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Abstract—One main objective of ultra-low-latency communi-
cations is to minimize the data staleness at the receivers, recently
characterized by a metric called Age-of-Information (Aol). While
the question of when to send the next update packet has been
the central subject of Aol minimization, each update packet
also incurs the cost of transmission that needs to be jointly
considered in a practical design. With the exponential growth
of interconnected devices and the increasing risk of excessive
resource consumption in mind, this work derives an optimal
joint cost-and-Aol minimization solution for multiple coexisting
source-destination (S-D) pairs. The results admit a new Aol-
market-price-based interpretation and are applicable to the setting
of (a) general heterogeneous Aol penalty functions and Markov
delay distributions for each S-D pair, and (b) a general network
cost function of aggregate throughput of all S-D pairs. Extensive
simulation is used to demonstrate the superior performance of
the proposed scheme.

I. INTRODUCTION

The increasing demand for real-time communications, in-
cluding VR/AR systems, remote surgeries, and autonomous
driving services [1]-[3], prompts a back-to-basics approach for
next-generation low-latency network designs [4]. Recently, a
new metric called Age-of-Information (Aol) was introduced to
rigorously quantify data staleness [5]. The corresponding Aol
minimization problems have since been studied for various
settings [6]—[11]. In particular, [12]-[14] considered a single
source-destination (S-D) pair, where each data packet sent
from the source experiences random delay. Once it is delivered
to the destination, an instantaneous ACK packet will inform
the source, and the ACK will be used to decide when to
send the next packet. [12], [13] characterized the optimal
transmission schedules that minimize the average Aol. [14]
extends the results to arbitrary Aol penalty functions. Recently,
[15] generalized the 1-way-delay setting in [12]-[14] to the
2-way-delay setting, where the ACK also experiences random
delay, and proposed a distribution-oblivious online algorithm
that provably converges to the optimum.

Meanwhile, as the exponential growth of connected de-
vices brings more convenience to the society, such a gigantic
number of devices also poses an increasing risk of excessive
resource consumption [16]. Existing results [13], [14] assume
a maximum average sampling rate constraint Ry,.., which
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essentially solve! the following joint cost-&-Aol minimization
problem

minimize avg.aoi.penalty + loss(sampling.rate) (1)
where the network cost function loss(z) = 0 if < Ry,ax and
loss(x) = 0o if * > Ruax. This work strengthens the results
in [13], [14] with the following contributions.

(i) Instead of a specialized cost function loss(-), we solve
(1) for arbitrary continuously differentiable, convex, non-
decreasing loss(-). The results characterize the complete trade-
off between cost and Aol under a more general throughput-to-
cost and Aol-penalty structure, and hence significantly broaden
the applicability of [13], [14].

(ii)) We generalize the single S-D pair results [13], [14] for
multiple coexisting S-D pairs. Specifically, we characterize
how coexisting S-D pairs can optimally and collectively bal-
ance their individual Aol minimization goals via a shared cost
function of the aggregate network throughput. See (7) for the
rigorous definition. The solution takes into account different
timeliness requirements and different transmission costs of
each S-D pair by allowing for heterogeneous Aol penalty
functions and general cost function loss(-). This network-wide
joint cost-&-Aol minimization will greatly benefit future 5G
network designs, which aim to support a million devices in a
square kilometer [17] of widely-ranging throughput-cost and
Aol targets.

(iii) Analytically, the solution admits a new Aol-market-
price-based interpretation, and can thus be viewed as a new
Aol-centric network utility maximization (NUM) framework.

(iv) Simulation results show that our scheme successfully
curbs the excessive resource consumption of the existing cost-
oblivious Aol-optimal policy and optimally balances all S-D
pairs with 24-56% savings compared to the state of the art.

A. Existing Joint Cost-&-Aol Minimization Results

This work focuses on the cost-&-Aol minimization for the
queue-based setting with random service time and random
ACK delay, see [13]-[15]. Existing cost-&-Aol minimization
results are based on various significantly different network
scenarios [13], [14], [18]-[24]. For instance, both [18] and [19]
considered Aol minimization with either the average power

'While the results of [13], [14] are presented as having a maximum
sampling rate constraint, the approaches of [13], [14] can also be used to
solve the cost-&-Aol minimization problem when loss(x) is affine.



constraint or with the sampling cost consideration. Both con-
sidered block fading channels, in which whether each packet
transmission succeeds or fails will be fed back to the source
instantaneously at the end of the time slot. There is no concept
of random delayed delivery that is central in our setting. [24]-
[26] focused on energy harvesting sources, a scenario that is
very different from our simple but highly relevant setting of
multiple S-D pairs with delayed delivery. In addition, most
existing works considered Aol with an affine throughput-to-
cost function [13], [14], [20]-[23], another distinction from
the general loss(+) in this work.

II. MODEL AND FORMULATION
A. System Model With K Source-Destination Pairs

We consider a network of K coexisting S-D pairs, each
of which is composed of a source, a destination, a source-
to-destination (s2d) channel and a destination-to-source (d2s)
channel as shown in Fig. 1. The ACK-based generate-at-
will model [12]-[15] is considered. To be specific, after the
source transmits a packet, the packet will experience some
delay before arriving at the destination. Once delivered, the
destination immediately generates an ACK-packet and sends
it back to the source, which again may experience some delay.
After the ACK of the previous packet arrives, the source can
wait for an arbitrary amount of time. After the carefully chosen
waiting time, the source generates a new status update packet
and transmits it. The process then repeats itself. The detailed
system evolution is described below (also see [13]-[15] for
the description for the special case of K = 1).

ACK immediately
Delay Z®
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Fig. 1: An S-D pair with two-way delay.

Time sequences: For the k-th S-D pair, the system con-
sists of three discrete-time real-valued non-negative random
processes Xi(k), Yi(k), and Zi(k), for all ¢ > 0. Xi(k) is the
waiting time of the source between receiving the (¢ — 1)-th
ACK and generating/transmitting the -th update packet;” Yi(k)
(resp. Zi(k)) is the random delay for the ¢-th use of the s2d
(resp. d2s) channel.

For each S-D pair, Si(k) denotes the time instant when
the i-th packet is generated/transmitted. The i-th packet ar-
rives at the destination at time ng), and the i-th ACK
packet is received by the source at time Agk). The values of
(S,fk)7Dz(k) A(k)) refer to the absolute time instants, while
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the values of (X (k) Yi(k), Zi(k)) represent the lengths of the

i

2The assumption that X i(k> > 0 prevents the source from transmission
before receiving the ACK, which reflects the principle in most TCP-based
protocols [27]. One may design an even better algorithm that transmits
anticipatively before the ACK is delivered, which, however, is beyond the
scope of this paper.

intervals. They are related by the following equations: Ini-
tialize A = x® = v® =z — 0. For all i > 1,
we have ka) = Agﬁ)l + Xi(k), ng) = Si(k) + Yi(k), and
AZ(-k) = ng) + Zi(k). We call the time interval [Agli)l,AEk))
the ¢-th round, consisting of the i-th waiting time X Z-(k) at the
source, the ¢-th s2d delay Yi(k) and d2s delay Zi(k). See Fig. 2.
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Fig. 2: Evolution of the Aol penalty function v (Ag(t)).

Age-of-Information and its penalty function: Following [5],
we define the Age-of-Information Ay(t) at time ¢ by

Ap(t) 2t — max{Sl-(k) : 1 satisfies ng) <t} (2

The Aol penalty function v, (Ag(t)) represents the level of
data staleness. Three popular choices are: (i) linear 7y jin(A) =
wy, - A [28]; (ii) quadratic v ga(A) = wy - AZ? [15]; and
(iii) exponential Yy exp(A) = ewsr® _ 1 [14]. In all the three
choices, wy > 0 are tunable parameters. An S-D pair carrying
time-sensitive traffic may use an exponential penalty function
and/or use a larger weight wy,, while less urgent traffic may use
a linear penalty and/or with a smaller wy,. Our results hold for
any heterogeneous choices of 7(+), not limited to the above
three. See Fig. 2 for the evolution of 7 (Ag(t)).
Overall objective: Define the k-th average throughput by

Ri(T) = %]E{max{i AR <11} 3)

We use a single loss(-) function to represent the cost for the
network to carry the traffic of all K pairs. We aim to minimize

K 1 T K
ZT/ Ye(Ag(t))dt | + loss (Z CkRk(T)>
k=1 0

k=1
“4)

where the constants ¢, > 0 describe the (relative) amount
of resource consumption for carrying the underlying traffic,
e.g., a large ¢, means it is more costly to carry the k-th S-D
pair. Note that the Aol penalty 7 (-) can also be individually
weighted for each pair. We do not explicitly specify their
weighting coefficients herein since they can be completely
absorbed when choosing v (-) arbitrarily and heterogeneously.

lim sup
T— o0



Technical assumptions (i)—(v): (i) loss(+) [0,00) —
(—00, 00) is a continuously differentiable, non-decreasing and
convex function; for each S-D pair, we assume (ii) Y(*) and
Z®) are of bounded support; (iii) (Yi(k),Zi(k)) can be of
arbitrary joint distribution Py ) zx) but the vector random
process {(Yi(k), Zl-(k)) : 4 > 1} is stationary and Markov; (iv)
E{Y,"} + B{ZM} > 0; ) w() : [0,00] — [0,00] is
a continuously differentiable and strictly increasing function
satisfying vx(0) = 0 and ~x(00) = 0.

B. From the Long-Term Average to a Single-Round Analysis
We first define two functions for the k-th S-D pair:

. a y +z oty B Y
hie(y', 2" x,y) = i (t)dt i (t)dt 5)
0 0

a(y, 2 x) = {hk(y 2z, Y(k )|Y Yy’ Z(k)1 =z }

(6)
where gk(y z',x) is the conditional expectation of
he(y', 2, x, Y( )) over Yi(k) The intuition behind

5) is that the shaded area in Fig. 2 is computed by
hy (Yl(_ki, Zi(f)l, Xi(k), Yi(k)). We observe that the overall area
underneath (A (t)) can be decomposed as a summation
of smaller sub-areas with shapes similar to the shaded area
hi (Y(k) Zz(k)l,X(k),Yz(k)) in Fig. 2. Using this observation
(also used in [13]-[15]), we can convert the original problem
(4) to the following equivalent single-round minimization

problem:

k k k
o gy Bl
= 1mn
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+ loss Z (7N
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for which the -th waiting time X () is a function of the delays
of the previous round (Yi(ﬂ,Zif)l). Our goal is to design
the set of K waiting time functions {Xi(l)7...,Xi(K)} that
minimizes (7). The value of the round index ¢ is irrelevant
herein since whatever design that minimizes (7) can and will
be repeatedly applied to all rounds ¢ > 1. In the sequel, we
focus exclusively on solving (7).

III. MAIN RESULTS
Recall that the waiting time XZ.(’C) is a function of
(Yl(ﬂ,Zﬁ)l) We consider the following hitting-time-based

qﬁgk) with a tunable parameter 3 > 0:

xPB) = (v, 25) ®)

d
2 jnf {t >0: 29 PR PRI B 6}. )
Note that the waiting time function ¢(ﬂk)(~, -) is based on
gk (+), which implicitly depends on the given, likely heteroge-

neously chosen, k-th Aol penality function 4 (-) and the k-th

delay distribution Y( ), see (5) and (6). As a result, different
k may have a dlfferent (;5( (+,-) even though they share the
same form of (9). For each (3, we further define

aoik(ﬁ)éE{ (Y(k) Z(k)p% (Y(ki,ka)ﬁ)}
1.(8) 2 E{v!") + 215 + 6P (v, 2 |

as the expected Aol penalty and time duration of the special
scheme ¢g€)(~, -), where both expectations are taken over the

random vector (YZ( i, Z;~ (k) 1)-

Lemma 1: Under techmcal assumptions (1)—(v), aoig(5)
and T} () are continuous, non-decreasing and strictly positive
functions of .

By the definition of (9), if % 9k (5 -, t)|t=0 is lower bounded
away from 0, then ¢(Bk)(-, -) =0 for all 8 that are sufficiently
close-to-zero. Therefore, the values of aoi (/) and Tj(5) in
(10) and (11) do not change with respect to 5 when [ is small.
To formalize this observation, for every 1 < k < K, we define

(k) £ max{ : Ti(B) = Ti(0)}.

We then have Ty (31) = Tx(B2) and aoig (1) = aoix(B2) for
all g1,682 € [0, Bék)]. Before proceeding, we introduce one
more technical assumption.

Technical assumption (vi): For each k, we assume aoi(5)
and T (B) are continuously differentiable with respect to 3 if

(k)

B> By

In other words, we assume aoix(8) and Tj(8) are well-
behaved versus 3 while recognizing that aoiy (/3) (resp. Tx(5))
contains two pieces, one being a flat line segment for 5 €
[O,ﬁék)] and one being a non-decreasing curve for 5 €
[ (k), o0) (see Lemma 1). The left and right derivatives at
the junction point 5 = Bék are generally not equal Hence
the derivative continuity is only assumed for 5 > ﬁo

Following (7), we define

ao'k ﬁk o
Z + loss (; Tk(ﬁk)) (13)

k=1

(10)
(1)

12)

NHT(Bla sy ﬂK

as the objective value achieved when all K pairs employ
the hitting-time policy (8) and (9) with thresholds being
(51, ..., BK ), respectively. Also, define

£ . BK) (14)

min  pyr(Bi, ...
1y--PK

.
HAT

as the minimum value achieved if all K pairs use the hitting-
time policy (after optimizing (51, ..., Bk )). It is clear that p* <
pir since the latter is restricted to a special class of hitting-
time-based policies.

Proposition 1: Under technical assumptions (i)—(vi), we
have

W= i (15)

A high-level proof sketch is as follows. Consider any fixed
k. Suppose for an arbitrarily given scheme, the corresponding



expected i-th round Aol-penalty is a; and the expected i-th
round time duration is t;. We first prove that we can always
find a 85, > 0 such that a°;k((£’“)) < %= and 0 < i L. that is,
the hitting-time policy using such 6k 1mproves " the average
Aol penalty and the average throughput simultaneously. Since
the loss(-) is non-decreasing, replacing the given scheme by
our hitting-time policy will not hurt the overall objective value
in (7), hence Proposition 1.

The following results describe how to compute the thresh-
olds (f1, ..., Bx) that achieves the minimum pjip = p*.

Lemma 2: For each k,

B - Tr.(Br) — aoix(Br)

is a continuous and strictly increasing function of . Fur-
thermore, its value is strictly negative when [ = 0 and it
approaches oo when [ — 00.

By Lemma 2, Va > 0 the following equation

Bi - Ti(Br) — a0ik (Br) _

Ck

(16)

a7)

has a unique S, solution in (0, 0o), which we denote by S (z)

to emphasize its dependency on x. Define
d

m(r) 2 d—loss( r) (18)

as the slope of the cost function loss(-). We then define

(Z n ﬂk > (19)

Lemma 3: The following fixed-point equation

7BK

f(ﬁla

FBu(a). - Bule)) = 0)
has a unique root z* in the interval [0, f (51(0),- - , Bk (0))].

Proposition 2: Eq. (14) is attained by
pirr = par(Ba(z7), .., B (7). 21

Note that all our results require technical assumptions (i) to
(vi). For example, the uniqueness of z* in Lemma 3 requires
the convexity of loss(-).

An Aol-market-price-based interpretation: The intuition be-
hind Lemmas 2 and 3 and Proposition 2 is as follows. Given z,
the solution S (z) is the threshold parameter that leads to the
hitting-time policy that minimize the average Aol penalty of the
k-th pair under the marginal cost x. Consequently, = can be
viewed as the price that the S-D pair has to pay for each packet
transmission. The larger the price z, the larger the S (x) (see
Lemma 2 and (17)), the longer the expected duration of each
packet transmission T (8x(x)) (see Lemma 1), the less willing
for each S-D pair to send a new packet.

As a result, the right-hand side of the fixed-point equation
(20) is the “market price” of each packet transmission each
S-D pair is willing to pay when operating under parameter
Br(x). Note that f(B1,---,Bk) in (18) and (19) is the
marginal network cost if the network is to support all K

pairs that adopt the hitting-time policy with parameters 3; to
B, respectively. The left-hand side of (20) is thus how much
the network would charge for each packet transmission if all
S-D pairs operate under (51(z),- -, Bk (x)). The optimum
(equilibrium) is attained when the market price balances how
much each S-D pair is willing to pay and how much the
network has to charge for each packet transmission, hence
the fixed-point equation.

By Propositions 1 and 2, we can find an optimal policy that
achieves pu* by the following steps.

Step 1: For each S-D pair, use the given Aol penalty
function -y (-) and the delay distribution (Yi(k)7 ZZ-(k)) to find
the explicit expression of hy(-), gu(-), ¢4 (-) by (5), (6),
and (9), respectively; Step 2: Use the waiting time function
qﬁgk)(-) to derive the functions aoix(8) and Ty (3) of 3 by (10)
and (11) and the resulting function Sy (z) of = by (17); Step
3: By Lemma 3, we use the bisection method [29] to find
x*, the root of the fixed-point equation (20), and then derive
the optimal thresholds (51 (z*), ..., Bk (2*)) in Proposition 2;
Step 4: For the k-th S-D pair, if the (¢ — 1)-th round delays
are (Y(k) Z(k)) = (y',7'), the source simply waits for
X; (k) qﬁﬁk o) (y', z") amount of time, see (8) and (9), before
generatmg/transmlttmg the next (i.e., the ¢-th) packet.

Steps 1 to 3 can be computed offline. Step 4 is a sim-
ple hitting-time-based policy using the computed parameter
Br(z*). Tt is worth pointing out that the K-pair jointly
optimal solution can be computed very efficiently for large
K, say K = 103, since the optimal K-dimensional vector
(By,--- ,By) in (14) is found by solving a I-dimensional
fixed-point equation (20) via bisection.

IV. SIMULATION RESULTS

We compare our scheme to the following important alter-
natives:

(i) Zero-Wait (ZW) policy [30]: Xi(k) = 0, Vk,i. ZW is
known to maximize the sum throughput [30].

(i) Aol-Optimal policy [13]-[15]: this policy is also a
hitting-time-based policy? but is oblivious to the network cost.

Due to the space limit, we only report the simulation results
using log-normal delays, which are empirically reasonable
channel models [31]. Similar results have been observed with
other delay distributions.

A. The Case of K =1

When K = 1, our results characterize the joint cost-&-Aol
minimal solution of a single-pair setting with arbitrary cost
function loss(-), which has not been studied in the existing
works [13], [14] that consider the maximum sampling rate
constraint.

We consider a single S-D pair with delays Y and Z being
log-normal random variables with (uy,c%) = (0.5,0.25),
(nz,0%) = (0.5,0.5), and the correlation coefficient pyz =
0.66. The vector process {(Y;, Z;) : i > 1} isi.i.d. and the Aol

3This is consistent with our findings since our results contain the cost-
oblivious setting [13]-[15] as a special case once we hardwire loss(-) = 0.



penalty function is quadratic v;(A) = 0.5 - A%, We consider
an exponential loss(r) = e*” — 1 with ¢; = 1, see (7). The
waiting time of the proposed policy can be computed using
the four steps outlined in the end of Sec. III. For instance,
when o = 16, we have z* = 147.21 and S (z*) = 39.37
according to Steps 1 to 3. If the delays in the previous round
are (Yl(ﬂ =1, Zi(i)l = 1), then the waiting time for this round
is XM (B1 (")) = 4.95.

We run the three schemes ZW, Aol-Optimal, and Proposed
scheme for different o values and Fig. 3 plots the resulting
joint cost-&-Aol objective values. As expected, the Proposed
always achieves the lowest objective value. For large o = 20,
it leads to substantial savings of 80% and 66% when compared
to ZW and Aol-Optimal policies, respectively.

Single S-D Pair

I3
S

=4—Aol-Optimal
=o—Proposed

o
S

Joint Cost-&-Aol Obj.
3

o

o
(4]
S
&
3

Fig. 3: Simulation results for a single S-D pair.

B. The Case of K =5 With Two Classes of Traffic

We also examine the case when heterogeneous traffics are
competing for the shared resources. In this experiment, we fix
loss(r) = e*" — 1 and consider five S-D pairs with two classes
of traffic. We vary the composition of the two classes between
20/80 (one Class-1 S-D pair and four Class-2 S-D pairs) to
80/20 (four Class-1 pairs and one Class-2 pair).

All five S-D pairs have identical log-normal delays Y and Z
as described in Sec. IV-A. However, each Class-1 pair has an
Aol penalty function e (A) = A2, whereas each Class-2
pair has a smaller Aol penalty function Ycjuss2 (A) = 0.05- A2}
that is, Class-1 traffic is more “urgent.” For simplicity, we
do not impose individual throughput weighting and thus set
cr, =1 for all k=1 to 5, see (7).

Compared to the cost-oblivious Aol-Optimal policy, the
savings of the Proposed range from 56% for the 20/80 case
to 24% for the 80/20 case, see Fig. 4a. For deeper analysis,
we plot the single-pair average Aol penalty for both classes,
see Figs. 4c and 4d. Since Class-1 has a larger Aol penalty
function, its average Aol penalty is always higher (see the
magnitude of of y-axis in Figs. 4c and 4d). Furthermore,
since Class-1 is more “urgent,” our scheme allocates higher
throughput for Class-1 than Class-2, (see the magnitude of
y-axis in Figs. 4e and 4f).

We also observe that when the percentage of Class-1
pairs increases, the network is carrying more “urgent” traffic.
However, since all pairs share the same network resources,
each Class-1 pair cannot expect to receive the same amount of
bandwidth as before. As a result, the throughput of each Class-
1 pair decreases (Fig. 4e) and its average Aol penalty increases

(Fig. 4c). Each Class-2 pair also reduces its own throughput
(Fig. 4f) and increases its own Aol penalty (Fig. 4d) to
make room for the newly added Class-1 pairs in the network.
Overall, the sum throughput of all 5 pairs increases when
we have more Class-1 pairs (Fig. 4b). This is because the
network recognizes that it is now carrying more urgent pairs
and increases its sum throughput accordingly.*

Note that both ZW and Aol-Optimal are cost-oblivious and
each S-D pair thus blindly decides its own transmission policy
without considering the collective network resource consump-
tion. That is why all their performance curves are flat lines
that do not react to different Class-1 percentages. In contrast,
the proposed scheme optimally balances the throughput and
Aol-penalty while taking into account different compositions
of the underlying traffic.
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Fig. 4: Simulation results for five coexisting S-D pairs.

V. CONCLUSION

We have derived the optimal policy that jointly mini-
mizes the sum of Aol penalties and the shared network cost
across multiple coexisting traffics, while optimally balancing
the heterogeneously timeliness requirements, heterogeneous
throughput-to-cost relationships, and heterogeneous underly-
ing delay distributions.

4Each S-D pair is allocated with less throughput when the Class-1 per-
centage increases, see Figs. 4e and 4f. But because each Class-1 pair has a
higher throughput than that of a Class-2 pair and because we gradually replace
the Class-2 pair(s) by Class-1 pair(s), the sum throughput still increases, see
Fig. 4b.
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