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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM USING
DELAUNAY TRIANGULATION\ast 
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Abstract. We consider the problem of minimizing the variance of a distribution supported
on a finite set of points \Omega in Rn given the expected value of the distribution. This produces the
distribution with the least uncertainty in X, in the l2 sense, given the support and the mean. We
show that, for general norms, the support of the solution must be small in the sense that it does
not contain any points from \Omega in the interior of its convex hull. We then show that, under an
appropriate choice of norm on the covariance, the solution is given by evaluating the tent functions
associated with a Delaunay triangulation of the support at the mean. Moreover, when the Delaunay
triangulation is not unique the space of solutions is the space of convex combinations of solutions
associated with each possible triangulation. Solutions to special cases are presented, along with a
special solution on the lattice which simultaneously minimizes three natural choices of norm.
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1. Introduction. We consider solutions to the following constrained optimiza-
tion problem.

The minimum variance problem (MVP). Let \Omega be a finite set of points in Rn. Let
conv(\Omega ) be the space of all convex combinations of the vertices of \Omega . Let \=x be a point
in conv(\Omega ). Let \rho (V ) be a norm on symmetric positive definite matrices. Find the
space of probability distributions p with support supp(p) = S \subseteq \Omega and mean Ep[X] = \=x
which minimize \rho (Vp[X]) where Vp[X] = Ep[(X  - \=x)(X  - \=x)T ] is the covariance of
the distribution.

The MVP is motivated by moment closure problems for discrete space stochastic
processes such as chemical reaction networks. In a moment closure approximation
the time evolution of a probability distribution is approximated by the time evolution
of its low order moments. The dynamics of the low order moments are typically
coupled to higher order moments, so they usually cannot be simulated exactly without
simulating all moments. In a moment closure approximation the higher moments are
approximated as functions of the lower order moments, thereby producing a finite
set of coupled evolution equations for the lower order moments. These equations can
be used to simulate the dynamics of the low order moments. Sample applications of
moment closure to chemical reaction networks can be found in [21], [26], [33], [40], and
a review is provided in [19]. Moment closure can be used to create fast approximate
simulation algorithms for systems of chemical reactions [40]. These algorithms are
important since many essential biological processes that occur at the cellular scale are
accurately modeled using stochastic chemical reaction networks [12], [29], [30], [33].
Reaction networks are usually studied using approximate Monte Carlo simulation
since both analysis and exact simulation are often intractable. Moment closure eases
the computational burden by estimating only the relevant low order moments.
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2511

A fundamental problem in moment closure is to understand the range of admissi-
ble higher order moments, given the lower order moments. If the assumed moments are
too large or too small given the geometry of the reaction network, then approximate
simulation algorithms based on those assumptions can fail. A motivating example,
based on the algorithms presented in [29], [30], and [40], is provided in Appendix A.
In the example, fatal errors arise from underestimation of the variance.

The goal of the MVP is to find a distribution with minimal covariance given the
mean. This MVP is distinct from other well studied minimum variance methods (cf.
[2] and [15]).

In this paper we prove the following. The MVP is a convex optimization problem
for all choices of \rho , solutions exist for all continuous \rho , and the covariance of the solu-
tions is unique if \rho obeys the strict triangle inequality (see Theorem 2.1). Examples
of norms considered are the trace \rho (V ) = trace(V ), induced two norm | | V | | 2, and
Frobenius norm | | V | | F . Under reasonable assumptions on \rho the supports of solutions
to the MVP are always small in the sense that they do not contain any point from
\Omega in the interior of their convex hull (see Theorem 2.2). For \rho (V ) = trace(V ), we
show that the MVP is a linear programming problem and the solution to the MVP is
given by evaluating piecewise linear basis functions associated with a Delaunay trian-
gulation of \Omega (see Theorem 2.3). When this triangulation is not unique the space of
solutions to the MVP is the space of convex combinations of solutions on each possible
triangulation. In section 3 we consider a series of special cases. These are chosen to
illustrate the general solution and its limitations when applied to highly symmetric
\Omega as may arise from chemical reaction networks. An alternative representation of
the solution space on integer lattices is proposed in Lemma 3.1 and is applied to find
a special solution which simultaneously minimizes all of the singular values of the
covariance (3.5).

2. Results. The MVP is a constrained optimization problem with both inequal-
ity and equality constraints. Let p(x) denote the probability X = x for any x \in \Omega .
Then the constraints are as follows.

1. Nonnegativity: p(x) \geq 0.
2. Normalization:

\sum 
x\in \Omega p(x) = 1.

3. Mean:
\sum 

x\in \Omega xip(x) = \=xi for any i \in [1, 2, . . . , n].
The cost function to minimize is

(2.1) f(p) = \rho (Vp[X]).

Let \Omega p(\=x) denote the domain defined by the three constraints. Note that \Omega p(\=x)
depends on the position of the mean, and the boundaries of \Omega p(\=x) encode the supports
of possible solutions. For general \=x all of these supports include at least n+1 vertices.
If \=x = x \in \Omega , then \Omega p(\=x) will include the delta distribution at x. If \=x lies in the convex
combination of m < n + 1 points, then \Omega p(x) will include a distribution supported
on those points. Here we focus on solutions to the general case since those solutions
extend to the special cases.

The domain \Omega p(\=x) is the intersection of a unit hypercube (nonnegativity), which
is a polytope, with an affine subspace (normalization and mean). The intersection
of a polytope with a affine subspace is always a polytope [36], so the domain is a
polytope. Since \Omega p(\=x) is a polytope, the MVP can be recast geometrically.

The MVP (geometric). Let \Omega be a finite set of points in Rn with a point \=x \in 
conv(\Omega ). Let \Omega p(\=x) be the set of all coefficients of convex combinations of the vertices
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2512 ALEXANDER STRANG

of \Omega that add up to \=x. Find the set of coefficients p which minimize f(p) over the
polytope \Omega p(\=x).

Theorem 2.1 (existence, uniqueness, and convexity). The MVP is convex for

all norms \rho . If \rho (V ) is a continuous function from Rn2 \rightarrow R, then there always exist
solutions to the MVP. If \rho (V ) is continuous and satisfies the strict triangle inequality,
\rho (V +W ) < \rho (V ) + \rho (W ) for all W not proportional to V , then all solutions to the
MVP have the same covariance.

Proof. All \rho are convex in V since all norms obey the triangle inequality. Since
the mean of the distribution is fixed, the covariance is linear in the probability at each
vertex of \Omega . Then, for all choices of \rho , the cost function is the composition of a linear
function of the probabilities, Vp[X], with a convex function. It follows that the cost
function f(p) is convex. The domain defined by the constraints is bounded, closed,
and convex. Therefore the MVP is always a convex optimization problem.

The covariance is linear in the probabilities, so it is a continuous function of
the probabilities. The composition of continuous functions is continuous, so the cost
function is continuous in the distribution if \rho is continuous. By the extreme value
theorem, any continuous function on a bounded closed domain achieves a minimum
on that domain; therefore, a solution to the MVP always exists.

Suppose that \rho obeys the strict triangle inequality and there are two solutions to
the MVP with covariances V and W that are not mutually proportional. Consider
a convex combination of these solutions. The covariance of the combination is the
convex combination of the covariances since the distributions share the same mean.
Then, by the strict triangle inequality, \rho (tV + (1  - t)W ) < | t| \rho (V ) + | 1  - t| \rho (W ).
But \rho (V ) = \rho (W ) since V and W are covariances corresponding to global minima,
so \rho (tV + (1  - t)W ) < \rho (V ) for t \in (0, 1). This contradicts the claim that V and
W minimize \rho . It follows that all solutions to the MVP must share proportional
covariances. Now suppose that W = \lambda V for \lambda > 1. Then \rho (W ) = | \lambda | \rho (V ) > \rho (V )
so W cannot be the covariance of a solution to the MVP. Thus, if \rho obeys the strict
triangle inequality, the covariances of all solutions to the MVP are identical.

The solution to a constrained optimization problem must satisfy the Karush--
Kuhn--Tucker (KKT) conditions. The KKT conditions generalize the method of
Lagrange multipliers to constrained optimization problems with both equality and
inequality constraints [18], [20]. The KKT conditions are sufficient for optimality in
this case since the optimization problem is convex with affine equality constriants.

Assuming the norm \rho is differentiable the KKT conditions are as follows.
1. Primal feasibility: The probability distribution p(x) has mean \=x and is sup-

ported on \Omega .
2. Stationarity: For all x \in \Omega ,

(2.2)
\sum 
i,j

(x - \=x)i\partial vij
\rho (Vp[X])(x - \=x)j + \lambda Tx+ \lambda 0 = \mu (x),

where \partial vij
\rho (Vp[X]) denotes the partial derivative of the norm \rho with respect

to the ij entry of Vp[X], \lambda is an n \times 1 vector, \lambda 0 is a scalar, and \mu (x) is a
scalar valued function defined on \Omega .

3. Dual feasibility: \mu (x) \geq 0 for all x \in \Omega .
4. Complementary slackness: For all x \in \Omega ,

(2.3) \mu (x)p(x) = 0.
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2513

These rules establish a set of conditions on the support S of any distribution p
which solves the MVP. In particular, under some conditions on the norm \rho , it can be
shown that S is not the support of the solution if there is any point from \Omega inside
conv(S). This restricts the support of solutions to the MVP to small subsets of \Omega .

Theorem 2.2 (general requirements on the support). Assume that \rho is differ-
entiable. Let A(p) be the matrix with entries aij = \partial vij

\rho (Vp[X]). If A(p) is positive
semidefinite for all p and S = supp(p) is the support of a solution to the MVP, then
(i) \=x \in conv(S), (ii) all points in S lie on the boundary of some ellipsoid, and (iii) if
x \in \Omega but x /\in S, then x /\in conv(S).

Proof. Complementary slackness requires that \mu (x)p(x) = 0 for all x \in \Omega . If
x \in S, then, by definition, p(x) \not = 0, so \mu (x) = 0. Therefore, for all x \in S the
left-hand side of the stationarity requirement equals zero. For all x not in S dual
feasibility requires \mu (x) \geq 0, so the left-hand side of the stationarity requirement is
nonnegative. Therefore, the KKT conditions reduce to

(2.4)
(x - \=x)TA(p)(x - \=x) + \lambda Tx+ \lambda 0 = 0 for all x \in S,

(x - \=x)TA(p)(x - \=x) + \lambda Tx+ \lambda 0 \geq 0 for all x /\in S,

where A(p) is the sensitivity matrix aij(p) = \partial vij\rho (Vp). This matrix is the sensitivity
of the norm to each entry of the covariance.

Suppose S contains m points. Then, for a given p, the first line of (2.4) is a
system of m linear equations in n + 1 unknowns, \lambda 0, \lambda 1, . . . \lambda n. Suppose that \lambda 0, \lambda 
is a solution to this system of equations. Let Qp,\lambda ,\lambda 0

(x) be the quadratic function
(x  - \=x)TA(p)(x  - \=x) + \lambda Tx + \lambda 0. Then stationarity requires that all points in the
support S lie on the level surface where Qp,\lambda ,\lambda 0(x) = 0, and that, for all other points
x \in \Omega , Qp,\lambda 0,\lambda (x) \geq 0.

If A(p) is positive definite for all p, then the isosurfaces ofQ are ellipsoids. Then all
the points x \in S must lie on some ellipsoid, and all of the points x \in \Omega not in S must
lie outside this ellipsoid. Since, for a given S, there may be multiple distributions
p with mean \=x and multiple solutions \lambda , \lambda 0 given p, there may be more than one
quadratic function and associated ellipsoid. Note that A(p) fixes the orientation and
eccentricity of the ellipsoid, while \lambda fixes its center and \lambda 0 its scale.

Let E denote the union of an ellipsoid and its interior. The union of an ellipsoid
with its interior is always convex, so if all the points in S lie on the surface of E,
then conv(S) \subset E. Thus, if x \in \Omega and x \in conv(S), then x is necessarily inside of
any ellipsoid passing through every point of S. Therefore, S cannot be the support if
there is any x \in \Omega that is not in S but is in conv(S).

More generally, if A(p) is positive semidefinite for all p, then the quadratic function
Qp,\lambda ,\lambda 0

(x) is convex. Then any level surface Qp,\lambda ,\lambda 0
(x) = c bounds a convex region

where Qp,\lambda ,\lambda 0
(x) \leq c. Let E be the region such that Qp,\lambda ,\lambda 0

(x) \leq 0. Then, since E is
convex, conv(S) \subset E for any possible E, so the conclusion follows as in the positive
definite case.

A variety of reasonable choices of the norm \rho have A(p) which is necessarily
positive semidefinite. Three important examples are as follows.

1. \rho (V ) = trace(V ), which is the total variance, E
\bigl[ 
| | X  - \=x| | 2

\bigr] 
,

2. \rho (V ) = | | V | | 2 = \sigma 1(V ), which is the variance in the distribution when pro-
jected onto the direction which maximizes the variance,

3. \rho (V ) = | | V | | F =
\sqrt{} \sum 

i,j | vij | 2, which is the Frobenius norm of the covariance.
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2514 ALEXANDER STRANG

Note that the two norm is only differentiable if the largest singular value of V is not

a repeated singular value [24]. Respectively, these norms set A(p) = I, A(p) = V(1)
p

where V(1)
p is the closest rank one approximation to Vp[X], and A(p) = Vp (see

Appendix B). All of these norms are natural choices since they are invariant under
unitary transformations, so they do not depend on the coordinate system used. All
are continuous, so all admit solutions, and the Frobenius norm satisfies the strict
triangle inequality, so it produces solutions with a unique minimal covariance.

The sensitivity matrix A(p) depends on p in all but the first case. This is because
the total variance is linear in the entries of V while all the other norms are nonlinear.
Using the total variance is natural because it corresponds to the expected value of
| | X  - \=x| | 2. The fact that A(p) does not depend on p when minimizing the total
variance separates the problem of finding possible supports S from distributions p on
those supports. This allows us to present a general description of the space of all
solution to the MVP with \rho set to the total variance.

2.1. Results for the total variance case \bfitrho = trace. The general description
of the solution space when \rho = trace depends on the following definition.

Delaunay simplex. A simplex is a Delaunay simplex for the set \Omega if it satisfies
the circumsphere condition: the interior of the unique sphere passing through all the
vertices of the simplex contains no point from \Omega [9].

Theorem 2.3 (solution space for total variance). Let \rho (V ) = trace(V ). If S
are the vertices of a Delaunay simplex such that \=x \in conv(S), then there exists a
unique distribution p with support S that solves the MVP. Moreover, this distribution
is given by setting the probability at each x \in S to the value of the tent function \psi (\=x, x)
(piecewise linear basis function associated with node x on a Delaunay mesh including
the simplex) evaluated at \=x. If \=x \in conv(\Omega ), then such a simplex always exists. Let
C(S) be the circumsphere of such a simplex. Let R = C(S) \cap \Omega . For each simplex
with vertices in R containing \=x there exists a unique distribution p supported on the
simplex which solves the MVP. The space of all solutions to the MVP is the space of
convex combinations of the unique solutions on all such simplices.

Proof. The first key idea is to show that the stationarity conditions (2.4) imply
the circumsphere condition when \rho is set to the total variance. This is trivial since, if
\rho is set to the total variance, A(p) = I, so the quadratic function Qp,\lambda ,\lambda 0(x) always
has spherical isosurfaces. Then, requiring that all x \in S are roots of the quadratic
function requires that all x \in S lie on some sphere. Let C(S) denote a circumsphere
of the set S. If S corresponds to a simplex, then C(S) is unique. The second half
of the stationarity requirement requires that there is at least one circumsphere of S
such that no points from \Omega that are not in S are inside the circumsphere.

This condition is the same condition used to define a Delaunay triangulation
[16]. A Delaunay triangulation partitions \Omega into a series of simplices each satisfying
the property that the circumsphere of the simplex does not contain any other points
from \Omega in its interior [7]. This is the standard triangulation often used for finite
elements and for linear interpolation [5]. Every set of points \Omega admits a Delaunay
triangulation [6]. Therefore, for any point \=x there exists at least one simplex with
vertices S satisfying the circumsphere condition and with \=x \in conv(S). Although a
Delaunay triangulation always exists it is not always unique [16], so there may be
multiple solutions to the MVP.

Let S be the vertices of a Delaunay simplex containing \=x. Then, since \=x \in conv(S),
there exists at least one distribution p with support S such that Ep[X] = \=x. Since
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2515

Fig. 1. The tent function \psi (y, x) for a triangulation of point set \Omega associated with vertex x is
shown in red.

conv(S) is a simplex, this distribution is unique. Let x be a vertex of the simplex, and
let p(x| \=x) be the probability at vertex x given \=x. Here we treat p(x| \=x) as a function
of \=x. For any \=x, the distribution p(x| \=x) is the solution to an n+1\times n+1 set of linear
equations. The system of linear equations is always invertible (see Appendix C).
Specifically, p(x| \=x) is the inverse of a matrix, whose entries are defined in terms of the
coordinates of the vertices, multiplied by the vector [1; \=x]. It follows that p(x| \=x) is an
affine function of \=x as long as \=x \in conv(S) and we restrict to solutions with support
S. This affine function is uniquely specified by noting that, if \=x = x, then p(x| \=x) = 1,
and if \=x = y \in S \setminus x, then p(x| \=x) = 0. Consequently p(x| \=x) is the unique affine
function of \=x that equals one at \=x = x and zero at any other vertex of the simplex.

So, if we fix a Delaunay triangulation, then p(x| \=x) is a continuous piecewise linear
function of \=x that is affine for \=x in the interior of each simplex, one at \=x = x, and zero
if \=x equals any other node in \Omega . These are exactly the conditions which define the
tent functions (piecewise linear basis functions) \psi (y, x) on the triangulation. The tent
functions are the standard basis functions used for linear interpolation. An example
tent function is illustrated in Figure 1.

It follows that, if we fix a Delaunay triangulation \scrT , then for each vertex in \Omega there
is a unique tent function \psi (y, x), and the MVP is solved by letting the probability
at each node x equal the value of the tent function associated with node x evaluated
at \=x:

(2.5) p(x| \=x) = \psi (\=x, x).

The tent functions can be evaluated by projection as illustrated in Figure 2. Let
x be a vertex in S, let u(S \setminus x) be the unit normal vector to the affine subspace
containing S \setminus x (the facet of the simplex opposite x), and let c(S \setminus x) be the centroid
of the face. Then the height of the simplex is the length between x and its projection
onto the affine subspace containing S \setminus x, which equals u(S \setminus x)T (x - c(S \setminus x)). Define
the height function hx(y) = u(S \setminus x)T (y - c(S \setminus x)), which evaluates the height of the
simplex if we replace node x with node y. Then the tent function (2.5) and associated
probability are simply the ratio of the heights at x and \=x. Note that the ratio of the
heights of two simplices that only differ by a vertex is also the ratio of their volumes.
The ratio of volumes is the standard equation for computing barycentric coordinates
(a distribution of weights on the nodes of the simplex that average to a given point
in the interior) [38]:

(2.6) p(x| \=x) = \psi (\=x, x) =
Vol((S \setminus x) \cup \=x)

Vol(S)
=
hx(\=x)

hx(x)
=
u(S \setminus x)T (\=x - c(S \setminus x))
u(S \setminus x)T (x - c(S \setminus x))

.

Therefore, any Delaunay simplex with vertices S such that \=x \in conv(S) admits
a solution to the MVP, the MVP has a unique solution supported on S, and at least
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2516 ALEXANDER STRANG

Fig. 2. The left panel shows a Delaunay triangulation of 30 randomly distributed points drawn
uniformly over the box [0, 1]\times [0, 1]. The points, \Omega are shown in black, along with the triangulation.
The mean \=x is the blue point inside the shaded triangle, and the simplex containing the mean is the
grey shaded triangle. The bisectors of each side of the triangle are shown in red. Their intersection
is the center of the circumcircle of the triangle. The circumcircle is shown in red. Note that no
point from \Omega is inside the circumcircle; thus this triangle supports a solution to the MVP. The right
panel shows a triangle containing a point \=x illustrated with a blue shaded circle. The red vertex is
x. The vertical red line is the height hx(x) from the edge of the simplex S \setminus x to x, and the blue
line is the height hx(\=x) from the edge S \setminus x to \=x. These can be computed via a dot product with the
unit normal u(S \setminus x). The probability at x given \=x is the ratio of the height of \=x to the full height
of the triangle hx(x). This is equivalent to the fraction of the grey triangle contained in the purple
triangle, which is given by replacing x with \=x.

one such simplex exists. We now show that the space of all solutions to the MVP is
the space of convex combinations of solutions associated with these simplices. First
we provide a recipe for finding these simplices.

Suppose that we start with a Delaunay triangulation of \Omega . Then, for any \=x, we
have a unique simplex satisfying the KKT conditions. The circumsphere of any n-
dimensional simplex is unique with center given by the intersection of the bisectors of
the faces. Denote this circumsphere C(S). Now let R = C(S)\cap \Omega . All solutions to the
MVP have support contained in R, so the circumsphere associated with a particular
solution can be used to find the support of all possible solutions. The proof follows.

The cost function of the MVP, f(p) = \rho (Vp[X]), is linear in p for all p with mean
\=x, and the domain is a convex polytope. Therefore the MVP is a linear programming
problem. It follows that the convex combination of any set of solutions is also a
solution. The support of the convex combination of a set of solutions is the union of
the supports of each solution. This means that, if there are solutions with different
supports, then there must also be a solution with support equal to the union of the
supports of each separate solution. In order for the union to be a solution it must also
satisfy the circumsphere condition, so all points in the support must lie on at least
one shared circumsphere. Since there is always a solution on at least one simplex,
and since the associated circumsphere is unique, the support of all solutions lie on a
unique circumsphere. Therefore all solutions to the MVP have support contained in
R = C(S) \cap \Omega .

Given R, the MVP can be reduced to a new MVP restricted to the vertices in R.
On R the stationarity requirement is satisfied, so all distributions on R with mean
\=x are solutions to the MVP. The space of all possible distributions supported on a
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2517

subset of R with mean \=x is a convex polytope. It remains to show that the vertices
of this polytope (the extreme solutions) are necessarily solutions on simplices. The
constraints define a set of linear equations. The set of linear equations has a nontrivial
nullspace if the support includes more than n+1 vertices (see Appendix C). Therefore,
if p is supported on more than n+1 vertices it is not a vertex of the solution space. It
follows that all the vertices of the solution space (all extreme solutions) are solutions
on Delaunay simplices.

Corollary 2.4. If the points x in \Omega are in general position, then the solution to
the MVP with \rho = trace is unique, and if they are drawn randomly from a continuous
joint distribution, then the solution is almost surely unique.

Proof. If x \in \Omega are in general position, then no set of more than n + 1 points
lie on the same circumsphere (and the Delaunay triangulation is unique [7]). If the
points x are drawn from a continuous joint distribution, then they are almost surely
in general position.

The problem of finding a Delaunay triangulation is well studied, as Delaunay tri-
angulations have rich applications in finite elements, computer aided design, medical
imaging, and computer graphics. Reviews of triangulation methods are provided in
[16], [27], [32]. Multiple fast triangulation algorithms exist. The divide and conquer
algorithm has been shown to be the fastest triangulation algorithm [34] and works
in arbitrary dimension [4]. Divide and conquer typically runs in \scrO (| \Omega | log(| \Omega | )) time
[16], [22]. Parallelized divide and conquer algorithms designed for use in computer
graphics are particularly efficient and have been shown to handle billions of points
and process millions of simplices per second [23]. This suggests that, even if \Omega is
large, it may be possible to find p(x| \=x) for all x before specifying \=x, thereby solving
the MVP for all possible \=x.

Note that, if \=x is fixed, then we only need to find one simplex satisfying the
circumsphere condition, so we only need a Delaunay triangulation of a subset of \Omega .
Therefore it is reasonable to try triangulating a neighborhood of \=x first. If we find a
Delaunay triangulation of \Omega in a neighborhood of \=x, and the neighborhood contains
the circumsphere of the simplex containing \=x, then the tent function solution on
the simplex is necessarily a solution to the MVP on all of \Omega . It follows that the
problem can be solved on local neighborhoods of \=x, so the actual computational
cost for a fixed \=x will depend on the cost of finding a triangulation of a sufficiently
large neighborhood of \=x, not all of \Omega . This means that the problem could be solved
numerically even if \Omega is a countable set of points, provided the number of points
from \Omega in any compact neighborhood is finite. In this context, one of the incremental
methods for constructing a Delaunay triangulation [16] may be more efficient than a
divide and conquer algorithm.

3. Special cases. In special cases when \Omega is highly regular, there may be many
Delaunay simplices containing \=x. For example, if \Omega is a cubic lattice, then the cir-
cumsphere condition requires that p is supported on the hypercube containing \=x (see
Lemma 3.1). The polytope of solutions supported on the hypercube contains many
different extreme solutions as the hypercube supports at least 2n - 1n!+2n simplices, of
which at least 2n - 1 contain \=x. Ironically, this implies that, when \Omega is highly regular,
the space of solutions to the MVP can be difficult to explore. Here we will consider a
series of special cases in order to show the power of the general solution, as well as its
limitations when \Omega is highly symmetric. We focus on regular lattices in particular,
since they are frequently the underlying state space of reaction networks [21], [26], [33].
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2518 ALEXANDER STRANG

Fig. 3. The upper panel shows the tent functions associated with the solution to the MVP on
an integer lattice. The bottom panel shows the minimum variance as a function of \=x.

3.1. One dimension. Suppose that the points x \in \Omega are all on the real line.
Then the norms are equivalent, and the solution to the MVP using total variance
is equivalent to simply minimizing the variance. Let \lfloor y\rfloor be the largest vertex in \Omega 
less than or equal to y and \lceil y\rceil be the smallest vertex in \Omega larger or equal to than
y. Theorem 2.3 implies that the minimum variance distribution is unique since the
Delaunay triangulation of \Omega consists simply of the intervals between adjacent entries
of \Omega . Evaluating the tent functions on the intervals gives

(3.1) p(x| \=x) = 1

\lceil \=x\rceil  - \lfloor \=x\rfloor 

\left[   \lceil \=x\rceil  - \=x if x = \lfloor \=x\rfloor 
\=x - \lfloor \=x\rfloor if x = \lceil \=x\rceil 
0 if x \not = \lfloor \=x\rfloor or \lceil \=x\rceil 

\right]   .
The associated variance is

(3.2) V(\=x) =
(\lceil \=x\rceil  - \=x)(\=x - \lfloor \=x\rfloor )

\lceil \=x\rceil  - \lfloor \=x\rfloor 
.

If \Omega = Z, then the solution to the MVP is p(x| \=x) = max\{ 1  - | x  - \=x| , 0\} . The
solution and associated variances are illustrated in Figure 3.

3.2. Two-dimensional integer lattice. Consider a two-dimensional integer
lattice \Omega = Z2. Then, for \=x in general position, there are two Delaunay simplices
containing \=x. This can be seen by noting that each \=x is contained inside a unit square
and that the square can be subdivided into four triangles. General \=x lie in two of these
triangles. All of these triangles have circumcenter equal to the center of the square,
with radius

\surd 
2/2. The corresponding circumspheres are all identical and include all

four corners of the square.
It follows that, for general \=x, the space of solutions is the space of convex com-

binations of the unique solutions associated with the two triangles containing \=x. To
simplify the notation let y = \=x  - \lfloor \=x\rfloor . Then y is contained in a unit square with
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2519

corners [0, 0], [1, 0], [1, 1], [0, 1]. Each of the four triangles is specified by picking three
of the four corners. Index the triangles by the central corner vertex. These triangles
come in pairs. The first pair each include the diagonal from [0, 0] to [1, 1] and the
second pair include the diagonal from [1, 0] to [0, 1]. If y1+y2 < 1, then y is contained
in the [0, 0] triangle; if y1+y2 > 1, then y is contained in the [1, 1] triangle. Similarly,
if y1  - y2 > 0, then y is contained in the [1, 0] triangle, and if y1  - y2 < 0, then y
is contained in the [0, 1] triangle. The barycentric distributions on each triangle are
given by

(3.3)
[0, 0] triangle : p(0, 0| y) = 1 - (y1 + y2), p(1, 0| y) = y1, p(0, 1| y) = y2,

[1, 1] triangle : p(1, 1| y) = (y1 + y2) - 1, p(1, 0| y) = 1 - y2, p(0, 1| y) = 1 - y1,

[1, 0] triangle : p(0, 0| y) = 1 - y1, p(1, 0| y) = y1  - y2, p(1, 1| y) = y2,

[0, 1] triangle : p(0, 0| y) = 1 - y2, p(0, 1| y) = y2  - y1, p(1, 1| y) = y1.

The covariance for each triangle is

(3.4)

[0, 0] triangle : V(y) =
\Bigl[ 
(1 - y1)y1  - y1y2
 - y1y2 (1 - y2)y2

\Bigr] 
,

[1, 1] triangle : V(y) =
\Bigl[ 

(1 - y1)y1  - (1 - y1)(1 - y2)
 - (1 - y1)(1 - y2) (1 - y2)y2

\Bigr] 
,

[1, 0] triangle : V(y) =
\Bigl[ 
(1 - y1)y1 (1 - y1)y2
(1 - y1)y2 (1 - y2)y2

\Bigr] 
,

[0, 1] triangle : V(y) =
\Bigl[ 
(1 - y1)y1 y1(1 - y2)
y1(1 - y2) (1 - y2)y2

\Bigr] 
.

Then, for a given \=x, the associated solutions to the MVP are given by convex
combinations of the two distributions associated with the two triangles containing \=x,
and the associated covariance is the convex combination of the covariances associated
with each triangle. Notice that all four possible covariance functions have the same
diagonal. All four have the same diagonal since all four triangles have the same
projection onto the coordinate axes.

When projected onto the coordinate axes the integer lattice becomes Z. The
distributions provided above all have marginal distributions which equal the solution
to the MVP in the one-dimensional case. It follows that these distributions minimize
not only the trace of the covariance but also each diagonal entry.

3.3. General integer lattice. This observation extends to integer lattices in
arbitrary dimension. Suppose \Omega = Zn. Then the projection of \Omega onto any coordinate
axis is Z. Since the total variance is the sum of the variation in each marginal, if
there is a joint distribution on \Omega whose marginals are the solutions to the MVP
when projected onto each coordinate axis, then this joint distribution is necessarily a
solution to the MVP on the full space.

Lemma 3.1 (MVP on lattice restricts to hypercube). Suppose \Omega is an integer
lattice or a subset of an integer lattice such that the intersection of the unit hypercube
containing \=x and \Omega produces a polytope containing \=x in the interior of its convex hull.
Then any distribution supported on this intersection is a solution to the MVP using
the total variance, and any distribution whose support includes vertices outside this
hypercube is not a solution.

Proof. Any general \=x is contained in some unique unit hypercube whose vertices
are in the lattice. The corners of this hypercube are given by rounding each of the
coordinates up or down. Since \=x is inside the hypercube, there must exist a convex
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2520 ALEXANDER STRANG

combination of the corners which equals \=x. The weights of this convex combination
are a joint probability distribution on the full space with mean \=x. In order for the
mean to be \=x, the expected value of the jth marginal must equal \=xj for all j \in [1, . . . n].
Moreover, when projected onto the jth coordinate axis the corners of the hypercube
map to \lfloor \=x\rfloor , \lceil \=x\rceil . Therefore the marginals of this joint distribution are only supported
on the two integers above and below \=xj . There is only one marginal distribution with
mean \=xj supported only on \lfloor \=xj\rfloor and \lceil \=xj\rceil . This marginal distribution is the solution
to the MVP on the one-dimensional line, so by restricting the support of the solution
to the hypercube we automatically produce a solution which minimizes the variance
of every marginal distribution. This minimizes each diagonal entry of the covariance,
thus minimizes its trace.

For the converse, suppose that p has support S including nodes outside the unit
hypercube. Then at least one projection of the support onto a coordinate axis includes
three vertices instead of two. Therefore the corresponding marginal is not a solution
to the one-dimensional MVP, so the corresponding diagonal entry of the variance is
not minimized. Since there exist solutions to the MVP with every diagonal entry of
the covariance minimized, all solutions to the MVP must minimize all of the diagonal
entries of the covariance. It follows that, if S includes a vertex outside the unit
hypercube containing \=x, then p is not a solution to the MVP.

Lemma 3.1 presents the half-space representation of the solution polytope for
integer lattices, while Theorem 2.3 presents the vertex representation for generic \Omega .
The half-space representation is equivalent to the general vertex representation since
all vertices of the hypercube are a distance

\surd 
n/2 from its center, so all simplices

of the hypercube lie on the same circumsphere and are Delaunay. Therefore, the
extreme solutions to the MVP are each associated with a simplex drawn from the
unit hypercube containing \=x. A review of triangulations of the unit hypercube is
provided in [5] and [6].

Unfortunately, the set of all simplices of the unit hypercube is quite large. It is so
large that there are many more simplices and triangulations to consider than nodes in
the hypercube. For example, in three dimensions there are 74 different triangulations
of only 8 vertices [6]. As a consequence, the half-space representation (Lemma 3.1) is
much more economical than the vertex representation.

To get a sense for the number of simplices of the unit hypercube we briefly recall
some simple methods for generating such simplices. Represent the hypercube as a
graph with edges between nodes that only differ by one coordinate. Color the edges
according to which coordinate they change. Then any tree that uses exactly one
edge of each color corresponds to a unique simplex (see Figure 4). To start counting
simplices, consider the two simplest tree topologies: paths and stars.

Consider paths first. Pick a vertex x of the hypercube. The coordinates of x can
be represented with ones and zeros. The coordinates of the opposite corner of the
hypercube, x\ast , are given by swapping all the coordinates of x from one to zero, or zero
to one. Pick a permutation \sigma of n elements. Then the vertices of a simplex S(\sigma , x)
are specified by swapping the coordinates of x sequentially, in the order specified by
\sigma , until x = x\ast . For any x there are n! different \sigma , and each produces a unique
simplex. These simplices form the standard triangulation of the unit hypercube (see
the top row of figure Figure 5) [25], [35], [11]. There are 2n - 1 distinct triangulations
of this form since there are 2n - 1 pairs of opposite corners of the hypercube. Therefore
there are at least 2n - 1n! simplices of the hypercube, and 2n - 1 simplices containing
any \=x.
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SOLUTIONS TO THE MINIMUM VARIANCE PROBLEM 2521

Fig. 4. Triangulations of the hypercube generated by trees. Three different simplices of the
four-dimensional hypercube are shown here. The edges of the hypercube are colored according to
which coordinate changes when crossing the edge. These colors correspond to the orientation of
the edges. Each tree uses each edge color exactly once. The two trees on the right both generate
simplices associated with paths or stars. The tree on the left has a different topology. The number
and variety of such topologies increases the higher the dimension.

Consider stars next. Pick a vertex of the simplex x. Then consider all vertices of
the hypercube neighboring x (see the bottom row of Figure 5). There are 2n simplices
in this class, and these simplices are necessarily distinct from the previous set since
they never include two opposite corners. Therefore there are at least 2n - 1n! more
simplices of the hypercube than vertices.

Even 2n - 1n! + 2n is a dramatic underestimate of the number of simplices. There
are many tree topologies other than paths and stars (see Figure 4), and there are also
simplices that are not associated with a tree. For example, in three dimensions there
are eight simplices in the corners of the cube, each associated with stars. Pick four of
these eight simplices, chosen so that they do not overlap, and remove them from the
cube. This process leaves another simplex which is not associated with a tree since
all of its edges are diagonals (see Figure 5) [5].

Thus, even in fairly low dimensions, the set of extreme solutions to the MVP will
likely be intractably large. Then it is natural to seek a particular solution. Here we
show that there is a simple distribution which minimizes any unitarily invariant norm
of the covariance simultaneously.

Lemma 3.2 (special solution on integer lattice). Suppose \Omega = Zn and \=x \in conv(\Omega )
is in general position. Then

(3.5) p(x, \=x) =
n\prod 

j=1

\left[   (\lceil \=xj\rceil  - \=xj) if xj = \lfloor \=xj\rfloor 
(\=xj  - \lfloor \=xj\rfloor ) if xj = \lceil \=xj\rceil 
0 else

\right]   
is the unique distribution which simultaneously minimizes the total variance, two norm
of the covariance, Frobenius norm of the covariance, and every singular value of the
covariance.
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2522 ALEXANDER STRANG

Fig. 5. Triangulations of the cube. The top left panel shows a simplex generated by moving
along a path between opposite corners of the cube specified by a specific permutation. The top right
panel shows the triangulation generated by holding the two opposite corners fixed and considering
all such paths. The bottom left panel shows the simplex generated by picking a corner and all its
neighbors. The bottom right shows a triangulation generated by picking a series of these simplices.
Note that this leaves an interior simplex which is not of the first or second kind considered, as all
of the edges of this (orange shaded) simplex are diagonals.

Proof. By construction (3.5) equals the product of the marginal distributions
which solve the MVP on each coordinate direction. It follows that this distribution
is only supported on the unit hypercube containing \=x, so it solves the MVP for
the total variance. Since this distribution is a product of marginal distributions,
each coordinate of X is independent of the others, so the corresponding covariance
is diagonal with diagonal entries equal to Vjj(\=x) = (\lceil \=x\rceil  - \=x)(\=x  - \lfloor \=x\rfloor ) (see (3.2)).
The square of each off-diagonal entry is minimized since the covariance is diagonal,
and each diagonal entry is minimized since this distribution is supported on the unit
hypercube. Therefore the Frobenius norm is also minimized. This minimal covariance
is unique since the Frobenius norm satisfies the strict triangle inequality.

To see that the l2 norm is minimized, return to the KKT conditions. These
require that, when the largest singular value of the covariance is not repeated, all of the
points in the support lie on a pair of parallel hyperplanes normal to the corresponding
singular vector, and that no other point from \Omega lies in-between the pair of hyperplanes.
Since the covariance is diagonal its singular vectors are all coordinate directions, and
its singular values are its diagonal entries. For general \=x one of these entries is larger
than the rest, so for general \=x the required singular vector is simply the canonical unit
vector associated with the coordinate which maximizes Vjj(\=x). Then the necessary
hyperplanes are the hyperplanes containing the faces of the hypercube perpendicular
to this coordinate direction. Since \Omega is an integer lattice there is no vertex of \Omega 
between the hyperplanes. Therefore, (3.5) satisfies the KKT conditions for the l2
norm, so it solves the MVP using the two norm.

To see that each singular value is minimized we extend the argument used for
the l2 norm. If, instead of trying to minimize the first singular value, we attempted
to minimize the jth singular value, then we would arrive at the same KKT condition
used for the l2 norm, only with the first singular vector replaced with the jth singular
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vector. Then, using the same argument as above, for \=x in general position (3.5)
satisfies the KKT conditions for each singular value, so it minimizes each singular
value of the covariance.

Corollary 3.3. The special solution (3.5) simultaneously minimizes all unitar-
ily invariant matrix norms \rho of the covariance.

Proof. Any unitarily invariant matrix norm can be expressed as a symmetric
gauge function \phi evaluated on the singular values [17], [37]. A symmetric gauge
function is a norm on Rn which is invariant under permutations and sign changes.
If \sigma , \sigma \prime are both vectors in Rn with entries arranged in nonascending order, then \sigma \prime 

dominates \sigma if, for each partial sum,
\sum j

i=1 \sigma i \leq 
\sum j

i=1 \sigma 
\prime 
i. Note that if \sigma i \leq \sigma \prime 

i for
all i, then \sigma \prime dominates \sigma . If \sigma \prime dominates \sigma , then \phi (\sigma ) \leq \phi (\sigma \prime ). Then, since (3.5)
minimizes each singular value of the covariance, (3.5) also minimizes any unitarily
invariant norm evaluated at the covariance.

The special solution (3.5) is equivalent to the generalized barycentric coordinates
proposed by Warren for generic convex polytopes [38]. The generalized barycentric
coordinates for an arbitrary convex polytope with vertices S are a set of unique
rational functions (one for each vertex of the polytope) that are nonnegative for all \=x \in 
conv(S), satisfy the normalization and mean constraints and are of minimal degree.
This minimal degree equals the number of facets of the polytope minus the dimension
of the space [38]. The distribution (3.5) is a polynomial order n. The n-dimensional
hypercube has 2n facets, so the barycentric coordinates are rational functions of degree
2n - n = n. The generalized barycentric coordinates are unique, so this distribution
sets the probability at each node of the hypercube to the corresponding barycentric
coordinate.

3.4. Integer lattice with a conservation constraint. In some cases subsets
of the integer lattice admit unique solutions to the MVP that can be easily identified
using Lemma 3.1. For example, suppose n = 3, and \Omega is the intersection of Z3 with
the conservation constraint x1 + x2 + x3 = m \in Z. This is a natural constraint that
arises in a variety of chemical reaction networks (for example, see [29], [30]). Then the
intersection of the unit hypercube containing \=x with \Omega is a simplex on the subspace
x1+x2+x3 = m. These simplices form a hexagonal triangulation of the subspace. It
follows that the MVP admits a unique solution which is given by the tent functions
on this hexagonal triangulation. These are

(3.6) p(x| \=x) = max\{ 1 - | | x - \=x| | \infty , 0\} .

Therefore, even though the symmetry of the integer lattice allows for a high-
dimensional space of solutions in the general case, it also allows the problem to be
reframed in terms of the intersection of \Omega with a unit hypercube, which can allow for
elegant solutions in some special cases.

3.5. Hexagonal lattice. Consider a hexagonal lattice in R2 with horizontal
rows. Then the vertices are organized in alternating rows. The horizontal coordinate
of all vertices in the even rows are integers, and the horizontal coordinate of all vertices
in the odd rows are half-integers. The rows are separated by height

\surd 
3/2.

The solution on the hexagonal lattice is unique since it admits a unique Delaunay
triangulation into equilateral triangles (see Figure 6). This can be seen by noting that
a Delaunay triangulation of the integer lattice in R3 intersected with a conservation
constraint x1+x2+x3 = m is a hexagonal lattice on the surface x1+x2+x3 = m. It

D
ow

nl
oa

de
d 

06
/1

5/
21

 to
 1

29
.2

2.
12

6.
8.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2524 ALEXANDER STRANG

Fig. 6. The grey cubes represent the integer lattice in three dimensions. The shaded orange
triangle is the plane such that x1 + x2 + x3 = 4. Notice that the intersection of each cube with the
plane forms a regular hexagonal lattice.

follows that the solution to the MVP on a hexagonal lattice can be recovered directly
from the solution (3.6) if the lattice is embedded on the appropriate subspace in
R3. This is accomplished by letting y(x) = [x1  - x2/

\surd 
3, 2x2/

\surd 
3, - x1  - x2/

\surd 
3], as

this maps the corners of the equilateral triangle [0, 0], [1/2,
\surd 
3/2], [1, 0] to the vertices

[0, 0, 0], [0, 1, - 1], [1, 0, - 1] and conserves y1 + y2 + y3 = 0. Then

(3.7) p(x| \=x) = max\{ 1 - | | y(x) - y(\=x)| | \infty , 0\} .

3.6. Reaction networks and general lattices. At the cellular scale, systems
of chemical reactions are stochastic processes. The number of particles involved in
the reactions are small and integer valued, so the noise associated with the timing
of individual reaction events cannot be ignored. The stochastic modeling of discrete
space reaction networks is an important area of research in molecular biology, because
many essential cellular processes depend on systems of chemical reactions [1], [39].

A reaction network is a discrete space continuous-time Markov chain embedded
in Rn, where n is the number of chemical species of interest. The state of the system
is denoted X(t) \in Zn. The network is specified by a set of reactions \scrR . Each
reaction rk \in \scrR is associated with a stoichiometry vector sk \in Rn and a reaction
propensity \lambda k(x, t). The stoichiometry describes how the state of the system changes
after a reaction. If reaction rk occurs, then X(t) jumps to X(t) + sk. The reaction
propensities are the expected rate of reaction rk given X(t) = x. The state space \Omega is
all x \in Zn that can be reached from an initial state X(0) by a sequence of reactions
with nonzero propensities [1].

This state space can be recovered from a linear transformation of a subset of an
integer lattice. Let Z| \scrR | be an integer lattice, and let R(t) \in Z| \scrR | be a count of how
many times each reaction has occurred at time t. Then X(t) = X(0) + SR(t), where
S is the stoichiometry matrix (matrix whose columns are the stoichiometry vectors).
The count R(t) is itself a reaction network where the stoichiometry vector of the kth
reaction is the kth column of the identity matrix, and the propensity functions are
\lambda k(X(0)+Sr, t). Let \Omega \scrR be the subset of the | \scrR | -dimensional integer lattice that can
be reached by a sequence of reactions with nonzero propensities. Then \Omega = S\Omega \scrR .
Thus the state space of every reaction network is a linear transformation of a subset
of an integer lattice.
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This observation motivates a study of \Omega that are linear transformations of sub-
sets of integer lattices, where the coefficients of the linear transformation are integer
valued. These are examples of subsets of general lattices, which are countable sets of
points in Rn spanned by integer combinations of a set of representative vectors [3].

Let \Omega = S\Omega \scrR , where \Omega \scrR is a subset of Z| \scrR | . If S \in Rn\times | \scrR | , then \Omega \subset range(S)+
X(0) \subseteq Rn. The linear transformation maps each unit cube in the reaction space to
a parallelepiped on the affine subspace range(S) +X(0).

The state space \Omega is a subset of the lattice given by S acting on Z| \scrR | . Delaunay
triangulations of lattices are well-studied; for example, see [8] or [3]. In some cases the
Delaunay triangulation of the lattice can be recovered directly from a triangulation
of Z| \scrR | . For example, if the linear transformation is a distortion and the distortion is
sufficiently small, then the standard triangulation of the unit cube maps to a Delaunay
triangulation of the lattice [8]. More generally, the translation invariance of the lattice
implies that if a triangulation of a single parallelepiped can be found whose simplices
satisfy the circumsphere condition on the lattice, then a Delaunay triangulation of
the entire lattice is given by triangulating each parallelepiped equivalently. This
means that a Delaunay triangulation of the lattice can be found by computing the
triangulation of a single parallelepid.

Let \scrT be a Delaunay triangulation of the lattice. If T is a simplex in \scrT , then the
interior of the circumsphere of T does not contain any vertices from the lattice, so it
must not contain any vertices of \Omega . Therefore, if the vertices of T are in \Omega , then T is
also a Delaunay simplex of \Omega . Let P be a parallelepiped that is the image of a unit
hypercube in Z| \scrR | under the transformation S. If all of the vertices of P are in \Omega , then
each simplex in the triangulation of P given by \scrT is a Delaunay simplex. This gives an
automatic method for triangulating most of \Omega directly from a triangulation of a single
parallelepiped in the lattice. This triangulation can then be used to solve the MVP.
Parallelepipeds on the boundary must be treated separately, as the triangulation of
the lattice may include vertices of the parallelepiped that are not included in \Omega .

Alternatively, since the state X(t) can be recovered directly from the reaction
counts R(t), the process X(t) can be simulated by simulating R(t) instead. Then it
is important to understand the moment structure of R(t), not X(t). The state space
of interest in this case is \Omega \scrR which is always a subset of the integer lattice. Then the
special solution (3.5) solves the MVP on each unit hypercube in \Omega \scrR . This approach
is attractive since the distribution can be computed analytically from the expected
reaction counts \=r, and it simultaneously minimizes all of the singular values of the
covariance in R(t). Moreover, it can be mapped directly to a distribution for X by
multiplying by S. Unlike direct application of the MVP to \Omega , which only accounts
for the location of the vertices of the reaction network, this approach accounts for the
edges of the reaction network. It treats vertices of \Omega as close if they are connected
by a single reaction, rather than if they are close using the Euclidean norm, so it
accounts for the topology of the reaction network.

This solution is also attractive since it can be adopted without picking an arbitrary
answer to the question, Which norm is most appropriate when applying the MVP
to reaction lattices? Moment closure simulation generally involves a coupled set of
update equations, in which the dynamics of the lower order moments are coupled to
the higher order moments. It would be natural to try to minimize the variance in order
to minimize this coupling. Then the sense in which the variance should be minimized is
informed by the coupling terms. For first-order reaction networks the coupling terms
have the generic form Vb where the vector b depends on the reaction propensities,
stoichiometries, and which reaction occurs. Then we might seek to minimize the
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maximum of | | Vb| | p over possible b and consequently minimize the induced lp norm of
V . Alternatively, we may wish to minimize the expectation of | | Vb| | over the possible
values of b, which would require minimizing a different norm of the covariance. The
question of which norm to minimize is avoided if we use the special solution (3.5) to
minimize the variance in the reaction history. The special solution minimizes every
singular value of the covariance, so, by Corollary 3.3, it simultaneously minimizes
every unitarily invariant norm of the covariance.

4. Discussion. This work allows for the efficient computation of lower bounds
on the covariance given a mean state and discrete support. We plan to use the methods
described above to compute lower bounds on the covariance of the state of a reaction
network given its expected state. These bounds will act as guard-rails in approximate
simulation algorithms based on moment closure.

The MVP could also be approached with classical convex optimization methods.
The solution presented here for the total variance case has a number of advantages over
these techniques. First, once the triangulation is determined, the tent function based
solution provides an explicit analytic solution, while an iterative method will only
provide a numerical approximation. Second, the tent function solution expresses the
solution as a function of \=x, so it can be applied for any mean. In contrast, an iterative
method would only provide a solution for a particular choice of \=x. This offers a more
limited understanding of any particular solution since it offers no insight into the
sensitivity of the solution to the position of the mean. It is also more expensive if the
MVP is meant to be used as a step in a simulation algorithm in which \=x changes over
time. Third, the tent function based solution offers a deeper geometric understanding
of the problem and solution space. By considering all possible triangulations, it is
possible to express all possible solutions to the MVP using tent functions. In contrast,
an iterative method would only return a single solution.

That said, convex optimization techniques could play an important role in solving
the MVP if they prove to be faster than the tent function method. The efficiency
of the tent function solution depends on the efficiency of computing a triangulation
of a sufficiently large neighborhood of \=x. The cost of finding such a triangulation
depends largely on the effectiveness of heuristics for choosing the sequence of vertices
added to the neighborhood. Similarly, iterative techniques can be made much faster
by constraining the solution to a plausible support, either at initialization or over a
sequence of neighborhoods. This can greatly reduce the cost of each step by limiting
the number of variables optimized. Thus the practical efficiency of both methods
depends largely on heuristics for picking an appropriate sequence of neighborhoods.
These heuristics can be guided by Theorem 2.2. A study of the time complexity of
each method, and neighborhood heuristics, is saved for future work.

This work could also be extended by considering the solutions under other norms.
For example, if E[(X  - \=x)TW (X  - \=x)] is minimized for some positive semidefinite
weight matrix W with symmetric decomposition W = RTR, then, under the change
of coordinates y = Rx, minimizing E[(X  - \=x)TW (X  - \=x)] is equivalent to minimizing
the trace of the covariance of Y . Therefore the solution to the MVP on \Omega using the
weighted norm can be recovered directly from the solutions to the MVP on R\Omega when
using the trace norm. An alternative family of relevant matrix norms are the Schatten
p-norms. These are the lp norm of the singular values of the covariance. All of the
Schatten p-norms have sensitivity matrices A(p) that are positive semidefinite, so all
satisfy the conditions of Theorem 2.2. The Schatten infinity norm is the induced
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two norm of the covariance, the Schatten two norm is the Frobenius norm, and the
Schatten one norm is the trace of the covariance since the covariance is positive semi-
definite. It would be interesting to study how solutions using the Schatten p-norms
depend on p. Classical convex optimization techniques will likely be required to solve
the MVP for generic norms. Future work will seek efficient solution algorithms for
the general norms as well as theoretical guarantees on the support of solutions.

Appendix A. Motivating moment closure example.
A reaction network is a discrete-space continuous-time stochastic process X(t),

which is defined by a set of reactions \scrR , a propensity for each reaction \lambda k(x, t), and a
stoichiometry sk for each reaction. The propensity function, \lambda k(x, t), is the expected
rate at which reaction rk \in \scrR occurs given state X(t) = x. The precise reaction times
are random and exponentially distributed.

Reaction networks are widely used to model systems of chemical reactions when
the number of particles involved is small and to model small populations [12]. Many
reaction networks are studied via Monte Carlo simulation. Exact simulation methods,
such as those in [14] and [13], generally require simulation of each individual reaction
event. Simulating every reaction is inefficient if the phenomena of interest evolves
much more slowly than the rate of the fastest occurring reactions.

Approximation algorithms sacrifice accuracy for efficiency. There are a plethora
of available approximation schemes based on different assumptions. Some methods
simplify the model by lumping states or trimming reactions [10]. Others use time
scale separation to separate fast evolving quantities from slow evolving quantities [28].
Alternatively, if the number of particles is sufficiently large, then diffusion approxi-
mations, in which the discrete-space process is replaced with a Langevin stochastic
differential equation (SDE), are commonly employed.

Stochastic shielding is an approximation method introduced by Schmandt and
Gal\'an [29]. The stochastic shielding approximation simplifies a simulation by reducing
the number of sources of variation in the model. Only the reactions which contribute
the most uncertainty to the relevant (measured) components of X(t) are simulated
stochastically. The rest are approximated deterministically.

The stochastic shielding approximation has been shown to be both fast and accu-
rate for appropriate models. A rigorous mathematical foundation has been developed
for the approximation when applied to Langevin SDEs [30], [31]. An equivalent foun-
dation does not exist for reaction network models without an additional discrete time
tau-leaping approximation as in [29]. Naive generalization of the method can produce
impossible trajectories with negative particle counts. More careful analysis reveals
that, in order to properly extend stochastic shielding to discrete space, the stochastic
shielding method should be viewed as a moment closure approximation on a hidden
conditional distribution as in [40]. The low order moments of this conditional distri-
bution are coupled to the higher order moments. The naive extension fails because
it neglects these couplings, which is equivalent to assuming that the conditional dis-
tribution is always a delta distribution. If the domain \Omega of X(t) is discrete, then, for
general \=x, the corresponding distribution cannot be a delta distribution. The naive
stochastic shielding method fails because it chooses higher order moments which are
impossible given the geometry of the domain. In one-dimensional models it can be
shown that, if the variance is set to its minimum possible value (3.2), then the simu-
lated trajectories remain nonnegative. If the variance is any smaller, then simulated
trajectories may become negative. Thus, the errors in the naive stochastic shielding
algorithm can be traced directly to underestimation of the variance.
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Appendix B. Differentiating matrix norms.

B.1. Trace and total variance. Let \rho (V ) = trace(V ). Then \rho (V ) =
\sum 

j vjj
so \partial vij\rho (V ) = 0 if i \not = j and equals 1 if i = j. Therefore A(V ) equals the identity I.

B.2. Frobenius norm. Minimizing the Frobenius norm is equivalent to mini-
mizing one half the Frobenius norm squared. This sets the cost function to \rho (V ) =
1
2

\sum 
ij v

2
ij . Clearly, \partial vij\rho (V ) = vij , so A(V ) = V .

B.3. Two norm. Minimizing the two norm is the same as minimizing one half
the two norm squared. This sets the cost function to \rho (V ) = 1

2 | | V | | 22. Then, by the
chain rule, \partial vij\rho (V ) = | | V | | 2\partial vij | | V | | 2 provided the latter derivative exists.

Let \sigma 1(V ) be the largest singular value of V so that | | V | | 2 = \sigma 1(V ). Then, since V
is symmetric positive semidefinite it has SVD V = U(V )\Sigma (V )U(V )T which coincides
with its eigenvalue decomposition since U(V ) is orthonormal. Therefore,

(B.1) V u1(V ) = \sigma 1(V )u1(V ).

Any eigenvalue and corresponding eigenvector of a real symmetric matrix is con-
tinuously differentiable if the eigenvalue is simple (not a repeated eigenvalue) [24]. In
this case, we can differentiate \sigma 1(V ) and u1(V ) in the entries of V .

Differentiating with respect to vij ,

(B.2) [\partial vij
V ]u1(V ) + V \partial vij

u1(V ) = [\partial vij
\sigma 1(V )]u1(V ) + \sigma 1(V )\partial vij

u1(V ).

Take an inner product on both sides with u1(V ). Then, since V is symmetric,
u1(V )TV = \sigma 1(V )u1(V )T leaving,

(B.3)
u1(V )T [\partial vij

V ]u1(V ) + \sigma 1(V )u1(V )T\partial vij
u1(V )

= [\partial vij\sigma 1(V )]u1(V )Tu1(V ) + \sigma 1(V )u1(V )T\partial viju1(V ).

Canceling the repeated term and noting that u1(V )Tu1(V ) = | | u1(V )| | 22 = 1
leaves

(B.4) u1(V )T [\partial vij
V ]u1(V ) = [\partial vij

\sigma 1(V )].

Now, \partial vij
V = eie

T
j where ek is the kth canonical basis vector, so the left-hand

side equals u1(V )iu1(V )j . Therefore \partial vij
| | V | | 2 = \partial vij

\sigma 1(V ) = u1(V )iu1(V )j which
matches the result in [24]: A(V )ij = \partial vij

\rho (V ) = \sigma 1(V )u1(V )iu1(V )j . Therefore,

(B.5) A(V ) = \sigma 1(V )u1(V )u1(V )T = V (1),

where V (1) is the rank one approximation to V .

Appendix C. Uniqueness of barycentric coordinates.
Suppose S \subset \Omega such that \=x \in conv(S). Suppose | S| = m. Index the vertices of

S, x(0), x(2), . . . x(m  - 1). Represent the distribution p(x) with a vector such that
pj = p(x(j)). Then the mean and normalization constraints require that

(C.1) M(S)p =

\left[     
1 1 . . . 1

x1(0) x1(1) . . . x1(m - 1)
...

...
. . .

...
xn(0) xn(1) . . . xn(m - 1)

\right]     p =
\left[     
1
\=x1
...
\=xn

\right]     .
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Now suppose S is a simplex. Then | S| = m = n + 1 and the n edge vectors
x(j) - x(0) are linearly independent. It follows thatM(S) is full rank since subtracting
the first column from every other column produces the matrix

(C.2)

\left[     
1 0 . . . 0

x1(0) x1(1) - x1(0) . . . x1(m - 1) - x1(0)
...

...
. . .

...
xn(0) xn(1) - xn(0) . . . xn(m - 1) - xn(0)

\right]     .
Since M(S) is square and full rank it is invertible. Then, if \=x \in conv(S), there is

a unique distribution p(x| \=x) given by p =M(S) - 1[1; \=x] which is affine in \=x. Therefore
p(x| \=x) is unique if S is a simplex.

We now show that, if S is not a simplex, and \=x \in conv(S), then the distribution
p is not unique. Let p denote a distribution with mean \=x, support S, such that
| S| > n + 1, and the polytope formed by S is n dimensional. Then p satisfies the
linear equation (C.1). However, if | S| > n+ 1, then M has more columns than rows.
If the polytope formed by the vertices of S is n dimensional, then there is a subset of
n+ 1 of the vertices of S that form a simplex. Order the vertices of S so these come
first. Then the first n+1 columns of M(S) span Rn+1, so the remaining | S|  - (n+1)
columns are not independent of the original columns and the matrix has a nontrivial
nullspace.

Let z be a vector in this nullspace. Then p + \epsilon z still satisfies (C.1). Moreover,
since it was assumed that p had support S, every entry of p is positive and nonzero.
Hence there must be an \epsilon small enough that every entry of p+ \epsilon z is still positive and
nonzero. Therefore p+ \epsilon z is a different distribution with the same support and same
mean as p. It follows that the barycentric coordinates are not unique if | S| > n + 1.
Therefore the only supports which form an n-dimensional polytope, but for which the
barycentric coordinates are unique, are simplices.
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