Ri,∗‖2
2

Next, we compute the variance of Xi .
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Var [Xi] �
ǫ3t

k3
Var

[
Xi, j

]
≤

∑
j∈[t]

1

ǫ3
R4

i, j

≤
∑
j∈[t]

k3

ǫ3
R2

i, j

(
Tr (A + N)2

t2(A + N)i,i(A + N) j, j
(A + N)2i, j

)

≤
∑
j∈[t]

k3

ǫ3
R2

i, j

(
Tr (A + N)2

t2(A + N)i,i(A + N) j, j
(Ai,iA j, j + N2

i, j)
)

≤
∑
j∈[t]

k3

ǫ3
R2

i, j

(
Tr (A + N)2 φ2

max

t2
+

Tr (A + N)2 φ2
max(A + N)i,i(A + N) j, j

t2(A + N)i,i(A + N) j, j

)

≤
∑
j∈[t]

k3

ǫ3
R2

i, j

(
Tr (A + N)2 φ2

max

t2

)
≤ O

(
ǫ‖A‖2

F

k
‖Ri,∗‖2

2

)

(5.26)

Here, we use that N2
i, j

≤ φ2
max(A + N)i,i(A + N) j, j , which follows from our truncation procedure.

Further, using t � φmax

√
nk2/ǫ2 and Tr (A + N) ≤

√
n‖A‖F +

√
ηn‖A‖F, we can bound

Tr (A + N)2 φ2
max

t2
≤ O

(
ǫ‖A‖2

F

k

)

Further, using the same argument as above

(5.27)

Xi, j ≤
k3

ǫ3
R2

i, j ≤ O

(
ǫ‖A‖2

F

k

)

Using Equations 5.26 and 5.27 in Bernstein’s inequality,

Pr
[��Xi −�[Xi]

�� ≥ δ� [Xi]
]
≤ exp

©­«
−

δ2‖Ri,∗‖4
2

ǫ‖A‖2
F

k ‖Ri,∗‖2
2 +

δǫ‖A‖2
F

3k ‖Ri,∗‖2
2

ª®¬
≤ exp

(
−
δ2‖Ri,∗‖2

2
k log2(n)

ǫ‖R‖2
F

)

where we use that ‖A‖2
F � Θ(‖R‖2

F). Setting η � 1
10 , Xi �

(
1 ± 1

10

)
‖Ri,∗‖2

2 with probability at least

1 − exp

(
− ‖Ri ,∗‖2

2
k log2(n)
ǫ‖R‖2

F

)
. Let ξi be the event that Xi �

(
1 ± 1

10

)
‖Ri,∗‖2

2 . Then, union bounding over

t ≤ n such events ξi, simultaneously for all i, ξi is true with probability at least

1 − exp

(
−
‖Ri,∗‖2

2 k log(n)
ǫ‖R‖2

F

)
≥

‖Ri,∗‖2
2 k log(n)
ǫ‖R‖2

F

�
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We now have two major challenges: first, the probability with which the estimators are accurate

is too small to even detect all rows with norm larger than φ2
maxn‖R‖2

F/t2, and second, there is no

small query certificate for when an estimator is accurate in estimating the row norms. Therefore,

we cannot even identify the rows where we obtain an accurate estimate of their norm.

To address the first issue, we make the crucial observation that while we cannot estimate

the norm of each row accurately, we can hope to sample the row with the same probability as

Frieze-Kannan-Vempala [FKV04]. Recall, their algorithm samples row Ri,∗ with probability at

least ‖Ri,∗‖2
2/‖R‖2

F, which matches the probability in Lemma 5.14. Therefore, we can focus on

designing a weaker notion of identifiability, that may potentially include extra rows.

We begin by partitioning rows of R into two sets. Let H �

{
i
�� ‖Ri,∗‖2

2
≥ φ2

maxnṽ2/t2
}

be the

set of heavy rows and [t] \ H be the remaining rows. Since with probability at least 1 − 1
poly(n) ,

‖R‖2
F
� Θ(‖A‖2

F
) � Θ(ṽ2),

|H | � O(t2/φ2
maxn) � O(k4 log4(n)/ǫ4)

Observe, every row in H can potentially satisfy the threshold τ � φ2
maxnṽ2/t2. Therefore, even if

our estimator Xi is Θ(‖Ri,∗‖2
2) for all i ∈ H , we include at most Õ(k4/ǫ4) extra rows in S, which

is well within our budget. Observe, we can then sample a row with probability 1 whenever the

corresponding estimate is larger than τ. This sampling process ensures that we identify rows in H
with the right probability and also doees not query more than O(φ2

maxnk/ǫ) entries in A + N. For

all the remaining rows, we know the norm is at most O(φ2
maxnṽ2/t2). We then modify the analysis

of [FKV04] to show that we can handle both cases separately.

Theorem 5.15. (Existence [FKV04].) Let R be a row projection-cost preserving sketch output by Step 2 of

Algorithm 4. For all i ∈ [t], let Xi be estimate for ‖Ri,∗‖2
2 as described in Step 3 of Algorithm 4. Let S be a

subset of s � O(φ2
maxnk/ǫt) columns of R sampled according to distribution r � {r1 , r2, . . . rt} such that

ri is the probability of sampling the i-th row. Then, with probability at least 99/100, there exists a t × k

matrix U in the column span of S such that

‖R − UUTR‖2
F ≤ ‖R − Rk ‖2

F + ǫ‖R‖2
F

Proof. We follow the proof strategy of [FKV04] and show how to directly bound the variance in our

setting as opposed to reducing to the two conditions above. Let R � PΣQT
�

∑
ℓ∈[t] Σℓ,ℓPℓ,∗QT

ℓ,∗ �∑
ℓ∈[t] σℓPℓQ

T
ℓ
. Recall, Rk �

∑
ℓ∈[k] AQℓQ

T
ℓ
. For ℓ ∈ [t], let Wℓ �

1
s

∑
i′∈[s] Yi′ where Yi′ �

Pi ,ℓ

ri
Ri,∗

with probability ri, for all i ∈ [t]. Then,

� [Wℓ] � � [Yi′] �
∑
j∈[t]

Pi,ℓ

ri
Ri,∗ri � σℓQℓ (5.28)

Therefore, in expectation the span of the rows contain a good low-rank solution. Next, we bound

the variance. Recall, here we consider the rows in H and its complement separately. From Lemma

For all i ∈ H , we know that Xi � Θ(‖Ri,∗‖2
2) with probability at least ‖Ri,∗‖2

2 k log(n)/ǫ‖R‖2
F. Since

for all such i, ‖Ri,∗‖2
2

≥ τ, the corresponding ri ≥ ‖Ri ,∗‖2
2 k log(n)
ǫ‖R‖2

F

, since every time we pass the
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threshold we sample the row. For all i < H , ri ≥ 1/t since there can be at most t such i, and we

sample each such row with uniform probability. Once we have a lower bound on ri in both cases,

we open up the analysis of the variance bound in [FKV04] and show that our lower bounds suffice.

�
[
‖Wℓ − σℓQℓ ‖2

2

]
�

1

s

©­«
∑
j∈[t]

P2
i,ℓ

ri
‖Ri,∗‖2

2

ª®¬
−
σ2
ℓ

s
≤ 1

s

©­«
∑
j∈H

P2
i,ℓ

ri
‖Ri,∗‖2

2 +

∑
i∈[t]\H

P2
i,ℓ

ri
‖Ri,∗‖2

2

ª®¬
≤ 1

s

©­«
∑
j∈H

k log(n)P2
i,ℓ
‖R‖2

F

ǫ
+

∑
j∈[t]\H

tP2
i,ℓ ‖Ri,∗‖2

2

ª®¬
≤ 1

s

©­«
∑
j∈H

k log(n)P2
i,ℓ
‖R‖2

F

ǫ
+

∑
j∈[t]\H

n

t
P2

i,ℓ ṽ
2ª®¬

≤ 1

s

(
k log(n)
ǫ

+

φ2
maxn

t

)
‖R‖2

F

(5.29)

Now, we can repeat the argument from [FKV04] and it suffices to set s �

(
φ2

maxn

t +
k
ǫ

)
k
ǫ � O(φ

2
maxnk

ǫt ).
For completeness, we present the rest of the proof here. For all ℓ ∈ [t], let Yℓ �

1
σℓ

Wℓ . Let

V � span(Y1 ,Y2, . . . ,Yk). Let Z1,Z2, . . .Zt be an orthonormal basis for R t such that V �

span(Z1,Z2, . . . ,Zk′), where k′ � dim(V). Let S � R
∑
ℓ∈[k] ZℓZ

T
ℓ

be the candidate low-rank

approximation approximation. Then,

‖R − S‖2
F �

∑
ℓ∈[t]

‖(R − S)Zℓ ‖2
2

�

∑
ℓ∈[k′+1,t]

‖RZℓ‖2
2

�

∑
ℓ∈[k′+1,t]








©­«
(R − R

∑
ℓ′∈[k]

Qℓ′Y
T
ℓ′
ª®¬

Zℓ








2

2

≤







R − R
∑
ℓ′∈[k]

Yℓ′Y
T
ℓ′








2

F

(5.30)

where the first equality follows from ‖Zℓ ‖2
2
� 1, the seconds follows from ZT

ℓ′Zℓ � 0 for ℓ′ , ℓ,

the third follows from 〈Yℓ′ ,Zℓ〉 � 0 for all ℓ′ ≤ k and ℓ > k′. Let Ŝ � R
∑
ℓ′∈[k] Yℓ′Y

T
ℓ′. Since

P1, P2, . . . , Pt forms an orthonormal basis


R − Ŝ



2

F
≤

∑
ℓ∈[t]




Pℓ

(
R − Ŝ

)


2

2

�

∑
ℓ∈[k]

‖σℓQℓ − Wℓ ‖2
2 +

∑
ℓ∈[k+1,t]

σ2
ℓ

(5.31)
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Taking expectations on both sides of equation 5.31, we have

�

[


R − Ŝ



2

F

]
≤ �


∑
ℓ∈[k]

‖σℓQℓ − Wℓ ‖2
2


+ ‖R − Rk ‖2

F

≤ k

s

(
k log(n)
ǫ

+

φ2
maxn

t

)
‖R‖2

F + ‖R − Rk ‖2
F

(5.32)

Since Ŝ is a rank k matrix and Rk is the best rank k approximation to R, ‖R − Ŝ‖2
F − ‖R − Rk ‖2

F is a

non-negative random variable. Thus, using Markov’s inequality and Equation 5.30,

Pr

[
‖R − S‖2

F − ‖R − Rk ‖2
F ≥ 100nk

st
‖R‖2

F

]
≤ 1

100

Therefore, it suffices to sample s � O
(
φ2

maxnk
ǫt

)
columns, read all of them and compute a low rank

approximation for R with probability at least 99
100 . Observe, the total entries read by this algorithm

is O
(
φ2

maxnk
ǫt · t

)
� O

(
φ2

maxnk
ǫ

)
. �

It remains to show that we can now recover a low-rank approximation for A, in factored form,

from the low-rank approximation for R. Here, we follow the approach of [CMM17],[MW17]

and [BW18], where we set up two regression problems, and use the sketch and solve paradigm

to compute an approximate solution. We use the following Lemma from [BW18] that relates a

good low-rank approximation of an additive error project-cost preserving sketch to a low-rank

approximation of the original matrix. A similar guarantee for relative error appears in [CMM17]

and [MW17].

Lemma 5.16. (Lemma 4.4 in [BW18].) Let C be a column PCP for A satisfying the guarantee of Theorem

5.7. Let P∗
C � argminrank(X)≤k ‖C − XC‖2

F and P∗
A � argminrank(X)≤k ‖A − XA‖2

F. Then, for any rank k

projection matrix P such that ‖C−PC‖2
F
≤ ‖C−P∗

CC‖2
F
+ (ǫ +√

η)‖C‖2
F
, with probability at least 99/100,

‖A − PA‖2
F ≤ ‖A − P∗

AA‖2
F + (ǫ + √

η)‖A‖2
F

A similar guarantee holds for a row PCP of A.

Note, while RSST is an approximate rank-k solution for R, it does not have the same dimensions

as A. If we do not consider running time, we could construct a low-rank approximation to A as

follows: since projecting R onto ST is approximately optimal, it follows from Lemma 5.16 that with

probability 99/100,

‖C − CSST ‖2
F � ‖C − Ck ‖2

F ± (ǫ + √
η)‖C‖2

F (5.33)

Let Ck � U′V′T be such that U′ has orthonormal columns. Then, ‖C − U′U′TC‖2
F
� ‖C − Ck ‖2

F
and

by Lemma 5.16 it follows that with probability 98/100, ‖A−U′U′TA‖2
F
≤ ‖A−Ak ‖2

F
+ (ǫ+√

η)‖A‖2
F
.

However, even approximately computing a column space U′ for Ck using an input-sparsity time

algorithm, such as [CW13], could requireΩ (nt) queries. To get around this issue, we observe that
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an approximate solution for R lies in the row space of ST and therefore, an approximately optimal

solution for C lies in the row space of ST . We then set up the following regression problem:

min
rank(X)≤k

‖C − XST ‖2
F (5.34)

Note, this regression problem is still too large to be solved in sublinear time. Therefore, we

sketch it by sampling columns of C to set up a smaller regression problem. Observe, since S

has orthonormal columns, the leverage scores are simply ℓ2
2

norms of rows of S. Now, using

Lemma 4.4, approximately solving this regression problem requires sampling Ω(k/ǫ) rows of C,

which in turn requires Ω( nk
ǫ ) queries to A + N. Note, the above theorem applied to Equation

5.34 can take O
(
nk + poly(k , ǫ−1)

)
time and thus is a lower order term. Since ST has orthonomal

rows, the leverage scores are precomputed. With probability at least 99/100, we can compute

XC � argminX‖CE− XSTE‖2
F
, where E is a leverage score sketching matrix with O

(
k
ǫ

)
columns, as

shown in Lemma 4.4, and thus requires O
(

nk
ǫ

)
queries to A. Then,

‖C − XCST ‖2
F ≤ (1 + ǫ)min

X
‖C − XST ‖2

F

≤ (1 + ǫ)‖C − CSST ‖2
F

� ‖C − Ck ‖2
F ± (ǫ + √

η)‖C‖2
F

(5.35)

where the last two inequalities follow from equation 5.33. Let XCST
� U′V′T be such that U′ has

orthonormal columns. Then, the column space of U′ contains an approximately optimal solution

for A, since ‖C − U′V′T ‖2
F
� ‖C − Ck ‖2

F
± ǫ‖C‖2

F
and C is a column PCP for A. It follows from

Lemma 5.16 that with probability at least 98/100,

‖A − U′U′TA‖2
F ≤ ‖A − Ak ‖2

F + (ǫ +√
η)‖A‖F (5.36)

Therefore, there exists a good solution for A in the column space of U′. Since we cannot compute

this explicitly, we set up the following regression problem:

min
X

‖A − U′X‖2
F (5.37)

Again, we sketch the regression problem above by sampling columns of A and apply Lemma 4.4.

We can then compute XA � argminX‖E′A − E′U′X‖2
F with probability at least 99/100, where E′ is a

sketching matrix with
(

k
ǫ

)
rows and O

(
nk
ǫ

)
queries to A. Then,

‖A − U′XA‖2
F ≤ (1 + ǫ)min

X
‖A − U′X‖2

F

≤ (1 + ǫ)‖A − U′U′TA‖2
F

≤ ‖A − Ak ‖2
F + O(ǫ +√

η)‖A‖2
F

(5.38)

where the second inequality follows from X being the minimizer and U′TA being some other

matrix, and the last inequality follows from equation 5.36. Recall, U′ is an n × k matrix and the

time taken to solve the regression problem is O
(
nk + poly(k , ǫ−1)

)
.
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Therefore, we observe that U′XA suffices and we output it in factored form by setting M � U′

and N � XT
A. Union bounding over the probabilistic events, and rescaling ǫ, with probability at

least 9/10, Algorithm 4 outputs M ∈ Rn×k and NT ∈ Rn×k such that the total number of entries

queried in A are Õ
(
φ2

maxnk
ǫ

)
. This concludes the proof of Theorem 5.11.

Correlation Matrices. We introduce low-rank approximation of correlation Matrices, a spe-

cial case of PSD matrices where the diagonal is all 1s. Correlation matrices are well studied

in numerical linear algebra, statistics and finance since an important statistic of n random vari-

ables X1,X2, . . .Xn is given by computing the pairwise correlation coefficient, corr(Xi ,X j) �

cov(Xi ,X j)/
√

var(Xi) · var(X j). A natural matrix representation of correlation coefficients results

in a n × n correlation matrix A such that Ai, j � corr(Xi ,X j).

Definition 5.17. (Correlation Matrices.) A is an n × n correlation matrix if A is PSD and Ai,i � 1,

for all i ∈ [n].

Often, in practice the correlation matrices obtained are close to being PSD, but corrupted by

noise in the form of missing or asynchronous observations, stress testing or aggregation. Here

the goal is to query few entries of the corrupted matrix and recover a rank-k matrix close to the

underlying correlation matrix, assuming that the underlying matrix is also close to low rank to

begin with.

Here we observe that since correlation matrices have all diagonal entries equal to 1, we can

compute φmax by simply reading the diagonal entries of A + N. However, we can do even better

since we can discard the diagonal entries of A + N. The main insight here is that for correlation

matrices, our algorithm simply uniformly samples columns and rows to construct our row and

column PCPs, since we know what the true diagonals should be. In this case, no matter what the

adversary does to the diagonal, φmax � 1 and we obtain a Õ(nk/ǫ) query algorithm.

Corollary 5.18. (Robust LRA for Correlation Matrices.) Let k be an integer and 1 > ǫ > η > 0. Given

A + N, where A is a correlation matrix and N is a corruption term such that ‖N‖2
F
≤ η‖A‖2

F
and for all

i ∈ [n] ‖Ni,∗‖2
2
≤ c‖Ai,∗‖2

2
for a fixed constant c, there exists an algorithm that samples Õ (nk/ǫ) entries

in A + N and with probability at least 99/100, computes a rank k matrix B such that

‖A − B‖2
F ≤ ‖A − Ak ‖2

F + (ǫ + √
η)‖A‖2

F

Note, the sample complexity of this algorithm is optimal, since there is anΩ(nk/ǫ) query lower

bound for additive-error low-rank approximation of correlation matrices, even when there is no

corruption (see Corollary 5.20).

Additive-Error PSD Low-Rank Approximation. In the limit where η � 0, φmax � 1, and we

obtain an algorithm with query complexity Õ(nk/ǫ). While this guarantee is already implied by

our algorithm for relative-error low-rank approximation, our additive-error algorithm is simpler

to implement, since the sampling probabilities can be computed exactly by simply reading the

diagonal.
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Corollary 5.19. (Sample-Optimal Additive-Error LRA.) Given a PSD matrix A, rank parameter k, and

ǫ > 0, there exists an algorithm that samples Õ(nk/ǫ) entries in A and outputs a rank-k matrix B such that

with probability at least 99/100,

‖A − B‖2
F ≤ ‖A − Ak ‖2

F + ǫ‖A‖2
F

We show a matching lower bound on the query complexity of additive-error low-rank approx-

imation of PSD matrices. Here, we simply observe that the lower bound construction introduced

by [MW17] of Ω
(

nk
ǫ

)
also holds for additive error. As a consequence our algorithm is optimal in

the setting where there is no corruption.

Corollary 5.20. (Correlation Matrix Lower Bound, Theorem 13 [MW17].) Let A be a PSD matrix, k ∈ �
and ǫ > 0 be such that nk

ǫ � o(n2). Any randomized algorithm, A, that with probability at least 2/3,

computes a rank k matrix B such that

‖A − B‖2
F ≤ ‖A − Ak ‖2

F + ǫ‖A‖2
F

must read Ω
(

nk
ǫ

)
entries of A on some input, possibly adaptively, in expectation.

Proof. We observe that in the lower bound construction of [MW17], the matrix A is binary, with all

1s on a the diagonal, and k off-diagonal blocks of all 1s, each of size
√

2ǫn
k ×

√
2ǫn

k . Therefore, A is

a correlation matrix and ‖A‖2
F � (1 + 2ǫ)n. Further, the optimal rank-k cost, ‖A − Ak ‖2

F � Θ(n). To

compute an additive-error approximation, any algorithm must caputure ǫ‖A‖2
F
� ǫn mass among

the off-diagonal entries of A. Note, the remaining proof is identical to Theorem 13 in [MW17]. �
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