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Abstract

Recently, Musco and Woodruff (FOCS, 2017) showed that given an n X n positive semidefinite
(PSD) matrix A, it is possible to compute a (1 + €)-approximate relative-error low-rank approx-
imation to A by querying O(1nk/e?) entries of A in time O(nk/e5 + nk®~!/e2®-1). They
also showed that any relative-error low-rank approximation algorithm must query Q(nk/e)
entries of A, this gap has since remained open. Our main result is to resolve this question by
obtaining an optimal algorithm that queries O(nk/e) entries of A and outputs a relative-error
low-rank approximation in o) (n-(k/€)*~1) time. Note, our running time improves that of Musco
and Woodruff, and matches the information-theoretic lower bound if the matrix-multiplication
exponent w is 2.

We then extend our techniques to negative-type distance matrices. Here, our input is
a pair-wise distance matrix A corresponding to a point set ¥ = {x1,x2,...,x,} such that
Aij=|lxi-x ]-||§. Bakshi and Woodruff (NeurIPS, 2018) showed a bi-criteria, relative-error
low-rank approximation for negative-type metrics. Their algorithm queries O(nk/€25) entries
and outputs a rank-(k + 4) matrix. We show that the bi-criteria guarantee is not necessary and
obtain an O(nk/e) query algorithm, which is optimal. Our algorithm applies to all distance
matrices that arise from metrics satisfying negative-type inequalities, including €1, £>, spherical
metrics, hypermetrics and effective resistances on a graph. We also obtain faster algorithms for
ridge regression.

Next, we introduce a new robust low-rank approximation model which captures PSD matri-
ces that have been corrupted with noise. We assume that the Frobenius norm of the corruption
isbounded. Here, we relax the notion of approximation to additive-error, since it is information-
theoretically impossible to obtain a relative-error approximation in this setting. While a sample
complexity lower bound precludes sublinear algorithms for arbitrary PSD matrices, we provide
the first sublinear time and query algorithms when the corruption on the diagonal entries is
bounded. As a special case, we show sample-optimal sublinear time algorithms for low-rank
approximation of correlation matrices corrupted by noise.
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1 Introduction

Low-rank approximation is one of the most common dimensionality reduction techniques, whereby
one replaces a large matrix A with a low-rank factorization U-V = A. Such a factorization provides
a compact way of storing A and allows one to multiply A quickly by a vector. It is used as an algo-
rithmic primitive in clustering [DFK"04, McS01], recommendation systems [DKR02], web search
[AFKMO1, Kle99], and learning mixtures of distributions [AMO05, KSV05], and has numerous other
applications.

A large body of recent work has looked at relative-error low-rank approximation, whereby given
an n X n matrix A, an accuracy parameter € > 0, and a rank parameter k, one seeks to output a
rank-k matrix B for which

A~ BI? < (1+¢€)llA - AllZ, (1.1)

where for a matrix C, ||C ||1% = i C?’]., and Ay denotes the best rank-k approximation to A in
Frobenius norm. Aj can be computed exactly using the singular value decomposition, but takes
time O(n®), where w is the matrix multiplication constant. We refer the reader to the survey
[Woo14] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (1.1) must spend
at least ﬁ(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A.
Indeed, without reading most of the non-zero entries of A, one could fail to read a single large
entry, thus making one’s output matrix B an arbitrarily bad approximation.

A flurry of recent work [KP16, MW17, BW18, CLW18, Tan19, RSML18, GLT18, IVWW19, SW19,
GSLW19] has looked at the possibility of achieving sublinear time algorithms (classical and quan-
tum) for low-rank approximation. In particular, Musco and Woodruff [MW17] consider the impor-
tant case of positive-semidefinite (PSD) matrices. PSD matrices include as special cases covariance
matrices, correlation matrices, graph Laplacians, kernel matrices and random dot product models.
Further, the special case where the input itself is low-rank (PSD Matrix Completion) has applica-
tions in quantum state tomography [GLF10]. Subsequently, Bakshi and Woodruff [BW18] consid-
ered low-rank approximation of the closely related family of Negative-type (Euclidean Squared)
distance matrices. Negative-type metrics include as special cases €1 and ¢, metrics, spherical met-
rics and hypermetrics, as well as effective resistances in graphs [DL.09, TD87, CRR*96, CKM*11].
Negative-type metrics have found various applications in algorithm design and optimization
[ALNOS, SS11, KMP14, MST15].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form
achieving (1.1) in 5(nk/.€2'5 + nk@=1/e2®-1) time, while reading only 5(nk/€2'5) entries of A.
They also showed a lower bound that any algorithm achieving (1.1) must read ﬁ(nk /€) entries,
and closing the gap between these bounds has remained an open question. Similarly, Bakshi and
Woodruff exploit the structure of Negative-type metrics to reduce to the PSD case and obtain
a bi-criteria algorithm that requires O(nk/e®) queries. The gap in the sample complexity and
the requirement of a bi-criteria guarantee remained open. We resolve these questions here, and
describe our novel technical contributions in Section 2.



Next we consider PSD matrices that have been corrupted by a small amount of noise. A
drawback of algorithms achieving (1.1) is that they cannot tolerate any amount of unstructured
noise. For instance, if one slightly corrupts a few off-diagonal entries, making the input matrix
A no longer PSD, then it is impossible to detect such corruptions in sublinear time, making the
relative-error guarantee (1.1) information-theoretically impossible. Motivated by this, we also
introduce a new framework where an adversary corrupts the input by adding a noise matrix N to
a psd matrix A. We assume that the Frobenius norm of the corruption is bounded relative to the
Frobenius norm of A, i.e., ||N||§ < 17||A||§. We also assume the corruption is well-spread, i.e., each
row of N has ¢3-norm at most a fixed constant factor larger than £3-norm of the corresponding row
of A.

This model captures small perturbations to PSD matrices that we may observe in real-world
datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian
pseudoinverses, and systematic measurement errors when computing a covariance matrix. One
important application captured by our model is low-rank approximation of corrupted correlation
matrices. Finding a low-rank approximation of such matrices occurs when measured correlations
are asynchronous or incomplete, or when models are stress-tested by adjusting individual corre-
lations. Low-rank approximation of correlation matrices also has many applications in finance
[Hig02].

Given that it is information-theoretically impossible to obtain the relative-error guarantee (1.1)
in the robust model, we relax our notion of approximation to the following well-studied additive-
error guarantee:

A~ BIZ < [|A — AkllZ + (e + IIAIZ. (1.2)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04], and
triggered a long line of work on low-rank approximation from a computational perspective. Frieze
etal. showed that it is possible to achieve (1.2) in O(nnz(A)) time. Further, given access to an oracle
for computing row norms of A, 1.2 is achievable in sublinear time. More recently, the same notion
of approximation was used to obtain sublinear sample complexity and running time algorithms for
distance matrices [BW18, [IVWW19], and a quantum algorithm for recommendation systems [KP16],
which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms
for structured matrices, if we relax to additive-error guarantees and allow for corruption. In
particular, can we obtain additive-error low-rank approximation algorithms for PSD matrices that
achieve sublinear time and sample complexity in the presence of noise? We characterize when
such robust algorithms are achievable in sublinear time.

1.1 Owur Results

We begin with stating our results for low-rank approximation for structured matrices. Our main
result is an optimal algorithm for low-rank approximation of PSD matrices:

Theorem 4.1 (Informal Sample-Optimal PSD LRA.) Given a PSD matrix A, there exists an algorithm



Problem Prior Work Our Results Query Lower

Query Run Time Query Run Time Bound

pspra | O(%) Olt=+4) |o(2) ] o2=) | of%)
[MW17] Thm. 4.1 [IMW17]

PSDLRA | O (nk (& +%)) [ 0(mke! (& +5)) | or(2) | of (%) 0 ()
PSD Output IMW17] Thm. 4.1 IMW17]

Nesvetpe | O(2] | o[ &] | o[2] | o'2=) | af?)
LRA Bi-criteria, [BW18] No Bi-criteria, Thm. 4.28 [BW18]

2 @ w—1

Coreset Ridge 0 (%) o) (n:w" ) ok (%) ot (:;;}_2 ) Q (%)

Regression [MW17] Thm. 4.31 Thm 4.33

Table 1: Comparison with prior work. The notation O* and O represent existence of matching
lower bounds for query complexity and running time (assuming the fast matrix multiplication
exponent w is 2) respectively. The notation s, is used to denote the statistical dimension of ridge
regression. All bounds are stated ignoring polylogarithmic factors in 7, k and €.

that queries O(nk/e) entries in A and outputs a rank k matrix B such that with probability 99/100,
I|A — B|I% <(1+e)|A- Ak||§, and the algorithm runs in time O(n - (k/e)®71).

Remark 1.1. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,
up tologarithmic factors, which shows that any randomized algorithm that outputs a (1+€)-relative-
error low-rank approximation for a PSD matrix A must read ﬁ(nk /€) entries. Our running time
also improves that of Musco and Woodruff and is optimal if the matrix multiplication exponent w
is 2.

Remark 1.2. We can extend our algorithm such that the low-rank matrix B we output is also PSD

with the same query complexity and running time. In comparison, the algorithm of Musco and
Woodruff accesses O(nk/e® + nk?/e?) entries in A and runs in time O(n(k/e)® + nk®~1/e3@-1),

At the core of our analysis is a sample optimal algorithm for Spectral Regression: miny || DX —
E||§- We show that when D has orthonormal columns and E is arbitrary, we can sketch the
problem by sampling rows proportional to the leverage scores of D and approximately preserve
the minimum cost. This is particularly surprising since our sketch only computes sampling
probabilities by reading entries in D, while being completely agnostic to the entries in E. Here,
we also prove a spectral approximate matrix product guarantee for our one-sided leverage score
sketch, which may be of independent interest. We note that such a guarantee for leverage score
sampling does not appear in prior work, and we discuss the technical challenges we need to
overcome in the subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a
low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)
metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P =
{x1,x2,...,%x,} € R such that Ajj=|lxi—x;j ||§. We obtain an optimal algorithm for computing a
low-rank approximation of such matrices:



Theorem 4.28 (Informal Sample-Optimal LRA for Negative-Type Metrics.) Given a negative-type distance
matrix A, there exists an algorithm that queries O(nk/e) entries in A and outputs a rank k matrix B such
that with probability 99/100, ||A-B ||1% < (1+e)||A—-Ax ||1%, and the algorithm runs in time O(n-(k/e)®~1).

Remark 1.3. Prior work of Bakshi and Woodruff [BW18] obtains a O(1nk/e%°) query algorithm that
outputs a rank-(k +4) matrix B such that ||A — B||1% <(1+e)||A-Ax ||1%. We show that the bi-criteria
guarantee is not necessary, thereby resolving an open question in their paper.

Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation also
leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given a PSD
matrix A, a vector y and a regularization parameter A, we consider the following optimization
problem: min,crn |[Ax— y||§ +A||x ||§. This problem is often referred to as Ridge Regression and has
been the focus of numerous theoretical and practical works (see [Grul7] and references therein).

Theorem 4.31 (Informal Ridge Regression.) Given a PSD matrix A, a reqularization parameter A and
statistical dimension s, = Tr ((A? + AI)"1A2), there exists an algorithm that queries O(ns, /€?) entries of
A and with probability 99/100 outputs a (1 + €) approximate solution to the Ridge Regression objective and
runs in O(n(s,/€2)?1) time.

Remark 1.4. Our result improves on prior work by Musco and Woodruff [MW17], who obtain an
2)w

algorithm that queries O(n si /€*) entries in A and runs in O(n(s; /€2)?) time.

Remark 1.5. Since our algorithm works for all y simultaneously, we obtain a low-rank coreset of
the design matrix (in factored form) that preserves the Ridge Regression cost up to a (1 + €) factor.
Further, in Theorem 4.33, we prove a matching lower bound on the query complexity for any
coreset construction.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approximation
problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query access
to the corrupted matrix A + N, where A is PSD and N is such that ||N||1% < 77||A||1%. Further, for
alli € [n] ||Ni,*||§ < c||AZ-,*||§, for a fixed constant c. The diagonal of a PSD matrix carries crucial
information since the largest diagonal entry upper bounds all off-diagonal entries. Therefore, a
reasonable adversarial strategy is to corrupt the largest diagonal entries and make them close to the
small diagonal entries, which enables the resulting matrix to have large off-diagonal entries that
are hard to find. Capturing this intuition we parameterize our algorithms and lower bounds by the
largest ratio between a diagonal entry of A and A + N, denoted by ¢max = maxje(n Aj,;/[(A+N);jl.

Theorem 5.4. (Informal lower bound.) Let € > n > 0. Given A + N such that A is PSD and N is a
corruption matrix as defined above, any randomized algorithm that with probability at least 2/3 outputs a
rank-k approximation up to additive error (€ + 17)||A||% must read Q (¢)12naxnk /€) entries of A + N.

Remark 1.6. Any algorithm must incur additive error n||A|| %, since A is not even identifiable below
additive-error 17||A||%.



Remark 1.7. In our hard instance, ¢2 . can be as large as €7 /k, which implies a sample-complexity
lower bound of Q(n2). While this lower bound precludes sublinear algorithms for arbitrary PSD
matrices, we observe that in many applications ¢max can be significantly smaller. For instance, if
A is a correlation matrix, we know that the true diagonal entries of A + N are 1 and can ignore any
corruption on them to bound ¢max by 1.

Motivated by the aforementioned observation, we introduce algorithms for robust low-rank
approximation, parameterized by the corruption on the diagonal entries. We obtain the following
theorem:

Theorem 5.11 (Informal Robust LRA.) Given A + N, which satisfies our noise model, there exists an

algorithm that queries 5(qbr2naxnk /€) entries in A + N and computes a rank k matrix B such that with
probability at least 99/100, ||A — B||1% <||A- Ak||% +(e+ \/ﬁ)||A||%.

Remark 1.8. While the sample complexity of this algorithm matches the sample complexity in the
lower bound, it incurs additive-error /1 ||A||§ as opposed to nllAll%. An interesting open question
here is whether we can achieve additive-error o(+/1 ||A||%), though we note that when n? < ¢, this
just changes the additive error guarantee of our low-rank approximation by a constant factor.

Remark 1.9. Our techniques extend to low-rank approximation of correlation matrices, and we
obtain a sample complexity of O(nk/e), which is optimal. In fact, the hard instance in [MW17]
implies an Q(nk/e) lower bound on the sample complexity, even in the presence of no noise.
Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only
incurs an additive error of y/n ||A||1% (see Corollary 5.18 for a formal statement).

2 Technical Overview

In this section, we provide an overview of our techniques and supply intuition for our proofs. As a
first step, it is easy to see that the Q(nnz(A)) lower bound for general matrices does not apply to PSD
matrices, since it proceeds by hiding arbitrarily large entries. Observe that, reading the diagonal
of a PSD matrix certifies an upper bound on all entries of the matrix and thus off-diagonals cannot
be arbitrarily large. With this intuition in mind, we focus on sublinear algorithms.

2.1 Sample-Optimal Low-Rank Approximation

At ahigh level, our algorithm consists of two stages: first, we use the existing machinery developed
by Musco and Woodruff [MW17] to obtain weak projection-cost preserving sketches for A. Our sketches
are smaller than those obtained by Musco and Woodrulff, albeit satisfying a weaker guarantee.
Recall that such sketches reduce the dimensionality of the column (row) space, while ensuring
that the norm of all low-rank projections in the orthogonal complement of the column (row) space
are simultaneously preserved. Constructing such sketches for both the column and row spaces of
A results in a much smaller matrix, which we can afford to query.

At this point our approach diverges from that of Musco and Woodrulff, since it is not possible to
follow their strategy and recover a (1 + €)-relative-error low-rank approximation from the weaker



sketch we constructed above. However, we show that our sketch has enough information to extract
a structured subspace (represented by an orthonormal basis) for A such that the projection onto the
orthogonal complement of this subspace is comparable to the optimal low-rank approximation
cost, in spectral norm. Note, this guarantee is stronger than the span of the structured subspace
containing a low-rank approximation comparable to the optimal in Frobenius norm, and indeed
the latter does not suffice. In the second stage, we show that we can recover a rank-k matrix in the
span of the structured subspace such that it is a (1 + €)-relative-error low-rank approximation for
A. Further, we show that all these steps can be performed in sublinear time and by reading only
5(nk /€) entries in A (see Theorem 4.1 for a precise statement).

We begin by providing a bird’s eye view of the Musco-Woodruff algorithm and how to adapt
parts of it to obtain weak projection-cost preserving sketches (PCPs). For ease of exposition, we ignore
polylogarithmic factors in the subsequent discussion. Their algorithm begins with computing the
so-called ridge leverage scores (Definition 4.7) for A/2, which approximate the ridge leverage scores
of A up to a \/n/k-factor. The ridge leverage scores of Al/? can be approximated efficiently since
we can compute the row norms of A2 by simply reading the diagonal of A. It is well known
[CMM17] that sampling k/ eg columns of A proportional to its ridge leverage scores results in a
sketch C that preserves the cost of all rank-k projections P:

IC~PC||7 = (1 + o)A - PA|Z 2.1)

In prior work, C is referred to as a projection-cost preserving sketch (PCP). PCP constructions
are useful since a low-rank approximation for C translates to a low-rank approximation for A, while
C has much smaller dimension. Observe that oversampling columns of A proportional to the ridge
leverage scores of A2, by a A/ /k factor, suffices to obtain the guarantee of 2.1 (see Lemma 4.11 for
a precise statement). Note, C may have Q(n!/ eg) non-zeros but the algorithm need not query
any entries in C at this stage. Musco and Woodruff then construct a row PCP for C by sampling
Vnk/ 63‘5 rows of C proportional to the rank-(k/e) ridge leverage scores of A. The resulting matrix

Risa Vnk/ egf’ X Vnk/ eg matrix such that for any rank-k projection P,
IR - RP||z + O(|A - AxlI}) = (1 £ €)||C - CP|7 (2.2)

Since R is a much smaller matrix, they run an input-sparsity time algorithm to compute
a low-rank approximation for it [CW13]. Using standard regression techniques (described in
[CMM17, MW17, BW18]) along with equations 2.1 and 2.2, setting €y = € results in a (1 + €)-low-
rank approximation of A by querying O(nk/e*°) entries. Musco and Woodruff instead use a more
complicated algorithm to get a 1/€2° dependence.

Our starting point is to observe that the PCP construction above allows to preserve the projection
of columns of A on all (k/e)-dimensional subspaces, albeit up to a constant factor. Therefore, a
natural approach is to set the error parameter €y in the PCP constructions to be a small fixed constant,
say 0.1, and the rank parameter k to be k/e, where € is the desired input accuracy. Further, we
observe that the guarantee obtained in Equation 2.1 can be strengthen to a mixed Spectral-Frobenius
PCP guarantee (also introduced by [MW17]): for all rank-(k/€) projection matrices P, the column



PCP C satisfies :

(1-0.DIA = PA|} = ——[IA = Ag/ellf < IC~PC) < (1 +0.)[|A -~ PAl; + —[|A = Ag/cllF (2.3)

10k 10k

For a formal statement refer to Lemma 4.12. Sampling rows of C proportional to the same
distribution results in a row PCP for C such that for all rank-(k/€) projections P,
(1-0.1)|C-CP|;5 -

IA = Ag/ellf < IR =RP|F < (1 +0.1)[[C ~ CP|3 + ——[|A — Ag/ellf (24)

10k 10k

We then use an input-sparsity spectral-low-rank approximation algorithm by [CEM15] (Lemma
4.6), to obtain a low-dimensional subspace, represented by a 4/nk/exk /e matrix Z with orthonormal
columns such that

IR~ RZZT| < ~ IR ~ Reel? (2.5)

27k
Following the notation of Clarkson and Woodruff [CW17], we refer to the projection matrix ZZ"
as a Spectral-Frobenius (SF) projection (as in Definition 4.13). A key property of an SF projection
is that it spans a (1 + €)-relative-error low-rank approximation to R (Lemma 4.14), i.e. [R -
ZZ"RyZZ7|F < (1 + )[R = Ryell?
plugging in P = ZZT in Equation 2.4, we can bound ||C — CZZTllg as follows :

Now, using the fact that R is a Spectral-Frobenius PCP,

10 €
IC~CZZT |} < IR - RZZT 2 + IR = Riell? < 7= IR = Rell2 + 52 |IR - Regel?

I = 10k

<o(7)llc-cp o

where the second inequality follows from Equation 2.5 and the third follows from the fact that PCPs
preserve Frobenius norm up to a constant factor, i.e., [[R—Ry/, ||1% = O(|[C~Cy/e ||1%) = O(|[A-Ay/c ||1%).
Therefore, ZZ" is also a Spectral-Frobenius projection for C. Here, we are faced with a few
challenges. First, the relative-error approximation spanned by the subspace has rank k/e. Second,
it is unclear how to obtain any reasonable result for A from the above structural property, given
that even the dimensions of ZZ" do not match A.

We begin by showing that a Spectral-Frobenius projection for A suffices to obtain a low-rank
approximation with O(nk/e) queries. Assuming we are handed a (k/e)-dimensional structured
subspace that contains a relative-error low-rank approximation for A itself. This is represented as
an n X k /e matrix Q with orthonormal columns such that ||A — QQTAllg <e/k-||A—- A/ ||1%. We
prove that given such a structured subspace, we can extract a rank-k relative-error approximation
by reading only nk/e entries in A (Theorem 4.16 in Section 4.1). We provide an overview of the
proof here.

The SF projection property implies [|[A — QQTAQQT||2 < (1 + €)||A — Ag||2. Therefore, it
suffices to solve the following optimization problem:

-
. rg(}g;q IA - QXQT|? (2.7)
since X = QTAxQ is always feasible. While we are now optimizing over a k/e x k/e matrix X,
with rank at most k, the problem still seems intractable to solve optimally in sublinear time and

7



queries to A. The key idea here is that Q has orthonormal columns and thus the leverage scores are
precomputed for us. We can then sample columns and rows proportional to the leverage scores of
Q and consider a significantly smaller sketched problem. Therefore, we create sampling matrices
S and T that sample poly(k/e) rows proportional to the leverage scores of Q and consider the
resulting optimization problem:
. T2
ranrl{&r}sk ISAT - SQXQ "T]|; (2.8)
Here, we are faced with an intriguing phenomenon: our sketched optimization problem does not
have the property that the minimum cost for Equation 2.8 is a (1+€)-approximation to the minimum
cost for Equation 2.7. The reason is that our sketch incurs a fixed additive shift term, which we
cannot approximate in sublinear time. We note that this is the bottleneck in approximating the
cost of the optimal low-rank approximation, and as mentioned in [MW17], it is open to estimate
this cost in 0(n%/2) time.
However, we can apply the structural result in Lemma 4.5 twice, to show that the optimal
solution to Equation 2.8, when plugged in to Equation 2.7 obtains a (1 + €)-approximation to the

minimum cost. Formally, S and T have the property that if X = arg miny [[SAT — SQXQ'T||2, then

A-OXQT|IP<(1+0 in ||A—QXQT|>.
1A~ QXQTJF < (1+0(e) _min_ [|IA~QXQ"}

The optimization problem in Equation 2.8 is called Generalized Low-Rank Approximation and
admits a closed form solution [FT07] (Theorem 4.15). Further, since the problem now has all
dimensions independent of n, we can afford to explicitly compute SAT by querying the corre-
sponding entries in A. The resulting closed-form solution can also be computed in poly(k/e) time
(and queries) which only contributes a lower order term. We obtain one factor for the low-rank
approximation for A by simply computing an orthonormal basis for QX. In order to compute
the second factor, we set up and approximately solve a regression problem, the details of which
can be found in Algorithm 1. Efficiently solving such a regression problem is now standard in
low-rank approximation literature [CMM17, MW17, BW18]. Therefore, we can output a low-rank
approximation to A by querying only O(nk/€) entries.

We have now reduced our problem to computing an SF projection for A, while reading only
nk/e entries. Recall, in Equation 2.6, we obtained a Spectral-Frobenius projection for C but stopped
short since we did not see a natural way to proceed. Here, we observe that if we had a such a
projection for the column-space of C, by Equation 2.1, it would also work for A and we would be
done. To this end, we consider the following optimization problem:

min ||C-WZT |3 (2.9)

WeR"xk
We show that an orthonormal basis Q for an approximate minimizer to Equation 2.9 is an SF
projection for C and in turn A (since C is a column PCP for A). Therefore, we focus on optimiz-
ing Equation 2.9 and refer to this problem as Spectral Regression. We note that unlike standard
regression, here we minimize the Spectral (Operator) norm. While the corresponding problem
for minimizing Frobenius norm is extensively studied and well understood, to the best of our

8



knowledge the only relevant related work on Spectral Regression is in the streaming model, by
Clarkson and Woodruff [CW09]. They construct an oblivious sketch, consisting of random entries
in {-1, 1}, for Equation 2.9 that preserves the optimal solution up to a (1 + €) factor. Unfortunately,
we cannot use oblivious sketching here, since C may be a dense matrix and we cannot afford to
read all of it.

Here, we emphasize that obtaining a sample-optimal algorithm for the aforementioned Spectral
Regression problem is crucial for our main algorithmic result. Given that C is an n X /nk/e matrix,
we cannot query most of it and thus approximating its leverage scores is infeasible. A natural
approach here would be to follow the Affine Embedding idea for Frobenius norm (refer to Lemma
4.5) and hope a similar guarantee holds for the spectral norm as well. Here, one might hope to
obtain a small sketch that preserves the spectral norm cost of all W up to a (1 + €) factor. While such
a guarantee would suffice, we note that Z could have rank as large as k/e and we can no longer
afford a (1 + €)-approximate affine embedding even for Frobenius norm, without incurring a larger
dependence on €. This precludes all known approaches for sketching Equation 2.9 to preserve the
optimal cost.

Instead, we relax the notion of approximation for our sketch. We observe that it suffices to
construct a sketch S such that if W = arg miny ||CS — WZTS||§, then

- ) €
IC-WZT[} < O() | min [IC~WZT|} + ZIIC~ Cuyel? (2.10)

Note, this is a weaker guarantee for the sketch S, since we only need to preserve the cost of the
optimal solution up to a mixed relative and additive error. First, we observe such a guarantee
suffices, since we can upper bound the cost from Equation 2.10 by O(e/k) - ||C — Ck/€||§ and
the Spectral-Frobenius PCP from Equation 2.1 incurs this term anyway. In Theorem 4.18, we
show that we can construct such a sketch S satisfying Equation 2.10 by sampling k/e columns
of C proportional to the leverage scores of ZT.This is surprising since we completely ignore all
information about C and our sketch is not an oblivious sketch.

The key technical lemma (Lemma 4.25) we prove here is a weak approximate matrix product
for C* and Z" where C* = C(I — Pzr) is the projection onto the orthogonal complement of Z.
While approximate matrix product has been extensively studied [DFK"04, Sar06, CW13], even for
spectral norm [CNW15], it is important to emphasize here that all known constructions are either
oblivious sketches or require sketches that are sampled proportional to both C* and Z'. Since Z"
has no information about the spectrum of C*, the main challenge here is to control the spectrum
of C'SSTZT.

In order to bound [|C*SSTZT||,, we analyze how sampling columns of C* proportional to the
leverage scores of ZT affects the spectrum of C*. An important tool in our analysis is the following
result by Rudelson and Vershynin on how the spectral norm of a matrix degrades when we sample
a uniformly random subset of rows [RV07]. They show that sampling g rows of a matrix M
uniformly at random, indexed by the set Q, results in a matrix Mq such that

\/gHMHz + y/1og(q)[[Mlln/q)

E [|[Miq],,] = O




where [|Al|/q) is the average of the largest 1/q {,-norms of columns of A. Here, we prove that
expected spectral norm of C restricted to the columns sampled by S proportional to the leverage
scores of ZT only exceeds that of a random subset by a polylogarithmic factor. This result may be
of independent interest in applications where we would want to bound the spectrum of random
submatrices, where the rows or columns are not sampled uniformly.

Intuitively, there are two technical challenges we overcome in order to apply the Rudelson-
Vershynin result in our setting. First, a leverage score sampling matrix S need not sample columns
uniformly at random, since we have no control over the squared column norms of Z'. Given that
the squared column norms of Z™ may be lopsided, the subset of columns we select could be far
from a uniform sample in the worst case. Second, the matrix we apply it to is not square and
Il - ll2/4) norm only shrinks substantially when the columns of A have the same {’g norm, up to a
constant.

We therefore obtain a variant of Spectral norm decay for rectangular matrices, i.e. for any n X m
matrix M with roughly the same squared column norms, we show that

E [[Mi|,,] =0

\/gllMllz + y/log(q)/b|IMl|(u/q) (2.11)

where b = [n/m]. To apply the above result, we then partition the rows of C (since S samples
columns of C as opposed to rows) into log(n) groups such that within each group, all rows have
roughly the same squared norm. We then analyze leverage score sampling proportional to the
column norms of Z" on each group independently. We show that we can obtain a coupling between
the two random processes, namely uniform sampling and leverage score sampling, such that we
obtain a decay bound similar to Equation 2.11, up to log factors. We describe our solution in more
detail in Section 4. We note that our results extend to outputting a low-rank PSD matrix as well.

Negative-Type Matrices. We then use the techniques developed above to obtain an optimal
relative-error low-rank approximation for Negative-Type distance matrices. While arbitrary met-
rics do not admit sublinear time algorithms for relative-error low-rank approximation (see The-
orem 7.1 in [BW18]) Bakshi and Woodruff provided a sublinear time algorithm for metrics that
satisfy negative-type inequalities. They obtain a (1 + €)-relative-error approximation, that queries
O(nk/€®) entries in the input. However, this algorithm outputs a bi-criteria solution, i.e., given a
negative-type matrix A, it outputs a rank-(k + 4) matrix M such that ||A — B||§ <(1+¢)|A- Ak||§-

The key observation they make is that negative-type metrics can be realized as the distances
corresponding toa pointset ¥ = {x1, x2,...x,}suchthatA; ; = |[x;~x; ||§ = ||x1-||§+ ||xj||§—2(xi, Xj).
Therefore, A admits the following decomposition: A = R; + Ry — 2B, where for all j € [n],
(Ry)i,j = ||xi||§, R; = R and B is PSD. Observe that query access to A suffices to obtain query
access to B by simply assuming w.l.o.g. that x; is centered at the origin and the i-th entry in
the first row corresponds to ||x;]|5. Therefore, any PSD low-rank approximation algorithm can be
simulated on the matrix B by only having query access to A. Bakshi and Woodruff show that
obtaining the low-rank approximation for B and appending the column span of R; and R; to it
results in a rank-(k + 4) bi-criteria approximation to A. The bi-criteria algorithm can be improved
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to k + 2 using Cauchy’s Interlacing Theorem [Fis05] and observing Ry, R, are rank-1 updates to B,
but this seems to be the limit of such approaches.

We show here that our SF projection framework can be used to obtain a sample-optimal
algorithm for negative-type metrics, and the bi-criteria approximation is not necessary. Recall,
from our discussion above, that an SF projection for A suffices to obtain a low-rank approximation
for A. Our key observation is that we can use the techniques we developed for PSD matrices to
obtain an SF projection, QQ? , for B (in the decomposition above), to which we append the column
span of Ry, R to Q, and the resulting projection (denoted by (2) is an SF projection for A. To see this,
observe, ||A—QAkQ||% = ||A—Ak||§+||Ak—QAkQ||§+2Tr (A — Ap)(I - Q)ALQ). Asimple calculation
using Von-Neumann's trace inequality bounds the deviation by O(k||A(I-2) ||§). Since €) spans Ry
and R, and is an SF projection for B, we can bound the above costby O(e/k)||B—By.2||r. Itis easy to
see that ||A—Ay ||1% = O(||B—Bk+2||§) and therefore, we conclude ||A—QA;<Q||§ < (1+0(e))||A—Ax ||1%
(see Lemma 4.29 for details). Subsequently, we use the sublinear algorithm we developed for PSD
matrices to obtain a low-rank approximation for A.

Ridge Regression. Our techniques also naturally extend to ridge regression, when the design
matrix is PSD. This connection was originally outlined by Musco and Woodruff and they obtain
sublinear time algorithms for solving ridge regression, parametrized by the statistical dimension
s). At a high level, we compute a rank-(s 1 /%) spectral approximation to the input and solve ridge
regression on the resulting matrix, i.e., given a PSD matrix A, we compute a low-rank matrix B
such that ||A — B||§ < O(e/b)|A - Ak||§. Further, we observe that the low-rank matrix is in fact a
coreset for the input as it simultaneously preserves the cost of all x and y.

We then obtain a matching query lower bound for constructing coresets for ridge regression.
Our lower bound proceeds by showing that a coreset can output a low-rank approximation on the
instance of Musco and Woodruff with a stronger quadratic, rather than a linear dependence on €.
Intuitively, the hard instance has multiple principle submatrices of all 1s placed randomly over the
matrix. Since a coreset simultaneously preserves the ridge regression cost for all x, y, it suffices to
query the coreset on tuples of (scaled) eigenvectors and learn the positions of the blocks. However,
a priori, we do not know what the eingenvectors of A are. Instead, we query the coreset on every
vector with a bounded support, and pick all vectors with small regression cost. We show that
our resulting set only contains vectors which do not overlap much on the locations of the hidden
blocks and we show this suffices.

2.2 Robust Low-Rank Approximation

The robustness model we consider is as follows: we begin with an n X n PSD matrix A. An
adversary is then allowed to arbitrarily corrupt A by adding a perturbation matrix N such that
||N||% < qllAll% and for all i € [j], ||Ni,*||§ < c||Ai,*||§, for a fixed constant c. Note, while the
adversary is unrestricted in the entries of A that it corrupts, the Frobenius norm of the corruption
is bounded in terms of the Frobenius norm of A and the corruption is well-spread. The motivation
for considering such a model is that many matrices that we observe in practice might be close but

not exactly PSD, for instance, small perturbations to PSD matrices.
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Itis impossible to obtain a relative-error low-rank approximation in this setting, since we cannot
even identify A after querying all n? entries of A + N. To see this, consider the case where A is
rank-k, and observe that a relative-error algorithm requires identifying A exactly. However, by
querying all entries of A + N, we can determine the row norms exactly. Therefore, we can run
the algorithm of Frieze-Kannan-Vempala [FKV04] to obtain a rank-k matrix XY (in factored form)
such that with probability at least 99/100,

|A+N-XYT||2 < [[A+N-(A+N)l|? +ellA + N2
< A+ N - Al +¢e]|A+ N2
< ||A = AxlIF + IINJI7 + 2(A - A, N) + 3 + el All;
< |A - Acll7 + O(e + VIIA|F

(2.12)

where the second inequality follows from (A + N)i being the best rank-k approximation to A + N
and Ay is any other rank-k matrix. The third inequality uses ||A + N||§ < 2(||A||% + ||N||%), which
follows from ¢3 distance satisfying triangle-inequality up to a factor of 2. The last inequaliity uses
Cauchy-Schwarz on 2|(A- A, N)| < 2[|A|lr-[IN|lr < 2y/7llA|IZ, which follows from the assumption
on N. Additionally

IA+N-=XYT||Z=[|A-XYT|Z +|IN|Z +2(A - XY",N)

(2.13)
> |A-XYT|IF - 2v7llAllZ

Combining Equations 2.12 and 2.13, we have ||A — XYTllg <||A- Ak||§ + O(e + \/ﬁ)||A||§ While
this algorithm is far from optimal in terms of sample complexity, it indicates that relaxing our
guarantees to additive-error is amenable to robust algorithms and indicates why we pick up a /i
term. The central question we focus on in this section is whether there exists a robust sublinear time
and query algorithm to obtain an additive-error low-rank approximation for PSD matrices.

We begin by showing a sample complexity lower bound if A is an arbitrary PSD matrix. The
intuition from the relative-error setting still applies and the diagonal entries are crucial for sublinear
algorithms. In tune with this intuition, the adversary corrupts large diagonal entries to decrease
their magnitude and thus obfuscate rows that contain large off-diagonal entries. We therefore
parameterize our lower bound and algorithms by the largest ratio between a diagonal entry of A
and A + N, denoted by ¢max = maxje[,] Aj,j/|(A + N);|. Recall, we obtain the following lower
bound:

Theorem 5.4. (Informal lower bound.) Let € > n > 0. Given A + N such that A is PSD and N is a
corruption matrix as defined above, any randomized algorithm, that with probability at least 2/3, outputs a
rank-k approximation up to additive error (€ + 17)||A||% must read QQ (¢)12naxnk /€) entries of A + N.

In our hard instance, we have a block matrix A, where we place a random €/1n X €/n, rank-1,
non-contiguous block B; such that each entry in the block is 4/1?n /€ and the remaining matrix has
1s on the diagonals and Os everywhere else. It is easy to see this matrix is PSD. We observe that the
block By contributes an e-fraction of the Frobenius norm of A, and the ¢3 norm of the diagonals
is an n-fraction of the Frobenius norm of A. Therefore, the adversary can afford to corrupt all
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the diagonal entries in B; and set them to be 1. Such a perturbation is feasible in our model and
successfully obfuscates the large off-diagonal entries. Note, for this perturbation ¢2,,, = n%*n/e.
Let the resulting matrix be denoted by A + N. Here, we observe any e-additive-error low-rank
approximation cannot ignore the block B;. Since the diagonals of A+N now provide no information
about the off-diagonal entries, any algorithm that correctly outputs a low-rank approximation for
both A + N and I must detect at least one entry in By. Since B; has €?/ 172 non-zeros, any algorithm
must query Q(1>n2/€2) = Q(¢p2,,.11/€) entries to detect one entry. To obtain a linear dependence

on k, we simply create k independent copies of B;.

Robust Algorithm. Next, we focus on a robust, additive-error low-rank approximation algo-
rithm, where the sample complexity is parameterized by ¢max. We begin by introducing a new
sampling procedure to construct projection-cost preserving sketches. Our construction is simple to
state: we sample each column proportional to the corresponding diagonal entry. Computing these
sampling probabilities exactly requires reading only n entries in A + N. We show that sampling
o) (2 . V1k?/€?) columns proportional to this distribution preserves the projection of the columns

of A onto the orthogonal complement of any rank-k subspace, up to additive error (e + \/ﬁ)HAH%-

Theorem 5.7. (Informal Robust Column PCP.) Let A + N be an n X n matrix following the assumptions
of our noise model. Let k € [n]and €,/ > 0. Let q = {q1,92 . .. qu} be a probability distribution over the
columns of A such that q; = (A + N); ;/Tr (A + N). Construct C by sampling O(¢2,.xV1k?/€2) columns
of A + N proportional to q and rescaling appropriately. Then, with probability at least 1 — c, for any rank-k
orthogonal projection X,

IC ~XClIz = [|A - XAlIf + (e + yDIIAllZ

We note that all prior PCP constructions work in the noiseless setting. As a comparison, the
construction of Cohen et. al. [CMM17] works for arbitrary A, but requires nnz(A) time and
queries to compute the approximate ridge-leverage scores of A. Musco and Musco [MM17]
describe how to approximately compute the ridge leverage scores of A'/? (if A is PSD) using
the Nystrom approximation, where A = A'/2 . A2, Musco and Woodruff [MW17] use this
method to compute the ridge leverage scores of Al/? with @(nk) queries and show that the this
provides a (y/n/k)-approximation to the ridge leverage scores of A. We note that the guarantees
obtained by [CMM17, MW17] are relative error, as opposed to the additive error guarantee in
the theorem above. Finally, Bakshi and Woodruff [BW18] provide an additive-error sublinear
time construction for distance matrices by sampling proportional to column norms. In all the
aforementioned constructions, computing the sampling distribution is a non-trivial task, whereas
we simply sample proportional to the diagonal entries.

We observe that we sample columns of A + N, to obtain C which is an unbiased estimator for
|[A+N ||%. The main technical challenge in our construction is to relate the cost of rank-k projections
for the column space of A to that of C, while obtaining an optimal dependence on #n and k. Note,
while we do not obtain the correct dependence on €, we do not have to explicitly compute all of C,
only a subset of it.

We then extend the diagonal sampling algorithm to construct a robust row PCP for the matrix C.
We note that the construction for A does not immediately give a row PCP for C since C is no longer
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a corrupted PSD matrix or even a square matrix, and thus there is no notion of a diagonal. Here,
all previous approaches to construct a PCP with a sublinear number of queries hit a roadblock,
since the matrix C need not have any well-defined structure apart from being a scaled subset of
the columns of the original corrupted PSD matrix A + N. However, we show that sampling rows
of C proportional to the diagonal entries of A + N results in a row PCP for C.

Theorem 5.10. (Informal Robust Row PCP.) Let A+N be an n X n matrix corresponding to our noise model
and let C be a column PCP for A as defined above. Let p = {p1, p2 ... pn} be a probability distribution over
the rows of C such that p; = (A + N); ;/Tr (A + N). Construct R by sampling 5(¢maxﬁk2/€2) rows of
C proportional to p and scaling appropriately. With probability at least 1 — ¢, for any rank-k orthogonal
projection X,

IR — RX|2 = [[C~ CXI? (e + yIAI

For our algorithm, we begin by constructing column and row PCPs of A + N, to obtain a
t X t matrix R, where { = 5(q5maxx/ﬁk2/ €?). Instead of reading the entire matrix, we uniformly
sample €3t /k> entries in each row of R, and query these entries. Note, this corresponds to reading
312/k3 = O(Pp2xnk/€) entries in A + N. Ideally we would want to estimate the £2 norms of each
row of R to then use a result of Frieze-Kannan-Vempala to obtain a low-rank approximation for R
[FKV04]. It is well known that to recover a low-rank approximation for R, one can sample rows
of R proportional to row norm estimates, denoted by Y; [FKV04]. As shown in [[VIWW19] the
following two conditions are a relaxation of those required in [FKV04], and suffice to obtain an

additive error low-rank approximation :

1. For all i € [t], the corresponding estimate over-estimates the row norm of R; ., ie., V; >
IR;,. 13-

2. The sum of the over-estimates is not too much larger than the Frobenius norm of the matrix,
ie., Zie[t] «yl < (P%laxn/t”R”I%

If the two conditions are satisfied, Frieze-Kannan-Vempala implies sampling s rows of R propor-
tional to Y; results in an s X t matrix S such that the row space of S contains a good rank-k
approximation, where s = O(¢2,,,1k/et), which matches our desired sample complexity. We
show that, unfortunately, such a guarantee is not possible even in the uncorrupted case, where
N = 0 and ¢max = 1. Intuitively, R may be a sparse matrix such that many rows have large
norm, and uniform sampling cannot obtain concentration for all such rows, as required by the
aforementioned conditions.

Instead, we settle for a weaker statement, where we show that the estimator obtained by uniform
sampling in each row is accurate with o(1) probability. At a high level, we show that we can design
a sampling process that is statistically close to £3 sampling described by Frieze-Kannan-Vempala
[FKV04]. We then open up the analyzes of Frieze-Kannan-Vempala and show that our sampling
process suffices to recover the low-rank approximation guarantee. Given the flurry of recent work
in quantum computing [KP16, CLW18, Tan19, RSML18, GLT18] that uses Frieze-Kannan-Vempala
{’g sampling as a key algorithmic primitive, our analysis may be of independent interest.
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Lemma 5.14. (Informal Estimation of Row Norms.) Let R € R™! be the row PCP as defined above. For all
i € [t]let Xi = X jcredsjin) Xij such that X; ; = k3R?j,/e3 with probability 1/t, for all j’ € [t]. Then, for
all i € [t], Xi =(1+0.1) ||R;.

% with probability at least min(llRi,*llgk/en, 1).

We now face two major challenges: first, the probability with which the estimators are accurate
is too small to even detect all rows with norm larger than ¢2,,n ||R||§ /2, and second, there is no
small query certificate for when an estimator is accurate in estimating the row norms. Therefore,
we cannot even identify the rows where we obtain an accurate estimate of norm.

To address the first issue, we make the crucial observation that while we cannot estimate the
norm of each row accurately, we can hope to sample the row with the same probability as Frieze-
Kannan-Vempala [FKV04]. Recall, their algorithm requires sampling row R;. with probability
at least ||R; % / ||R||§, which matches the probability in Lemma 5.14. Therefore, we can focus on
designing a weaker notion of identifiability, that may potentially include extra rows.

We begin by partitioning the rows of R into two sets. Let H = {i | IR; « % > @2/ t2||R||§}
be the set of heavy rows and [t] \ H be the remaining rows. Note, |H| = O(if2 / ¢12nax”) =

O(k4 10g4(n) / 64). We then condition on our estimator having norm at least 2, 7 ||R||1% /t2. Con-

ditioned on this event, we sample the corresponding row of R with probability 1. As before, we
want to prevent sampling too many spurious rows, but we show only a subset of the rows in H

satisfy this condition. This ensures we identify rows in H with the right probability. For all the

2

remaining rows, we know the norm is at most ¢z,

2
max

We then open up the analysis of Frieze-Kannan-Vemapala to show that the above sampling

n/ t2||R||§. We show that uniformly sampling
n/t such rows suffices to simulate row norm sampling.

procedure suffices to bound the overall variance, resulting in a relaxation of the conditions required
to obtain an additive error low-rank approximation to R. Once we compute a good low-rank
approximation for R we can follow the approach of [CMM17, MW17, BW18], where we set up two
regression problems, and use the sketch and solve paradigm to compute a low-rank approximation
for A, culminating in Theorem 5.11.

For corrupted correlation matrices, we observe that the true uncorrupted matrix has all diagonal
entries equal to 1. Therefore, we can discard the diagonal entries of A + N and assume they are
1. In this case, no matter what the adversary does to the diagonal, ¢max = 1 and we obtain an
O(nk/e) query algorithm that satisfies the above guarantee. Further, we show a matching sample
complexity lower bound of (nk/e), to obtain e-additive-error, even in the presence of no noise.

3 Preliminaries and Notation

Given an m X n matrix A with rank r, we can compute its singular value decomposition, denoted
by SVD(A) = UXVT, such that U is an m X r matrix with orthonormal columns, VT is an r X n
matrix with orthonormal rows and ¥ is an r X r diagonal matrix. The entries along the diagonal
are the singular values of A, denoted by o1,02...0,. Given an integer k < r, we define the
truncated singular value decomposition of A that zeros out all but the top k singular values of
A, ie., Ay = U3 VT, where 3 has only k non-zero entries along the diagonal. It is well known
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that the truncated SVD computes the best rank-k approximation to A under the Frobenius norm,
ie., Ay = mingnkx<k |A — X|[r. More generally, for any matrix M, we use the notation My and
M, to denote the first k components and all but the first k components respectively. We use
M;,. and M., ; to refer to the i'" row and j" column of M respectively. For an n X n PSD matrix
A, we denote the singular (eigenvalue) decomposition by UXU". Further, since %;; > 0, let
A2 = U32UT be the square root of A. Note that A;; = (Al Aji %). By Cauchy-Schwarz, for

i’

all i,j € [n], A%, = <A1/2,A1/2)2 < ||A1/2||2 . ||A1‘/2||2 = Aj;-A;;. We use nnz(A) to denote the
i,j i% o ix 112 jx 2 ’ J:]

number of non-zero entries (sparsity) of A. We use operator and spectral norm interchangeably

to denote [|[M|2 = max,|,=1 [My|2. We also use the notation M to denote the Moore-Penrose

pseudoinverse.

4 Relative Error PSD Low-Rank Approximation

In this section, we describe our main algorithm for relative-error PSD Low-Rank Approximation,
where we query only o (nk/e) of the input matrix A. This improves the best known algorithm by
Musco and Woodruff that queries o (nk/€>°) and matches their query lower bound of Q(nk/€) up
to polylogarithmic factors [MW17]. Formally, we prove the following:

Theorem 4.1. (Sample-Optimal PSD Low-Rank Approximation.) Given an n X n PSD matrix A, an
integer k, and 1 > € > 0, Algorithm 3 samples O(nk/€) entries in A and outputs matrices M, N" € Rk
such that with probability at least 9/10,

IA = MNJIZ < (1 +e)llA - Agll?
Further, the algorithm runs in FOV(n(k/e)“"l + (k/€3)®) time.

We begin by defining various statistical quantities associated with a given matrix, such as the
leverage and ridge-leverage scores. The leverage score of a given row measures the importance
of this row in composing the row span. Leverage scores have found numerous applications
in regression, preconditioning, linear programming and graph sparsification [Sar06, S511, L.515,
CLM™"15]. In the special case of graphs, they are referred to as effective resistances.

Definition 4.2. (Leverage Scores.) Given a matrix M € R™™, let m; = M; . be the i-th row of M.
Then, for all i € [n] the i-th row leverage score of M is given by

7i(M) = m;(M"M)"'m/

The column leverage scores can be defined analogously. Note, in the special case where M
has orthonormal columns, the row leverage scores of M are simply the ¢5 norms of the rows i.e.,
7;,(M) = ||m; ||§. It is well-known that sampling rows of a matrix proportional to the leverage scores
satisfies the subspace embedding property (Spectral Sparsification for Graphs) and leads to faster
algorithms for £,-norm Regression. Recall, for an n X m matrix A, a leverage score sampling matrix
S = DQT, where D is a t X t diagonal matrix and € is an n X t sampling matrix. For all j € [f],
select row index i € [n] with probability p; = 7;(A)/Y; Ti(A) and set Q; ; = 1 and D; ; = 1/+/fp;.
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Lemma 4.3. (Subspace Embedding.) Given a matrix A € R™™, € > 0, and a leverage score sampling
matrix S with t = O(mlog(m)/€e?) rows, with probability at least 99/100, for all x € R™

ISAx(; = (1 £ €)l|Ax]l3

This simply follows from an application of the Matrix Chernoff bound. Observe that the sketch
preserves all the singular values of A up to a factor of 1 + €. We refer the reader to a recent survey
for more details [Woo14]. Next, we recall that leverage score sampling results in a fast algorithm
for regression.

Lemma 4.4. (Fast Regression, Theorem 38 [CW13].) Given matrices A € R™", B € R"™ such that
rank(A) < r and € > 0, sample O(r log(r) + r/€) rows of A, B proportional to the leverage scores of A to
obtain a sketch S such that Y* = arg miny ||SAY — SB||%_. Then, with probability at least 1 — c,

|AY = B|Z < (1 +e€) min [|AY ~ B||2

for a fixed small constant c. Further, the time to compute Y* is O(nnz(A)log(r/€) + (n + d)(r/e)*™ +
poly(r [€)).

Note, the terms in the running time follow from using Cohen’s construction for OSNAP [Coh16].
Leverage score sampling matrices also approximately preserve norms in affine spaces, which leads
to faster algorithms for multi-response regression, i.e., miny [|[AX - B ||1%, where B now has a large
number of columns.

Lemma4.5. (Affine Embeddings, Theorem 39 [CW13].) Given matrices A € R™™ , such that rank(A) = r,
and B € R™4, let S be a leverage score sampling matrix with t = O(r/e*) rows. Further, let X* be the
optimizer for miny [|AX — B||1% and let B* = AX" — B. Then, with probability at least 1 —c, forall X € R

ISAX — SBJ|Z — [ISB"[I = (1 £ €)|[AX - B|I — [IB"?
for a fixed small constant c.

An important application of the above lemma (which we use extensively) is to sketch con-
strained regression problems, for example, when the matrix X has a fixed small rank. Since affine
embeddings approximately preserve the cost of all affine spaces up to a fixed shift, this guarantee
in particular holds for X with small rank. Recall, an important caveat here is that the cost of the
sketched problem is not a relative-error approximation to the cost of the original problem since we
cannot estimate ||B* ||1% in general. However, the upshot here is that the aforementioned guarantee
still suffices for optimization since the fixed shift does not change the optimizer.

The next tool we use is input-sparsity time low-rank approximation. This was achieved by
Clarkson and Woodruff [CW13] and the exact dependence on k, € was improved in subsequent
works [MM13, NN13, BDN15, Coh16]. While the standard low-rank approximation guarantee
achieves relative-error under Frobenius norm, here we will require a spectral norm bound, which
follows from results of [CEM*15, CMM17].
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Lemma 4.6. (Input-Sparsity Spectral LRA [CEM*15, CMMT17].) Given a matrix A € R™%, ¢,6 > 0
and k € N, let k' = k/e. Then, there exists an algorithm that outputs a matrix ZT € R¥*" such that with
probability at least 1 — 6,

€
IA-AZZTIE <O (1) 1A - Ayl
in time and query complexity O (nnz(A) + (n + d)poly(k/eb)).

Proof. By Lemma 18 from [CEM™15] it suffices to use any obvious subspace embedding matrix
with € = O(1) and k = k/e. Here, we use OSNAP in the regime that requires O(k/€?) rows and
sparsity polylog(k)/e [NN13]. Instantiating this OSNAP construction with € = O(1) and k = k/e
results in ZT with k/e rows in the desired running time. m]

Next we define the ridge leverage scores of a matrix. The ridge leverage scores were used
as sampling probabilities in the context of linear regression and spectral approximation [LMP13,
KLM*17, AM15], and low-rank approximation [CMM17, MW17]. Intuitively, the ridge leverage
scores can be thought of as adding a regularization term that attenuates the smaller singular
directions such that they are sampled with proportionately lower probability.

Definition 4.7. (Ridge Leverage Scores.) Given a matrix M € R™ and an integer k, let m; = M; . be
the i-th row of M. Then, for all i € [n], the i-th rank-k ridge leverage score of M is

+
IM — M|}
— I

m.

P (M) =m; [M™M +

Since we typically use the row ridge leverage scores to define a probability distribution over the
rows and sample according to this distribution, it is crucial that their sum is small as this controls
the number of rows we would need to sample. This follows from a straightforward calculation:

Lemma 4.8. (Lemma 4 from [CMIM17].) Let pi.‘ (M) be the i-th ridge leverage score of M. Then,

Z pk(M) < 2k

i€[n]

Cohen et. al. [CMM17] show that the ridge leverage scores of a matrix can be approximated
up to a small constant in O(nnz(A)) time, however this involves reading the entire matrix A. For
the special case of A being PSD, Musco and Musco [MM17] show that the ridge leverage scores of
A? can be approximated up to a small constant using a so-called Nystrom approximation.

Lemma4.9. (Lemma 4 of [MW17].) Given a PSD matrix A € R™" and integer k, there exists an algorithm
that accesses O(nklog(k/0)) entries in A and computes ﬁf(A%)for all i € [n], such that with probability
1-9,

pIAT?) < pi(AT?) < 3pf(A1%)

and runs in time O(n(klog(k/5))*~1), where w is the matrix multiplication exponent.
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Note, while it is not known how to compute ridge leverage scores of a PSD matrix in sublin-
ear time, Musco and Woodruff [MW17] show that the ridge leverage scores of AZ are a coarse
approximation to the ridge leverage scores of A.

Lemma 4.10. (Lemma 5 in [MW17].) Given a PSD matrix A € R™", forall i € [n],
n 1
pi(A) <2,/ 7 pf(A%)

Musco and Woodruff then show that sampling columns of A, according to the corresponding
ridge leverage scores of Az, suffices to obtain a column projection-cost preserving sketch (PCP), if
we oversample by a v/ /k factor. Projection-cost preserving sketches were introduced by Feldmen
et. al. [FSS13] and Cohen et. al. [CEM"15] and studied in the context of low-rank approximation
in [CMM17, MW17, BW18].

Lemma 4.11. (Column PCP from [MW17].) Given a PSD matrix A € R"*", integer k and € > 0, for
all j € [n] let ﬁ’]f(A%) be a constant approximation to the column-ridge leverage scores of Az, Let q; =

PEAL)/3, phAY) and let + = o(\/% z]-p;f(A%nog(k/a)/ez) -0 (x/ﬁlog(k/é)/&). Construct

C € R™! by sampling t columns of A and setting each one to be —=A. ; with probability q;. Then, with

Viaj

probability 1 — 0, for any rank-k projection matrix X € R*",
(1-e)l|A=XA|? < [C=XC|F < (1+¢)[|A-XA|?
Further, such a C can be computed by accessing 5(nk) entries in A and in time O(nk®1).

This result also implies that the resulting matrix C is a Spectral-Frobenius PCP for A (Lemma 24
in [MW17]), i.e., for any rank-k projection matrix X,

€ €
(1-e)llA XAl - oA Al < IIC-XCl < (1 + o)A - XAll7 + A Akl (4.1)

As noted by Musco and Woodrulff, the resulting matrix C is not even square and thus is it unclear
how to sample rows of C to obtain a row-PCP in sublinear time and queries. In particular, the
ridge-leverage scores of rows of C can be an 11 / k-factor larger than the corresponding ridge-leverage
scores of AZ. Instead, Musco and Woodruff sample rows of C proportional to the rank-k/e? ridge
leverage scores of Az, In addition, they show the stronger guarantee that a Spectral-Frobenius PCP
holds (by Lemma 8 of [MW17]) for PSD Matrices.

Lemma 4.12. (Spectral-Frobenius PCP.) Given a PSD matrix A € R™", an integer k and € > 0, let
C € R™! be a column PCP for A, following Lemma 4.11. Let k' = k/€e*. Forall i € [n], let ﬁf’(A%) be a

constant approximation to the rank-k’ row ridge leverage scores of Az, Let pi = ﬁf’(A%) /2 ﬁf’(A%) and
lett =0 (\/% i [)f/(A%)log(n)/e) =0 (\/ﬁlog(n)/@). Then, with probability 1 — c, for all rank-k’
projection matrices X,

€ €
(1-e)llc-CXli; - wlA- Arllf < IR = RX|l7 < (1 +¢)IC - CX][3 + olA- Axll?
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We observe that we could compute a low-rank approximation to R in input sparsity time, which
already requires querying Q(nnz(R)) = Q(nk/e?) entries in A and is far from optimal in terms of
the dependence on €. It is here that we digress from the approach of Musco and Woodruff. We
observe that the dependence on n and k is optimal and thus we instantiate the aforementioned
column and row PCPs with € = O(1) and k = k/e. While this results in weaker PCP guaranteees,
the resulting matrix R is a y/nk/e X /nk/e matrix and we can now afford to read all of it and thus
we can compute a rank-k low-rank approximation to R using the input sparsity time algorithm of
Clarkson and Woodruff [CW13].

However, the main technical challenge here is that we can no longer use the approach of
[CMM17, MW17, BW18] to use the low-rank approximation for R and solve regression problems
to recover an e-approximate low-rank matrix for A. In particular, we can now only hope for an
O(1) approximation if we use the standard technique of iteratively solving regression problems.
Our first insight is that computing a Spectral Low-Rank Approximation to R results in a structured
projection matrix for C, from which we can compute a structured projection matrix for A. Further,
this structured projection can be computed with only O(nk/e) queries. We first describe how this
structured projection matrix for A results in an efficient low-rank approximation algorithm.

4.1 Structured Projections to Low-Rank Approximation

Our starting point is a structural result based on the Spectral-Frobenius projection (SF) property
introduced by Clarkson and Woodruff in the context of approximating arbitrary matrices with low-
rank PSD matrices [CW17]. In this subsection, we show that if we are given a projection matrix that
satisfies the SF property, we can obtain a query-optimal algorithm for Low-Rank Approximation.
We begin by defining this property:

Definition 4.13. ((e, k)-SF Projection.) Given any matrix A € R"*", integer k, and € > 0, a projection
matrix P € R™" is (¢, k)-SF w.r.t. A if

€
|A ~ AP} < clA- Akl

or
€
A ~PA|3 < A= Akl

Intuitively, the following structural result of Clarkson and Woodruff relates an (¢, k)-SF projec-
tion to a relative-error low-rank approximation. We leverage this connection heavily in subsequent
sections.

Lemma 4.14. (Structured Projections and Low-Rank Approximation [CW17].) Let P € R™" be an
(€, k)-SF projection w.r.t A, then

A~ PAPII? < (1+€)llA — Allp

Ignoring computational and query complexity constraints, suppose we were given a matrix
Q € R with orthonormal columns such that P = QQT is an (e, k)-SF Projection, where k’ is
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the dimension of the space P projects onto. Note, for now it suffices to set kK’ = poly(k/e). As a
consequence of Lemma 4.14, we observe that solving the following constrained regression problem
suffices to obtain a (1 + €)-relative error solution to the Low-Rank Approximation problem:

i A - QXQT? 4.2
rarfﬁ%‘gk” QXQ' || (4.2)

Algorithm 1 : Structured Projection to Low-Rank Approximation

Input: A PSD Matrix A € R™", integer k, € > 0, an orthonormal matrix Q € R"™ " such that
the projection matrix P = QQT satisfies [|A — PA||3 < £||A — A||2

1. Consider the optimization problem:

: A — OX T2
D A -QXQ" ||z
2. For all i € [n], compute the leverage scores, 7;(Q). Since Q has orthonormal columns,
7:(Q) = ||Q; /|7 and can be computed exactly. Letp = {p1, p2 . .. pn} denote a distribution
over rows of A for which p; = 7;(Q)/Y; T#(Q).

3. Let t = k’/e*. Construct a leverage score sampling matrix S by sampling t rows of A, such
that S = DQT, where D is a t X t diagonal matrix and ) is an n X t sampling matrix. For
all j € [t], select row index i € [n] with probability p; and set ); ; = 1 and D; ; = 1/+/fp;.
Repeat this sampling process to construct another leverage score sampling matrix T.

4. Consider the sketched optimization problem :
in [|SAT - SQXQ T
opin QXQ Tl
Compute SAT, Psq, Porr,(SQ)" and (QTT)*, where Pgg and Pqrr are the projections
onto SQ and Q'T respectively. Compute SVD(PsqSATPgrr). By Theorem 4.15 the
sketched problem is minimized by X* = (SQ)'[PsqSATPqrr](QTT)".

5. Let U* € R be an orthonormal basis for the columns of X*. Compute an orthonormal
basis M for QU*. Consider the following regression problem: miny g« ||A —MY]| % For
all i € [n], compute 7;(M) = ||Mi,*||§. Let g = {q1,92,...,qn} be a distribution over the
rows of A such that q; = 7;,(M)/Xc[,) T#(M). Let W be a leverage score sampling matrix
with k/e rows sampled proportional to 4.

6. Consider the sketched regression problem: minycgix: ||[WA — WMY||12:. Let N be the
minimizer to this regression problem computed using the algorithm from Lemma 4.4.

Output: M, NT € R"™* such that |[A - MN]|2 < (1 + €)||A — Ag|I2

However, there are several challenges pertaining to this approach. As noted above, it is not
immediately clear how to obtain such a Q with nk/e queries to A. Further, it is not immediately
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clear how to solve Equation 4.2 efficiently. While we have reduced to optimizing over k’ X k’ sized
matrices X with rank at most k, the problem still seems intractable in sublinear time and queries.

We begin by describing how to solve the optimization problem in Equation 4.2 with O(nk/e)
queries given that we have access to Q and QQT is an (€, k)-SF Projection. At a high level, our
approach is to sketch the problem by sampling rows and columns proportional to the row leverage
scores of Q. We observe that since Q has orthonormal columns, the row leverage scores of Q
are simply the ¢5 norms of corresponding rows. Therefore, we create sampling matrices S and
T that sample poly(k’) rows proportional to the leverage scores of Q and consider the resulting
optimization problem:

i SAT — SQXQ'T||2 4.3
ranrll(r&r;sk I QXQ 'TJ|; (4.3)

We then show that the minimizer for Equation 4.3 is an approximate minimizer for Equation
4.2. Further, the optimization problem in Equation 4.3 is referred to as Generalized Low-Rank
Approximation and admits a closed form solution:

Theorem 4.15. (Generalized Low-Rank Approximation [FT07].) Let A € R™", B € R™¥ and C € RKF>"
and k € N. Then, the Generalized Low-Rank Approximation problem

min ||A - BXC||?
rank(X)<k

is minimized by X = B [Pg AP C', where Py, Pc are the projection matrices onto B and C respectively.

We apply the above theorem to Equation 4.3. Both the query complexity and running time
here contribute a lower-order term and we can afford to compute the SVD for each term. Let X*
be the solution to the sketched optimization problem in Equation 4.3. Then, we can compute U",
an orthonormal column basis for X* and consider M, an orthonormal basis for QU* € R™k to be
one of the low-rank factors for A. To find the second factor, we set up the following regression
problem:

min ||A - MN|Z (4.4)
NeRkxn

Again, M has orthonormal columns and thus we can efficiently compute the corresponding
row leverage scores and sample k/e rows. By Lemma 4.5 this achieves a (1 + €)-approximation to
the optimal cost in Equation 4.4 and obtains an N* with 5(nk /€) queries to A. At this stage, we
have obtained a (1 + €)-approximate rank-k solution to Equation 4.2 and Lemma 4.14 implies that
we are done. We now formalize this argument:

Theorem 4.16. (Structured Projection to Low-Rank Approximation.) Given a rank-k’ projection matrix
P = QQT, such that P is an (e, k)-SF projection, Algorithm 1 queries O(nk/e + k'?/€*) entries in A and
with probability 99/100 outputs M, NT € R™* such that

|A —~ MNIJJE < (1+¢€)llA — Akl

Further, Algorithm 1 runs in time O(n(k/e)*~" + nk'@=1 + (k' /e2)®).
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Proof. Since P is an (€, k)-SF projection and Ay is a feasible solution to minganky)<x [|A — PYP||1%,
from Lemma 4.14 we have
in ||A—PYP|? < (1+¢)||A—-A? 4.5
min_[IA~PYPIE < (1+¢)|A - Al @5
Since P = QQT, we can substitute it in Equation 4.5 to get minaniy)<x [|A — QQTYQQTHI%. We
further relax this by optimizing over all rank-k matrices X € RK*K" instead of matrices of the form
QYQT. Therefore,

i A-—QXQT|2 < (1+¢)||A - Al 4.6
rarfﬁir}gk” QXQ'lz <@ +ell kllz (4.6)

where we are now optimizing over a k’ X k” matrix X, which is considerably smaller than Y. Let
S, TT € R¥/€™" be the leverage score sampling matrices as defined in Algorithm 1. Observe, from
Lemma 4.5 we know S has a sufficient number of rows to be an affine embedding for Equation
4.6. However, we cannot directly apply the affine embedding guarantee since A — QXQT is not an
affine space. Let H be k' X n matrix, let H* = argmingy ||A — QH||1% and let A* be A — QH". Then,
with probability at least 1 — ¢4, for all H,

ISA — SQHI| — [ISA”|If = (1 £ €)||A - QHII + [|A"]IZ (4.7)

Since Equation 4.7 holds for all H, in particular it holds for all rank-k matrices X such thatH = XQ.
Therefore, with probability at least 1 — ¢y, for all rank k matrices X,

ISA — SQXQ2 - [ISA'[[? = (1 + €)[|A ~ QXQT [ + [|A"[]3 (48)

Here, we observe that while we cannot estimate ||A*|| 1% accurately, it is a fixed matrix independent
of X and thus we can still approximately optimize. Let C; be the event that Equation 4.8 holds. We
now use the sampling matrix T to sketch ||SA — ZQTllg. Let Z' = arg ming ||SA — ZQTllg and let
SA’ = SA - Z'QT. Then, with probability at least 1 — ¢, for all Z,

ISAT — ZQ"TIZ - ISA'T| = (1 £ €)lISA - ZQ || + [ISA'||7 (4.9)

In particular, the above equation holds for all rank-k matrices X such that Z = SQ7X. Let (; be the
event that the aforementioned equation holds. Combining equations 4.8 and 4.9 and conditioning
on (7 and (,, for all rank-k matrices X,

ISAT — SQXQTI|7 — ISA'TIIf = (1 £ €)* (IIA - QXQT |7 + [ISA”[IF + | A"[IF) + ISA’|F  (4.10)

Here, we observe that while the sketch does not preserve the cost of all X up to relative
error (1 + ¢), the additive error A < (1 + ¢) (||SA*|IZ + [|A*[|Z + |SA’||Z + [[SA'T||?) is fixed and is
independent of X. Let X* = arg minnix)<k ||SAT — SQXQTTH%. Then, union bounding over (;
and Cp, with probability 1 — c1 — ¢p,

|A-QX'QT|Z<(1+€) min [|A-SQXQT|3 (4.11)
rank(X)<k

Therefore, it suffices to efficiently compute X*. By Theorem 4.15, we know that the sketched
optimization problem above is minimized by X* = (SQ)+[PSQSATPQTT] +(QTT)", which can be
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computed exactly as shown in Step 4 of Algorithm 1. We note that we can now explicitly compute
SAT by querying the relevant entries in A. Further, we can compute SQ and Q" T without querying
A at all. Recalling equation 4.11 we can approximate the optimal low rank approximation cost:

A - QX'QT|IF < (1+O0(e))lIA - Akl

While we have now approximately minimized the optimization problem from Equation 4.2, recall
our goal was to obtain a rank-k approximation to A in factored form i.e., outputting n X k matrices
M, N7 such that the low rank approximation is given by MN. Towards this end, we compute U*,
an orthonormal column basis for X* such that X* = U*V". Substituting this in the above equation
we have

IA-QU'V'QT[f < (1+e)llA~ Akl (4.12)

Let M = QU* € R"™ be one of the low-rank factors for A. To find the second factor, we observe :

min ||A-MY|Z < [|[A-MV'QT||2 (4.13)
YeRkxn
and therefore, approximately optimizing miny,gix: ||A—MY/||Z suffices. Again, M has orthonormal
columns and thus we can efficiently compute the corresponding leverage scores to create a sketch
W with O(k/e) rows. From Lemma 4.4, with probability at least 1 — c3 for all Y,

[WA - WMY||Z = (1 £ €)||A - MY]||?

Let N be the optimal solution for the sketched problem as defined in Algorithm 1. Then, with
probability at least 1 — c3,

1+e .
IA - MN|Z < (E) min A - MY||? (4.14)

We conclude correctness by union bounding over the failure probabilities of all the sketches and
observing that with probability at least 99/100,

IA=MNI[Z < (1+O0(e)A-MV'QT|2 < (1+ O(e))lA — All?

where the inequalities follow from Equations 4.4, 4.13 and 4.12.

Finally, we analyze the query complexity and running time of our algorithm. Since Algorithm
1 is given Q as input, computing the leverage scores in Step 2 requires no queries to A and
requires O(nk’) time. Next, observe we do not have to explicitly compute SA or AT, since SAT is
simply a submatrix of A with (k’/e?)? entries appropriately scaled, it suffices to query them. SAT
can be computed in O(k’?/e*) time. Next, we compute SVD(SQ) and SVD(QTT), which requires
no queries to A and time O(k“/e?). We can then compute (SQ), (QTT)", Psg and Pgrr from
the aforementioned SVDs. Next, we compute the matrix PsgSATPqgrt, which requires no extra
queries to A and time O((k’/€?)?), which is also the time required to compute its SVD. We can
then compute X* in Step 4 with a total of O(k’?/e*) queries to A in time O(nk’ + (k’/€?)®).

In Step 5, we can compute U* by computing the SVD of X* and compute M in time O(nk’“~1+k’?)
and do not require any queries to A. In Step 6, computing WA requires O(nk/e) queries to A,
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since W has O(k/e) rows. Note, this step contributes the leading term to the query complexity
and it is crucial W does not have more rows. By Lemma 4.4, N can be computed in time O(nk/e +
n(k/e)*~! + k3/e). Overall, Algorithm 1 requires O(1nk/e + k’2/e*) queries to A and runs in time
O(n(k/e)*~" + nk'*™" + (k' /€2)). O

In light of Theorem 4.16, to obtain a low rank approximation for A, it suffices to obtain an SF
Projection. In particular, it suffices to obtain a matrix Q € R™*, for k" = poly(k, 1/€) such that
P = QQT is an (g, k)-SF projection, by querying O(nk/e) entries in A. One possible approach to
computing such a Q is to use the following result by Musco and Woodruff:

Theorem 4.17. (Theorem 25, [MW17].) Given a PSD matrix A, integer k, € > 0, there exists an algorithm
that reads O(nk/e® + nk?/e?) entries of A and with probability at least 99/100, outputs M,NT € R™*
such that

IA = MNIE < (1 + e)l|A - Al + TII1A - A}

Instantiating this theorem with € = O(1) and k = k/e, we obtain a matrix M, N € R™k/¢ such
that

€
|A = MNTI2 < O)IIA = AsellZ + O (%) 1A = Al
€
<O(f)1a- A2

where the last inequality follows from observing ||A — A/, ||1% <||A - Ag ||1% and

n

k k
IA-AdlF= ) o}(A) > (z —k) Ohe 2 (z —k) 1A~ Axell;
j=k+1

We can then compute an orthonormal basis for M and denote it by Q. Here, we observe P = QQT
is an (€, k)-SF projection matrix. Further, the algorithm of Musco and Woodruff instantiated with
the above parameters queries 5(71 k?/€?) entries in A. As a corollary of Theorem 4.16, providing
the rank-k/e projection matrix Q as input to Algorithm 1, implies an algorithm for low rank
approximation which queries O(nk?/€?) entries in A. This already improves the e-dependence
in the query complexity of best known algorithm for PSD low-rank approximation, since the
algorithm of Musco and Woodruff requires 5(nk /€2°) queries [MW17]. Note, this algorithm has
worse dependence on k. However, our goal is to obtain linear dependence on both k and 1/e.
Towards this end, we focus on obtaining an SF projection with fewer queries to A.

4.2 Spectral Regression

In this subsection, we consider the Spectral Regression problem. This problem is a natural gener-
alization of least-squares regression, when the response variable is a matrix. Spectral Regression
arises in the context of Regularized Least Squares Classification, for instance [CLL*10]. Given ma-
trices A € R™, X € R™" and B € R™", the Spectral Regression problem considers the following
optimization problem:

min [[AX - B2

25



We note that this is natural variant of multi-response regression where we minimize the difference
between AX and B in spectral norm as opposed to the extensively studied and well-understood
Frobenius norm. To the best of our knowledge the only relevant related work on Spectral Regression
is by Clarkson and Woodruff [CW09] and Cohen et. al. [CNW15]. Both these works provide
oblivious sketches to reduce the dimension of the problem, which unfortunately do not suffice for
our application. Instead of Spectral Regression in its full generality we focus on the following special
case:

Given an n X n PSD matrix A, a rank parameter k, and an accuracy parameter €, let C be a
n X 4/nk/e matrix such that it is a column PCP for A, satisfying the guarantees of Lemma 4.11,
instantiated with k = k/e¢, and € = O(1). Let ZT be a k/e X \/nk/e matrix with orthonormal rows
such that the corresponding projection matrix ZZ" is an (O(1), k/¢€)-SF Projection for C. Then, we
consider the following Spectral Regression problem:

min |[C-WZ'||, (4.15)

WeRnxk/e
Our main technical contribution here is to obtain a new algorithm to solve this optimization
problem. We subsequently show how understanding this special case is crucial to obtaining optimal
algorithms for low rank approximation of PSD matrices. The techniques we develop here may be
of independent interest and find applications to other problems. Formally, we prove the following;:

Algorithm 2 : Approximate Spectral Regression

Input: A PSD Matrix A € R"™", integer k, and ¢ > 0. C € R"™ Vrk/e " a column PCP for
A satisfying the guarantees of Lemma 4.11 instantiated with k = k/e and € = O(1). Z €

RV7/exk/€ pe an orthonormal matrix such that ZZT is an (O(1), k/€)-SF projection for C.

1. Consider the Spectral Regression problem:

min ||C - WZT|?
W

Let t = y/nk/e. Forall j € [t], compute T{(ZT) = ||Z;.|]3. Letq = {q1,92,...,q:} be a
distribution of columns of C such that for all j € [t], ; = min(7;(Z"), 1).

2. Construct a sampling matrix S such that CS selects each column C. ; independently with
probability g; and scales it by 1/4/7;. Similarly, construct ZTS. Consider the sketched
optimization problem :

min [|CS - WZTS|3

3. Compute (Z7S)" = STZ(ZTSSTZ)™!. Let W = CS(ZTS)" be the solution to the sketched
optimization problem.

Output: W € R™¥/¢ such that ||C - WZT||2 < O(1) minw ||C = WZT ||? + O(e/k)||C — Cy/c|l?
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Theorem 4.18. (Approximate Spectral Regression.) Let C € R™ V"€ e q column PCP for A satisfying

the quarantees of Lemma 4.11 instantiated with k = k/e and € = O(1). Let Z € RV7k/exkle pe ap
orthonormal matrix such that ZZ" is an (O(1), k/€)-SF projection for C. Then, Algorithm 2 queries
O(nk/e) entries in A and with probability 99/100 computes W such that

— —_~ . e
IC-WZT [} < O() | min [IC~WZT|}+ Z]IC - Cuyel?

Further, the algorithm runs in time 5(nk/e + (k/e)¥).

We begin by characterizing the optimal solution and optimal cost for the Spectral Regression
problem. We prove a structural result that shows the optimal solution for Spectral Regression is
given by projecting C away from the span of Z'. This matches the characterization of the optimal
solution to regression under the Frobenius norm, given by the well-known normal equations.
Recall, by definition of the Moore-Penrose pseudoinverse, this projection matrix is (Z7)'ZT.

Then, the optimal cost for Equation 4.15is [C—C(Z")'Z" || and is achieved by W* = C(Z")". In-
tuitively, we show that any feasible W must incur the above cost by analyzing ||y " (C— C(ZT)‘LZT)H%
for a fixed vector y. This enables us to exploit the geometry of Euclidean space and instantiate y
as needed to relate it back to the spectral norm.

Lemma 4.19. (Characterizing Opt for Spectral Regression.) Let C and Z be matrices as defined in Theorem
4.18. Let W* = C(ZT)" = CZ(Z7Z)™!, such that W*ZT is the projection of C on the colspan(Z). Let
C* = C— W'ZT be the projection of C orthogonal to colspan(Z). Then,

IC*l3 = min [|C — WZ7 |3
and the corresponding minimizer is W*.
Proof. Note, by definition ||C — W*ZT ||§ = ||C*||§ and since W is feasible,
min ||C - WZT|3 < |IC°|l3.
Therefore, it suffices to show any W must incur cost at least ||C*||§. By definition, we have
C=CZzNH'z"+ca-z"H'zH=czH'z"+C

By definition of spectral norm, [[C-WZT|2 > ||y TC—yTWZT|)2, for all y such that ||y||> = 1. Next,
for any unit vector y € R",
ly"C—y™WZTI; = [ly"(C(Z")'ZT + C) - y"WZ"|;
=lyTC - yTW-W)ZT|;3 (4.16)
=lly"Cl3 + lly "W = WHZT|;3 + 2(y"C", y (W - W)ZT)
We observe that WZT = C(ZT)*ZT is the projection of C on the rowspan of ZT and C" is the
projection of C on the orthogonal complement of rowspan of ZT. Therefore, (C(ZT)'ZT,C*) = 0.
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Further, for any y, y"(W — W*)ZT is in the row span of ZT and is thus perpendicular to y™C".
Plugging this back in to Equation 4.16, we have

lyTC-y ™WZTIZ = ly"Cll5 + ly"(W - WIHZT|I7 > |ly"C’|I (4.17)

where the inequality follows from non-negativity of norms. Since Equation 4.17 holds for all y, we
can pick y such that ||y TC*||7 = ||C*||3. Therefore, [C-WZT||3 > [|[yTC -y WZT||3 > ||C*||3. This
completes the proof. m]

Next, we sketch the Spectral Regression problem from Equation 4.15 such that we approximately
preserve the spectral norm cost of all W € R™¥/¢. A natural approach here would be to follow
the Affine Embedding idea for Frobenius norm and hope a similar guarantee holds for spectral
norm as well. However, since Z could have rank as large as k/e and we can no longer obtain a
relative-error (1 + €)-approximate Affine Embedding even for Frobenius norm without incurring
a larger dependence on €. Instead, we relax the notion of approximation for our sketch. We note
that it suffices to construct a sketch S such that if

W = arg min ICS - WZTS||;

then
C-WZT|2 <001 i C-WZT|2+—||C-C 2
I ”2 <0 én}};\k/e I ”2 k” k/e”p

as stated in Theorem 4.18. Note, here we only need to weakly preserve the cost of the optimal W for
the sketched problem as opposed to preserving the cost of all matrices W. Atahigh level, this comes
down to analyzing the spectrum of [|[C*'SST||, We begin with the definition of the Approximate
Matrix Multiplication (AMM) guarantee and discuss its application in approximately minimizing
Spectral Regression.

Definition 4.20. ((e, k)-Spectral AMM.) Given matrices A € R and B € R™*4 4 gketch IT € R"™*
satisfies (e, k)-Spectral AMM if with probability at least 1 — 9,

A
k

IIBJIZ
2 F
- (nsnz e

|AIIIT"B — AB||> < e4| [ IA[l +

Approximate Matrix Multiplication was introduced by Drineas et al. [DKMO06] with respect to
the Frobenius norm, as opposed to the spectral norm above. Subsequent work by Cohen et al.
[CNW15] studied the spectral norm bound and showed that any sketch II that is an oblivious
subspace embedding (i.e., satisfies Lemma 4.3 with ITbeing an oblivious sketch) implies an AMM
guarantee, as long as IT has ©(k + log(1/6)/€?) columns. The Spectral AMM property combined
with an O(1)-Subspace Embedding suffice to approximately minimize the Spectral Regression
problem :
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Theorem 4.21. (Theorem 3, [CNW15]) Let A, B and I be as defined above. If ILis an (\/e, rank(A))-Spectral
AMM for Uy and (I — P4)B, and an O(1)-Subspace Embedding for A, and X = arg miny |[IIAX — I'IB||§,
then with probability 99/100,

S €
IAX - B} < (1+¢€)[|PAB - B} + 7 |IPAB — BJI?

where Uy is an orthonormal basis for A and P is the projection onto the span of A.

However, all the constructions presented for the sketch in [CEM*15] are either oblivious
sketches or require sampling proportional to both A and B. Applying an oblivious sketch S
in our problem requires computing CS which would query Q(nnz(C)) = Q(nlf’\/W) entries in
A. Therefore, the main challenge here is to construct a sampling matrix S while reading 5(nk /€)
entries in A such that S is an (5(1), k/e)-Spectral AMM and an O(1)-Subspace Embedding. We
construct S by sampling O(k/€) columns of Z7 proportional to the leverage scores of ZT. While it
is easy to show S is a Subspace Embedding, observe that our sampling probabilities are computed
without reading C.

Proof of Theorem 4.18. As a starting point, we observe that yet again, since Z" has orthonormal
rows, the leverage scores are simply the €5 norms of the columns of Z". Therefore, one possible
approach is to construct a leverage score sampling sketch S for C, by sampling columns proportional
to the leverage scores of ZT. We note we can afford to sample at most 5(k /€) columns, since our
algorithm queries all entries in the resulting sketched matrix CS.

Further, for reasons to be discussed later, it is crucial that we sample columns of C indepen-
dently, as opposed to the standard way of sampling with replacement we have used thus far.
The independent sampling process can be described as follows: for all j € [{/nk/e], we sample
C:’]. with probability min( ||Z;r]||§, 1). We use the following lemma from [CMM17] to show that
independently sampling columns satisfies some desirable properties.

Lemma 4.22. (Lemma 21, [CMM17].) Given a matrix M € R™™ , for all j € [m] let ﬁ’;(M) = G)(p’]f(M)

be estimates of the rank-k column ridge-leverage scores of M and let q; = min(ﬁg?(M) log(k/5)/€?,1).
Then, construct MS by selecting each column M. ; with probability q; and scale it by 1/+/q;. Then, with
probability at least 1 — 5, MS has Zje[m] p;? -log(k/5)/€? columns and

(1-e)MSS™™ — %HM ~ My 2L < MMT < (1+€)MSS™M™ + %HM — M2

The above lemma independently samples columns proportional to the ridge leverage scores. In
our setting, we can set the ridge parameter A = 0, and sample according to the exact leverage
scores of ZT. Formally, let g = {q1, 92, ..., qm} be the corresponding distribution over columns of
Z7 such that q; = min(||ZT||§ log(k),1). Since Z™ has k/e orthonormal rows, the leverage scores
sum up to rank(Z") < k/e. We then use Lemma 4.22 by setting € = 1/10, 6 = 0.01 and thus with
probability at least 99/100, Z'S has Zje[W] 7i(Z7)log(n) = O(k/€) rows and

9 T T T 11 T T
- < < = .
102 SS'2<72'7Z 10Z SS'z (4.18)
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If the guarantee in Equation 4.18 holds for a sketch S, we refer to S as satisfying an O(1)-Subspace
Embedding property. Observe, this is equivalent to S preserving all singular values of Z™ up to a
constant.

We can now obtain a closed form solution for the Spectral Regression problem in the sketched
space. By Lemma 4.19, the optimal solution to the optimization problem in Step 2 of Algorithm 2
is given by W = CS(ZTS)*. Since S satisfies the O(1)-Subspace Embedding property in Equation
4.18, it preserves the rank of ZT. Therefore, ZTS has full row rank and (Z7S)" = STZ(Z7SS7Z)~!
and thus W = CSSTZ(ZTSSTZ)™! is the optimal solution. Next, we bound the cost of W in the
original problem. Let Pzr = Z'ZT be the orthogonal projection matrix onto ZT. Using the fact that
||M||§ = max|y,=1 || yTM||§ and the Pythagorean Theorem for Euclidean space we have

IC-WZT||? = ||C - CSSTZ(Z7SS"Z)™'Z7|?
= max ||yTCPzr — vy CSSTZ(Z"SSTZ)'Z Py |2+
il ly yANN) ( ) z7 Il (4.19)
ly"C(I—Pzr) -y CSSTZ(ZTSS"Z2)'Z"(1- Pz)|)3

Here, we observe yTCSSTZ(ZTSSTZ)'Z" is a vector in the row space of ZT and(I — Pzr) is
the projection on the orthogonal complement of rowspan(Z'), thus this evaluates to 0. Since
C(I - Pz7) = C*, we can upper bound ||y "C(I — Pz7)]||» by ||C*||§. Similarly, we can upper bound
the first term by its spectral norm. Therefore, plugging this back into Equation 4.19,

IC-WZT|2 < ||C(Z")Z™ - CSSTZ(Z7SS™Z)'Z7 |2 + ||C*|)2
oy (C(ZT)+ 77SSTZ - csst) (Z78STZ) |2 + |2 (4.20)
<||IC(Z7)'ZTSSTZ - CSSTZ|2(27SSTZ) 12 + ||IC||?

where we use that ZT has orthonormal columns and the sub-multiplicativity of the spectral norm.
From Equation 4.18, it follows that for all i € [k/€], Ol.z(ZTSSTZ) =(1= O.l)zof(ZTZ) =(1+0.1)>2
Therefore, ||(ZTSSTZ)‘1||§ =1/0%, (Z"SSTZ) < 100/81. Substituting this back into Equation 4.20,
we have

IC-WZT|); < O(I(C(ZT)'ZT - ©)SSZIf; +IIC'I13

] ) (4.21)
<0M)IIC'ssZ|; + IIC’|l;

where the last inequality follows from the definition of C*. In order to bound the cost above, we
focus on analyzing ||C*SSTZ||§. Since we want to compare ||C*SSTZ||§ to ||C*Z||§, a natural way to
proceed would be to interpret this term as an instance of Approximate Matrix Product. Therefore,
we next show that the leverage score sampling matrix S satisfies the Spectral AMM property for
C*and Z7. Here, we want to analyze how sampling columns of C* proportional to the leverage
scores of ZT affects the spectrum of C*. An important tool in this analysis is the following result
by Rudelson and Vershynin on how the spectral norm of a matrix degrades when we sample a
uniformly random subset of rows of a matrix:
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Theorem 4.23. ( Theorem 1.8 in [RV07]) Given a matrix A € R™", let Q be a uniformly random subset
of [n]s.t. E[Q] = q. Let Aq denote the submatrix restricted to the rows indexed by Q. Then,

E Jaal,] = 0 L1l + Vsg@ Al

where ||Al|(n/q) is the average of the largest n/q {>-norms of columns of A.
We extend the above statement to rectangular matrices:

Corollary 4.24 (Spectral Decay for Rectangular Matrices). Given a matrix A € R™™, s.t. for all
j,j e [m], ||A*,j||§ = ®(||A*,]v||§). Let Q be a uniformly random subset of [n] s.t. E[Q] = q. Let
b = [n/m] and Aq denote the submatrix restricted to the rows indexed by Q. Then,

\/7||A||2+\/10gW||A”(n/q)

Proof. First, consider the case when m > n. To see this, let SVD(A) = UXVT where UY isan n X n
matrix. Now, [|Al|; = ||UZ||; and applying Theorem 4.23 to U3, we have

\/gHUE“z + vlog(q)IIUEII(n/q))
=0 \/gHAHz + V1og(q)l|Alln/q)

E [[[Aje]],]

E [[|Aill,] = E[[|(UZ)e],] =0

(4.22)

where we repeatedly use that V! has orthonormal rows. Here, we note that since the columns of
A have the same squared norm up to a constant,||A ||,/ = O(||All1-2), i.e. the max column norm
of A.

Next, consider the case where m < n. Let b = [n/m]. In order to analyze the spectral norm
of Aq, we create b copies of A and concatenate them such that the resulting matrix A* has more
columns than rows. Applying Equation (4.22) to A* and substituting the average with max, we
have

=0 \/gllA*llz + viog(q)l[A"[1-2

Observe, A selects uniformly random rows of A* and ||AI Q”Z

vector x, ||xTA* Il = Vb||xT Ajglo. Therefore, B [ ] = VB-E [||Aq],] and [|A*] = VB [| A"
Finally, it is easy to see that since the columns of A* are copies of columns of A, the max column
norm does not change. Therefore, (4.22) to A", we have

\/7||A||z+\/log(q)/ bllAlh—2 | =

and the claim follows. m]

E [|a

(4.23)

= maX|y||,=1 ||xTA|*Q||2 and for any

E [[[Aje]l,]

\/7||A ll2 + vlog(g)[|A” ”(n/q)) (4.24)
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Intuitively, there are two technical challenges in applying Corollary 4.24. First, a leverage score
sampling matrix need not sample columns uniformly at random, since we have no control over the
column norms of ZT. Second, the || - ||, /q) norm only shrinks when all columns of A have roughly
the same squared norm. We overcome these challenges by partitioning the matrix, first according
to row norms, such that each partition does indeed have the same row norm, up to a factor of
2. Next, we further partition each such matrix according to the sampling probabilities, such that
within each partition, the sampling process is close to uniform sampling. Formally,

Lemma 4.25. (Weak Spectral Approximate Matrix Product.) Let Z, C* and S be as defined in Lemma 4.19.
Then, with probability at least 99/100, S satisfies (O(1), k/€)-Spectral AMM, i.e.,

* ~ € * *
ICc'ssTzIZ < 61 (FICIE + 1)

Proof. By sub-multiplicativity of the spectral norm and S being an O(1)-subspace embedding for
Z7, we have

IC*SSTZ|2 < ||C*S|2 - ISTZ|)?

4.25
<omlcsl; “2)

where the second inequality follows from Z having orthonormal rows.

We begin by observing that Corollary 4.24 requires the squared row norms of C* to be roughly
the same, which need not be the case in general. Note, here the sampling matrix subsamples
columns of C*, as opposed to rows in Corollary 4.24. Thus, we partition the rows of C* into
O(log(n)) blocks such that either the squared column norms are the same up to a factor of 2 or
they are at most ||C*||§/ poly(n). Formally, for all ¢ € [clog(n)], let

, ICI? . ICI?
By = {Z € [1’1] : 2€+1F < “Cl,*”§ < TF

represent the blocks for rows with large squared norm. Let B, = [1]\ Uye[iog(n)} B¢ be the remaining
rows, which have norm at most ||C* ||1% /poly(n). Since the set of indices in the blocks form a partition
of the rows of C, we can write ||C*||2 = 2tellog(n)] “C*B(”% +ICy l|2. Similarly, we can bound the
spectral norm as follows:

IC'SIE = max IC'SylF <O > ICy,SylB + IICy Syl
||y||2=1 t’e[log(n)]
(4.26)
<0l > lCySI3+1Cy SI3
te[log(n)]

We now handle the two separately. Since S is an unbiased estimator of the squared Frobenius norm
of Z7, it is an unbiased estimator of the squared Frobenius norm of C*. Therefore, with probability
at least 99/100,

ICII7

% 2 < % 2 — * 2 < - &
IC)5,Sll2 < 1€y, Sl = OClICig, IlF) < poly(1)

€ %
<<zlc |12 (4.27)
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For the remaining terms, we cannot use this ndive analysis as this would only leave us with an
upper bound of ||C* ||1%, which is too large.

If instead of a leverage score sampling matrix, S were a uniform sampling sketch that samples
k/e columns of C* in expectation, we could apply Corollary 4.24 for each ¢, with g = k/e and

n =+/nk/eand b = [M/(\/HBA)-‘, to obtain

. ne . . elog(k/€)|Bely ..
E [lcis SIE] = 5 [l alE] = O Il + “EL22 e,
4.28
. 2, €loglk/e), ., 2 (429
< O|||Cig, I, + I I, Iz

where Q is the subset of columns selected by S and the second inequality follows from observing
that the all the row norms of (C*)|g, are within a factor of 2 of each other and thus the max squared
row norm times the size of the set is the squared Frobenius norm.

Using Equations 4.27 and 4.28 to upper bound the two terms in Equation 4.26 suffices to finish
the proof. Unfortunately, a similar analysis does not immediately go through when we replace
a uniform sampling matrix with a leverage score sketch. Instead, we partition the sketch S into
buckets such that each bucket corresponds to rows in S that scale columns of C* within a factor of
2. For notational convenience, let m = /nk/e and t = k/e. Recall, we construct S by sampling the
j-th column of ZT independently with probability q; = min(||Z;.||5 log(k), 1) and scale this column
by 1/4/7;. We group the scaling factors into buckets. Note, if for some j, g; < 1/n>, we can ignore
the corresponding column.

Let C; be the indicator for a column of Z" to be sampled by S. Then, Pr[C j=1=gq;=
min(llZIjllg log(k),1). Since q; < 1/ n3, we can union bound over at most m such events and
conclude with probability at least 1 — 1/n2, for all j € m, no column ZI]. is sampled such that
q;j < 1/n3. Further, since q; < 1, 1/4/7; € [1,n'°]. Therefore, it suffices to bucket values in the
range [1,1n'°]. Por all h € [clog(n)], let S denote the set of column indices from ZT that were
sampled by the sketch S. Then,

Ti=|jes: 2 < — szh“}

all Vi

Let S, be the subset of rows of S which are indexed by the set 7;,. Since ¢ is fixed and the scaling
factors in 7, differ by at most a factor of 2, the corresponding sampling probabilities in D differ by at
most V2, which is still not uniform. To fix this, we change the sampling process and independently
sample each column indexed by j € 7;, with probability 2"*1, while still scaling it by 1/,/fg j- Let
this new distribution be denoted by 4’. Under the new sampling process, we now sample rows
independently and therefore, we are at least as likely to see all the rows sampled by Sg; in our new
sampling process. Therefore, it now holds that

E; | ICig, S715] < By [ICi5, 53]

33



Further, in the new sampling process, each row restricted to the set 7}, is uniformly sampled with
probability 1/2/+1/2 and thus we can apply Corollary 4.24 to Cig,S7-

. .o €log(k/e)|Bl
Ey |ICi,, 81| < 0 (”CIBf“2 M (CERH W= (4.29)
elog(k/e) .
< o(||c|3[||2 gT ||12:)

where the second inequality follows from squared row norms in Cg, being equal up to a factor of
2. Therefore, with probability at least 1 —1/c’log(n),

€ log(k /€)

' ||c|B[||F) (4.30)

<5 s 12+

Let 1y, be the event that the above bound holds. Then, union bounding over all c log(n) such events,
with probability at least 99/100, simultaneously for all #,

ICizSlE<0| > ||C*B[s7;||§)

helclog(n)] (4.31)
< O (IIC), I3 + £IICi, 1)
which follows from Equation 4.30. Substituting this back into Equation 4.26,
IcsiB<ol > ICy,SIE+IC, SIE
teflog(n)] (4.32)
~ * 6 *
<O (IcI +zlcI?)
where the second inequality follows from Equation 4.31 and observing that ||C*B(||§ < ||C*||§ and
2 11Cy || £ = |C*||? %, which completes the proof. O

Combining the above lemma with 4.19, and observing that ||C*||1% < |[C—=Cyye ||1%, we can bound
the cost of W .
IC~WZ" |2 < O (min €~ WZTIZ + TIIC - Ciell?)

which completes the correctness proof of Theorem 4.18. Next, we analyze the running time. In
Step 1 of Algorithm 2, we compute a distribution over the columns of ZT, which does not require
reading any entries in A and takes time /nk/e - k/e = \n(k/e)'>. Step 2 requires computing
CS and Z'S. Note since S samples O(k/€) columns in C, we have to query n - O(k/€) entries
in A to explicitly compute CS and can be computed in as much time. Since Z7 has fewer rows
the running time is dominated by computing CS. For Step 3, we compute (ZTSSTZ)~!, which
requires no queries to A and runs in time 5((k /€)®) and thus (ZTS)' can be computed in the same
time. Therefore, the total query complexity of Algorithm 2 is O(nk/e) and the running time is
5(nk /€ + (k/€)?), which concludes the proof.
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4.3 Sample-Optimal Algorithm

In this subsection, we describe our main algorithm for PSD Low-Rank Approximation. Given a
PSD matrix A, our algorithm queries o (nk/e) entries in A and runs in time o (n(k/e)* 1+ (k/e3)®).
This resolves an open question on the e-dependence of the query complexity and matches the lower
bound of Q(nk/e) up to polylog factors from [MW17]. At a high level, our algorithm consists of
two stages: first, we use the existing machinery developed by Musco and Woodruff to obtain weak

PCPs by setting € to be a constant. By observing that their algorithms have linear dependence on

the rank, we can afford to rank-(k/e) PCPs instead. This enables us to find a structured subspace

that contains a spectral low-rank approximation for the PCP.

Algorithm 3 : Sample Optimal PSD Low-Rank Approximation

1.

Input: A PSD Matrix A € R*™*", integer k, and € > 0.

Let t = c,/£ log(n), for some constant c and let k' = O(k/e). Forall j € [n], let p;?’(Al/Z)
be the approximate column ridge-leverage scores that satisfy Lemma 4.9. Let g =
{91,492 ... qu} denote a distribution over columns of Asuch thatq; = p?’(Al/Z)/Z]- p;?/(Al/Z).

. Construct a column PCP for A by sampling ¢ columns of A such that each column is set

to % with probability q;, forall j € [n]. Let Cbe the resulting n X t matrix that satisfies
]

the guarantee of Lemma 4.11 instantiated with k = k" and € = O(1).

Construct a row PCP for C by sampling t rows of C such that each row is set to i—%
with probability g;, for all i € [n]. Let R be the resulting ¢ X t matrix that satisfies the

guarantee of Lemma 4.12 instantiated with k = k/e and € = O(1).

Run the input-sparsity algorithm from Lemma 4.6 to compute a rank-k /e matrix Z with
orthonormal columns such that |R — RZZ" ||§ <O (£) IR - Ryje ||§

Run Algorithm 2 with parameters k, € on the Spectral Regression problem
. _ T
min [|C~ WZ
Let W be the output of Algorithm 2. Compute an orthonormal basis Q for W. Note,
QQ7 is an (O(1), k/e)-SF projection for A.

Run Algorithm 1 with input A, Q, k and € to approximately minimize ||A — QXQT||§
over rank k matrices X. Let M, N be the output of Algorithm 1.

Output: M, N € R™* such that ||A — MN||12: <(1+e)|A- Ak||1%

Since our PCPs are accurate only up to O(1)-error, we cannot directly extract a (1 + €) relative

error approximation for A. However, we show that the PCPs have enough structure to obtain a
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structured subspace that spans a (1 + €)-approximate solution for A. A key ingredient to recover
this structured subspace is an efficient algorithm for Spectral Regression.

Following the approach of Musco and Woodruff we use the ridge leverage scores of A!/? to
compute C, a column PCP for A and R a row PCP for C, with a minor tweak: we instantiate
their theorems (Lemmas 4.11 and 4.12) with k = k/e and € = O(1). While the precise guarantees
satisfied by our PCPs are weaker than the PCPs used by Musco and Woodruff, the dimensions of
our PCPs are smaller.

In particular, we obtain a row PCP R, which is a y/nk/e X 4/nk /e matrix (ignoring polylogarith-
mic factors) and we can afford to read all of it. The input-sparsity time algorithm from Lemma 4.6
queries nnz(R) = 5(nk /€) entries to obtain a rank-(k/€) matrix Z with orthonormal columns such

that
€

k
Since R is a Spectral-Frobenius PCP for C, ZZ" satisfies ||C — CZZTI|§ < zlIC - Ck||§. Since C is
a Spectral-Frobenius PCP for A, it suffices to obtain a projection for the column space of C that
also satisfies the above guarantee. Therefore, we solve the following Spectral Regression problem:
minw ||C — WZT||3. Recall, we can approximately optimize this using Algorithm 2. Let W be the
resulting solution. We can then compute an orthonormal basis for W (denoted by Q) and show
that QQT is an (O(1), k/e)-SF projection for A. Then, we can obtain a low rank approximation for

IR-RZZ"||7 < —|IR - R¢||2 (4.33)

A by simply running Algorithm 1.

Proof of Theorem 4.1. Let k/ = 5(k /€). It follows from Lemma 4.9 that we can compute the
rank-k’ ridge leverage scores of A/2, up to a constant factor using the algorithm of Musco and
Musco [MM17]. By Lemma 4.10, the ridge leverage scores of Al/2 are a /en /k’-approximation to
the ridge leverage scores of A. Let g be a distribution over rows and columns of A as defined in
Algorithm 3. Since we sample t = O(y/nk/elog(n)) columns of A proportional to g, instantiating
Lemma 4.12 with k = k’ and € = 0.1, we obtain a mixed Spectral-Frobenius column PCP C such
that with probability at least 1 — ¢y, for all rank-k” projections X,

1
10k’

L

AR

9 11

7oA = XAlL - 75 1A - ApllF < IC=XCll; < 7511A - XAll; +
Let C; be the indicator for C satisfying the above guarantee. Similarly, sampling ¢t rows of C
proportional to g, results in a mixed Spectral-Frobenius row PCP for R such that with probability
at least 1 — ¢y, for all rank-k’ projection matrices X,

1
10k’

1
10k’

9 11
EIIC—CXH%— IC - Crllf < IR-RX]|; < EIIC—CXII§+ IC - Crllz (4.35)
Further, it is well-known that with the same probability ||R — Rk'”% =||IC- Ckfllg. Let {» be the
event that R satisfies the above guarantee. Next, we compute a Spectral Low-Rank Approximation
for R, using the algorithm from Lemma 4.6, with k = k" and € = 0.1. As a result, with probability
at least 1 — c3, we obtain a rank-k’ matrix Z € R, such that ZZ" is a (0.1, k’)-SF projection for R,
ie.,

1
_ T2 <
IR-RZZ"||; < T0K

IR — Ry I (4.36)
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Let C3 be the event that Z satisfies the above guarantee. Union bounding over (1, (3, C3, we know
that all of them hold with probability at least 1 — (c1 + c2 + c3). Since R is a Spectral-Frobenius row
PCP for Cand ZZ" is a rank-k’ projection matrix, it follows from Equation 4.35

10 1
IC-CZZ7 | < FIR-RZZ7I3 + 5 IR - Re?
L 1
10k’ 9%k’
~ (€
<0 (f)lIc-cul?

IR — Rell2 + o |IR — Ry |12 (4.37)

where the second inequality follows from Equation 4.33 and the third follows from the fact that
PCPs preserve Frobenius norm up to a constant factor. While conditioning on C3, it follows from
Equation4.37 that ZZ T isan (O(1), k/€)-SF projection for C, our goal is to compute an SF projection
for A. Since ZZ" is a t X t matrix, it does not even match the dimensions of A. Therefore, we set
up the following Spectral Regression problem:
min ||C-WZT |3 (4.38)
WeRmK

Let W be the approximate minimizer of the above problem obtained by running Algorithm 2. Then,
it follows from Theorem 4.18 that with probability at least 99/100,

IC- Wz < (1) (min IC - WZT |3 + £IIC - Cp?)
~ €
<0(1) (Ic - Cul + E||C—ck,||;) (4.39)
~ €
< 0(1) (Zllc - cul?)
where the second inequality follows from ||C — CZZ" ||§ <0 (%) [|C— Cp ||1% (by definition of an SF
projection) and observing that W = CZT is a feasible solution to Equation 4.38. Let {4 be the event
that Equation 4.39 holds. Next, let Q be an orthonormal basis for W. We observe that QQTC is the

orthogonal projection of C onto the subspace spanned by Q and the matrix WZT also lies in the
subspace. Therefore, by the Pythagorean Theorem, for any fixed unit vector y,

ICy - QQTCy|)? < ||Cy —WZTy|)? < ||C~ WZT|?

Picking y such that ||Cy — QQTCyllg =||C- QQTCH%, and combining it with Equation 4.39 we
have _ .
Ic-QQTCIZ < 6(1) (FliC - Crl?) (440)

Conditioning on event (;, we know that ||C—Cj ||1% =||A-Ay ||§. Since QQT is a rank-k’ projection
matrix and C is a mixed Spectral-Frobenius column PCP for A, it follows from Equation 4.34,

1
o 1A~ AvliF
(4.41)

10
IA-QQTA|l; < 5 Ic- QQ'Cll; +

<00 (zlA - Avl?)
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where the last inequality follows from Equation 4.40. Therefore, QQT is a (0.1, k’)-SF projection
for A. Finally, we run Algorithm 1 on minankx)= [|A — QXQ" ||1% Here, we note that for Algorithm
1, a (0.1, k’)-SF projection is equivalent to an (e, k)-SF projection, up to polylogarithmic factors.
Therefore, Theorem 4.16 holds as is. Then, by Theorem 4.16, we know that with probability at least
99/100 Algorithm 1 outputs matrices M, N such that [[A-MNT ||§ < (1+¢)]|A-Ax ||§. Let (5 be the
event that the aforementioned algorithm succeeds. Then, union bounding over Cy, Cy, C3, (4 and
Cs, with probability at least 9/10, M, N is a relative-error Low-Rank Approximation for A, which
concludes correctness.

Next, we analyze the query complexity and running time of Algorithm 3. Step 1 computes the
rank-k’ ridge leverage scores of AY? and by Lemma 4.9, requires reading O(nk’log(k’)) = 5(nk /€)
entries in A and runs in time O(n(k/€)®™1). Steps 2 and 3 require no queries to A and the sampling
can be performed in O(n) time. In step 4, the input sparsity algorithm from Lemma 4.6 queries
nnz(R) = t? = O(nk/e) entries in A and runs in O(nk/e +ynpoly(k/e)) = O(nk/e) time. We know
from Theorem 4.16 that Step 5 requires O(nk /€) queries to A and runs in O(nk /e + (k/€)?) time.
Finally, in Step 6, we run Algorithm 1 such that Q is a n X k" matrix. Therefore, it follows from
Theorem 4.16, that the total number of queries to A is 5(nk /€ + k?/€°) and the running time is
5(n(k /€)1 + (k/€®)®). The final query complexity and running time follows, and this concludes
the proof.

Outputting a PSD Low-Rank Approximation. Here, we extend our algorithm to show that we can
obtain a relative-error low-rank approximation matrix B such that B itself is a PSD matrix, using
the same sample complexity and running time as in Theorem 4.1. Outputting a PSD low-rank
approximation was first considered by Clarkson and Woodruff [CW17], who obtain an input-
sparsity algorithm for arbitrary A. When A is PSD, Musco and Woodruff show that this problem
can be solved with O(nk/e3 + nk?/e?) queries, in time O(n(k/e)® + nkv=1/ed@-1),

We run Algorithm 3 till Step 5, i.e., we recover Q such that QQT is a SF projection for A. We
then modify Algorithm 1 by considering the following optimization problem instead:

A-QXQ" 4.42
pin_ llA-QXQ I (4.42)
X>0
As before, we sketch on both sides by sampling proportional to the leverage scores of Q. Let the
resulting sampling matrices be denoted by S, T. Then, we have the following sketched optimization
problem:
in ||SAT — SQXQ'T||? 443
o | QXQ T (4.43)
X0
Following Step 4 in Algorithm 1, we can compute SAT, Psg, Pgrr. We then compute X =
(SQ)'PsgSATPorr(QTT)" and X* = [(X + XT)/2]+, where for any matrix M, [M]y is defined by
setting all but the top-k positive eigenvalues to 0. Finally, we output NNT where N = Q(X*)!/2.

Corollary 4.26. (Outputting a PSD Low-Rank Approximation.) Given an n Xn PSD matrix A, an integer
k,and 1 > € > 0, there exists an algorithm that samples O(nk/€) entries in A and outputs a rank-k MM
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such that with probability at least 9/10,
[A-MMT[? < (1+e)l|A- A
Further, the algorithm runs in O(n(k/e)*~1 + (k/€3)®) time.

Proof. We first note that an extension of Lemma 4.14 holds for outputting a PSD matrix as well.
As a consequence of the following lemma, obtaining an approximate solution to the optimization
problem in Equation 4.42 suffices.

Lemma 4.27. (Structured Projections and PSD LRA [CW17].) Let P € R™" be an (e, k)-SF projection
w.r.t A, then
IA - PALP|IE < (1+€)l|A - A7

We then use the analysis of Lemma 15 from [CW17] to conclude that X* is the minimizer for
Equation 4.43. Finally, we note that the running time and query complexity is dominated by
computing Q and thus is the same as Theorem 4.1. Computing X* requires no additional queries
to A and only contributes a lower order term to the running time. m]

4.4 Negative-Type Distances

In this subsection, we consider the problem of computing low-rank approximation for distance
matrices. Here, the input matrix A is formed by the pairwise distances between a set of points
P = {p1,...,pn} in an underlying metric space d, i.e., A; ; = d(p;, pj). Low-rank approximation for
distance matrices was introduced by Bakshi and Woodruff [BW18] who obtained sublinear time
additive-error algorithms for arbitrary metrics. Subsequently, Indyk et. al. [IVWW19] provided
sample-optimal algorithms for additive-error low-rank approximation. For arbitrary distance
matrices, it is known that relative-error algorithms require ()(nnz(A)) queries [BW18].

Here, we focus on the special case of negative-type (Euclidean Squared) metrics [Sch38].
Negative-type metrics have numerous applications in algorithm design since it is possible to
optimize over them using a semidefinite program (SDP). One significant algorithmic application
of negative-type metrics appears in the Arora-Rao-Vazirani algorithm for the Sparsest Cut prob-
lem [ARV09]. We refer the reader to extensive subsequent work on embeddability of such metrics
and the references therein [ALN08, ALN07, CGRO05]. It is well-known that negative-type metrics
include ¢1 and ¢, metrics, spherical metrics and hyper metrics [DL09, TD87]. Therefore, our
algorithms extend to distance matrices that arise from all such metrics.

For negative-type metrics, Bakshi and Woodruff obtain a bi-criteria relative-error low-rank
approximation algorithm that queries O(nk/€2?) entries in A and output a rank k + 4 matrix. In
contrast, we obtain a sample-optimal algorithm that does not require a bi-criteria guarantee. As
noted above, our algorithm works for any distance matrix where the distance can be realized as a
negative-type metric.

Theorem 4.28 (Sample-Optimal Negative-Type LRA). Let A € R™" be a negative-type distance matrix.
Given € > 0 and k € [n], there exists an algorithm that queries O(nk/e€) entries in A and outputs matrices
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M, N7 e R"™k sych that with probability 99/100,
IA - MNI? < (1+e)llA - Axll?
Further, the algorithm runs in time 5(11 (k/e)®h).

To demonstrate the connection between negative-type metrics and PSD matrices, we observe
that a negative-type distance matrix A can be realized as the distances corresponding to a point
set P = {x1,x2,...x,} such that A; ; = [|x; — x]-||§ = ||xz-||§ + ||x]-||§ - 2(x;, xj). Therefore, we can
rewrite A as Ry + Ry — 2B, where for all j € [n], (Ry);,; = ||xi||§, R; = R and B is PSD. Further,
we can obtain query access to B by simply assuming w.l.o.g. that x; is centered at the origin and
the i-th entry in the first row corresponds to ||x;||7. Therefore, we can simulate our PSD low-rank
approximation algorithms on the matrix B by only having query access to A.

Our main contribution here is to show that if P = QQ" is an (O(1), k/€)-SF projection matrix
for B, then adjoining Q" with the row span of R; and Ry results in an SF-projection matrix for A.
Here, the row span of Ry is 17 /+/n and Ry is v such that for all i € [n] v; = ||xi||§/2i ||xl-||§. We note
that once we obtain an SF projection for A, we can run Algorithm 1 to outputa (1 + €) relative-error
low-rank approximation.

Lemma 4.29 (Structured Projections for Distance Matrices). Let A be a negative-type matrix such that
A = Ry + Ry — 2B, as defined above and let € > 0. Given an (O(1), k/€)-SF projection P = QQT for B,
let QT be a basis for QT appended with the basis vectors for rowspan(Ry) and rowspan(Ry). Then, with
probability at least 99/100,

in [|A-QXQT||7 < (1+e)||A - Agll?
mr{l{&?gk I ”2 ( )| k”F

Proof. By Lemma 7 in [CW17], for any symmetric matrices Y, Z such that (Y-Z)Z = 0 and projection
matrix P, the following holds:

Y - PZP||2 = ||Y - Z||? + ||Z - PZP||2 + 2Tr (Y — Z)(I - P)ZP) (4.44)
Applying Equation 4.44 with Y = A and Z = Ay, for any projection matrix P, we have
IA — PAP|I? = ||A — AglIZ + |Ak — PAP|I7 + 2Tr (A — Ax)(I — P)AiP) (4.45)
Next, we bound the ||Aj — PAkPllg as follows:
1Ak - PAPII; < 2[|Ax(I - P)I;
< 2k||Ax(1 - P)|I3 (4.46)
< 2k|AI-P)|)5
To bound the trace, we use the Von Neuman trace inequality,
2Tr (A — Ag)(I — P)A(P) = 2Tr ((A — Ax)(I — P)*A(P)

<2 ) 0i((A - A - P)oi((1 - P)AP)
ie[n] (4.47)
< 2k[|(A = A)I = P) 2 [|(T - P)AP;

< 2k|[|AT - P)||3
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It suffices to bound ||A(I — P)||§ for P =QQO". Since A = Ry + R, —2B and (R; + Rp)(I-P) =0, we
have
IA(I-P)|7 < 2|B(L-P)|;3

< 2[|B(I-QQ")|;

<0 () IB - Beaal?
To relate ||B — Bk||1% back to A, observe

IA = Agllf = IRy + Rz — 2B — Al = 4B — (R1 + Ra — Ay)/2|7
> 4||B — Byall7

Therefore, ||A(I — P)||§ < O(e/k)||A - Ak||1%- We can thus bound Equations 4.47 and 4.46 with

O(e)||A - Ak||§. Substituting this into Equation 4.45, we conclude that ||A — PAkP||1% < (1+
O(e))|lA - Ak||1%, for P = QQT and the claim follows. O

Recall, we can compute an SF projection for the PSD matrix B efficiently using Algorithm 3 and
then solve the optimization problem in Lemma 4.29 using Algorithm 1. We can therefore reduce
low-rank approximation of negative-type matrices to PSD low-rank approximation with only O(n)
additional queries and Theorem 4.28 follows.

4.5 Ridge Regression

We consider the following regression problem: given a PSD matrix A, a vector y and a ridge
parameter A,
min [|Ax - yl3 + Allx[)3

As a corollary of Theorem 4.1, we obtain a faster algorithm for the aforementioned problem. We
begin with the following simple lemma from [MW17]:
Lemma 4.30 (Lemma 26 in [MW17]). Given a PSD matrix A, vector y, and A > 0, let B be a matrix
such that ||A — B||§ < €2). Then, for any vector ¥ such that

1B =yl + AlIZIZ < (1+¢€) (min Bx - y|2 + Allx[3)

we have
A% =yl + AIFIE < (1+ €)1 +5e) (min [ Ax = y | + Allx|}3)

Therefore, it suffices to find a rank-k matrix B such that ||A — B|I§ < €%A. Lets) be an upper
bound on the statistical dimension s; = Tr ((A2 + /\I)‘lAz) Setting k = 5,/€2, we can bound
||A — Ak||§ as follows:

n
i”A —Allf < € —=; zi:k+1 A?Q(A)
SA 2i-1 /\i(A)/(AZ‘ (A)+ A1)
62 Zzfl=k+l A?(A)
T XL ATA)/(A2(A) + A)
< ce?A
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We can then solve the regression problem min, ||Bx — y||§ + /\||x||§ exactly in time O(nk®~!) and
obtain the following result:

Theorem 4.31 (Ridge Regression). Given a PSD matrix A, a regularization parameter A and an upper
bound 5, on the statistical dimension s, = Tr ((A%+ AI)"LA2), there exists an algorithm that queries
O(n's)/€?) entries of A and with probability 99/100 outputs X such that for all y € RY,

A% = ylI2 + AIFIE < (1 +¢€) (min [ Ax = yI + Allx|Z)

Further, the algorithm runs in 5(n(§A/62)“J‘1) time.

Remark 4.32. Observe that we can derive a data structure from our algorithm that preserves the
objective cost (up to 1 + €) for all x and y simultaneously and thus we obtain a coreset for Ridge
Regression.

To complement the above algorithmic result, we present a new lower bound for coreset con-
structions for ridge regression, which matches our upper bound in all parameters. At a high level,
our hard instance for constant s, consists of 1/€2 blocks of all 1s, each of size evn x e\, placed
randomly across the matrix. Since any coreset construction must preserve the cost of all x, y,
we pick pairs (x, y) to be the eigenvectors of A (scaled appropriately) and show that in order to
preserve the cost of all pairs, the coreset algorithm must find all the blocks, which requires Q(1/€?)
queries to A. Repeating the above construction s,-times suffices to obtain a linear lower bound in
terms of s,. Formally,

Theorem 4.33 (Coreset Lower Bound for Ridge Regression). Given a PSD matrix A and €, A > 0 let
sy = Tr ((A% + AI)"1A2) denote the statistical dimension of A. Then, any coreset construction C that with
constant probability, preserves the ridge regression cost up to (1 + €) simultaneously for all x, y, must read
Q(nsy/€?) entries in A.

We recall the lower bound instance for low rank approximation of PSD matrices shown by
Musco and Woodruff :

Theorem 4.34 (Lower Bound for PSD LRA ([IMW17])). Given an n X n PSD matrix A, €y > 0 and
ko € [n], any randomized algorithm that outputs a rank ko matrix B such that with probability at least 9/10,

IA =Bl < (1+eo)llA - A7
must query Q(nko/eo) entries in A.

We consider the hard distribution defined by Musco and Woodruff, and show that we can
obtain a low rank approximation to this instance with strengthened parameters by using a coreset
for ridge regression.

Definition 4.35 (Hard Input Distribution for LRA ([MW17])). Let M be an n X n matrix and let
€0 > 0, ko € [n]. Let y(n, o, ko) be a distribution over M such that S c [n] is a uniformly random
subset of size 1 /2, which is further partitioned into subsets S, Sy, . . . Sk, such that for all ¢ € [k],
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S¢ is picked uniformly at random and |S¢| = n/(2ko). For each subset S¢, let Ag, denote the
principle submatrix of A indexed by the set S¢. Then, with probability 1/2, Ag, is such that all the
diagonal entries are set to 1 and a uniformly random principle submatrix of As,, indexed by the
set 7, such that [7¢| = c+/eo|S¢| is set to all 1s. With the remaining probability Ag, is set to the I.

We show that we can derive a low-rank matrix B that satisfies the relative-error guarantee above
from a coreset for ridge regression.

Proof of Theorem 4.33. We show a proof by contradiction, where the high level idea is that a coreset
for ridge regression can be used to derive a low-rank approximation to A, when A is picked from
y(n,0(1),s,/€?) (the hard distribution defined in 4.35). First, we observe that with probability at
least 99/100, the input distribution has Q(s, /€?) blocks that contain a principle submatrix with all
1s. To see this let Xy, ... X, . be indicators for the corresponding blocks A, having a principle
submatrix of all 1s. Then,

621’1

E Z X,|==— (4.48)

telsy/e?] 251

Since the X,’s are independent, by a Chernoff bound we have

2 5 2
Pr| Y Xe<(-0)—|<exp (—C ¢ ”) (4.49)
ZSA S)
tefsy/e?]

For n > Q(s,/€?), we can bound the above probability by 1/100. We begin by showing that for
our input instance, sy = @(n/A) and thus the aforementioned equations differ by O(en/s,). To

see this observe
o2(A)

S = Z m (450)

i€[n]

Then, there are s, /2€? large eigenvalues, each of magnitude €4/ /s, and thus the total contribution
is

S\ (e*n/s)) n

2e2 (€2n/s))+A  €n/sy+A
The remaining eigenvalues simply contribution 1/(1 + A) to the sum and since there are at most n
of them, the total contribution is /(1 + A). Therefore, we can conclude s, = ©(n/A).

For a block in A indexed by ¢, let £¢ be the eigenvector supported on indices in S, and let

¢ = \/n /s x¢. For non-identity blocks, A%, = |7¢|%, = v/€>n /s % and the regression cost is

|(1 - e)\/n/sﬁgllg +A=(0-2€e)n/s)+cn/s, (4.51)

When the block indexed by ¢ is the identity block, we get A%, = £ and the regression cost is

[[(\r /sy — 1)J€g||§ +A=(n/sy+1-=2yn/sy)+cn/s, (4.52)
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Instead consider a vector that intersects an eigenvector ¥; on a (1 — y)-fraction of the support and
the rest is arbitrary. Then, when an an all 1s block exists, A%, > (1—y)?|T¢|%, = (1 - )*e2n /s %¢
and thus the regression cost is at most

(1-e(1-2y)yn/s)+cn/s,

Further, when the block is simply the identity, a similar calculation shows that the regression cost
is at least (1 — 2ey)?*n/s) + cn/s,. Therefore, the ridge regression cost determines the existence of
a (1 — 2y)-fraction of an all 1s principle submatrix even when %, intersects with an eigenvector on
a (1 — y)-fraction of coordinates.

Consider a coreset C for the above instance. Since this coreset preserves the ridge regression
objective upto a (1 + €/1000) factor for all x, y, as per our above discussion we can query the
coreset on the tuples (¢, §7¢), which represent the eigenvectors of each block, to determine if a
block contains a principle submatrix with all 1s. However, a priori we do not know the support of
the eigenvector within each block Ag,.

Instead we query the coreset on all possible supports and show we can determine the right one
as follows: let X be supported on a set that intersects with a principle submatrix of all 1s on at most
a y fraction. Observe that A% < % (y2eX) and thus the ridge regression cost can be lower bounded
as follows:

(1 —ey)zn/sA +cn/sy (4.53)

We therefore take the set of all vectors on which the coreset cost is less than the above cost and
let the resulting list be L. Note, this list must include the eigenvectors and further, only includes
vectors which intersect an all 1’s submatrix on a 1 — y-fraction. Therefore, picking a set of €21 /s,
vectors that have maximum support suffices.

Since we detect a (1—y)-fraction of all principle submatrices in A, it follows that we can outputa
1+ ¢’-approximate low-rank approximation for A, for a fixed small constant ¢’. To see this, observe
that the optimal low-rank approximation to A is given by the matrix that selects all the principle
submatrices with all 1s and thus ||A — Ay, ||§ = n — ko = n — s, /€. Further, our approximation to
Ay, denoted by B, matches Ay on a (1 — y)-fraction of each principle submatrix of all 1s and thus
we match Ay on these entries. Subsequently we bound the additional cost that B incurs which Ay
does not. This includes entries that are 1 in Ay and 0 in B and vice versa.

To bound the cost of the entries that exist in Ax but do not exist in B, observe on each principle
submatrix, B and A intersect in at least (1 — y)*-fraction of the entries and thus the remaining
Z—Q = 4yn/c, since the size of each block is ‘22—’\1 and the number
of blocks are at most 2. Finally, observe that since we do not pick exact eigenvectors we can have
non-zero off diagonal entries in B that do not exist in Ay. However, we have at most y-fraction of
the support on each indicator vector remaining and contributing to two rectangular blocks of 1s,
each of size y - i—’\l . Z—é = yn/c. Therefore, the additional non-zero entries in B that do not appear
in A are 2yn/c in number.

Therefore, the overall cost ||A — B||1% < (1 +6y/c)n. By setting the constants y and ¢ and

observing that s, /e? < 1, we obtain a (1 + ¢’)-low-rank approximation to A, for any arbitrary

entries are at most (1—(1—y)?)- i_’f :
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small constant ¢’. Therefore, our reduction suffices to solve the hard instance above and a lower
bound of Q(nky/ep) = Q(ns,/€?) queries follows. m]

5 Robust Low-Rank Approximation

One drawback of relative-error guarantees is that the corresponding algorithms cannot tolerate any
amount of noise. Therefore, we introduce a robust model for low-rank approximation by relaxing
the requirement from relative-error guarantees to additive-error guarantees. In the robustness
model we consider, we begin with an n X n PSD matrix A. An adversary is then allowed to
arbitrarily corrupt A by adding a corruption matrix N such that the corruption in each row is an
fixed constant times the {’g row norm of the row and the total corruption is an rn-fraction of squared
Frobenius norm of A. While the adversary may corrupt any number of entries of A, the norm of
the corruption matrix is bounded and the algorithm has query access to A + N. We parameterize
our lower bound and algorithms by the largest ratio between a diagonal entry of A and A + N,
denoted by ¢max = maxje[] Aj,j/|(A+N); ;|. This captures the intuition that the diagonal is crucial
for sublinear time low rank approximation and the sample complexity degrades as we corrupt
larger diagonals entries.

5.1 Lower Bound for Robust PSD Low-Rank Approximation

2

In this subsection, we show a query lower bound of Q(n?n%k/€?) = Q(P2,.x

nk/e) for any algorithm
that outputs a low rank approximation up to additive-error (e + 77)||A||§- Note, obtaining error
smaller than 7||A |2 is information-theoretically impossible and reflected in the query lower bound.

Our lower bound holds for randomized algorithms, and uses Yao’s minimax principle [Yao77].
The overall strategy is to demonstrate a lower bound for deterministic algorithms on a carefully
chosen input distribution. We construct our input distributions as follows: let A € R"™*" be a block
diagonal matrix with such that By is 5¢ /1 x 5¢ /1 randomly positioned, non-contiguous block with
all entries 4/nn?/5¢ and B, is the identity matrix on the remaining indices. A is clearly a PSD
matrix since each principle submatrix is PSD. Observe ||A||1% = (25¢/n?) - (nn?/5€) + (n — 5¢/1) =
(14 5€)n — o(n). Further, the dense block B; contributes a total squared Frobenius norm of at least
4en and the diagonal entry contributes an n/e fraction of each row. Since € > 1, the diagonal
contributes at most the entire ¢ norm. The corresponding diagonal of B; also has (3 squared
norm 5¢/n - nn?/5¢ = nn.

At a high level, the adversary can then corrupt the diagonal and set each diagonal entry
to be 1, making it hard for the algorithm to find rows corresponding to B;. We show that any e-
additive-error low-rank approximation must detect at least one entry in B; to adaptively sample the
corresponding row and column, but the diagonals no longer provide any useful information. Thus
any algorithm must query most entries in A. Further, in our construction, note ¢max = \/n1?/5€.

We first describe intuitively why a low rank approximation needs to recover many rows from
the block B;. Since A has this block structure, the best rank-1 approximation satisfies |A — Ay ||1% =
n — |By|. Therefore, assuming the cardinality of By is negligible, in order to obtain an overall error

bound of €||A||I% > en, the algorithm must find a constant fraction of off-diagonal entries in Bj.
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This is because B; contributes at least 5en norm. However, since the diagonals no longer convey
any information about the off-diagonals, and the block By is placed on a random subset of indices,
any deterministic algorithm must read arbitrary off-diagonal entries until it finds a non-zero entry.
Since there are only 25€2/ nz non-zeros in By, to find one in expectation (over the input distribution)
requires sampling €2n?/n? entries. While the above serves well as intuition, a rigorous proof
requires many additional steps. We begin by defining a distribution over the input matrices :

Definition 5.1. Given n € N,e > n > 0,let S C [n] be a uniformly random subset of size [5¢/n].
Let u(n, €, n) be a distribution over matrices M € R"" such that Vi € [n], M;; =1and Vi,j € S,
M, ; = y/n*n/5¢. All remaining entries in M are 0.

Next, we show that any M sampled from u(n, €, n) can be decomposed into A + N such that
A is PSD and ||N||% < 17||A||§. To see this, let N be a diagonal matrix such that for all i € S,
N;i = —n?n/5€ and let A = M — N. We give an algebraic proof that A is PSD, but A can also be
decomposed into a rank-1 block of all /1?1 /5¢-s corresponding to all i, j € S and identity on the
remaining indices. For all x € R",

xTAx = Z Ai,]-xix]- + Z Ai,]-xz-x]-
i,jeS i,j¢S

= \/n?n/5€e Z XiX; +Zx?

i,jeS i¢S (51)

:m(in)Z+ZX?

ieS i¢S
>0

and thus A is PSD. Further, ||A[|2 = (25¢2/n?) - (n1?/5€) + (n — 5€/n) = (1 + 5¢)n — 5¢/n. Then,
INIIZ = 5¢/n - n?n/e = nl|All%, as desired. Intuitively, we show that if B is a rank-k matrix that
is a good low-rank approximation for M sampled from u, then it cannot be a good low-rank
approximation for I. To this end, we consider a distribution where M is drawn from p(n, €, n) with
probability 1/2 and is I,,x, with probability 1/2.

Definition 5.2. (Hard Distribution) Given n € N,e > 1 > 0, let v(n, €, 1) be a distribution over
M e R™" such that with probability 1/2, M is sampled from p(n, €, ) and with probability 1/2,
M =1IL,xn.

We now show that a low-rank approximation to M can be used as a certificate to separate the
mixture v(n, €, 1) since it can distinguish between the input being identity or far from it. Thus
if the distributions are close in a statistical sense, any algorithm to distinguish between the two
would require querying many entries in M. Formally,

Lemma5.3. (LRA as a Distinguisher.) Let M be a matrix drawn from p(n, €, ) and let B be a rank-k matrix
that is the candidate low-rank approximation to M such that |M — B||§ < en. Then, |M - I||§ > 1.1en.
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Proof. Since ||M — B||1% < en, B must have at least 4en mass on the off-diagonal entries of M.
So, B must have at least 10/ non-zero off-diagonal entries. Therefore, it must have at least
5¢2/1? entries with squared mass €n/2. To see why, assume there is a subset of at least 12¢2 /1
entries, each being at most /n12/10e. Restricted to only these entries, the squared Frobenius norm
difference between M and B is already at least 1.2en, contradicting our assumption. Given that
there exists a subset of 5¢2/1? off-diagonal entries having squared mass 1.2¢n, ||B — I||1% > 1.2¢n,
and thus B is not an additive error low-rank approximation for I. m]

Theorem 5.4. (Lower bound for PSD Matrices.) Let A be a PSD matrix, k € Z and € > 0 be any constant.
Let N be an arbitrary matrix such that ||N||1% < nllAll%. Any randomized algorithm A that only has query
access to A + N, with probability at least 2/3, computes a rank-k matrix B such that

IA = BIIF < A~ Akl + ellAll?
must read Q (% a1k /€) entries of A + N on some input, possibly adaptively, in expectation.

Proof. Let Algorithm A be a deterministic algorithm that outputs a rank-k matrix B such that it is
an additive-error low-rank approximation M. Let T C [12] be the subset of entries read by A. Let
L(u) denote the distribution of T conditioned on M ~ u(#n, €, 1) and L(i) be the distribution of T
conditioned on M = I. By Lemma 5.3, since the output of A can be used to distinguish between
the two distributions, it is well-known that the success probability over the randomness in T is at
most 1/2 + Dy (L(u), L(i))/2 [BY02]. Since we assume A succeeds with probability at least 2/3,

Drv(L(p), L(i)) 2 1/3 (5.2)

It remains to upper bound Dry in terms of |T|. Recall, S is the random set of indices where
u(n, €,n) is non-zero. Let S be the subset of S restricted to the off-diagonal entries of M. When
M~ u(n,e, n),Vi,je §, M; ; is non-zero and when M = I, the same entries are 0. Observe, for all
i,j¢ §, M, ; are fixed. Further, S is a uniform subset of [1]. Therefore,

|Tle?
1n2n2

Pr[(i,j)eT|(i,j)eS]= (5.3)
Then, with probability at least 1 — |T|e?/n*n?, A queries the same entries for both L(u) and L(i).
Therefore

Drv(L(w), L(i) < IT|e?/n*n?.

Combined with Equation 5.2, if A succeeds with probability at least 2/3, | T|e?/n*n? > 1/3 and thus
IT| = Q(n*n?/€e?). Given that any deterministic algorithm must query Q(n?n?/e?) = Q(¢p2 .1 /€)
entries for v(n, €, 1), to now obtain a linear dependence on the rank k, we can use the standard
approach of creating k disjoint copies of the block By in the hard distribution, as shown in [MW17].
The theorem follows from Yao’s minimax principle. |
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5.2 Robust Sublinear Low-Rank Approximation Algorithms

In this subsection, we provide a robust algorithm for the model discussed above. We parameterize
our algorithms and lower bound by the largest ratio between a diagonal entry of A and A + N,
denoted by ¢max = maxje[,) Aj;j/|(A + N);;|. In addition, we provide robust PCP constructions,
by introducing a new sampling procedure to construct projection-cost preserving sketches. Our
sampling procedure is straightforward: we sample each column proportional to the diagonal
entry in that column. This sampling requires n queries to the matrix A to obtain an additive-error
projection cost preservation guarantee. Further, for the special case of correlation matrices, we can
uniformly sample columns of A to obtain a smaller matrix such that all rank k projections in the
column and row space are preserved.

For our algorithms, we assume we know ¢max. In practice, this assumption may not hold, but
we can query as many entries in A+N as our budget allows, given that correctness holds only when
the queries are at least 5(¢)§1axnk /€). Since we read the diagonals of A + N and we know ¢max, we
can obtain an upper bound on A;; and A; ;. Therefore, whenever we query an off-diagonal entry
in A + N, we can truncate it to Pmax+/|(A + N); i| - [(A + N); ;| without increasing the corruption in

our input.

Robust Projection-Cost Preserving Sketches. Here, we show that diagonal sampling is a
robust sampling procedure to create projection-cost preserving sketches. We begin by relating the 3
row (or column) norms of a PSD matrix to it’s spectral norm. Let A be a PSD matrix and let USU”
be the SVD for A.

Lemma 5.5. Given an n X n PSD matrix A, for all i € [n], ||Ai,*||§ < ||A]l - Aj
Proof. Observe, A;, = U;3UT and A, ; = (U; ,.2UT); = ?:1 Oj(A)UZ?].. Then,

n
1Al = Ai AT, = U, 3UTUSUT, = )" o2(A)U2,
j=1
n
<Al )" ojU?,
=1
= [|All2 - A

O

An immediate consequence of Lemma 5.5 is that the f% norm of a row or column of a PSD matrix
is at most %. Note, this precludes matrices where most of the mass in concentrated on a small
number of rows or columns. Recall, we observe as input the matrix A + N and our goal is to obtain
a PCP for this in sublinear time and queries.

Musco and Musco [MM17] describe how to approximately compute the ridge leverage scores
of A? (if A is PSD) using a Nystrom approximation. [MW17] use this method to compute the
ridge leverage scores of A? with O(nk) queries, where A = A? - Az. However, these approaches

do not apply when we perturb the input and it may no longer be PSD. Therefore, the best known
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construction by Cohen et. al. [CMM17] would require Q(nnz(A)) time to compute approximate
ridge-leverage scores of A. Note, this does not use the structure that A has.

In contrast, we show that sampling columns proporitional to the diagonal entries suffices to
obtain a PCP. Note, we only need to query the diagonal of A to compute the distribution over
columns exactly. The main technical challenge here is to obtain the correct dependence on n
and k and account for the perturbation to the input, given that our sampling probabilities are
straightforward to compute and do not rely on spectral properties of A + N. Note, the following is
a structural result and while we do not know A, we can still show the following :

Theorem 5.6. (Robust Spectral Bound.) Let A be an n X n PSD matrix and N be an arbitrary matrix
such that ||N||1% < 17||A||1% and for all j € [n], ||N*,j||§ < c||A*,j||§, for any fixed constant c. Let
¢Pmax = max;jA;;i/(A+N);;andlet q ={q1,q2...qn} be a distribution over the columns of A + N such
that for all j, q; = (A +N);,;/Tr(A+N) and let t = O (PmaxV1k?log(n/0)/€?). Then, construct a
sampling matrix T that samples t columns of A + N such that it samples column(A + N). ; with probability

q; and scales it by 1//tq;. With probability at least 1 — 0, for any rank-k orthogonal projection X,
€ €
AAT - (%) IAJ2I < AT(AT)T < AAT + (E) I1AJ2T

Proof. First, we note that we cannot explicitly compute AT, but we can show that the sampling
probabilities we have access to result in a PCP for A. Let Y = AT(AT)” — AAT. For notational

convenience let A; = A, ;. We can then write Y = )y (C*,jC*T’j - %AAT) = Xjet) Xj, where
X; = %(quA]-AjT — AAT) with probability g j- We observe that E[X;] = E[C*,jczj - %AAT] =0,and
therefore, E[Y] = 0. Next, we bound the operator norm of Y. To this end, we use the Matrix

Bernstein inequality, which in turn requires a bound on the operator norm of X; and variance of Y.
Recall,

1

1
Xl = ||—A;A; - ~AAT
” ]”2 ”fq] jE] f

2

Tr(A+N) o 1 5

< AN, AR Al
2Tr (A) + |[Tr(N) | . 5.4
¢(Tr (A) + |Tr (N) DIl All2pmax

- t

< C¢max‘/zl|A”F“A”2

- t

where we use triangle inequality for operator norm to obtain the first inequality, triangle inequality
up to a factor of 2 for {’g norms for the second inequality, ||N; ||§ < 77||A*,]-||§ and ||A; ||§ <Al-Aj;
(from Lemma 5.5) for the third inequality and definition of ¢max and n = O(1) for the fourth.
Finally, we relate the trace of A and N to their respective Frobenius norm using Cauchy-Schwarz:

n n

Tr(A) = ) 0i(A) <4 >, 0X(A) - n = \nl|AJ2

i=1 i=1
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and

n

Z oi(A)

i=1

Tr(N)| =

<4 D 02(N) -1 = \[nIN|2 < yrml|Alle
i=1

where the last inequality follows from [[N||r < y/7||A[|r. Next, we bound Var[Y] < E [YZ].

E [Y*] =tE

2
(AT). ;(AT)! = %AAT)

_ T\, 1 T2 _ 2 T T
— tE ((AT)*,]-(AT)*’].) + 75 (AAT)" — 2(AT). ;(AT)] AA

ATY2
(AjA;

+ (AATY? — Z 24,ATAAT (5.5)
jetn]

|
—
N
.

< C¢maX\/EL|A”F“A”2AAT

where we use linearity of expectation, (AAT)? > 0 and ||A j,*||§ < ||All2 - Aj ;. Applying the Matrix
Bernstein inequality,

e[| Allg

cPmax ViLl|AllE || Al + 2¢max Vil AlE AL (ellAlIZ)
t 3t

Pr [”Y”Z 2 €||A||%] <2nexp|-

2t Al
<2nexp|-— > 5
comax Vil AllEIAlL \ IAll; + ellAllz
2
< 2nexp et
Cl¢max\/z
<0/2

where the last inequality follows from setting t = O(¢max V1 log(11/5)/€?). To yield the claim, we
set e = ¢/k. O

We use the above spectral bound to show that sampling proportional to diagonal entries preserves
the projection cost of the columns of A on to any k-dimensional subspace up to an additive

(e + ymIIAlZ.

Theorem 5.7. (Column Projection-Cost Preservation.) Given A+ N, where A is an n X n PSD matrix and
N is an arbitrary noise matrix as defined above, k € Zand e > 1 > 0,let g = {q1,92 . .. qn} be a probability

distribution over the columns of A + N such that q; = %. Let t = O (pmaxVnk?log(%)/€?). Then,

50



(A\;%,j with probability q;. With probability at

construct C using t columns of A + N and set each one to

least 1 — c, for any rank-k orthogonal projection X,
IC = XClI = A - XA|f £ (e + VDA
for a fixed constant c.

Proof. Here, the matrix C is actually a matrix we can compute. Observe that we can relate C to the
sampling matrix T as defined in Theorem 5.6 as C = (A + N)T. We follow the proof strategy of
the relative error guarantees in [CMM17] and additive error guarantees in [BW18] but note, our

spectral bounds from Theorem 5.6 apply to matrices that we do not actually compute. Observe,
|A - XA||Z = Tr ((I - X)AAT(I - X)). Then,

Tr (I - X)AAT(I - X)) = Tr (AAT) + Tr (XAATX) - Tr (AATX) - Tr (XAAT)
= Tr (AAT) + Tr (XAATX) - Tr (AATXX) — Tr (XXAAT)
= Tr (AAT) + Tr (XAATX) - Tr (XAATX) — Tr (XAATX) (50
= Tr (AAT) - Tr (XAATX)

where we used the fact that for any projection matrix X = X? in addition to the cyclic property of
the trace. Similarly,

|C - XC||Z = Tr ((I - X)CC"(I - X)) = Tr (CC") - Tr (XCC'X) (5.7)
We first relate Tr (AAT) and Tr (CCT). Recall,
E [Tr (CC")] = E [|ICII2] = IA + N||? < Tr (AAT) + 27| A2

Using a scalar Chernoff bound, we show that with probability at least 1 — 1/poly(n), ||C||1% =
1=xe)|A+ N||1%. This is equivalent to |||C||1% —||A + N||1%| <e€l|lA+ N||§. Observe, for all j € [f],

C.= \/%(A + N). j for some j" € [n]. Then,
1 Tr (A + N) €2
IC IR = —— (A +N). ;|2 = A+N) 1A +N). /I
QJ't (Pmax\/ﬁk log(”/é)(A + N)j’,j’
c\n||Al|pe?
< VrlAlke, 58)
Vnlog(n/6)

C€2

e~ 2
< Klogtnyo) 1A+ NIz

where we use Tr (A) < Vi ||A|lr, Tr(N) < yA7r||Allr and t = O(¢PmaxV1k log(n/5)/€?). Therefore,

k1 o
et;ﬁf:”/z ) IC. ; ”2 [0, 1]. By a Chernoff bound,
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klog(n /o) klog(n /o)
Pr[||CI2 = (1 +2¢)||A + N|?| =Pr | —2—=||C||2 > —="Z(1+
r[IICIIE = ( )| 7] = Pr €2||A+N”1%II Iz = (I+e)
ke?log(n /o) (5.9)

Sexp(—T)

o
S —_

2

We can repeat the above argument to lower bound ||C||Z. Therefore, with probability 1 — §, we
have

IICIIZ — 1A + NIIZ| < ellA +NI2

Here, we can upper bound this by observing ||A+N||1% < ||||§ + ||N||1%+2<A,N> < ||A||1% +3\/ﬁ||A||1%.
Therefore,

[ICNZ - IAIZ] < ellAlIZ + (1 +e)yAllAll2 < (e + 2yD)IIA]2 (5.10)
Next, we relate Tr (XCCTX) and Tr (XAATX). First, we observe
CCT = (AT + NT)(AT + NT)” = (AT)(AT)” + (AT)(NT)" + (NT)(AT)" + (NT)(NT)"  (5.11)

We begin by first bounding Tr (X(AT)(AT)TX). Observe, X is a rank k projection matrix and we
can represent it as ZZ", where Z € R™* and has orthonormal columns. By the cyclic property of
the trace, we have

Tr (ZZT(AT)(AT)"2Z") = Tr (2" (AT)(AT)"Z) = Z zf,j(AT)(AT)TZ*,j
jelk]

Similarly, Tr (ZZ"AATZZ") = 3 iy Z*T,].AATZ*,j. By Theorem 5.6 , we have

T T (€ 25T , T T .
> (Z*’jAA z., ( k) ||A||FZ*’].IZ*,]) <y (Z*,].(AT)(AT) z*,])

jelk] jelk] 5.12)
T AAT € 25T )
< Y (ZaATz,; + () 1A1RZ] 12, )
jelk]
Since ijZ*,j =1and Tr (ZTAATZ) = Tr (XAATX), we have
Tr (XAATX) - €||A[Z < Tr (X(AT)(AT)"X) < Tr (XAATX) + €] A2 (5.13)

Next, we focus on Tr (X(NT)(NT)TX) = ||XNT||1%. Observe, since T is an unbiased estimator of
Frobenius norm, by Markov’s inequality we can show with probability at least 1 — ¢, || XNT||r =
c|INlle = O(yMIIAll. Therefore, we can upper bound Tr (X(NT)(NT)”X) by O(n)||Al2. Now, we
focus on the cross terms. By Cauchy-Schwartz, and a Markov bound, with probability at least 1 —c,

Tr (X(AT)(NT)"X) < ||AT||r - [INT|[r < O(v)IIA|lZ (5.14)
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Combining equations 5.10, 5.13, 5.14 and union bounding over the success of the random
events, with probability 1 - c,

IA = XAz - O(e + yDIIAIIZ < [IC - XClZ < [|A = XAl + O(e + y)IIAllZ
O

Robust Row Projection Cost Preserving Sketches. We now extend the diagonal sampling algo-
rithm to construct a row projection cost preserving sketch for the matrix C. We note that following
the construction for A does not immediately give a row PCP for C since C is no longer PSD or
even square matrix. Here, all previous approaches to construct a PCP with sublinear queries hit a
roadblock, since the matrix C need not have any well defined structure apart from being a scaled
subset of the columns of a PSD matrix. However, we show that sampling rows of C proportional
to the diagonal entries of A results in a row PCP.

We begin by relating the row norms of C to the row norms of A. Note, we do not expect
to obtain concentration here, since such a sampling procedure would then help us estimate row
norms of A up to a constant and we would be done by using [FKV04]. Therefore, we obtain the
following one-sided guarantee:

Lemma 5.8. Let AT € R be a column projection-cost preserving sketch for A as described in Theorem
5.6. For all i € [n], with probability at least 1 —1/n°,

I(AT); .12 < O

|2 (Pmax\/_”A”FAl i }

log(n)max{llAl*l

where c is a fixed constant.

Tr(A+N A+N);
Proof. Observe thatll(AT)il*ll2 Z]e[t](AT)z where (AT)2 = t(f,(‘ HJ\}))AZ w1thprobab111ty A +1ilj)

Then, E[||(AT);.|I3] = 27, A%]. = ||A.|I3. Next, we compute the variance of || (AT); .||3. Var [||(AT)Z <l ] =
FVar [(AT)fj] <E [(AT);%j]. Then,

1 Tr(A+N
E[an | = 3 Al s 3 EETUa AAy

ey O B ..
jemn ! g HA+ N
Tr(A+N A;;
< ( t) (Prnax ii ||Ai,*||§
2
2 n||AllpA; i
< ( ¢max‘/_t” ”F i,i + ”Ai,*'lg [AM-GM]
where we use A2 < A A, ;, which follows from applying Cauchy-Schwarz to (Al/ 2 Al/ 2) ie.,

1/2 «1/2 1/2 1/2
= (A2, A2 < |AZIBIATZIE = AiiA

ix 7
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Similarly, we bound
Tr(A+N) ., <
t(A+N)]',]‘ Lj =

1,1

2 n||A
(AT)lZ _ Qbmax\/_“ ”FA
i t

Applying Bernstein’s inequality,

PmaxVillAllFAi i
Pr |||(AT)1‘,*||§ - ||Ai,*||§ = Y max {”Ai,*”; max t i
2
max A A11
)/Zmax{llAi,*”g,((?’— V”y"F) }
<2exp|-—
P 20maVIAEA | 4 Omax VIIIAIEAL AR (Tr(A)A; ;|2
(#) +[|Ai.ll; + y max t ( t )
N 2
max A AIZ
ymax{||Ai,*||§, (%) }
<2exp|-—
N 2
c’ (w) + || A1

where MHAL*II% < (M) + ||Ai,*||;1 follows from the AM-GM inequality. Set-

ting y = Q(log(n)) completes the proof.
O

To construct a row projection cost preserving sketch of C, we sample t rows of C proportional

to the corresponding diagonal entries of A. Formally, we consider a probability distribution,
p =1{p1,p2, ... pn}, over the rows of C such that p; = %. Let Rbe a t X t matrix where each row

of R is set to ﬁCi,* with probability p;. Asbefore, R can be represented as SC = S(AT + NT). We

first obtain a spectral guarantee for SAT, while we cannot actually compute this.

Theorem 5.9. (Spectral Bounds.) Let AT be an n X t matrix constructed as shown in Theorem 5.6.

Let p = {p1,p2...pn} be a probability distribution over the rows of AT such that p; = ;’:‘&Tﬁ’) Let
t=0 ( \/fzkz log(%))- Construct a sampling matrix S that samples t rows of AT such that row (AT); . is

picked with with probability p; and scaled by ﬁ . Then, with probability at least 1 — 9,

(AT)"(AT) - ZIAIZI < (SAT)"(SAT) = (AT)" (AT) + Z||AJ2
Proof. Let Y = (SAT)T(SAT) — (AT)'(AT). For notational convenience let (AT); = (AT);. and
(SAT); = (SAT);... We can then write Y = X;c( ((SAT)Z.T(SAT)i - %(AT)T(AT)) = 3 ieqy Xi, where
X; =1 (%(AT)Z.T(AT)Z- - (AT)T(AT)) with probability p;. We observe that E[X;] = E[(SAT)! (SAT);~

LAT)T(AT)] = X, p—;(AT)l.T(AT)i — (AT)T(AT) = 0, and therefore, E[Y] = 0. Next, we bound the
operator norm of Y. To this end, we use the Matrix Bernstein inequality, which in turn requires a
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bound on the operator norm of X; and variance of Y. Recall, for some i’ € [n]

1

tpi’
1 T 1 T

< 1y IAD; (ATl + AT (AT,
l/

Xl = |- AT AT) - AT (&)

2

_ AT 13 . I(AT)|I3

tpi t
1 max AllpAi i AT)|I3
< otgp(‘n) max {IIAI-/,*H%, ¢ \/ﬁll IeA, }+ I t)HZ [by Lemma 5.8]
log(n max VAL ||A||p)?
< o8l )max{q>mxv%||A||p||Anz, (OmarAll) ,||(AT>||§} [by Lemma 5.5]

- ¢>max\/ﬁlfzg(n)llA||§ (1 N @) < 2¢max\/ﬁlt0g(n)llA||§
(5.15)

where the last inequality uses that t = Q(+/n). Next, we bound Var[Y] < E [Yz] as follows

E[¥?] = t(Z %((AT)Z.T(AT)i)z + tl—z((AT)T(AT))z - %(AT)?(AT»(AT)T(AT))

ien] i ie[n] '

Tt

1

T 2
2 (Z w + (AT (AT)? - > 2(AT)?(AT>Z-(AT)T(AT))

ie[n] i€[n]

( 5 ((AT)f(AT)»z) (5.16)
ieln) pi

2
< B o {%xx/ﬁ Il Lo YA } (Z (AT)?(AT»)

t ;
i€[n]

=<

~~ | =

_ clog(m)Virl|AJZI(AT) [}

< nxn
t

where we again use Lemma 5.5 and Theorem 5.7. Observe,
Applying the Matrix Bernstein inequality with equations 5.15 and 5.16

Pr [”YHZ 2 €||A||%] <2nexp|-— 62”A“§
clog(n)Vipmax |AlI2II(AT)|12 N et log(1)bma 1Al
t . F (5.17)

€2t
<2nexp|-—
Cl¢max\/ﬁlog(n)
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where the second inequality uses Theorem 5.6, to conclude that with probability at least 1 — 6/2

< +€ < . erefore, it suffices to set t = "“X—z og(n/o), to
IATI < [|AJ2 + e/KIIAIZ < O(IA]). Theref ff Lm LB Jogi/5)
bound the above probability by 6/2. Union bounding over the error for both PCPs, and setting
€ = €/k, we can conclude that with probability at least 1 — 9,

(AT)T (AT) - %||A||§I < (SAT)(SAT) < (AT)”(AT) + %||A||§I

when t = Q) (M)
O

We use the spectral bound from Theorem 5.9 to obtain a row projection-cost preservation
guarantee. We follow the same proof strategy as Theorem 5.7, while requiring modified version
of the scalar Chernoff bound. We do away with the head-tail split from [CMM17],[MW17] and
[BW18] and analyze the projection-cost guarantee directly. This enables us to obtain a better €
dependence than [MW17] and [BW18]. Note, our € dependence matches that of [CMM17] but our
row projection cost preserving sketch can be computed in sub-linear time, albeit for PSD matrices.

Theorem 5.10. (Row Projection-Cost Preservation.) Given as input A + N let C be an n X t matrix as
defined in Theorem 5.7 such that C = AT + NT. Let p = {p1,p2...pn} be a probability distribution over

2 2
the rows of C such that p; = (T?(le)lil’) Lett = O (w) Then, construct R using t rows of C and

set each one to % with probability p;. With probability at least 1 — c, for any rank-k orthogonal projection
X,

IR = RX|[Z = [|IC - CX|I7 £ O(e + VDI AlI}
for a fixed constant c.

Proof. Note, R = SC = SAT + SNT, where S and T are the corresponding sampling matrices.
Observe, ||C - CX||2 = Tr ((I - X)C'C(I - X)). Then,

Tr ((I - X)CTC(I - X)) = Tr (C'C) + Tr (XCTCX) - Tr (CTCX) - Tr (XC'C)
Tr (CTCT) + Tr (X" CTCX) - Tr (CTCXX) — Tr (XXC' C)
Tr (C'C) + Tr (XCTCX) - Tr (XCTCX) - Tr (XCTCX) (5.18)
= Tr (C"C) - Tr (XCTCX)
= Tr (CTC) - Tr (X(AT + NT)" (AT + NT)X)

where we used the fact that for any projection matrix X = X? in addition to the cyclic property
of the trace. Here, for analyzing the cross and tail terms, we observe that with probability 1 —c,
IX(AT)T[lF < O(D)l|A[lr and IXINT)T|IZ < O(n)l|A|I7. Therefore,

Tr (X(AT + NT)" (AT + NT)X) = Tr (X(AT)"ATX) + O(v1)||A||Z (5.19)
Similarly,

IR - RX||Z = Tr ((I - X)R'R(I - X)) = Tr (R"R) — Tr (XR"RX)

= Tr (R"R) - Tr (X(SAT)"(SAT)X) + O(y/1)||Al|? (5-20)
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Here, we observe ||SAT||1% is an unbiased estimator for ||A||1% and ||SNT||1% is an unbiased estimator
for ||N||1%. Using the same idea as above, we can bound the cross and tail terms by O(\/ﬁ)llAH%.
Our goal is show that Equations 5.18 and 5.20 are related up to additive error O(e + \/ﬁ)HAH%- We
first relate Tr (CTC) and Tr (RTR). Recall, E [Tr (RTR)] =E [||R||I%] = ||C||1% =Tr (CTC). Using a
scalar Chernoff bound, we show that with probability at least 1—1/poly(n), ||| R||1% —IC|| %I < e||A||%.

Observe, forall i € [t],R.; = ﬁci/ﬁ for some i’ € [n]. Then,

Qbmax\/E”A”Fez

1
IR |2 = —||Cy.|I3 = ICir 113
2 pt 2 quaxmmg(n)log(n/é)A,v,i/ 2
c(1+n)lAllre? 5 Pmax Vil AllFAy i
= VRloatn /o),y 2 WAl t
O8N/ O) A i (5.21)
ce?

IA]7e?
max | [|[Al2l|Allr, —————

: Vklog(n/6) Vklog(n/6)

C€2

<
Vklog(1/6)
where we use Cj . = (AT)jr . +(NT); «, [[(NT); . |I§ < (MII(AT); « |I§ for all i and Lemma 5.8 to bound

IA +NIZ

II(AT); .|12. Therefore, %j&lg’) IR; |12 € [0,1]. Note, [|R||? is an unbiased estimator for [|A + NJ|.
Using a Chernoff bound,
Pr[|IR[f > (1 +e)l[A+N|Z] =Pr %}En!é)um@ > M(l + e)]
e[| All7 € 522
< exp (_ Vke? log(n/é)) < K3
€2 10

Therefore, with probability at least 1 — 6/10, |||R||1% —||A + N||1%| <el|lA+ N||1%. Note, we can then
bound ||A + N||§ < ||A||§ + 2\/ﬁ||A||§. Therefore,

HIRIZ = IAIIZ] < O(e + vl Alle

Recall, by equation 5.10, with probability 6/10, ||A||§ =(1x(e+ 2\/ﬁ))||C||% and thus we have that
||R||1% - |IC |I% < 3€||A||%. We can repeat the above argument to lower bound ||R||1%. Therefore, with
probability 1 — 6, we have

[IR]IZ = IICIIFl < O(e + vIIAIZ (5.23)

Next, we relate Tr (X(SAT)T(SAT)X) and Tr (X(AT)TATX). Observe, X is a rank k projection
matrix and we can represent it as ZZ7, where Z € R™* and has orthonormal columns. By the
cyclic property of the trace, we have

Tr (ZZ"(SAT)"(SAT)ZZ") = Tr (2" (SAT)" (SAT)Z) = Z z! ].(SAT)T(SAT)Z*,j
jelk]
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Similarly, Tr (ZZ"(AT)" ATZZ") = ;¢ Z*Tj(AT)TATZ*, j- By Theorem 5.9 , we have

T T _ T T € 2T
> (z*, J(AT) ATZ*,j) =y (Z*/j(SAT) (SAT)Z.; + %||A||Fz*,jlz*,j) 524)
ek ek

Since zf,jz*, j = 1and Tr (ZT(SAT)"(SAT)Z) = Tr (X(AT)T ATX), we obtain
Tr (X(AT)TATX) - €||A]|2 < Tr (X(SAT)"(SAT)X) < Tr (X(AT)"ATX) + €||A||2 (5.25)
Combining equations 5.25,5.23, 5.19 and 5.20 with probability 1 - c,
IC - CX|I7 = O(e + v} < IR = RX|| < [|IC - CX]|7 + O(e + yDIAl}
O

Full Algorithm. Next, we describe a sublinear time and query robust algorithm for low-rank
approximation of PSD matrices. We show that querying 5(¢)ﬁ1axnk /€) entries of A suffices. While
we assume we know ¢max, in practice this need not be the case. Therefore, given a budget for the
total number of queries, denoted by 8, we can run the algorithm by querying a /8 X 4/ submatrix
(as described in Algorithm 4), but correctness only holds when g > @(qbfnaxnk /€). Recall, whenever
we read an entry in (A+N); j, we can truncate it to quax\/ [(A +N);;|-[|(A+N)j;|. Wecan compute
these thresholds by simply reading the diagonal of A + N.

We proceed by constructing column and row projection-cost preserving sketches of A + N, to
obtain a f X t matrix R, where t = 5(q5maxx/ﬁk2 /€?). Instead of reading the entire matrix, we
sample €3t /k> entries in each row of R, and read these entries. Ideally we would want to estimate
5% norms of rows of R to then use a result of Frieze-Kannan-Vempala [FKV04] to show that there
exists an s X t matrix S such that the row space of S contains a good rank-k approximation, where
s = cp2nk/et, for some constant c. However, we show that is it not possible to obtain accurate
estimates of the row norms of each row of R with high probability.

Instead, we describe a new sampling procedure that ends up sampling rows of R with the same
probability as Frieze-Kannan-Vempala. Once we compute a good low-rank approximation for R
we can follow the approach of [CMM17],[MW17] and [BW18], where we set up two regression
problems, and use fast approximate regression to compute a low rank approximation for A. The
main theorem we prove in this section is as follows:

Theorem 5.11. (Robust PSD LRA.) Let k be an integer and € > n > 0. Given a matrix A + N, where A is
PSD and N is a corruption term such that ||N||% < \/ﬁ||A||§ and for all i € [n] ||Ni,*||§ < c||Ai,*||§,for a
fixed constant c, Algorithm 4 samples 0 (pZaxnk/€) entries in A+N and computes matrices M, NT € Rk
such that with probability at least 99/100,

IA = MN]? < [|A = A¢l|Z + (e + VDA
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Algorithm 4 : Robust PSD Low-Rank Approximation

Input: A Matrix A + N, integer k, € > 0 and ¢max = max; A ;/(A + N); ;

2 2
1. Lett = w, for some constant c. Let g = {q1,42...qn} denote a distribution

over columns of A + N such that g; = %. Construct a column PCP for A + N by
sampling ¢ columns of A + N such that each column is set to % with probability g;.
1
Let C be the resulting n X t matrix that satisfies the guarantee of Theorem 5.7.
2. Let p = {p1,p2...pn} denote a distribution over rows of C such that p; = (T?(ﬁk’)
Construct a row PCP for C by sampling t rows of C such that each row is set to i—’T

with probability p;. Let R be the resulting t X t matrix that satisfies the guarantee of

Theorem 5.10. Sample O(n) entries uniformly at random from A and rescale such that
0% = O(|AlR).

3. Let u = ¢max\/|(A+N)i,i| : |(A+N)i’,i’| For all i € [t], let X; = Zje[e3t/k3] Xi,]' such
that X; ; = (k3/ 63)R12,i" with probability 1/t, for all i € [t]. Here, we query the entry
corresponding toR;  in A+N and truncateit to u. Let T = ¢2,,,n0?/t2. If X; > 7,sample
row R; . with probability 1. For the remaining rows, sample nk/(et) rows uniformly at

random.

4. Run the sampling algorithm from Frieze-Kannan-Vempala [FKV04] to compute a t X k
matrix S such that ||[R — RSST “1% < |IR-Rg “1% + e||R||I%. Consider the regression problem
minycgnxt [|[C — XST||Z. Sketch the problem using the leverage scores of ST, as shown
in Lemma 4.4, to obtain a sampling matrix E with O(X) columns. Compute X¢ =
argminy g ||CE — XSTE||2. Let XcS” = UVT be such that U € R™* has orthonormal
columns.

5. Consider the regression problem minycgix ||A — UX||12:. Sketch the problem as above,
following Lemma 4.4 to obtain a sampling matrix E’ with O(X) rows. Compute Xa =
argminy ||E’A — E'UX||12:.

Output: M = U, NT = X,

We begin with the following simple lemma for approximating the Frobenius norm :

Lemma 5.12. (Approximating Frobenius Norm.) Given as input an n X n matrix A + N, there exists an
algorithm that reads O(p2 1) entries in A and outputs an estimator © such that with probability at least
1- 5,9 = O(Allp).

nE/

Proof. There are multiple ways to see this. Observe, in Theorem 5.10, we show that sampling

2
%ﬁogm entries results in row projection-cost preserving sketch R such that ||R|| [3_ = (1+¢)||A+N]| %
Setting € to be a small constant suffices. m]
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Next, we provide intuition for why uniformly sampling columns of R does not suffice for
obtaining a sketch that spans a good low rank approximation. For simplicity, we assume there is
no noise (1 = 0 and ¢max = 1) and show that our techniques to bound the column norms of R
results in an estimate that is too large. We note that this lemma is not required for proving our
result, and is just present for intuition.

Lemma 5.13. Let 1 = 0. Let R € R be a row projection-cost preserving sketch for C as described in
Theorem 5.10. For all j € [t], with probability at least 1 —1/n°,

n||Al2 n||All?
=0 log(n)max{\/_”t ”F, | ”F}

IR.,;|2 < O 2

n|Al
log(n)max{nc*]nz,—F

where c is a fixed constant.
Proof. Observe, |[R.||? = X,ci R? ., where R? , = Tr(A) C2 with probability ~Z“ for all i/ € [n].
112 i€[t] i,j i, tA/ i P y Tr(A)
Then, E[||R.jll3] = X7, C%]. = ||C. jII3. Next, we compute the variance of ||R. j||3. Var [||R*,]-||2] =
Var R ] < B R} | Then,
’ /]

tE [R;{j] = t;« c < Z %Ai As A,
iren] jii
<2 (A) I 12
= (A) LT
< (Tr gA)) FlIC I [AM-GM]
where we use A2 < A ;A j, which follows from applying Cauchy-Schwarz to (All/* 2, Al/ 2) Simi-

larly, we bound R%]. < Tr(tA). Applying Bernstein’s inequality,

Tr (A
Pr [l”R*,jllz IIC*]IIZ217ma><{||C*]||2 ( )}]

T
nzmax{HC*,j”g,( r(tA)) }
<2exp|-—

|, e TANC, (1)
=] +C.;ll5 + nmax ; ,( ; )
4 ()’
nmax{ [1C. 15, (Z2)
<2exp|-— >
! T A !
o (T4 e

where we use the AM-GM inequality on Tr(tA) IC., j||§ repeatedly. Setting nn = Q(log(n)) completes
the proof. Finally, observe, for any j € [t], ||C*,j||§ = tT ;(]‘:), ||A*,j/||§ for some j’ € [n]. We then use
Tr (A) < Vn||A|lr. O
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It is well-known that to recover a low-rank approximation for R, one can sample rows of R
proportional to row norm estimates, denoted by Y; [FKV04]. As shown in [[VIWW19] the following
two conditions are a relaxation of those required in [FKV04], and suffice to obtain an additive error
low-rank approximation :

1. Foralli € [t], % > IIR; |13
2. Zz‘e[t]*yi < %”R”%

To satisfy the first condition, we need to obtain overestimates for each row. Since it is not immedi-
ately clear how to obtain overestimates for row norms of R, a naive approach would be to bias the
estimate for each row by an upper bound on the row norm. However, by Lemma 5.13, a row norm
could be as large as n ||A||1% /t. Observe, we cannot afford to bias the estimator of each row, V;,
by this amount since X ¢y Y > Vn ||A||1% >\n ||R||1%. Therefore, we would have to sample Vnk/e
rows of R, resulting in us querying Q(nk>/€%) entries in A, even when 1 = 0.

An alternative strategy would be to bias the estimator for each row by n ||R||1%/ t2, as this would
satisfy condition 2 above. We can now hope to detect rows of R that have norm larger than
n||R||Z/t* by sampling €3t /k> entries in each row of R, uniformly at random. Note, this way we
can construct an unbiased estimator for the f% norm of each row. Ideally, we would want to show
a high probability statement for concentration of our row norm estimates around the expectation.
We could then union bound, and obtain concentration for all i simultaneously.

However, this is not possible since it may be the case that a row of R is log(1)-sparse with each
entry being large in magnitude. In this case, uniformly querying the row would not observe any
non-zero with good probability and thus cannot distinguish between such a row and an empty row.
Instead, we settle for a weaker statement, that shows our estimate is accurate with o(1) probability.
All subsequent statements hold for 1 > 0.

Lemma 5.14. (Estimating large row norms.) Let R € R™! be the row PCP output by Step 2 of Algorithm

BR2,
4. Forall'i € [t]let Xi = X je[essjps) Xij such that X j = —z* with probability 1, forall j* € [t]. Then,
.2
forallie[t], Xi= (1% %) IR; . |I5 with probability at least W
Proof. Observe, X; is an unbiased estimator of ||Ri,*||§ :
e3t e3t B, )
E[Xi] = FE [Xi,j] = F Z ERW = ||Ri,*||2

jelt]

Next, we compute the variance of X;.
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3¢ 1
Var [X;] = FVar [/\’Z ]] < —SR?J
jelt]
3 Tr (A + N)?
< Ege (AN (A+N)f‘)
f=n € J\t (A —+ N)i,i(A —+ N)]‘,]' /]
K3 Tr (A + N)?
<Y Lre r(A+N) (A Ay +N? )
£ €3 U\ t2(A+N); (A +N)j;

g K3 R2 Tr (A + N)* 2., N Tr (A + N)* p2,. (A + N); /(A + N);
e £ t2(A+N)ii(A+N)j,
K3 Tr (A + N)* ¢2 ellA|l?
<2, @R | S O IR
jelt]

(5.26)

Here, we use that Nf]. < PZax(A +N)ii(A + N)j j, which follows from our truncation procedure.
Further, using t = QmaxVnk?/€? and Tr (A + N) < vnl||Alr + /77 ||A||r, we can bound

Tr(A +N)? ¢2 ., el|AllZ
<O|——
t2 k
Further, using the same argument as above
(5.27)
e, cllAl2
Xl] S _RZ] = T
Using Equations 5.26 and 5.27 in Bernstein’s inequality,
O?IIR; [l
Pr [|X; - E[Xi]| > 6E [Xi]] <exp|- T MA”
EIIR:Z + =5 IR 13
o [ IR I Tog? 2
o elIRI

where we use that ||A||F ®(||R||F) Setting 1 = % Xi= (1= %) ||Ri,*||§ with probability at least

IIRi .|k log? ()
1 — ex R o v
elIRIZ

t < n such events &;, simultaneously for all i, &; is true with probability at least

. Let &; be the event that X; = (1 %) IR;,.|l3. Then, union bounding over

IIRq.I3klog(n)
lRI

_ IRy, Bk Log(n)
L

1 -
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We now have two major challenges: first, the probability with which the estimators are accurate

2

is too small to even detect all rows with norm larger than ¢z, .,

n||R||Z/#?, and second, there is no
small query certificate for when an estimator is accurate in estimating the row norms. Therefore,
we cannot even identify the rows where we obtain an accurate estimate of their norm.

To address the first issue, we make the crucial observation that while we cannot estimate
the norm of each row accurately, we can hope to sample the row with the same probability as
Frieze-Kannan-Vempala [FKV04]. Recall, their algorithm samples row R;. with probability at
least ||Ri,*||§ / ||R||1%, which matches the probability in Lemma 5.14. Therefore, we can focus on
designing a weaker notion of identifiability, that may potentially include extra rows.

We begin by partitioning rows of R into two sets. Let H = {i | IR I3 > pZannv?/ t2} be the
set of heavy rows and [t] \ H be the remaining rows. Since with probability at least 1 —

IRIIE = ©(IAl7) = ©(?),

1
poly(i)”

[H| = O(t?/ paxit) = O(K* log(n)/€*)

2

2 «n0?/t?. Therefore, even if

our estimator X; is ©( ||Ri,*||§) for all i € H, we include at most O(k*/e*) extra rows in S, which

Observe, every row in H can potentially satisfy the threshold 7 =

is well within our budget. Observe, we can then sample a row with probability 1 whenever the
corresponding estimate is larger than 7. This sampling process ensures that we identify rows in H
with the right probability and also doees not query more than O(¢?2,,,7k/€) entries in A + N. For
all the remaining rows, we know the norm is at most O(¢p2,,,n92/t?). We then modify the analysis
of [FKV04] to show that we can handle both cases separately.

Theorem 5.15. (Existence [FKV04].) Let R be a row projection-cost preserving sketch output by Step 2 of
Algorithm 4. For all i € [t], let X; be estimate for |R; |3 as described in Step 3 of Algorithm 4. Let S be a
subset of s = O(p2,, 1k /et) columns of R sampled according to distribution r = {ry,12,... 7} such that
r; is the probability of sampling the i-th row. Then, with probability at least 99/100, there exists a t X k
matrix U in the column span of S such that

IR - UUTR|? < |IR - R¢|[? + €||R|}2

Proof. We follow the proof strategy of [FKV04] and show how to directly bound the variance in our
setting as opposed to reducing to the two conditions above. Let R = PXQ” = ¥ ,(;; 2¢,(P;.Q; , =
Pi 4
2 celt] O[P[Q?. Recall, Ry = X epq AQgQ?. For ¢ € [t], let Wy = %Zile[s] Y; where Y; = r—}f[Ri,*
with probability r;, for all i € [¢]. Then,
Pi¢
EWA=E[Ys]= ) —“Ri.ri = 00Q; (5.28)
jelt]

1

Therefore, in expectation the span of the rows contain a good low-rank solution. Next, we bound
the variance. Recall, here we consider the rows in H and its complement separately. From Lemma
For all i € H, we know that X; = ®(||Ri,*||§) with probability at least ||Ri,*||§k log(n)/€||R||1%. Since
IRi I3k log (1)
elIRIIZ

for all such i, ||Ri,*||§ > 1, the corresponding r; > , since every time we pass the
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threshold we sample the row. For all i ¢ H, r; > 1/t since there can be at most ¢ such 7, and we
sample each such row with uniform probability. Once we have a lower bound on r; in both cases,
we open up the analysis of the variance bound in [FKV04] and show that our lower bounds sulffice.

1 P2€ o2 1 P2€ P2€
1, VA 1, 1,
E[IWe-o0eQelf] = < | D) == IR 15| = < <| D) —=IRIE+ ) —=IRi.[}
jelt] ! jeH ! ie[t\H !
1 Klog(n)P? |R|]2
S; Z ez + Z tP?,f“Ri,*”%
jeH jelth\H
1 klog(n)P? IR
<=2 -
S € t b
jeH jelt\H
1 (klog(n 2 n
S € t

(5.29)

2 2
Now, we can repeat the argument from [FKV04] and it suffices to set s = (M + k) % = O(¢ma—xm().

€ et
For completeness, we present the rest of the proof here. For all ¢ € [t], let Y, = G%Wg. Let
V = span(Y1,Ya,...,Yr). Let Z1,Z;,...Z; be an orthonormal basis for R' such that V =
span(Zi,Zy, ..., Zy), where k' = dim(V). Let S = R X refi Z(ZZ: be the candidate low-rank
approximation approximation. Then,

IR=-S[Z =" (R-8)Z/|}3

Ce(t]

= > IIRZ3

e[k +1,1]
2
(5.30)
= ) l®-R > Qevp)z
e[k’ +1,t] U'elk] 5
2
<[R-R > Y],
£e[k] :

where the first equality follows from ||Zg||§ = 1, the seconds follows from ZZ:,Z( =0for ¢’ # ¢,

the third follows from (Y, Z,) = 0 for all ¢/ < kand ¢ > k’. Let S = R Y pei Y[/YZ:,. Since
P1,P», ..., P; forms an orthonormal basis
12 12
R-8], < 3 e (R-3)|
[R5, < 3 e (=3[,
Celt] (5.31)

= > lloeQe-Wel3+ Y. o?

te[k] Ce[k+1,t]
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Taking expectations on both sides of equation 5.31, we have

|12
dis
F

<E | lorQr - Well3| + IR - R}
Ce[k] (5.32)

2
K (klog(n) , P

- |— : ) IRJZ+ IR - Ry

Since S is a rank k matrix and Ry is the best rank k approximation to R, ||R — §||§ - IR - Rk||§ isa
non-negative random variable. Thus, using Markov’s inequality and Equation 5.30,

100nk
st

1
< —
100

Pr[IIR—SH%— IR~ Rgll7 > IRIZ

2
Therefore, it suffices to sample s = O ((P%jnk) columns, read all of them and compute a low rank

approximation for R with probability at least %. Observe, the total entries read by this algorithm
is O (2t ) = 0 (Lhatk), o

It remains to show that we can now recover a low-rank approximation for A, in factored form,
from the low-rank approximation for R. Here, we follow the approach of [CMM17],[MW17]
and [BW18], where we set up two regression problems, and use the sketch and solve paradigm
to compute an approximate solution. We use the following Lemma from [BW18] that relates a
good low-rank approximation of an additive error project-cost preserving sketch to a low-rank
approximation of the original matrix. A similar guarantee for relative error appears in [CMM17]
and [MW17].

Lemma 5.16. (Lemma 4.4 in [BW18].) Let C be a column PCP for A satisfying the guarantee of Theorem
5.7. Let Pi. = argminmnk(x)skllC - XC||1% and P, = argminmnk(x)skllA - XA||1%. Then, for any rank k
projection matrix P such that ||C — PC||% <||C- PECH% +(e+ \/ﬁ)”C”%/ with probability at least 99/100,

1A - PA|I; < [|A = PRAIl; + (e + VDI Al;
A similar guarantee holds for a row PCP of A.

Note, while RSST is an approximate rank-k solution for R, it does not have the same dimensions
as A. If we do not consider running time, we could construct a low-rank approximation to A as
follows: since projecting R onto ST is approximately optimal, it follows from Lemma 5.16 that with
probability 99/100,

IC— €SS = [IC ~ G2 (e + VDICIE (5.33)

Let Cx = U'V'T be such that U’ has orthonormal columns. Then, ||C — U’U’TC||1% =||C- Ck||1% and
by Lemma 5.16 it follows that with probability 98/100, |A - U'UTA|Z < ||A - AllZ + (e +yIIAJ12.
However, even approximately computing a column space U’ for C; using an input-sparsity time
algorithm, such as [CW13], could require Q (nt) queries. To get around this issue, we observe that
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an approximate solution for R lies in the row space of ST and therefore, an approximately optimal
solution for C lies in the row space of ST. We then set up the following regression problem:

i C - XST|3 5.34
rarﬂf&r)‘sk” Iz (5.34)

Note, this regression problem is still too large to be solved in sublinear time. Therefore, we
sketch it by sampling columns of C to set up a smaller regression problem. Observe, since S
has orthonormal columns, the leverage scores are simply {’g norms of rows of S. Now, using
Lemma 4.4, approximately solving this regression problem requires sampling Q(k/e) rows of C,
which in turn requires Q(”?k) queries to A + N. Note, the above theorem applied to Equation
5.34 can take O (nk + poly(k, €7!)) time and thus is a lower order term. Since ST has orthonomal
rows, the leverage scores are precomputed. With probability at least 99/100, we can compute

Xc = argmin,||CE - XSTE||1%, where E is a leverage score sketching matrix with O ( %) columns, as

shown in Lemma 4.4, and thus requires O (”?k) queries to A. Then,

IC-XcSTIIF < (1+¢€) min [|C - Xs™ ||z
< (1+e)||C-CSS™|2 (5.35)
= |C - CklIf = (e + yDIICII?

where the last two inequalities follow from equation 5.33. Let XcST = U’V'T be such that U’ has
orthonormal columns. Then, the column space of U’ contains an approximately optimal solution
for A, since ||C — U'V'T||1% = ||C - Ck||1% + e||C||1% and C is a column PCP for A. It follows from
Lemma 5.16 that with probability at least 98/100,

IA - UUTA| < [|A - AxlZ + (e + V)IIAlle (5.36)

Therefore, there exists a good solution for A in the column space of U’. Since we cannot compute
this explicitly, we set up the following regression problem:

min |A - UX]|? (5.37)

Again, we sketch the regression problem above by sampling columns of A and apply Lemma 4.4.
We can then compute X5 = argmin, ||[E’A — E’U’Xll% with probability at least 99/100, where E’ is a

sketching matrix with (é) rows and O (”?k) queries to A. Then,

JA-UXallZ < (1+e) min |A - UX|2

<(1+e)[A-UUTA|2 (5.38)
< |A - AcllF + O(e + VDIIA|F

where the second inequality follows from X being the minimizer and U’" A being some other
matrix, and the last inequality follows from equation 5.36. Recall, U’ is an n X k matrix and the
time taken to solve the regression problem is O (nk + poly(k, €71)).
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Therefore, we observe that U’X, suffices and we output it in factored form by setting M = U’
and N = X}. Union bounding over the probabilistic events, and rescaling €, with probability at
least 9/10, Algorithm 4 outputs M € R™* and NT € R"™* such that the total number of entries
queried in A are 0] (M) This concludes the proof of Theorem 5.11.

Correlation Matrices. We introduce low-rank approximation of correlation Matrices, a spe-
cial case of PSD matrices where the diagonal is all 1s. Correlation matrices are well studied
in numerical linear algebra, statistics and finance since an important statistic of n random vari-

ables Xi,X>,...X, is given by computing the pairwise correlation coefficient, corr(Xi,Xj) =

cov(X;, X;)/ \/war(Xi) -var(X;). A natural matrix representation of correlation coefficients results
in a n X n correlation matrix A such that A; ; = corr(X;, X;).

Definition 5.17. (Correlation Matrices.) A is an n X n correlation matrix if A is PSD and A;; =1,
foralli € [n].

Often, in practice the correlation matrices obtained are close to being PSD, but corrupted by
noise in the form of missing or asynchronous observations, stress testing or aggregation. Here
the goal is to query few entries of the corrupted matrix and recover a rank-k matrix close to the
underlying correlation matrix, assuming that the underlying matrix is also close to low rank to
begin with.

Here we observe that since correlation matrices have all diagonal entries equal to 1, we can
compute Pmax by simply reading the diagonal entries of A + N. However, we can do even better
since we can discard the diagonal entries of A + N. The main insight here is that for correlation
matrices, our algorithm simply uniformly samples columns and rows to construct our row and
column PCPs, since we know what the true diagonals should be. In this case, no matter what the
adversary does to the diagonal, ¢max = 1 and we obtain a 5(71 k/e) query algorithm.

Corollary 5.18. (Robust LRA for Correlation Matrices.) Let k be an integer and 1 > € > n > 0. Given
A + N, where A is a correlation matrix and N is a corruption term such that ||N||1% < 17||A||1% and for all
i €[n] ||Ni,*||§ < c||A,-,*||§ for a fixed constant c, there exists an algorithm that samples o (nk/e) entries
in A + N and with probability at least 99/100, computes a rank k matrix B such that

A~ BIZ < [IA — AklIZ + (e + yIIAIIZ

Note, the sample complexity of this algorithm is optimal, since there is an Q(nk/e) query lower
bound for additive-error low-rank approximation of correlation matrices, even when there is no
corruption (see Corollary 5.20).

Additive-Error PSD Low-Rank Approximation. In the limit where 1 = 0, ¢/4x = 1, and we
obtain an algorithm with query complexity O(1k/e). While this guarantee is already implied by
our algorithm for relative-error low-rank approximation, our additive-error algorithm is simpler
to implement, since the sampling probabilities can be computed exactly by simply reading the
diagonal.
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Corollary 5.19. (Sample-Optimal Additive-Error LRA.) Given a PSD matrix A, rank parameter k, and
€ > 0, there exists an algorithm that samples O(nk[€) entries in A and outputs a rank-k matrix B such that
with probability at least 99/100,

IA = BIZ < IA — Akl + €llAl2

We show a matching lower bound on the query complexity of additive-error low-rank approx-
imation of PSD matrices. Here, we simply observe that the lower bound construction introduced

by [MW17] of ) (”?k) also holds for additive error. As a consequence our algorithm is optimal in
the setting where there is no corruption.

Corollary 5.20. (Correlation Matrix Lower Bound, Theorem 13 [MIW17].) Let A be a PSD matrix, k € Z
and € > 0 be such that "k = o(n?). Any randomized algorithm, A, that with probability at least 2/3,
computes a rank k matrix B such that

A~ BIZ < IA — Akl + €llAl12

must read () (”Tk) entries of A on some input, possibly adaptively, in expectation.

Proof. We observe that in the lower bound construction of [MW17], the matrix A is binary, with all
1s on a the diagonal, and k off-diagonal blocks of all 1s, each of size 4/ 267” X 267” Therefore, A is

a correlation matrix and ||A||1% = (1 + 2e)n. Further, the optimal rank-k cost, ||A — A ||1% =0(n). To
compute an additive-error approximation, any algorithm must caputure €||Al| %_ = €n mass among
the off-diagonal entries of A. Note, the remaining proof is identical to Theorem 13 in [MW17]. O
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