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Abstract

The coronavirus pandemic has rapidly evolved into an unprecedented crisis. The suscepti-

ble-infectious-removed (SIR) model and its variants have been used for modeling the pan-

demic. However, time-independent parameters in the classical models may not capture the

dynamic transmission and removal processes, governed by virus containment strategies

taken at various phases of the epidemic. Moreover, few models account for possible inaccu-

racies of the reported cases. We propose a Poisson model with time-dependent transmis-

sion and removal rates to account for possible random errors in reporting and estimate a

time-dependent disease reproduction number, which may reflect the effectiveness of virus

control strategies. We apply our method to study the pandemic in several severely impacted

countries, and analyze and forecast the evolving spread of the coronavirus. We have devel-

oped an interactive web application to facilitate readers’ use of our method.

1 Introduction

Coronaviruses are enveloped single-stranded positive-sense RNA viruses belonging to a broad

family of coronaviridae and are widely harbored in animals [1–3]. Most of the coronaviruses

only cause mild respiratory infections, but SARS-CoV-2, a newly identified member of the

coronavirus family, initiated the contagious and lethal coronavirus disease 2019 (COVID-19)

in December 2019 [4, 5]. Since the detection of the first case in Wuhan, the COVID-19 pan-

demic has evolved into a global crisis within only four months. As of June 30, 2020, the virus

has infected more than 10 million individuals, caused about 518,000 deaths [6], and altered the

life of billions of people.

The pandemic has been closely monitored by the international society. For example, the

World Health Organization (WHO) and Johns Hopkins University’s Coronavirus Resource

Center [6] have, since the outbreak, reported the daily numbers of infectious and recovered

cases, and deaths for nearly every country. The governmental websites of many counties, such

as Australia, the US, Singapore, also have been tracking these numbers starting from various
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time points. These websites have become valuable resources to help advance the understanding

of spread of the virus. We have access to a time-series data repository on GitHub (https://

github.com/ulklc/covid19-timeseries), which consolidates and updates information obtained

from these data sources. Our data analysis is based on the data obtained from this GitHub data

repository.

Much effort has been devoted by the affected countries to battling the disease. However, the

crisis has not been over, with new infections detected every day. To forecast when the pan-

demic gets controlled and evaluate the effects of virus control measures, it is imperative to

develop appropriate models to describe and understand the change trend of the pandemic [7–

10].

The susceptible-infectious-removed (SIR) model was utilized to explain the rapid rise and

fall of the infected individuals from the epidemics of severe acute respiratory syndrome

(SARS), influenza A virus subtype (H1N1) and middle east respiratory syndrome (MERS)

[11–15]. The key idea is to divide a total population into three compartments: the susceptible,

S, who are healthy individuals capable of contracting the disease; the infectious, I, who have

the disease and are infectious; and the removed, R, who have recovered from the disease and

gained immunity or who have died from the disease [16]. The model assumes a one-way flow

from susceptible to infectious to removed, and is reasonable for infectious diseases, which are

transmitted from human to human, and where recovery confers lasting resistance [17]. SIR

models originated from the Kermack-McKendrick model [18], consisting of three coupled dif-

ferential equations to describe the dynamics of the numbers in the S, I, and R compartments,

which tend to fluctuate over time. For example, the number of infectious individuals increases

drastically at the start of the epidemic, with a surge in susceptible individuals becoming infec-

tious. As the epidemic develops, the number of infectious individuals decreases when more

infectious individuals die or recover than susceptible individuals become infectious. The epi-

demic ends when the infectious compartment ceases to exist [16, 18].

SIR models and the modified versions, such as susceptible-exposed-infectious-recovered

model (SEIR), were applied to analyze the COVID-19 outbreak [19–23]. Many of these models

assume constant transmission and removal rates, which may not hold in reality. For example,

as a result of various virus containment strategies, such as self-quarantine and social distancing

mandates, the transmission and removal rates may vary over time [24].

Recently, a number of researchers [25–27] considered time-dependent SIR models adapted

to the dynamical epidemiological processes evolving over time. However, few considered ran-

dom errors in reporting, such as under-reporting (e.g. asymptomatic cases or virus mutation)

or over-reporting (e.g. false positives of testing), or characterized the uncertainty of

predictions.

Poisson models naturally fit count data [28]. Several works [29–31] used Poisson distribu-

tions to model I and R from frequentist or Bayesian perspectives; however, most of the works

only considered constant transmission and removal rates. How to extend these works to

accommodate time-dependent rates remains elusive.

We propose to adopt a Poisson model to estimate the time-varying transmission and

removal rates, and understand the trends of the pandemic across countries. For example, we

can predict the number of the infectious persons and the number of removed persons at a cer-

tain time for each country, and forecast when the curves of cases become flattened.

An important epidemiological index that characterizes the transmission potential is the

basic reproduction number, R0, defined as the expected number of secondary cases produced

by an infectious case [32–34]. Our model leads to a temporally dynamical R0, which measures

at a given time how many people one infectious person, during the infectious period, will

infect [35]. This may help evaluate the quarantine policies implemented by various authorities.
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A recent work [35] demonstrated that R0 is likely to vary “due to the impact of the performed

intervention strategies and behavioral changes in the population”.

The merits of our work are summarized as follows. First, unlike the deterministic ODE-

based SIR models, our method does not require transmission and removal rates to be known,

but estimates them using the data. Second, we allow these rates to be time-varying. Some time-

varying SIR approaches [27] directly integrate into the model the information on when gov-

ernments enforced, for example, quarantine, social-distancing, compulsory mask-wearing and

city lockdowns. Our method differs by computing a time-varying R0, which gauges the status

of coronavirus containment and assesses the effectiveness of virus control strategies. Third,

our Poisson model accounts for possible random errors in reporting, and quantifies the uncer-

tainty of the predicted numbers of susceptible, infectious and removed. Finally, we apply our

method to analyze the data collected from the aforementioned GitHub time-series data reposi-

tory. We have created an interactive web application (https://younghhk.shinyapps.io/

tvSIRforCOVID19/) to facilitate users’ application of the proposed method.

2 A Poisson model with time-dependent transmission and removal

rates

We introduce a Poisson model with time-varying transmission and removal rates, denoted by

β(t) and γ(t). Consider a population with N individuals, and denote by S(t), I(t), R(t) the true

but unknown numbers of susceptible, infectious and removed, respectively, at time t, and by s
(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N the fractions of these compartments.

2.1 Time-varying transmission, removal rates and reproduction number

The following ordinary differential equations (ODE) describe the change rates of s(t), i(t) and

r(t):

dsðtÞ
dt

¼ �bðtÞsðtÞiðtÞ; ð1Þ

diðtÞ
dt

¼ bðtÞsðtÞiðtÞ � gðtÞiðtÞ; ð2Þ

drðtÞ
dt

¼ gðtÞiðtÞ; ð3Þ

with an initial condition: i(0) = i0 and r(0) = r0, where i0 > 0 in order to let the epidemic

develop [36]. Here, β(t) > 0 is the time-varying transmission rate of an infection at time t,
which is the number of infectious contacts that result in infections per unit time, and γ(t) > 0

is the time-varying removal rate at t, at which infectious subjects are removed from being

infectious due to death or recovery [33]. Moreover, γ−1(t) can be interpreted as the infectious

duration of an infection caught at time t[37].

From (1)–(3), we derive an important quantity, which is the time-dependent reproduction

number

R0ðtÞ ¼
bðtÞ
gðtÞ

:
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To see this, dividing (2) by (3) leads to

R0ðtÞ ¼
1

sðtÞ

(
di
dr

ðtÞ þ 1

)

; ð4Þ

where (di/dr)(t) is the ratio of the change rate of i(t) to that of r(t). Therefore, compared to its

time-independent counterpart, R0ðtÞ is an instantaneous reproduction number and provides

a real-time picture of an outbreak. For example, at the onset of the outbreak and in the absence

of any containment actions, we may see a rapid ramp-up of cases compared to those removed,

leading to a large (di/dr)(t) in (4), and hence a large R0ðtÞ. With the implemented policies for

disease mitigation, we will see a drastically decreasing (di/dr)(t) and, therefore, declining of

R0ðtÞ over time. The turning point is t0 such that R0ðt0Þ ¼ 1; when the outbreak is controlled

with (di/dr)(t0) < 0.

Under the fixed population size assumption, i.e., s(t) + i(t)+ r(t) = 1, we only need to study i
(t) and r(t), and re-express (1)–(3) as

diðtÞ
dt

¼ bðtÞiðtÞf1 � iðtÞ � rðtÞg � gðtÞiðtÞ;

drðtÞ
dt

¼ gðtÞiðtÞ;

ð5Þ

with the same initial condition.

2.2 A Poisson model based on discrete time-varying SIR

As the numbers of cases and removed are reported on a daily basis, t is measured in days, e.g.

t = 1, . . ., T. Replacing derivatives in (5) with finite differences, we can consider a discrete ver-

sion of (5):

iðt þ 1Þ � iðtÞ ¼ bðtÞiðtÞf1 � iðtÞ � rðtÞg � gðtÞiðtÞ;

rðt þ 1Þ � rðtÞ ¼ gðtÞiðtÞ;
ð6Þ

where β(t) and γ(t) are positive functions of t. We set i(0) = i0 and r(0) = r0 with t = 0 being the

starting date.

Model (6) admits a recursive way to compute i(t) and r(t):

iðt þ 1Þ ¼ f1 þ bðtÞ � gðtÞgiðtÞ � bðtÞiðtÞfiðtÞ þ rðtÞg;

rðt þ 1Þ ¼ rðtÞ þ gðtÞiðtÞ
ð7Þ

for t = 0, . . ., T − 1. The first equation of (7) implies that β(t) < γ(t) or R0ðtÞ ¼ bðtÞg�1ðtÞ < 1

leads to that i(t + 1) < i(t) or the number of infectious cases drops, meaning the spread of virus

is controlled; otherwise, the number of infectious cases will keep increasing.

2.3 Estimation and inference

To fit the model and estimate the time-dependent parameters, we can use nonparametric tech-

niques, such as splines [38–43], local polynomial regression [44] and reproducible kernel Hil-

bert space method [45]. In particular, we consider a cubic B-spline approximation [46].

Denote by B(t) = {B1(t),. . .,Bq(t)}T the q cubic B-spline basis functions over [0, T] associated

with the knots 0 = w0 < w1 < . . . < wq−2 < wq−1 = T. For added flexibility, we allow the

PLOS ONE Time-varying SIR based Poisson model for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0236464 July 21, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0236464


number of knots to differ between β(t) and γ(t) and specify

logbðtÞ ¼
Xq1

j¼1

bjBjðtÞ;

log gðtÞ ¼
Xq2

j¼1

gjBjðtÞ:

ð8Þ

When b1 ¼ � � � ¼ bq1
and g1 ¼ � � � ¼ gq2

, the model reduces to a constant SIR model [46]. We

use cross-validation to choose q1 and q2 in our numerical experiments.

Denote by β ¼ ðb1; . . . ; bq1
Þ and γ ¼ ðg1; . . . ; gq2

Þ the unknown parameters, by ZI(t) and

ZR(t) the reported numbers of infectious and removed, respectively, and by zI(t) = ZI(t)/N and

zR(t) = ZR(t)/N, the reported proportions. Also, denote by I(t) and R(t) the true numbers of

infectious and removed, respectively at time t. We propose a Poisson model to link ZI(t) and

ZR(t) to I(t) and R(t) as follows:

ZRðtÞ � PoisfRðtÞg;

ZIðtÞ � PoisfIðtÞg:
ð9Þ

We also assume that, given I(t) and R(t), the observed daily number {ZI(t), ZR(t)} are inde-

pendent across t = 1, . . ., T, meaning the random reporting errors are “white” noise. We note

that (9) is directly based on “true” numbers of infectious cases and removed cases derived

from the discrete SIR model (6). This differs from the Markov process approach, which is

based on the past observations.

With (6), (7) and (8), R(t) and I(t) are the functions of β and γ, since R(t) = N × r(t) and I(t)
= N × i(t). Given the data (ZI(t), ZR(t)), t = 1, . . ., T, we obtain ðβ̂; ĝÞ, the estimates of (β, γ), by

maximizing the following likelihood

Lðβ; γÞ ¼
YT

t¼1

e�RðtÞRðtÞZRðtÞ

ZRðtÞ!
�

YT

t¼1

e�IðtÞIðtÞZI ðtÞ

ZIðtÞ!
;

or, equivalently, maximizing the log likelihood function

‘ðβ; γÞ ¼ N
XT

t¼1

f�rðtÞ þ zRðtÞ log rðtÞ � iðtÞ þ zIðtÞ log iðtÞg þ C; ð10Þ

where C is a constant free of β and γ. See the S1 Appendix for additional details of

optimization.

We then estimate the variance-covariance matrix of ðβ̂; γ̂Þ by inverting the second deriva-

tive of −ℓ(β, γ) evaluated at ðβ̂; γ̂Þ. Finally, for t = 1, . . ., T, we estimate I(t) and R(t) by ÎðtÞ ¼

NîðtÞ and R̂ðtÞ ¼ Nr̂ðtÞ, where îðtÞ and r̂ðtÞ are obtained from (7) with all unknown quantities

replaced by their estimates; estimate β(t) and γ(t) by b̂ðtÞ and ĝðtÞ, obtained by using (8) with

(β, γ) replaced by ðβ̂; γ̂Þ; and estimate R0ðtÞ by R̂0ðtÞ ¼ β̂ðtÞ=γ̂ðtÞ.

Summary of estimation and inference for β(t), γ(t), R0ðtÞ, I(t), R(t)

Estimation: Let N be the size of population of a given country. The date when the first case

was reported is set to be the starting date with t = 1, i0 = ZI(1)/N and r0 = ZR(1)/N. The

observed data are {ZI(t), ZR(t), t = 1, . . ., T}, obtained from the GitHub data repository web-

site mentioned in the introduction. We maximize (10) to obtain β̂ ¼ ðb̂0; b̂1; . . . ; b̂q1
Þ and

γ̂ ¼ ðĝ0; ĝ1; . . . ; ĝq2
Þ. The optimal q1 and q2 are obtained via cross-validation. We denote by
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β̂ ¼ ðb̂0; b̂1; . . . ; b̂q1
Þ and γ̂ ¼ ðĝ0; ĝ1; . . . ; ĝq2

Þ, based on which we calculate

b̂ðtÞ; ĝðtÞ; R̂0ðtÞ; R̂ðtÞ; ÎðtÞ.

Inference: The estimated variance-covariance matrix of ðβ̂; γ̂Þ, denoted by V̂ ðβ̂; γ̂Þ, can be

obtained by inverting the second derivative of −ℓ(β, γ) evaluated at ðβ̂; γ̂Þ. For each t, as

b̂ðtÞ, γ̂ðtÞ, R̂0ðtÞ, R̂ðtÞ and ÎðtÞ are smooth functions of β̂ and γ̂ , we apply the delta method

[47] to estimate their variances and obtain the confidence intervals. As an illustration, we

compute cvarðR̂ðtÞÞ ¼
_̂RðtÞTV̂ ðβ̂; γ̂Þ

_̂RðtÞ and cvarðÎðtÞÞ ¼
_̂IðtÞTV̂ ðβ̂; γ̂Þ

_̂IðtÞ; where
_̂RðtÞ and

_̂IðtÞ are the partial derivative vectors of R̂ðtÞ and ÎðtÞ with respect to ðβ̂; γ̂Þ.

3 Analysis of the COVID-19 pandemic among severely affected

countries

Since the first case of COVID-19 was detected in China, it quickly spread to nearly every part

of the world [6]. COVID-19, conjectured to be more contagious than the previous SARS and

H1N1 [48], has put great strain on healthcare systems worldwide, especially among the

severely affected countries [49]. We apply our method to assess the epidemiological processes

of COVID-19 in some severely impacted countries.

3.1 Data descriptions and robustness of the method towards specifications

of the initial conditions

The country-specific time-series data of confirmed, recovered, and death cases were obtained

from a GitHub data repository website (https://github.com/ulklc/covid19-timeseries). This site

collects information from various sources listed below on a daily basis at GMT 0:00, converts

the data to the CSV format, and conducts data normalization and harmonization if inconsis-

tencies are found. The data sources include

• World Health Organization (WHO): https://www.who.int/

• DXY.cn. Pneumonia 2020: http://3g.dxy.cn/newh5/view/pneumonia.

• BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

• National Health Commission of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.

shtml

• China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

• Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

• Macau Government: https://www.ssm.gov.mo/portal/

• Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0

• US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html

• Government of Canada: https://www.canada.ca/en/public-health/services/diseases/

coronavirus.html

• Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-

update-at-a-glance
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• European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/

en/geographical-distribution-2019-ncov-cases

• Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19

• Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus

• Johns Hopkins CSSE: https://github.com/CSSEGISandData/COVID-19

• WorldoMeter: https://www.worldometers.info/coronavirus/

In particular, the current population size of each country, N, came from the website of

WorldoMeter. Our analyses covered the periods between the date of the first reported corona-

virus case in each nation and June 30, 2020. In the beginning of the outbreak, assessment of i0
and r0 was problematic as infectious but asymptomatic cases tended to be undetected due to

lack of awareness and testing. To investigate how our method depends on the correct specifica-

tion of the initial values r0 and i0, we conducted Monte Carlo simulations. As a comparison,

we also studied the performance of the deterministic SIR model in the same settings. Fig 1

shows that, when the initial value i0 was mis-specified to be 5 times of the truth, the curves of i
(t) and r(t) obtained by the deterministic SIR model (6) were considerably biased. On the

other hand, our proposed model (9), by accounting for the randomness of the observed data,

was robust toward the mis-specification of i0 and r0: the estimates of r(t) and i(t) had negligible

biases even with mis-specified initial values. In an omitted analysis, we mis-specified i0 and r0
to be only twice of the truth, and obtain the similar results.

Our numerical experiments also suggested that using the time series, starting from the date

when both cases and removed were reported, may generate more reasonable estimates.

3.2 Estimation of country-specific transmission, removal rates and

reproduction numbers

Using the cubic B-splines (8), we estimated the time-dependent transmission rate β(t) and

removal rate γ(t), based on which we further estimated R0ðtÞ, I(t) and R(t). To choose the opti-

mal number of knots for each country when implementing the spline approach, we used

5-fold cross-validation by minimizing the combined mean squared error for the estimated

infectious and removed cases.

Fig 2 shows sharp variations in transmission rates and removal rates across different time

periods, indicating the time-varying nature of these rates. The estimated I(t) and R(t) over-

lapped well with the observed number of infectious and removed cases, indicating the reason-

ableness of the method. The pointwise 95% confidence intervals (in yellow) represent the

uncertainty of the estimates, which may be due to error in reporting. Fig 3 presents the esti-

mated time-varying reproduction number, b̂ðtÞĝðtÞ�1
, for several countries. The curves cap-

ture the evolving trends of the epidemic for each country.

In the US, though the first confirmed case was reported on January 20, 2020, lack of imme-

diate actions in the early stage let the epidemic spread widely. As a result, the US had seen soar-

ing infectious cases, and R0ðtÞ reached its peak around mid-March. From mid-March to early

April, the US tightened the virus control policy by suspending foreign travels and closing bor-

ders, and the federal government and most states issued mandatory or advisory stay-home

orders, which seemed to have substantially contained the virus.

The high reproduction numbers with China, Italy, and Sweden at the onset of the pandemic

imply that the spread of the infectious disease was not well controlled in its early phases. With

the extremely stringent mitigation policies such as city lockdown and mandatory mask-wear-

ing implemented in the end of January, China was reported to bring its epidemic under
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control with a quickly dropping R0ðtÞ in February. This indicates that China might have con-

tained the epidemic, with more people removed from infectious status than those who became

infectious.

Sweden is among the few countries that imposed more relaxed measures to control corona-

virus and advocated herd immunity. The Swedish approach has initiated much debate. While

some criticized that this may endanger the general population in a reckless way, some felt this

might terminate the pandemic more effectively in the absence of vaccines [50]. Fig 3 demon-

strates that Sweden has a large reproduction number, which however keeps decreasing. The

“big V” shape of the reproduction number around May 1 might be due to the reporting errors

or lags. Our investigation found that the reported number of infectious cases in that period

suddenly dropped and then quickly rose back, which was unusual.

Fig 1. The impact of mis-specification of i0 and r0. Plots of the relative biases of îðtÞ (upper) and r̂ðtÞ (lower) when îðtÞ and r̂ðtÞ are

derived 1) by using the ODE framework with the mis-specified initials (“Mis-specified”) and 2) by using proposed model with mis-

specified initials (“Proposed”). In the model, the true (β, γ) = (e−1, e−1.95) and (i0, r0) = (10−6, 10−6). These values are roughly equal to

the constant estimates of the real situation. The mis-specified initials are set as (5 × 10−6, 5 × 10−6).

https://doi.org/10.1371/journal.pone.0236464.g001
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Fig 2. Estimated reproduction number R0ðtÞ for selected countries based on the data up to June 30, 2020. The US (left) and China (right) are shown based on the

data up to June 30, 2020. The blue dots and the red dashed curves represent the observed data and the model-based predictions, respectively, with 95% confidence

interval.

https://doi.org/10.1371/journal.pone.0236464.g002
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Around February 18, a surge in South Korea was linked to a massive cluster of more than

5,000 cases [51]. The outbreak was clearly depicted in the time-varying R0ðtÞ curve. Since

then, South Korea appeared to have slowed its epidemic, likely due to expansive testing pro-

grams and extensive efforts to trace and isolate patients and their contacts [52].

Fig 3. Estimated I(t), R(t), β(t), γ(t), and R0ðtÞ. The US (left) and China (right) are shown based on the data up to June 30, 2020. The blue dots and the red dashed

curves represent the observed data and the model-based predictions, respectively, with 95% confidence interval.

https://doi.org/10.1371/journal.pone.0236464.g003
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More broadly, Fig 3 categorizes countries into two groups. One group features the countries

which have contained coronavirus. Countries, such as China and South Korea, took aggressive

actions after the outbreak and presented sharper downward slopes. Some European countries

such as Italy and Spain and Mideastern countries such as Iran, which were hit later than the

East Asian countries, share a similar pattern, though with much flatter slopes. On the other

hand, the US, Brazil, and Sweden are still struggling to contain the virus, with the R0ðtÞ curves

hovering over 1. We also caution that, among the countries whose R0ðtÞ dropped below 1, the

curves of the reproduction numbers are beginning to uptick, possibly due to the resumed

economy activities.

3.3 An interactive web application and R code

We have developed a web application (https://younghhk.shinyapps.io/tvSIRforCOVID19/) to

facilitate users’ application of the proposed method to compute the time-varying reproduction

number, and estimated and predict the daily numbers of active cases and removed cases for

the presented countries and other countries; see Fig 4 for an illustration.

Our code was written in R [53], using the bs function in the splines package for cubic

B-spline approximation, the nlm function in the stats package for nonlinear minimization,

and the jacobian function in the numDeriv package for computation of gradients and

hessian matrices. Graphs were made by using the ggplot2 package. Our code can be found

on the aforementioned shiny website.

Fig 4. An illustration of the developed interactive web application.

https://doi.org/10.1371/journal.pone.0236464.g004
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4 Discussion

The rampaging pandemic of COVID-19 has called for developing proper computational and

statistical tools to understand the trend of the spread of the disease and evaluate the efficacy of

mitigation measures [54–57]. We propose a Poisson model with time-dependent transmission

and removal rates. Our model accommodates possible random errors and estimates a time-

dependent disease reproduction number, R0ðtÞ, which can serve as a metric for timely evaluat-

ing the effects of health policies.

There have been substantial issues, such as biases and lags, in reporting infectious cases,

recovery, and deaths, especially at the early stage of the outbreak. As opposed to the determin-

istic SIR models that heavily rely on accurate reporting of initial infectious and removed cases,

our model is more robust towards mis-specifications of such initial conditions. Applications of

our method to study the epidemics in selected countries illustrate the results of the virus con-

tainment policies implemented in these countries, and may serve as the epidemiological

benchmarks for the future preventive measures.

Several methodological questions need to be addressed. First, we analyzed each country

separately, without considering the traffic flows among these countries. We will develop a joint

model for the global epidemic, which accounts for the geographic locations of and the connec-

tivity among the countries.

Second, incorporating timing of public health interventions such as the shelter-in-place

order into the model might be interesting. However, we opted not to follow this approach as

no such information exists for the majority countries. On the other hand, the impact of the

interventions or the change point can be embedded into our nonparametric time-dependent

estimates.

Third, the validity of the results of statistical models eventually hinges on the data transpar-

ency and accuracy. For example, the results of Chinazzi et al. [58] suggested that in China only

one of four cases were detected and confirmed. Also, asymptomatic cases might have been

undetected in many countries. All of these might have led to underestimation of the actual

number of cases. Moreover, the collected data could be biased toward patients with severe

infection and with insurance, as these patients were more likely to seek care or get tested.

More in-depth research is warranted to address the issue selection bias.

Finally, our present work is within the SIR framework, where removed individuals include

recovery and deaths, who hypothetically are unlikely to infect others. Although this makes the

model simpler and widely adopted, the interpretation of the γ parameter is not straightfor-

ward. Our subsequent work is to develop a susceptible-infectious-recovered-deceased (SIRD)

model, in which the number of deaths and the number of recovered are separately considered.

We will report this elsewhere.

5 Conclusion

Containment of COVID-19 requires the concerted effort of health care workers, health policy

makers as well as citizens. Measures, e.g. self-quarantine, social distancing, and shelter in

place, have been executed at various phases by each country to prevent the community trans-

mission. Timely and effective assessment of these actions constitutes a critical component of

the effort. SIR models have been widely used to model this pandemic. However, constant

transmission and removal rates may not capture the timely influences of these policies.

We propose a time-varying SIR Poisson model to assess the dynamic transmission patterns

of COVID-19. With the virus containment measures taken at various time points, R0 may

vary substantially over time. Our model provides a systematic and daily updatable tool to eval-

uate the immediate outcomes of these actions. It is likely that the pandemic is ending and
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many countries are now shifting gear to reopen the economy, while preparing to battle the sec-

ond wave of virus attack [59, 60]. Our tool may shed light on and aid the implementation of

future containment strategies.
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