
Jointly Minimizing AoI Penalty and Network Cost

Among Coexisting Source-Destination Pairs

Cho-Hsin Tsai and Chih-Chun Wang

School of Electrical and Computer Engineering, Purdue University, USA

Email: {chtsai, chihw}@purdue.edu

Abstract—One main objective of ultra-low-latency communi-
cations is to minimize the data staleness at the receivers, recently
characterized by a metric called Age-of-Information (AoI). While
the question of when to send the next update packet has been
the central subject of AoI minimization, each update packet
also incurs the cost of transmission that needs to be jointly
considered in a practical design. With the exponential growth
of interconnected devices and the increasing risk of excessive
resource consumption in mind, this work derives an optimal
joint cost-and-AoI minimization solution for multiple coexisting
source-destination (S-D) pairs. The results admit a new AoI-
market-price-based interpretation and are applicable to the setting
of (a) general heterogeneous AoI penalty functions and Markov
delay distributions for each S-D pair, and (b) a general network
cost function of aggregate throughput of all S-D pairs. Extensive
simulation is used to demonstrate the superior performance of
the proposed scheme.

I. INTRODUCTION

The increasing demand for real-time communications, in-

cluding VR/AR systems, remote surgeries, and autonomous

driving services [1]–[3], prompts a back-to-basics approach for

next-generation low-latency network designs [4]. Recently, a

new metric called Age-of-Information (AoI) was introduced to

rigorously quantify data staleness [5]. The corresponding AoI

minimization problems have since been studied for various

settings [6]–[11]. In particular, [12]–[14] considered a single

source-destination (S-D) pair, where each data packet sent

from the source experiences random delay. Once it is delivered

to the destination, an instantaneous ACK packet will inform

the source, and the ACK will be used to decide when to

send the next packet. [12], [13] characterized the optimal

transmission schedules that minimize the average AoI. [14]

extends the results to arbitrary AoI penalty functions. Recently,

[15] generalized the 1-way-delay setting in [12]–[14] to the

2-way-delay setting, where the ACK also experiences random

delay, and proposed a distribution-oblivious online algorithm

that provably converges to the optimum.

Meanwhile, as the exponential growth of connected de-

vices brings more convenience to the society, such a gigantic

number of devices also poses an increasing risk of excessive

resource consumption [16]. Existing results [13], [14] assume

a maximum average sampling rate constraint Rmax, which
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essentially solve1 the following joint cost-&-AoI minimization

problem

minimize avg.aoi.penalty + loss(sampling.rate) (1)

where the network cost function loss(x) = 0 if x ≤ Rmax and

loss(x) = ∞ if x > Rmax. This work strengthens the results

in [13], [14] with the following contributions.

(i) Instead of a specialized cost function loss(·), we solve

(1) for arbitrary continuously differentiable, convex, non-

decreasing loss(·). The results characterize the complete trade-

off between cost and AoI under a more general throughput-to-

cost and AoI-penalty structure, and hence significantly broaden

the applicability of [13], [14].

(ii) We generalize the single S-D pair results [13], [14] for

multiple coexisting S-D pairs. Specifically, we characterize

how coexisting S-D pairs can optimally and collectively bal-

ance their individual AoI minimization goals via a shared cost

function of the aggregate network throughput. See (7) for the

rigorous definition. The solution takes into account different

timeliness requirements and different transmission costs of

each S-D pair by allowing for heterogeneous AoI penalty

functions and general cost function loss(·). This network-wide

joint cost-&-AoI minimization will greatly benefit future 5G

network designs, which aim to support a million devices in a

square kilometer [17] of widely-ranging throughput-cost and

AoI targets.

(iii) Analytically, the solution admits a new AoI-market-

price-based interpretation, and can thus be viewed as a new

AoI-centric network utility maximization (NUM) framework.

(iv) Simulation results show that our scheme successfully

curbs the excessive resource consumption of the existing cost-

oblivious AoI-optimal policy and optimally balances all S-D

pairs with 24–56% savings compared to the state of the art.

A. Existing Joint Cost-&-AoI Minimization Results

This work focuses on the cost-&-AoI minimization for the

queue-based setting with random service time and random

ACK delay, see [13]–[15]. Existing cost-&-AoI minimization

results are based on various significantly different network

scenarios [13], [14], [18]–[24]. For instance, both [18] and [19]

considered AoI minimization with either the average power

1While the results of [13], [14] are presented as having a maximum
sampling rate constraint, the approaches of [13], [14] can also be used to
solve the cost-&-AoI minimization problem when loss(x) is affine.



constraint or with the sampling cost consideration. Both con-

sidered block fading channels, in which whether each packet

transmission succeeds or fails will be fed back to the source

instantaneously at the end of the time slot. There is no concept

of random delayed delivery that is central in our setting. [24]–

[26] focused on energy harvesting sources, a scenario that is

very different from our simple but highly relevant setting of

multiple S-D pairs with delayed delivery. In addition, most

existing works considered AoI with an affine throughput-to-

cost function [13], [14], [20]–[23], another distinction from

the general loss(·) in this work.

II. MODEL AND FORMULATION

A. System Model With K Source-Destination Pairs

We consider a network of K coexisting S-D pairs, each

of which is composed of a source, a destination, a source-

to-destination (s2d) channel and a destination-to-source (d2s)

channel as shown in Fig. 1. The ACK-based generate-at-

will model [12]–[15] is considered. To be specific, after the

source transmits a packet, the packet will experience some

delay before arriving at the destination. Once delivered, the

destination immediately generates an ACK-packet and sends

it back to the source, which again may experience some delay.

After the ACK of the previous packet arrives, the source can

wait for an arbitrary amount of time. After the carefully chosen

waiting time, the source generates a new status update packet

and transmits it. The process then repeats itself. The detailed

system evolution is described below (also see [13]–[15] for

the description for the special case of K = 1).

Source Destination

Delay Z(k)

Delay Y(k)

ACK immediately

Fig. 1: An S-D pair with two-way delay.

Time sequences: For the k-th S-D pair, the system con-

sists of three discrete-time real-valued non-negative random

processes X
(k)
i , Y

(k)
i , and Z

(k)
i , for all i ≥ 0. X

(k)
i is the

waiting time of the source between receiving the (i − 1)-th

ACK and generating/transmitting the i-th update packet;2 Y
(k)
i

(resp. Z
(k)
i ) is the random delay for the i-th use of the s2d

(resp. d2s) channel.

For each S-D pair, S
(k)
i denotes the time instant when

the i-th packet is generated/transmitted. The i-th packet ar-

rives at the destination at time D
(k)
i , and the i-th ACK

packet is received by the source at time A
(k)
i . The values of

(S
(k)
i , D

(k)
i , A

(k)
i ) refer to the absolute time instants, while

the values of (X
(k)
i , Y

(k)
i , Z

(k)
i ) represent the lengths of the

2The assumption that X
(k)
i

≥ 0 prevents the source from transmission
before receiving the ACK, which reflects the principle in most TCP-based
protocols [27]. One may design an even better algorithm that transmits
anticipatively before the ACK is delivered, which, however, is beyond the
scope of this paper.

intervals. They are related by the following equations: Ini-

tialize A
(k)
0 = X

(k)
0 = Y

(k)
0 = Z

(k)
0 = 0. For all i ≥ 1,

we have S
(k)
i = A

(k)
i−1 + X

(k)
i , D

(k)
i = S

(k)
i + Y

(k)
i , and

A
(k)
i = D

(k)
i + Z

(k)
i . We call the time interval [A

(k)
i−1, A

(k)
i )

the i-th round, consisting of the i-th waiting time X
(k)
i at the

source, the i-th s2d delay Y
(k)
i and d2s delay Z

(k)
i . See Fig. 2.
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Fig. 2: Evolution of the AoI penalty function γk(∆k(t)).

Age-of-Information and its penalty function: Following [5],

we define the Age-of-Information ∆k(t) at time t by

∆k(t) , t−max{S
(k)
i : i satisfies D

(k)
i ≤ t}. (2)

The AoI penalty function γk(∆k(t)) represents the level of

data staleness. Three popular choices are: (i) linear γk,lin(∆) =
wk · ∆ [28]; (ii) quadratic γk,qrd(∆) = wk · ∆2 [15]; and

(iii) exponential γk,exp(∆) = ewk∆ − 1 [14]. In all the three

choices, wk ≥ 0 are tunable parameters. An S-D pair carrying

time-sensitive traffic may use an exponential penalty function

and/or use a larger weight wk, while less urgent traffic may use

a linear penalty and/or with a smaller wk. Our results hold for

any heterogeneous choices of γk(·), not limited to the above

three. See Fig. 2 for the evolution of γk(∆k(t)).
Overall objective: Define the k-th average throughput by

Rk(T ) =
1

T
E{max{i : A

(k)
i ≤ T}}. (3)

We use a single loss(·) function to represent the cost for the

network to carry the traffic of all K pairs. We aim to minimize

lim sup
T→∞





K
∑

k=1

1

T

∫ T

0

γk(∆k(t))dt



+ loss

(

K
∑

k=1

ckRk(T )

)

(4)

where the constants ck > 0 describe the (relative) amount

of resource consumption for carrying the underlying traffic,

e.g., a large ck means it is more costly to carry the k-th S-D

pair. Note that the AoI penalty γk(·) can also be individually

weighted for each pair. We do not explicitly specify their

weighting coefficients herein since they can be completely

absorbed when choosing γk(·) arbitrarily and heterogeneously.



Technical assumptions (i)–(v): (i) loss(·) : [0,∞) →
(−∞,∞) is a continuously differentiable, non-decreasing and

convex function; for each S-D pair, we assume (ii) Y (k) and

Z(k) are of bounded support; (iii) (Y
(k)
i , Z

(k)
i ) can be of

arbitrary joint distribution PY (k)Z(k) but the vector random

process {(Y
(k)
i , Z

(k)
i ) : i ≥ 1} is stationary and Markov; (iv)

E{Y
(k)
i } + E{Z

(k)
i } > 0; (v) γk(·) : [0,∞] → [0,∞] is

a continuously differentiable and strictly increasing function

satisfying γk(0) = 0 and γk(∞) = ∞.

B. From the Long-Term Average to a Single-Round Analysis

We first define two functions for the k-th S-D pair:

hk(y
′, z′, x, y) ,

∫ y′+z′+x+y

0

γk(t)dt−

∫ y

0

γk(t)dt (5)

gk(y
′, z′, x) , E

{

hk(y
′, z′, x, Y

(k)
i )|Y

(k)
i−1 = y′, Z

(k)
i−1 = z′

}

(6)

where gk(y
′, z′, x) is the conditional expectation of

hk(y
′, z′, x, Y

(k)
i ) over Y

(k)
i . The intuition behind

(5) is that the shaded area in Fig. 2 is computed by

hk(Y
(k)
i−1, Z

(k)
i−1, X

(k)
i , Y

(k)
i ). We observe that the overall area

underneath γk(∆k(t)) can be decomposed as a summation

of smaller sub-areas with shapes similar to the shaded area

hk(Y
(k)
i−1, Z

(k)
i−1, X

(k)
i , Y

(k)
i ) in Fig. 2. Using this observation

(also used in [13]–[15]), we can convert the original problem

(4) to the following equivalent single-round minimization

problem:

µ∗ , inf
X

(1)
i

,...,X
(K)
i

K
∑

k=1

E

{

gk(Y
(k)
i−1, Z

(k)
i−1, X

(k)
i )

}

E

{

Y
(k)
i−1 + Z

(k)
i−1 +X

(k)
i

}

+ loss





K
∑

k=1

ck

E

{

Y
(k)
i−1 + Z

(k)
i−1 +X

(k)
i

}



 (7)

for which the i-th waiting time X
(k)
i is a function of the delays

of the previous round (Y
(k)
i−1, Z

(k)
i−1). Our goal is to design

the set of K waiting time functions {X
(1)
i , ..., X

(K)
i } that

minimizes (7). The value of the round index i is irrelevant

herein since whatever design that minimizes (7) can and will

be repeatedly applied to all rounds i ≥ 1. In the sequel, we

focus exclusively on solving (7).

III. MAIN RESULTS

Recall that the waiting time X
(k)
i is a function of

(Y
(k)
i−1, Z

(k)
i−1). We consider the following hitting-time-based

φ
(k)
β with a tunable parameter β ≥ 0:

X
(k)
i (β) = φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1) (8)

, inf

{

t > 0 :
d

dt
gk(Y

(k)
i−1, Z

(k)
i−1, t) > β

}

. (9)

Note that the waiting time function φ
(k)
β (·, ·) is based on

gk(·), which implicitly depends on the given, likely heteroge-

neously chosen, k-th AoI penality function γk(·) and the k-th

delay distribution Y
(k)
i , see (5) and (6). As a result, different

k may have a different φ
(k)
β (·, ·) even though they share the

same form of (9). For each β, we further define

aoik(β) , E

{

gk(Y
(k)
i−1, Z

(k)
i−1, φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1))

}

(10)

Tk(β) , E

{

Y
(k)
i−1 + Z

(k)
i−1 + φ

(k)
β (Y

(k)
i−1, Z

(k)
i−1)

}

(11)

as the expected AoI penalty and time duration of the special

scheme φ
(k)
β (·, ·), where both expectations are taken over the

random vector (Y
(k)
i−1, Z

(k)
i−1).

Lemma 1: Under technical assumptions (i)–(v), aoik(β)
and Tk(β) are continuous, non-decreasing and strictly positive

functions of β.

By the definition of (9), if d
dt
gk(·, ·, t)|t=0 is lower bounded

away from 0, then φ
(k)
β (·, ·) = 0 for all β that are sufficiently

close-to-zero. Therefore, the values of aoik(β) and Tk(β) in

(10) and (11) do not change with respect to β when β is small.

To formalize this observation, for every 1 ≤ k ≤ K, we define

β
(k)
0 , max{β : Tk(β) = Tk(0)}. (12)

We then have Tk(β1) = Tk(β2) and aoik(β1) = aoik(β2) for

all β1, β2 ∈ [0, β
(k)
0 ]. Before proceeding, we introduce one

more technical assumption.

Technical assumption (vi): For each k, we assume aoik(β)
and Tk(β) are continuously differentiable with respect to β if

β > β
(k)
0 .

In other words, we assume aoik(β) and Tk(β) are well-

behaved versus β while recognizing that aoik(β) (resp. Tk(β))
contains two pieces, one being a flat line segment for β ∈

[0, β
(k)
0 ] and one being a non-decreasing curve for β ∈

[β
(k)
0 ,∞) (see Lemma 1). The left and right derivatives at

the junction point β = β
(k)
0 are generally not equal. Hence

the derivative continuity is only assumed for β > β
(k)
0 .

Following (7), we define

µHT(β1, ..., βK) ,

K
∑

k=1

aoik(βk)

Tk(βk)
+ loss

(

K
∑

k=1

ck

Tk(βk)

)

(13)

as the objective value achieved when all K pairs employ

the hitting-time policy (8) and (9) with thresholds being

(β1, ..., βK), respectively. Also, define

µ∗

HT , min
β1,...,βK

µHT(β1, ..., βK) (14)

as the minimum value achieved if all K pairs use the hitting-

time policy (after optimizing (β1, ..., βK)). It is clear that µ∗ ≤
µ∗

HT since the latter is restricted to a special class of hitting-

time-based policies.

Proposition 1: Under technical assumptions (i)–(vi), we

have

µ∗ = µ∗

HT. (15)

A high-level proof sketch is as follows. Consider any fixed

k. Suppose for an arbitrarily given scheme, the corresponding



expected i-th round AoI-penalty is ak and the expected i-th

round time duration is tk. We first prove that we can always

find a βk ≥ 0 such that
aoik(βk)
Tk(βk)

≤ ak

tk
and 1

Tk(βk)
≤ 1

tk
; that is,

the hitting-time policy using such βk “improves” the average

AoI penalty and the average throughput simultaneously. Since

the loss(·) is non-decreasing, replacing the given scheme by

our hitting-time policy will not hurt the overall objective value

in (7), hence Proposition 1.

The following results describe how to compute the thresh-

olds (β1, ..., βK) that achieves the minimum µ∗

HT = µ∗.

Lemma 2: For each k,

βk · Tk(βk)− aoik(βk) (16)

is a continuous and strictly increasing function of βk. Fur-

thermore, its value is strictly negative when βk = 0 and it

approaches ∞ when βk → ∞.

By Lemma 2, ∀x ≥ 0 the following equation

βk · Tk(βk)− aoik(βk)

ck
= x (17)

has a unique βk solution in (0,∞), which we denote by βk(x)
to emphasize its dependency on x. Define

m(r) ,
d

dr
loss(r) (18)

as the slope of the cost function loss(·). We then define

f(β1, · · · , βK) , m

(

K
∑

k=1

ck

Tk(βk)

)

. (19)

Lemma 3: The following fixed-point equation

f(β1(x), · · · , βk(x)) = x (20)

has a unique root x∗ in the interval [0, f (β1(0), · · · , βK(0))].

Proposition 2: Eq. (14) is attained by

µ∗

HT = µHT(β1(x
∗), ..., βK(x∗)). (21)

Note that all our results require technical assumptions (i) to

(vi). For example, the uniqueness of x∗ in Lemma 3 requires

the convexity of loss(·).
An AoI-market-price-based interpretation: The intuition be-

hind Lemmas 2 and 3 and Proposition 2 is as follows. Given x,

the solution βk(x) is the threshold parameter that leads to the

hitting-time policy that minimize the average AoI penalty of the

k-th pair under the marginal cost x. Consequently, x can be

viewed as the price that the S-D pair has to pay for each packet

transmission. The larger the price x, the larger the βk(x) (see

Lemma 2 and (17)), the longer the expected duration of each

packet transmission Tk(βk(x)) (see Lemma 1), the less willing

for each S-D pair to send a new packet.

As a result, the right-hand side of the fixed-point equation

(20) is the “market price” of each packet transmission each

S-D pair is willing to pay when operating under parameter

βk(x). Note that f(β1, · · · , βK) in (18) and (19) is the

marginal network cost if the network is to support all K

pairs that adopt the hitting-time policy with parameters β1 to

βK , respectively. The left-hand side of (20) is thus how much

the network would charge for each packet transmission if all

S-D pairs operate under (β1(x), · · · , βK(x)). The optimum

(equilibrium) is attained when the market price balances how

much each S-D pair is willing to pay and how much the

network has to charge for each packet transmission, hence

the fixed-point equation.

By Propositions 1 and 2, we can find an optimal policy that

achieves µ∗ by the following steps.

Step 1: For each S-D pair, use the given AoI penalty

function γk(·) and the delay distribution (Y
(k)
i , Z

(k)
i ) to find

the explicit expression of hk(·), gk(·), φ
(k)
β (·) by (5), (6),

and (9), respectively; Step 2: Use the waiting time function

φ
(k)
β (·) to derive the functions aoik(β) and Tk(β) of β by (10)

and (11) and the resulting function βk(x) of x by (17); Step

3: By Lemma 3, we use the bisection method [29] to find

x∗, the root of the fixed-point equation (20), and then derive

the optimal thresholds (β1(x
∗), ..., βK(x∗)) in Proposition 2;

Step 4: For the k-th S-D pair, if the (i − 1)-th round delays

are (Y
(k)
i−1, Z

(k)
i−1) = (y′, z′), the source simply waits for

X
(k)
i = φ

(k)
βk(x∗)(y

′, z′) amount of time, see (8) and (9), before

generating/transmitting the next (i.e., the i-th) packet.

Steps 1 to 3 can be computed offline. Step 4 is a sim-

ple hitting-time-based policy using the computed parameter

βk(x
∗). It is worth pointing out that the K-pair jointly

optimal solution can be computed very efficiently for large

K, say K = 103, since the optimal K-dimensional vector

(β∗

1 , · · · , β
∗

K) in (14) is found by solving a 1-dimensional

fixed-point equation (20) via bisection.

IV. SIMULATION RESULTS

We compare our scheme to the following important alter-

natives:

(i) Zero-Wait (ZW) policy [30]: X
(k)
i = 0, ∀k, i. ZW is

known to maximize the sum throughput [30].

(ii) AoI-Optimal policy [13]–[15]: this policy is also a

hitting-time-based policy3 but is oblivious to the network cost.

Due to the space limit, we only report the simulation results

using log-normal delays, which are empirically reasonable

channel models [31]. Similar results have been observed with

other delay distributions.

A. The Case of K = 1

When K = 1, our results characterize the joint cost-&-AoI

minimal solution of a single-pair setting with arbitrary cost

function loss(·), which has not been studied in the existing

works [13], [14] that consider the maximum sampling rate

constraint.

We consider a single S-D pair with delays Y and Z being

log-normal random variables with (µY , σ
2
Y ) = (0.5, 0.25),

(µZ , σ
2
Z) = (0.5, 0.5), and the correlation coefficient ρY Z =

0.66. The vector process {(Yi, Zi) : i ≥ 1} is i.i.d. and the AoI

3This is consistent with our findings since our results contain the cost-
oblivious setting [13]–[15] as a special case once we hardwire loss(·) = 0.



penalty function is quadratic γ1(∆) = 0.5 ·∆2. We consider

an exponential loss(r) = eαr − 1 with c1 = 1, see (7). The

waiting time of the proposed policy can be computed using

the four steps outlined in the end of Sec. III. For instance,

when α = 16, we have x∗ = 147.21 and β1(x
∗) = 39.37

according to Steps 1 to 3. If the delays in the previous round

are (Y
(1)
i−1 = 1, Z

(1)
i−1 = 1), then the waiting time for this round

is X
(1)
i (β1(x

∗)) = 4.95.

We run the three schemes ZW, AoI-Optimal, and Proposed

scheme for different α values and Fig. 3 plots the resulting

joint cost-&-AoI objective values. As expected, the Proposed

always achieves the lowest objective value. For large α = 20,

it leads to substantial savings of 80% and 66% when compared

to ZW and AoI-Optimal policies, respectively.

0 5 10 15 20
0

50

100

150

J
o

in
t 

C
o

s
t-

&
-A

o
I 

O
b

j.

Single S-D Pair

ZW

AoI-Optimal

Proposed

Fig. 3: Simulation results for a single S-D pair.

B. The Case of K = 5 With Two Classes of Traffic

We also examine the case when heterogeneous traffics are

competing for the shared resources. In this experiment, we fix

loss(r) = e4r−1 and consider five S-D pairs with two classes

of traffic. We vary the composition of the two classes between

20/80 (one Class-1 S-D pair and four Class-2 S-D pairs) to

80/20 (four Class-1 pairs and one Class-2 pair).

All five S-D pairs have identical log-normal delays Y and Z

as described in Sec. IV-A. However, each Class-1 pair has an

AoI penalty function γClass1(∆) = ∆2, whereas each Class-2

pair has a smaller AoI penalty function γClass2(∆) = 0.05 ·∆2;

that is, Class-1 traffic is more “urgent.” For simplicity, we

do not impose individual throughput weighting and thus set

ck = 1 for all k = 1 to 5, see (7).

Compared to the cost-oblivious AoI-Optimal policy, the

savings of the Proposed range from 56% for the 20/80 case

to 24% for the 80/20 case, see Fig. 4a. For deeper analysis,

we plot the single-pair average AoI penalty for both classes,

see Figs. 4c and 4d. Since Class-1 has a larger AoI penalty

function, its average AoI penalty is always higher (see the

magnitude of of y-axis in Figs. 4c and 4d). Furthermore,

since Class-1 is more “urgent,” our scheme allocates higher

throughput for Class-1 than Class-2, (see the magnitude of

y-axis in Figs. 4e and 4f).

We also observe that when the percentage of Class-1

pairs increases, the network is carrying more “urgent” traffic.

However, since all pairs share the same network resources,

each Class-1 pair cannot expect to receive the same amount of

bandwidth as before. As a result, the throughput of each Class-

1 pair decreases (Fig. 4e) and its average AoI penalty increases

(Fig. 4c). Each Class-2 pair also reduces its own throughput

(Fig. 4f) and increases its own AoI penalty (Fig. 4d) to

make room for the newly added Class-1 pairs in the network.

Overall, the sum throughput of all 5 pairs increases when

we have more Class-1 pairs (Fig. 4b). This is because the

network recognizes that it is now carrying more urgent pairs

and increases its sum throughput accordingly.4

Note that both ZW and AoI-Optimal are cost-oblivious and

each S-D pair thus blindly decides its own transmission policy

without considering the collective network resource consump-

tion. That is why all their performance curves are flat lines

that do not react to different Class-1 percentages. In contrast,

the proposed scheme optimally balances the throughput and

AoI-penalty while taking into account different compositions

of the underlying traffic.
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Fig. 4: Simulation results for five coexisting S-D pairs.

V. CONCLUSION

We have derived the optimal policy that jointly mini-

mizes the sum of AoI penalties and the shared network cost

across multiple coexisting traffics, while optimally balancing

the heterogeneously timeliness requirements, heterogeneous

throughput-to-cost relationships, and heterogeneous underly-

ing delay distributions.

4Each S-D pair is allocated with less throughput when the Class-1 per-
centage increases, see Figs. 4e and 4f. But because each Class-1 pair has a
higher throughput than that of a Class-2 pair and because we gradually replace
the Class-2 pair(s) by Class-1 pair(s), the sum throughput still increases, see
Fig. 4b.
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