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Recently, several studies have pointed out that gravitational-wave detectors are sensitive to ultralight

vector dark matter and can improve the current best constraints given by the equivalence principle tests.

While a gravitational-wave detector is a highly precise measuring tool for the length difference of its arms,

its sensitivity is limited because the displacements of its test mass mirrors caused by vector dark matter are

almost common. In this paper, we point out that the sensitivity is significantly improved if the effect of

finite light-traveling time in the detector’s arms is taken into account. This effect enables advanced LIGO to

improve the constraints on the Uð1ÞB−L gauge coupling by an order of magnitude compared with the

current best constraints. It also makes the sensitivities of the future gravitational-wave detectors

overwhelmingly better than the current ones. The factor by which the constraints are improved due to

the new effect depends on the mass of the vector dark matter, and the maximum improvement factors are

470, 880, 1600, 180, and 1400 for advanced LIGO, Einstein Telescope, Cosmic Explorer, DECIGO, and

LISA, respectively. Including the new effect, we update the constraints given by the first observing run of

advanced LIGO and improve the constraints on the Uð1ÞB gauge coupling by an order of magnitude

compared with the current best constraints.
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I. INTRODUCTION

While the existence of dark mater has been firmly

established by the observations, its identity is still

unknown. Weakly interacting massive particles are prom-

ising candidates of dark matter, and most of the searches

have focused on the electroweak mass scale [1–4].

However, despite the extensive efforts, they have not been

detected, which motivates us to search for dark matter

candidates in different mass range.

Among them is an ultralight boson, whose mass can be

down to ∼10−22 eV [5]. Because of the large occupation

number, it behaves as classical waves in our Galaxy, whose

angular frequency is almost equal to its mass. A lot of

searches have been proposed and conducted to detect this

type of dark matter [6–30]. Some of them search for the

oscillation of fundamental constants such as the fine-

structure constant, which may be caused by its coupling

to the Standard Model particles [10–12,17,18]. The metric

perturbations generated by it can be detected in the pulsar

timing array experiments [6–9]. If it has the axion-type

coupling, it differentiates the phase velocities of the circu-

larly polarized photons and may be detected with an optical

cavity [21–25] or astronomical observations [31–33].

Recently, it was pointed out that gravitational-wave

detectors are sensitive to ultralight vector dark matter

arising as a gauge boson of Uð1ÞB or Uð1ÞB−L gauge

symmetry [27], where B and L are the baryon and lepton

numbers, respectively. The vector dark matter oscillates the

test mass mirrors of the detectors though its coupling with

baryons or leptons. Since the gravitational-wave detectors

are highly precise measuring tools for the length difference

of their arms, they are sensitive to the tiny oscillations,

and they can be used to probe the parameter space which

has not been excluded by the equivalence principle (EP)

tests [34–37]. The actual search was also conducted with

the data from the first observing run (O1) of the LIGO

detectors [38], and the constraints better than that from

the Eöt-Wash torsion pendulum experiment [34,35] were

obtained for the Uð1ÞB case [28].

What limits the sensitivity of gravitational-wave detec-

tors is that the displacements of the test mass mirrors

caused by the vector dark matter are almost common. It

makes the length between the mirrors almost constant over
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time, and the amplitude of the signal due to the length

change is suppressed by a factor of the velocity of dark

matter, which is of the order of 10−3. In this paper, we point

out that the effect of the finite light-traveling time is crucial

in this case. Even if the displacements are completely

common, the optical path length of the laser light changes

as the test mass mirrors oscillate while the light is traveling

in the arm. While it is suppressed by the product of

oscillation frequency and the arm length, it can be more

important than the contribution from the length change. It

becomes more pronounced for the future gravitational-

wave detectors, which have longer arms. This effect was

taken into account in the previous studies of scalar dark

matter [15,20] but never done before for vector dark matter.

This paper is organized as follows. In Sec. II we

introduce the model we consider and the force exerted

by the vector dark matter. In Sec. III we calculate the signal

produced by the vector dark matter in a gravitational-wave

detector taking into account the finite light-traveling time.

In Sec. IV we estimate the future constraints and show

how much they are improved due to the new contribution.

In Sec. V we update the current constraints from the

O1 data of the advanced LIGO detectors. Finally, we

summarize the results we have obtained in Sec. VI.

Throughout this paper, we apply the natural unit system,

ℏ ¼ c ¼ ϵ0 ¼ 1.

II. VECTOR DARK MATTER

We consider a massive vector field Aμ, which couples to

B or B − L current J
μ
D (D ¼ B or B − L) as dark matter.

The Lagrangian is given by

L ¼ −
1

4
FμνFμν þ

1

2
m2

AA
μAμ − ϵDeJ

μ
DAμ; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ, mA is the mass of the vector

field, and ϵD is the coupling constant normalized to the

electromagnetic one e.
The spatial components of the vector dark matter in our

Galaxy can be modeled as [39]

A ¼
X

i

Aiei cosðωit − ki · xþ ϕiÞ; ð2Þ

where i is an index to identify each dark matter particle and

we sum over their vector potentials. Ai is the amplitude, ei
is the polarization unit vector, ωi is the angular frequency,

ki is the wave number, and ϕi is the constant phase of the

ith particle. The equation of motion gives the following

dispersion relation:

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2i þm2
A

q

: ð3Þ

The norms of the wave numbers in our Galaxy are of the

order of mAvDM ∼ 10−3mA, where vDM is the dark matter

velocity dispersion in our Galaxy. Substituting it into (3)

leads to

ωi −mA ∼mAv
2
DM ∼ 10−6mA: ð4Þ

This means the vector field, and hence, the signal we

observe, can be treated as monochromatic waves with

frequency of mA=2π over the coherence time, which is

given by

τ≡
2π

mAv
2
DM

∼
107

mA

; ð5Þ

and the coherence is lost for a longer time interval.

The force exerted by the vector dark matter on a test mass

mirror located at x0 is given by

F ≃ −ϵDeQD
_A

≃mAϵDeQD

X

i

Aiei sinðωit − ki · x0 þ ϕiÞ; ð6Þ

where QD is the B or B − L charge of the test mass mirror.

The test mass mirror oscillates around x0 due to the force,

and its position is given by x ¼ x0 þ δxðt; x0Þ, where

δxðt; x0Þ ≃ −
ϵDe

mA

QD

M

X

i

Aiei sinðωit − ki · x0 þ ϕiÞ: ð7Þ

QD=M is approximately given by

QD

M
≃

� 1
mn
; ðD ¼ BÞ;

0.5
mn

; ðD ¼ B − LÞ;
ð8Þ

where mn is the neutron mass.

III. SIGNAL IN A GRAVITATIONAL-WAVE

DETECTOR

The signal in a gravitational-wave detector is given by

hðtÞ ¼ φðt; nÞ − φðt;mÞ
4πνL

; ð9Þ

where ν is the laser frequency of the detector, L is the arm

length, and n and m are unit vectors along the two arms of

the interferometer. φðt; nÞ is the phase of laser light

returning back from the arm after the round-trip.

The phase of laser light returning back at time t is the
same as that of laser light entering the arm at time t − Tr,

where Tr is the round-trip time. Thus, we have

φðt; nÞ ¼ 2πνðt − TrÞ þ ϕ0; ð10Þ

where ϕ0 is a constant phase. The round-trip time is

given by
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Tr ¼ −xiðtÞ þ 2xeðt − LÞ − xiðt − 2LÞ; ð11Þ

where xiðtÞ and xeðtÞ represent the positions of the input

and end test mass mirrors of the arm. With the coordinate

system where the input test mass mirror is at x ¼ 0 in the

absence of vector dark matter, xiðtÞ and xeðtÞ are given by

xiðtÞ ¼ n · δxðt; 0Þ; xeðtÞ ¼ Lþ n · δxðt; LnÞ: ð12Þ

Substituting (11) and (12) into (10), we obtain

φðt; nÞ ¼ −2πνðδL1 þ δL2Þ þ 2πνðt − 2LÞ þ ϕ0; ð13Þ

where

δL1 ≡ n · ð−δxðt; 0Þ þ 2δxðt − L; 0Þ − δxðt − 2L; 0ÞÞ

¼ −
4ϵDe

mA

QD

M
sin2

�

mAL

2

�

×
X

i

Aiðn · eiÞ sin ðωiðt − LÞ þ ϕiÞ; ð14Þ

δL2 ≡ 2n · ðδxðt − L; LnÞ − δxðt − L; 0ÞÞ

≃
2ϵDeL

mA

QD

M

×
X

i

Aiðn · eiÞðn · kiÞ cos ðωiðt − LÞ þ ϕiÞ: ð15Þ

To derive the approximate expression of δL2, we assume

Ljkj ≪ 1, which is valid for the frequency range and the

arm length of the gravitational-wave detectors we consider.

As can be seen in the definition of δL2, it is from the

deviation of the arm length from L, and it has been taken

into account in the previous studies. Compared to the

gravitational waves with the same frequency, the wave-

length of the vector dark matter is longer by a factor of

1=vDM ∼ 103. This makes force acting on the two test mass

mirrors at both ends of the arm almost the same, and δL2 is

suppressed by a factor of vDM ∼ 10−3 through ki.

On the other hand, δL1 is the new contribution we point

out, which arises due to the finite light-traveling time in the

arm. Even if the displacements are completely common and

the arm length is constant, the optical path length can

oscillate, as the test mass mirrors oscillate while light is

traveling. This contribution is significant only when the

oscillation frequency is comparable to the inverse of

the round-trip time, and it is suppressed by ∼mAL.
Nevertheless, δL1 is important in this case as δL2 is

suppressed more significantly. For the advanced LIGO

detector, whose arm length is 4 km and frequency band is

10–1000 Hz, the ratio between δL1 and δL2 is given by

δL1

δL2

∼
mAL

vDM
∼ 8

�

mA

2π × 100 Hz

�

; ð16Þ

which indicates δL1 is more significant in most of the

frequency range. The ratio becomes larger for the future

detectors, whose arms are longer, and the improvements due

to δL1 are more pronounced as shown in the next section.

φðt;mÞ can be calculated just by replacing n by m in

φðt; nÞ, and the signal is given by

hðtÞ ¼ h1ðtÞ þ h2ðtÞ; ð17Þ

where

h1ðtÞ ¼
2ϵDe

mAL

QD

M
sin2

�

mAL

2

�

×
X

i

Aiðn · ei −m · eiÞ sin ðωiðt−LÞ þϕiÞ; ð18Þ

h2ðtÞ ¼ −
ϵDe

mA

QD

M

X

i

Aiððn · eiÞðn · kiÞ

− ðm · eiÞðm · kiÞÞ cos ðωiðt − LÞ þ ϕiÞ: ð19Þ

h1 and h2 come from δL1 and δL2, respectively, and h1 is
the new contribution to the signal. Most of the detectors we

consider form Fabry-Perot cavities, which amplify the

signal. However, the amplification factors are taken into

account in the sensitivity curves, and we do not need to

consider them in calculating the signal.

IV. FUTURE PROSPECTS

We estimate the sensitivities achieved by the future

gravitational-wave experiments, taking into account the

new contribution h1. Here we consider advanced LIGO

(aLIGO), Einstein telescope (ET) [40], Cosmic Explorer

(CE) [41], DECIGO [42], and LISA [43] as representative

gravitational-wave detectors.

The signal keeps its coherence only for the finite time of

τ. One of the detection methods suitable for this type of

signal is the semicoherent method [20,39], where all data

are split into segments whose lengths are ∼τ and, the

squares of the Fourier components calculated with the

segments are summed up incoherently. The detection

threshold of the signal’s amplitude with this detection

method can be estimated with

hh2i ¼ SðmA

2π
Þ

Teff

: ð20Þ

While the previous study [27] considered a different

detection method, which correlates data from multiple

detectors, the difference of the threshold amplitude is

within an Oð1Þ factor [20].
SðfÞ is the one-sided power spectral density (PSD) of

noise in the hðtÞ channel. The PSDs for the representative
detectors are shown in Fig. 1. Teff is the effective obser-

vation time given by
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Teff ¼
�

Tobs; ðTobs < τÞ;
ffiffiffiffiffiffiffiffiffiffi

τTobs

p
; ðTobs ≥ τÞ;

ð21Þ

where Tobs is the observational time. hh2i is h2ðtÞ averaged
over time. Averaging over random polarization and propa-

gation directions, we can estimate it as follows:

hh2i ¼ hh21i þ hh22i; ð22Þ

hh21i ¼
8ϵ2De

2ρDM

3m4
AL

2

Q2
D

M2
sin4

�

mAL

2

�

ð1 − n ·mÞ; ð23Þ

hh22i ¼
2ϵ2De

2v2DMρDM

9m2
A

Q2
D

M2
ð1 − ðn ·mÞ2Þ: ð24Þ

The values of the arm length L for the representative

detectors are listed in Table I. n ·m ¼ 0 for aLIGO and CE,

and n ·m ¼ 1=2 for ET, DECIGO, and LISA.

The future constraints on jϵDj estimated with (20) are

shown in Fig. 2. Here, we assume the observation time of

two years and apply vDM ¼ 230 km s−1, which is taken

from [47] and applied in [27]. For comparison, the

constraints without the contribution from h1 are shown

as dashed lines. The figure shows that the inclusion of h1
significantly improves the constraints. The factor by which

the constraints are improved depends on the mass, and the

maximum improvement factors are 470, 880, 1600, 180,

and 1400 for aLIGO, ET, CE, DECIGO, and LISA,

respectively. The improvements are more significant for

ET and CE compared to aLIGO because they have longer

arms. The relatively significant improvement for LISA is

due to its long arm length. The contribution from h1 is

canceled at mA ≃ 5 × 10−16 eV for LISA, where the fre-

quency of the signal is equal to the inverse of the one-way-

trip time of the light.

While the constraints without the contribution from h1
should correspond to those calculated in [27], our con-

straints of LISA are significantly better than their 2σ

constraints. After the error of a factor of 2 in their

constraints on ϵD, which was pointed out in [28], is

corrected, our constraints are better than their constraints

by an order of magnitude at mA ≳ 10−16 eV. The reasons

for the difference are as follows: (1) Our order-of-estimate

constraints correspond to the 1σ constraints in their

analysis. (2) They considered correlating the data from

FIG. 1. The one-sided power spectra of noise in the hðtÞ
channel given by (9). Those for aLIGO, ET, CE, and DECIGO

are taken from [41,44–46], respectively. The noise spectrum for

LISA is calculated with the target acceleration and displacement

noise level given in [43].

TABLE I. The arm length of the gravitational-wave detectors.

All values are in units of m.

aLIGO ET CE DECIGO LISA

4 × 103 1 × 104 4 × 104 1 × 106 2.5 × 109

FIG. 2. The constraints on the coupling constant given by the

future gravitational-wave detectors. We assume the observation

time of two years. For comparison, the constraints given by the

Eöt-Wash experiment [34,35] and the MICROSCOPE experi-

ment [36,37,48], which are the tests of the equivalence principle,

are also shown. The shaded region has already been excluded.

The dashed lines represent the constraints if the effects of the

finite light-traveling time were not present. The upper figure

shows the constraints for Uð1ÞB and the lower one for Uð1ÞB−L.
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multiple channels, and the signal-to-noise ratio is degraded

by a factor of the overlap reduction function [49]. (3) The

PSD they used is for gravitational-wave strain and increases

in proportion to f2 at high frequency due to the cancellation

of the signal at f ≳ ð2LÞ−1 [50]. Such signal cancellation

does not occur for h2 of dark matter signal as its wavelength

is much longer than that of gravitational waves with the

same frequency. (4) They averaged the amplitude of the

signal over the directions of the vector field and its

momentum while they used the PSD averaged over the

polarization angle and propagation direction of gravita-

tional waves, which resulted in double counting of the

geometric factor.

The current best constraints given by the EP tests are also

shown as blue and orange lines in Fig. 2. The figure shows

that the h1 contribution makes the future constraints better

than the current best constraints by orders of magnitude for

both the Uð1ÞB and Uð1ÞB−L cases. For reference, the

constraints are improved by factors of 23000, 2100, and

27000 at mA ¼ 10−16, 10−14, and 10−12 eV, respectively,

for the Uð1ÞB case, and 1900, 180, and 2200, respectively,

for the Uð1ÞB−L case. Notably, the inclusion of h1 enables
aLIGO to improve the constraints on the Uð1ÞB−L gauge

coupling by an order of magnitude.

V. ADVANCED LIGO O1

We update the constraints given by the O1 data of aLIGO

by incorporating h1. The inclusion of h1 improves the

constraints by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhh21i þ hh22iÞ=hh22i
p

, and the

improved constraints are shown as red lines in Fig. 3.

The previously calculated constraints are also shown as

green lines. As seen in the figure, the inclusion of h1 makes

the O1 constraints on the Uð1ÞB gauge coupling better than

the current best constraints at mA ≳ 2 × 10−13 eV and

better by an order of magnitude around mA ¼ 10−12 eV.

The improved O1 constraints on the Uð1ÞB−L gauge

coupling are comparable to the current best constraints

at 7 × 10−13 eV≲mA ≲ 5 × 10−12 eV.

VI. CONCLUSION

In this paper, we have pointed out that the effect of the

finite light-traveling time is crucial for calculating the

signal produced by ultralight vector dark matter in a

gravitational-wave detector. By taking it into account

properly, we have calculated the new contribution to the

signal. Then we have estimated the future constraints on the

gauge coupling given by gravitational-wave detectors incor-

porating the new contribution. As a result, we have found

that the new contribution significantly improves the future

constraints givenby gravitational-wavedetectors. The factor

by which the constraints are improved depends on the mass

of the vector dark matter, and the maximum improvement

factors are 470, 880, 1600, 180, and 1400 for aLIGO, ET,

CE, DECIGO, and LISA, respectively. These improvements

make the future constraints better than the current best

constraints from the EP tests by orders of magnitude.

Notably, it enables aLIGO to improve the constraints on

the Uð1ÞB−L gauge coupling by an order of magnitude.

Finally, we have updated the constraints given by the

aLIGO O1 data incorporating the new contribution. The

updated constraints on the Uð1ÞB gauge coupling are better

than the current best constraints by an order of magnitude

around mA ¼ 10−12 eV.
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FIG. 3. The constraints given by the LIGO O1, which are

updated by the inclusion of the effect from the finite light-

traveling time, are shown in red. The green lines represent the

constraints previously calculated without the effect. The orange

and blue lines represent the constraints from the equivalence

principle tests. The upper figure is for the Uð1ÞB case and the

lower one is for the Uð1ÞB−L case.
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