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Changes in task demands can have delayed adverse impacts on performance. This phenomenon, known as the workload his-

tory effect, is especially of concern in dynamic work domains where operators manage fluctuating task demands. The existing

workload history literature does not depict a consistent picture regarding how these effects manifest, prompting research to

consider measures that are informative on the operator’s process. One promising measure is visual attention patterns, due

to its informativeness on various cognitive processes. To explore its ability to explain workload history effects, participants

completed a task in an unmanned aerial vehicle command and control testbed where workload transitioned gradually and

suddenly. The participants’ performance and visual attention patterns were studied over time to identify workload history

effects. The eye-tracking analysis consisted of using a recently developed eye-tracking metric called coefficient K, as it in-

dicates whether visual attention is more focal or ambient. The performance results found workload history effects, but it

depended on the workload level, time elapsed, and performance measure. The eye-tracking analysis suggested performance

suffered when focal attention was deployed during low workload, which was an unexpected finding. When synthesizing

these results, they suggest unexpected visual attention patterns can impact performance immediately over time. Further re-

search is needed; however, this work shows the value of including a real-time visual attention measure, such as coefficient

K, as a means to understand how the operator manages varying task demands in complex work environments.

CCS Concepts: • Human-centered computing→ Empirical studies in HCI; • Applied computing→ Psychology;

Additional Key Words and Phrases: Workload history, eye tracking, UAV

ACM Reference format:

Shannon P. Devlin, Jennifer K. Byham, and Sara Lu Riggs. 2021. Does What We See Shape History? Examining Workload

History as a Function of Performance and Ambient/Focal Visual Attention. ACM Trans. Appl. Percept. 18, 2, Article 8 (May

2021), 17 pages.

https://doi.org/10.1145/3449066

Shannon P. Devlin, Jennifer K. Byham, and Sara Lu Riggs are contributed equally to this research.

This study was supported in part by the National Science Foundation (NSF Grant No. 1566346, Program Manager: Dr. Ephraim Glinert; NSF

Grant No. 1750850, Program Manager: Dr. Andrew Kerne).

Authors’ addresses: S. P. Devlin and S. L. Riggs, University of Virginia, 151 Engineer’s Way, Charlottesville, Virginia, 22904; emails: {spd7t,

sriggs}@virginia.edu; J. K. Byham, Clemson University, 211 Fernow Street, Clemson, South Carolina, 29634; email: jbyham@g.clemson.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

© 2021 Association for Computing Machinery.

1544-3558/2021/05-ART8 $15.00

https://doi.org/10.1145/3449066

ACM Transactions on Applied Perception, Vol. 18, No. 2, Article 8. Publication date: May 2021.

https://doi.org/10.1145/3449066
mailto:permissions@acm.org
https://doi.org/10.1145/3449066


8:2 • S. P. Devlin et al.

1 INTRODUCTION

Workload transitions—i.e., changes in the number and/or complexity of task demands—are inherently embedded
in dynamic work domains such as healthcare, aviation, and military operations. For example, operators oversee-
ing the command and control of unmanned aerial vehicles (UAVs) are subject to varying workload levels as
they manage various responsibilities, task demands, and automation levels [61]. For instance, UAV operators are
predisposed to more frequent and drastic workload transitions as they complete tasks for multiple UAVs [32].
Previous research has shown that changes in task demands can affect performance later, which is known as a
workload history effect [6, 10, 21, 26, 48]. For example, even if an operator can manage a workload transition, it
may have ramifications on operator performance at a later period in time [33].

To date, workload history is not completely understood as there is a lack of consensus across studies. Work-
load history effects have been found to be dependent on the direction of the transition (i.e., transitions from
low to high versus high to low workload), type of task (audio versus visual tasks, single versus dual tasks [8]),
and measures of performance (errors of commission versus omission [6]). Analyzing subjective [20, 30, 36, 50],
psychophysiological [2, 19], and personality measures [7, 9] post hoc have shed more light on workload history
effects, but the investigation is not complete. For example, there is little work exploring relevant environmental
factors, such as transition rate (i.e., transitioning slowly or quickly), or specifics about the operator’s response
to managing workload levels over time, like his/her visual attention patterns.
The goal of the present work is to determine whether eye-tracking analysis, namely, visual attention type,

can be a non-invasive and quantitative means to further understand how operators are impacted by workload
transitions over time. The eye-tracking metric called coefficient K can discriminate between two types of visual
attention: focal (i.e., focused) and ambient (i.e., global) attention. Discerning between these two attention types
can be an indication of how the operator is managing workload transitions—for instance, does the operator con-
sistently concentrate their visual attention or disperse it across the entire display? Knowing this information can
potentially inform, and ideally be incorporated in, future technologies to thwart adverse effects due to workload
history.

2 BACKGROUND

The National Research Council (NRC) was tasked in 1988 to examine the effects of having extended periods
of underload follow intense periods of overload to prepare the U.S. Army for its reduction of crew size and
increase in automation reliance [33]. They found performance measures did not recover over time even though
the ultimate level of load decreased to low workload. As a result, the NRC initiated research to study workload
history—i.e., how fluctuations in task load affects performance over time—given its relevance for a variety of
data-rich environments [33]. Previous research helped provide insights into workload history effects, but there
was still a lack of consensus [10, 26, 46, 48]. For example, performance after a workload transition has been
found to improve [40, 48], deteriorate [6], neither improve nor deteriorate [30, 36, 40, 48], and/or can change
over time [24]. Often, workload history effects depend on which performance metric was measured [6, 40, 50].
Subsequently, theoretical explanations of workload history are not widely agreed upon [6]. More recent work [2,
12, 36] supports the effort regulation explanation, which suggests people can mitigate workload history effects
if they can accurately assess the environment’s dynamics and develop effective management strategies [28, 31].
Evenwith the continued support of the effort regulation explanation, workload history is still an open research

topic [29]. For example, the growing dynamism in complex domains [1]may compound currently observedwork-
load history effects. However, continuous, real-time, psychophysiological measures [2, 20] offer as a promising
means to address some of these challenges. For example, when performance suffers after a workload transition
from low to high workload, electroencephalograms (EEG) have shown an increase in the electrical activity in
the areas of the brain that are associated with the mental processes of “sustained attention, conflict resolution,
and rapid updating of working memory.’’ This suggests operators produce a physiological response to workload
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transitions and it can be reliably tracked. However, the authors also found unexplained inconsistencies with some
measures and suggest it may be necessary to rely on multiple EEG measures to detect workload history effects
[2]. Similarly, Kim et al. [40] built upon this work by examining EEG correlates of the low workload periods in a
low-high-low workload transition. Minimal differences between performance were observed, but they found the
area of the brain that was responsible for “cognitive behavior and decisionmaking” was higher for the second low
workload period than the first. The authors stated that these findings indicated a hysteresis effect was present,
even though performance was unaffected. Although these findings are interesting, it is worth investigating if
eye tracking can serve as a less invasive and less complex psychophysiological measure to capture the impacts
of workload history in real-time. Of interest is to see whether eye tracking can be more of informative on the
process operators use to manage workload transitions and, in turn, how that process impacts performance. An-
alyzing eye-tracking data has been found to “add another dimension to traditional speed/performance analysis”
[16], making it a potential method to address this current need in the workload history literature.

2.1 Using Eye-tracking Technology to Understand Workload History

Eye-tracking technology typically relies on the corneal-reflection technique, which shines an infrared light in to a
person’s eye to create and track a single reflection point on the cornea. The resulting data consists of timestamped
Cartesional coordinates, which are based on the eye tracker’s sampling rate and the display’s resolution. These
coordinates are then used to distinguish between fixations and saccades. Fixations are when the eye is relatively
stationary and characterize about 90% of viewing behavior. Fixations are when information processing occurs.
Saccades are the ballistic movements between fixations [16, 55]. Fixations and saccades are the basis of most
eye-tracking metrics, i.e., the way in which visual attention patterns are quantified [55]. Examples of metrics
include the amount of time a given fixation lasts (i.e., fixation duration) or the size of a saccade (i.e., saccade
amplitude; [60]). These metrics aim to capture the, “objective and quantitative evidence of the user’s visual,
overt attentional processes, based on the user’s scan patterns” [15]. To date, eye-tracking metrics have seldomly
been used in workload history research.
Often, metrics are aggregated across experimental conditions for comparison [11, 25, 37, 44]; however this

type of analysis often overlooks changes in visual attention patterns over time. For example, a study conducted
by Jiang et al. [38] found that as participants completed a web search task, their performance and scan patterns
were inversely proportional to the workload changes over time. In other words, as participants completed more
search tasks (i.e., increase in workload), both the likelihood of selecting the correct search result and mean
fixation duration decreased. This work demonstrates the importance of capturing how visual attention may
evolve over time. However, the interpretation of a certain metric’s trend over time can be convoluted [53]. New
metrics that account for the order in which certain types of fixations and saccades occur over time, such as
coefficient K, have the potential to capture and accurately depict the dynamism of visual attention [42].

2.2 Coefficient K: A Dynamic Measure of Ambient and Focal Visual Attention

Coefficient K accounts for changes in the magnitude and sequence of each fixation and saccade in a scan pattern.
It has been found to effectively distinguish between the two types of visual attention used during visual search
tasks: ambient and focal [42]. Ambient visual attention occurs when people are gaining spatial orientation (i.e.,
“getting a sense” of the environment), whereas focal visual attention occurs when people are processing the
details of the environment [3, 56]. Ambient visual attention usually consists of a pattern where sequences of
short fixations are followed by long saccades. Oppositely, focal visual attention usually consists of sequences of
long fixations followed by short saccades [3, 63]. The interaction between ambient and focal visual attention in
scene perception is dynamic [56, 63]. For example, when a scene is initially being examined, there is typically
more ambient visual attention (i.e., shorter fixations and longer saccades), but as objects are identified, there is
more focal visual attention (i.e., fixation durations increase and saccades decrease [34, 52]).
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When it comes to studying visual attention, most analyses aggregate the duration and magnitude of the fixa-
tions and saccades over time. There has been limited work analyzing how eye-tracking metrics change over time
and whether these changes exhibit particular changes in visual attention patterns. Pannasch et al. [54] compared
fixation durations and saccade amplitudes during the early and late phases of scene perception to better under-
stand the relationship between ambient and focal visual attention over time. However, their analysis aggregated
fixations and saccades over blocks of time so it did not capture how the sequence of fixations and saccades im-
pacts the evolution of visual attention patterns over time. However, Krejtz et al. [42] developed a metric that
distinguishes between ambient and focal visual attention each time a fixation or saccade occurs. Equation (1)
shows how coefficient K is calculated. Essentially, it is the difference between standardized values (Z-score) of
each fixation duration (di ) and its following saccade amplitude (ai+1):

Ki =
di − μd
σd

− ai+1 − μa
σa

such that
1

n

∑
Ki = 1. (1)

Here, μd is the mean fixation duration, μa is the mean saccade amplitude, σd and σa are the respective standard
deviations of fixation duration and saccade amplitude for the entire data set to account for any bias. These
parameters is then calculated for each sequential fixation and then averaged over all fixations (n) [42]. Coefficient
K is a measure of standard deviation; a value of 1 indicates that “the duration of the current fixation is beyond
1 standard deviation longer than the subsequent saccade amplitude,” whereas a value of −1 indicates that “a
saccade is more than 1 standard deviation longer than the preceding fixation duration” [42]. Positive coefficient
K values are an indicator of focal attention as they occur when long fixations are followed by short saccades.
Negative coefficient K values are an indicator of ambient visual attention as they occur when short fixations are
followed by long saccades [63]. A coefficient K value that approaches zero suggests that fixations and subsequent
saccades are relatively equal with their respective means and is not an indicator of either attention type. (*Note:
This occurrence is rare on an individual level, although may occur when averaging).

Coefficient K was empirically validated by comparing the values during serial and parallel search [42]. It was
found that the most focal eye movements (i.e., positive coefficient K values) occurred during serial search and the
most ambient eye movements (i.e., negative coefficient K values) occurred during parallel search. These results
align with what is expected during serial and parallel searches, confirming the validity of coefficient K, i.e., its
ability to distinguish between the two types of visual attention. Previous research has used it to distinguish the
visual attention patterns when viewing artwork [43], completing cartographic tasks [41], and between socially
anxious and non-anxious viewers [45]. In all cases, coefficient K has been more informative on the details of the
focal-ambient viewing dynamics, which further explains the viewer’s overall visual attention patterns in these
environments. Coefficient K may further shed light on the effects of workload history by quantifying the visual
attention patterns in dynamic environments.

2.3 Motivation

This work aims to further understand the performance effects of workload history by using the coefficient K eye-
tracking metric to assess how operators change their visual attention with different workload transition rates,
workload levels, and over time. An eye-tracking metric that is sensitive to how visual attention evolves with each
fixation and saccade can provide as a process-based measure of the operator [16]. This could potentially lead
to a more in depth understanding of the workload history effect—a large gap in the knowledgebase—while also
potentially informing the design of intelligent technology for domains where workload transitions are prevalent.
We are exploring the potential of coefficient K, because it characterizes real-time visual attention in a straight-
forward format and allows for direct interpretation. The present study examines (a) whether a workload history
effect is present when workload transitions from low to high at different rates and (b) whether visual attention
type is informative of any of the present workload history effects. Specifically, the research questions are:
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(1) Is there a workload history effect present in the performance results (i.e., a decrease in response

accuracy and increase in response time over time) and does this effect differ for different tran-

sition rates and workload levels?

(a) Expectations: We expect response time and accuracy to degrade with workload transitions [6, 8, 27,
50] and it to be more pronounced for gradual transitions compared to sudden ones [51]. However, we
expect performance to partially recover and then plateau for lowworkload periods as this is consistent
with the previous research that studies workload transitions in dynamic environments like the one
used in the present study [17, 36, 39, 50].

(2) Is the coefficient K sensitive to the differences between low and high workload periods?

(a) Expectations: There has been limited work to establish whether coefficient K can be a measure of men-
tal workload, let alone workload transitions (tangentially related work [14]). However, it is expected
that coefficient Kwill be sensitive to low and high workload as the inputs for coefficient K (i.e., fixation
duration and saccade amplitude) are sensitive to different levels of workload [5, 35]. Specifically, it is
predicted that highworkloadwill lead tomore focal attention (i.e., higher positive coefficientK values),
as increases in workload often cause operators to have increased fixation durations [5] and to narrow
their visual attention [62], which in turn decreases saccade amplitude. These two changes in fixations
and saccades lead to coefficient K being positive (Equation (1)). For low workload, it is expected that
attention will be more ambient as visual attention is usually less direct and more exploratory (i.e.,
larger saccades and shorter fixations) [13, 49].

(3) Is coefficient K informative of workload history effects?

(a) Expectations: Based on its previous success [41, 45], we expect coefficient K to serve as a quantitative
measure of the theoretical explanation that people can mitigate workload history effects if they can
assess the current needs of the environment and then develop effective management strategies based
on that assessment [28, 31, 36]. If this is the case, then participants will first survey the overall envi-
ronment (i.e., use ambient visual attention and have negative coefficient K values) to “get a sense” and
evaluate its dynamics [31]. During this evaluation, performance may suffer if ambient visual attention
is not ideal for the current environment. However, once participants develop a management strategy
to account for varying workloads, coefficient K values will most likely be positive during high work-
load periods (i.e., focal visual attention) and negative during low workload periods (i.e., ambient visual
attention).

The context of this experiment is UAV command and control, since workload transitions are inherent in their
operations and are expected to continue as the number of UAVs an operator is responsible for increases [64].
The broader impact of the research questions is addressing the research gaps in the workload history literature
as a means to potentially inform the design of intelligent technology, such as adaptive displays, in complex and
dynamic work environments.

3 METHOD

This work uses the same methodology and experimental testbed from References [12, 49], but focuses on the
performance results and visual attention patterns over time.

3.1 Participants

Twenty-one undergraduate students participated in this study (13 male; mean age = 20.9 years, SD = 1.5). Par-
ticipants self-reported normal or corrected to normal vision and were compensated $10/h for their participation.
Two participants’ data was excluded from analysis, due to a malfunction with the experimental testbed during
the study and poor performance in the primary task, respectively. The study was approved by the Institutional
Review Board at Clemson University (IRB2015-217) and all participants provided informed consent.
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Fig. 1. The interface of the UAV testbed.

3.2 Apparatus

Participants completed the testbed scenarios on a desktop computer with a 32 in. monitor (2,560 × 1,600 resolu-
tion) and using a standard mouse. A desktop-mounted corneal reflection FOVIO eye tracker (Seeing Machines
platform) with a sampling rate of 60 Hz was used to collect gaze data. Participants sat 71–78 cm from the eye
tracker, which was placed 2 cm below the bottom edge of the monitor. The mean degree of error for the FOVIO
eye tracker is 0.78◦ (SD = 0.59◦; [18]). Participants completed a 5-point calibration procedure before each record-
ing and the accuracy of the calibration was verified by the experimenter before proceeding.

3.3 Experimental Setup

The UAV command and control testbed was based on the Vigilant Spirit Control Station (VSCS) used by the
United States Air Force [23]. The testbed tasked participants with four tasks: (1) detecting targets, (2) rerouting
UAVs, (3) stopping fuel leaks, and (4) responding to chat messages. Figure 1 is a screenshot of the UAV testbed
with labelled panels and Table 1 shows how each task mapped to each panel.

3.4 Testbed Tasks

3.4.1 Primary Task: Target Detection Task. The participants’ primary task was called the target detection task.
The video feed of each UAV could become “active” during the scenario, meaning the specific UAV video feed
would be illuminated (Figure 2). Participants were tasked with searching for a target, i.e., a semi-transparent
cube, in the active UAV video feeds. If the participant saw a target, then they were instructed to select the “target
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Table 1. Tasks and Corresponding Panels

Task Panels
Target detection task Video feed panel

Reroute task Reroute menu panel and Map panel
Fuel leak task General health panel

Chat message task Chat message panel

Fig. 2. Example of active and inactive UAVs on the Video Feed panel and how to detect a target.

button” in the top right-hand corner of the UAV video feed. Participants had 10 seconds to respond to each target
detection task. If there was no target, then no action was necessary given the “no target button” (which was right
below the “target button”) was automatically selected for each active UAV video feed. On average, targets were
present in 20% of the active video feeds. The number of simultaneously active UAVs varied from three to sixteen
and determined the workload (see Section 3.5).
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3.4.2 Secondary Tasks. While completing the primary target detection task, participants were also tasked to
attend to three secondary tasks: (1) reroute task, (2) fuel leak task, and (3) chat message task. Participants were
instructed to respond quickly and accurately to these secondary tasks.

(1) Reroute task. This required the participant to be vigilant of when a UAV was going to enter a no-fly-
zone, i.e., the red square on the Map panel. If this was the case, then the participant would need to select
an alternative route to avoid the no-fly-zone for that UAV in the Reroute menu panel. To reroute a UAV,
participants clicked on the UAV’s numbered button on the Reroute menu panel and selected from three
alternatives. If the UAV was not successfully rerouted in time (i.e., UAV entered the no-fly-zone), then that
UAV would be unable to participate in the target detection task (primary task) for the remainder of the
scenario.

(2) Fuel leak task. This required the participant to monitor the fuel status of each UAV in the General health
panel. If a UAVwas experiencing a fuel leak, then the fuel level dropped three times faster than the normal
rate, which was displayed in the fuel level bar (the bar next to gas pump icon on the General health panel).
The health status bar (the bar next to the heart icon on the General health panel) would turn yellow and a
“FIX FUEL LEAK” warning would appear. To stop a fuel leak, participants had to click on the health status
bar so fuel usage would return to normal. Failure to do so would lead to a “FATAL FUEL LEAK” condition
for the remainder of the scenario.

(3) Chat message task. Participants had to respond to chat messages as quickly and accurately as possible.
Every time a new chat message appeared, participants could choose from one of two options that appeared
in the Chat message panel.

3.5 Workload Modulation

Each participant completed two 15-min scenarios in the UAV testbed. The scenarios differed by the rate workload
transitioned (i.e., gradually or suddenly) from low to high. NASA-TLX data from pilot tests showed that 3–5
simultaneously active UAV video feeds impose low workload, whereas 13–16 simultaneously active UAV video
feeds impose high workload. In the gradual transition scenario, workload transitioned from low to high steadily
starting with a low workload period lasting 20 s, followed by a transition period to high workload of 40 s, and
then a high workload period lasting two minutes. This cycle repeated five times during the 15-min scenario. For
the sudden transition scenario, the low workload period lasted one minute and was followed by high workload
period lasting two minutes. This low to high workload transition also repeated five times. Figure 3 depicts the
workload levels over the course of each 15-min transition scenario. The transition scenarios, workload level, and
workload periods were the basis of our repeated measures ANOVA analysis (more details in Section 4.2).

3.6 Procedure

Participants completed the experiment over the course of two consecutive days at approximately the same time
each day to avoid fatigue effects. On Day 1, participants were given informed consent, briefed about the experi-
mental goals, and then trained on the testbed’s tasks. Training consisted of an interactive presentation with the
experimenter and completing a five-minute scenario at slightly above low workload (4–6 UAVs active). After
establishing proficiency in all the tasks, i.e., a minimum of 70% accuracy was achieved, participants completed
two constant workload conditions, one consisting of constant low workload and one consisting of constant high
workload, in a counterbalanced order. They then completed a demographic and debriefing questionnaire. On
Day 2, participants completed the gradual and sudden transition scenario in a counterbalanced order, were de-
briefed again, and then compensated for their time. Scenario order, i.e., gradual and sudden, was counterbalanced
across participants. The present work only analyzed data from Day 2 given it included the gradual and sudden
transition scenarios, which was pertinent to the stated research questions. The results from Day 1 are reported
in References [12, 49].
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Fig. 3. The number of UAVs active throughout the gradual and sudden transition scenarios.

4 RESULTS

4.1 Data Reduction

The raw gaze data for 19 participants was preprocessed by custom VBA scripts, where missing and invalid data
(e.g., coordinates outside the screen and blinks) was removed. Themean data loss across all participants and trials
was 11.9%, (SD = 11.2%). It was then smoothed with a second-order Butterworth filter, with a 60 Hz sampling
and 6.15 Hz cutoff frequency. A velocity-based algorithm [60] was used to distinguish saccades from fixations.
Saccades were any eye movement above the velocity threshold of 20°/s; otherwise, all other data points were
classified as fixations. This procedure matched the one used to empirically validate coefficient K [42].

4.2 Experimental Design

A 2 × 2 × 5 repeated measures analysis of variance (RM ANOVA)was used to analyze workload history ef-
fects of performance and visual attention type. There were two workload transition rates (gradual, sudden), two
levels of workload (low, high), and five workload periods (1st, 2nd, . . . , 5th; refer to the highlighted sections of
Figure 3 as those were the only sections included in the analysis). Specific main and interaction effects of the RM
ANOVA were of interest to our research questions and are indicated throughout the results. However, we report
the results of each main effect to give a general overview of each independent variable’s impact. The dependent
performance measures were based on the primary task (i.e., target detection), because workload was manipu-
lated using this task. Response time for the primary target detection task was calculated from the appearance of
the target to when participants clicked the “target button.” Accuracy was calculated as the percentage of correct
“target detected” responses that occurred within the 10 second time limit. “No target detected” responses were
not included in either performance measure given it did not require an explicit response from the participant.
Both measures were averaged for each workload period over time, resulting in five low workload periods and
five high workload periods. The primary task varied the number of active UAVs depending on the workload pe-
riod, meaning there were slight differences on the number of tasks to attend to across participants (e.g., if a UAV
was lost to the no-fly-zone). However, it never deviated from the expected workload level. The secondary tasks
occurred at a constant rate of one every 20 s. Coefficient K was calculated as described in Equation (1). Signifi-
cance was set at α = 0.05 and post-hoc tests with Tukey’s adjustment method were used to determine significant
differences between means. Violations of normality were assessed prior to analysis and Greenhouse-Geisser
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corrections were used when sphericity was violated. RStudio 1.2.1335 was used for all analyses [58]. General
eta-squared (η2

G
) is reported as a measure of effect size for the omnibus test and values of 0.01, 0.06, and 0.14 are

interpreted as small, medium, and large effect sizes, respectively [4]. For all posthoc pairwise comparisons, effect
size was measured with Cohen’s d for repeated measures (drm ; [47]) and values of .2, .5, and .8 are interpreted
as small, medium, and large effect sizes [4]. For all graphs, error bars represent the standard deviation.

4.3 Performance Results

4.3.1 Response Time. When comparing gradual to sudden workload transitions, there was a main effect of
transition rate (F(1,18) = 18.828, p < 0.001, η2

G
= 0.047). Response time for gradual transitions (M = 2.82 s, SD =

0.22 s) was significantly slower than sudden transitions (M = 2.60 s, SD = 0.14 s). When comparing low to high
workload, there was a main effect of workload (F(1,18) = 229.236, p < 0.0001, η2

G
= 0.327). Response times were

faster for low workload (M = 2.38 s, SD = 0.22 s) than high workload (M = 3.05 s, SD = 0.09 s). Mauchly’s test
of sphericity indicated that the assumption of sphericity had been violated for period (χ2(9) = 0.242, p = 0.006).
Using the Greenhouse-Geisser correction of ϵ = .589, there was a significant effect of period (F(2.356, 42.405) =
6.810, p < .0001, η2

G
= 0.080) indicating there was a workload history effect.

To understand how workload history impacted the primary task response time, we examine the three-way
interaction effect between transition rate, workload level, and workload period. The results of this effect begins
to address our first research question, i.e., is there a workload history effect present in the performance results
and does this effect differ for different transition rates and workload levels? Mauchly’s test of sphericity indicated
that the assumption of sphericity had been violated for the three-way interaction effect (χ 2(9) = 0.292, p = 0.017).
Using theGreenhouse-Geisser correction of ϵ= 0.608, therewas a significant three-way interaction effect (F(2.429,
43.718) = 5.123, p = 0.001, η2

G
= 0.049). Post-hoc tests showed that for gradual transitions, response times were

faster in the 1st low workload period (M = 1.98 s, SD = 0.34 s) compared to the 3rd–5th low workload periods
(3rd period: M = 2.99 s, SD = 0.77 s, p < 0.0001, drm = 1.627; 4th period: M = 2.74 s, SD = 1.30 s, p < 0.001,
drm = 0.800; 5th period: M = 3.06 s, SD = 0.70 s, p < 0.0001, drm = 1.93). In addition the 2nd low workload period
(M = 2.23 s, SD = 0.76 s) was significantly faster than the 3rd low workload period (p < 0.001, drm = 1.000)
and 5th low workload period (p = 0.0001, drm = 1.127). For the sudden transitions, the 2nd low workload period
(M = 1.9 s, SD = 0.30 s) was significantly faster than the 3rd low workload period (M = 2.51 s, SD = 0.39 s,
p = 0.022, drm = 1.724). Finally, there was one significant difference between the gradual and sudden transitions;
the 5th low workload period of gradual transitions was significantly slower than the 5th low workload period
of sudden transitions (M = 2.28 s, SD = 0.43 s, p < 0.0001, drm = 1.260). Figure 4 shows response time over time
based on workload and transition rate.

4.3.2 Accuracy. There was no main effect of transition rate (F(1,18) = 2.923 p = 0.105, η2
G
= 0.017). How-

ever, there was a significant main effect of workload level (F(1, 18)=360.452, p < 0.001, η2
G
= 0.521) and period

(F(4, 72) = 5.501, p < 0.001, η2
G
= 0.043. As expected, post-hoc tests showed that accuracy for the low workload

(M = 90%, SD = 5.7%) was significantly higher than high workload (M = 66%, SD = 6.5%). The significant effect
of period indicated there was a workload history effect.
Again, here we focus on the three-way interaction effect as it completes our investigation of the first research

question, i.e., is there a workload history effect present in the performance results and does this effect differ for
different transition rates and workload levels? There was a significant three-way interaction between transition
rate, workload level, and period (F(4,72) = 3.274, p = 0.016, η2

G
= 0.027). For gradual transitions, accuracy for

the 1st low workload period (M = 99%, SD = 4.6%) was significantly higher than all subsequent low workload
period (2nd period: M = 86%, SD = 12.7%, p = 0.008, drm = 1.466; 3rd period: M = 85%, SD = 16.1%, p = 0.006,
drm = 1.208; 4th period: M = 88%, SD = 25.5%; p = 0.077, drm = 0.638; 5th period: M = 81%, SD = 23.1%; p < 0.0001,
drm = 1.152). With sudden transitions, the 4th high workload period (M = 75%, SD = 7.2%) had significantly
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Fig. 4. Mean primary task response time for each workload period for the gradual and sudden transition scenarios.

Fig. 5. Mean primary task performance accuracy for each workload period for the gradual and sudden transition scenarios.

higher accuracy than 5th high workload period (M = 62%, SD = 9.6%; p = 0.009, drm = 1.472). Figure 5 shows
accuracy rates over time based on workload and transition rate.

4.3.3 Coefficient K. There was no main effect of transition rate (F(1,18) = 0.053, p = 0.820, η2
G
< 0.0001).

There was a main effect of workload level (F(1,18) = 40.314, p < 0.0001, η2
G
= 0.185) and period (F(4,72) = 6.596,

p = 0.0001, η2
G
= 0.074). The main effect of workload level addresses our second research question (i.e., is the

coefficient K sensitive to the differences between low and high workload periods?). Post-hoc tests indicate
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Fig. 6. Mean coefficient K values for each workload period for the gradual and sudden transition scenarios.

coefficient K for low workload (M = −0.08, SD = 0.06) was significantly lower than high workload (M = 0.048,
SD = 0.04), indicating visual attention was more likely to be more ambient during low workload and more focal
during high workload.
To fully address our third research question, i.e., is coefficient K informative of workload history effects, we

examined the three-way interaction effect between transition rate, workload level, and workload period. There
was a significant three-way interaction between transition rate, workload level, and period (F(4,72)= 6.568, p =
0.0001, η2

G
=0.064). This interaction effect specifically addresses our third research question. For gradual transi-

tions, the 2nd low workload period (M = 0.15, SD = 0.19) had significantly higher coefficient K values than all
other low workload periods (1st period: M = −0.19, SD = 0.16, p < 0.0001, drm = 1.922; 3rd period: M = −0.13,
SD = 0.16, p < 0.0001, drm = 1.547; 4th period: M = −0.15, SD = 0.17, p < 0.0001, drm = 1.587; 5th period: M =
−0.02, SD = 0.16, p = 0.028, drm = 0.955). In addition, coefficient K for the 2nd low workload period was also
significantly higher than the 2nd low workload period of sudden transitions (M = −0.06, SD = 0.11, p = 0.001,
drm = 1.270). Also with gradual transitions, the 1st low workload period had a significantly lower coefficient K
value than the 5th low workload period (p = 0.024, drm = 1.06). Figure 6 shows coefficient K values over time
based on workload and transition rate.

5 DISCUSSION

The overarching goal of this work was to assess whether eye tracking, specifically visual attention type, can be
a non-invasive, cognitive, and quantitative means to further understand how people are impacted by workload
transitions over time, i.e., the workload history effect. We specifically explored this by addressing three research
questions:

(1) Is there a workload history effect present in the performance results (i.e., a decrease in response

accuracy and increase in response time over time) and does this effect differ for different tran-

sition rates and workload levels?

(2) Is the coefficient K sensitive to the differences between low and high workload periods?

(3) Is coefficient K informative of workload history effects?
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For the first research question, we expected response time and accuracy to degrade and then plateau over
time. The results here did reveal a workload history effect for only low workload periods, but it was not the
same for gradual and sudden transitions. Similar to previous work, both workload transition rates had faster
response times in earlier low workload periods (i.e., 1st and 2nd) than later ones (3rd–5th). However, the results
showed that theworkload history effectwasmore pronounced for gradual transitions as response times increased
and then plateaued at these slower response times during the latter low workload periods [2, 50]. For sudden
transitions, response time increased significantly during themiddle of the scenario (i.e., 3rd lowworkload period),
but then recovered to initial speeds later on [36, 57].
Similarly, for accuracy, we also observed workload history effects that manifested over time during the low

workload periods, but only for gradual transitions [51]. Consistent with previous work and our expectations,
accuracy was the highest at the beginning of the scenario and then decreased over time [2, 8, 30, 50]. On the
other hand, with sudden transitions, accuracy remained relatively stable over time for lowworkload periods. The
only performance difference within sudden transitions was the significant drop in accuracy between the last two
high workload periods, although it is unclear if this is due to workload history or fatigue [6]. Nevertheless, the
performance results support a subset of previous work and our expectations, in that they clearly show workload
history effect are a function of workload transition rate, workload level, and experimental setting.
For the second research question, we sought to determine whether coefficient K is sensitive to differences in

low and high workload when it transitions. Our findings support our expectations: high workload resulted in
more focal visual attention (i.e., positive coefficient K values) whereas low workload results in more ambient
visual attention (i.e., negative coefficient K values). This supports the premise that an increase in cognitive load
leads to an increase in fixation duration and a decrease in saccade amplitudes, i.e., focal attention. Given the
limited work that has employed coefficient K, the findings show that this eye-tracking metric quantifies visual
attention type and may be a promising means to assess workload in real-time.
For the third research question, we consider the performance and coefficient K results together, to see whether

these two data streams can provide a more complete understanding of the workload history effect. Overall, our
expectations for this research question were partially met when considering the result of sudden transitions:
there was a decline in performance as participants engaged in more ambient visual attention initially, but per-
formance improved later after coefficient K became aligned with workload level expectations (i.e., positive co-
efficient K during high workload periods and negative coefficient K during low workload periods). The findings
for sudden transitions show that a participant’s performance can recover if visual attention allocation strategies
are rapidly developed in accordance with each workload level. Oppositely, for gradual transitions, coefficient K
peaked during the 2nd low workload period as it was significantly higher than all other low workload periods
and the corresponding low workload period of sudden transitions. The significant increase in coefficient K coin-
cides with the first time low workload periods of gradual transitions irreversibly increase in response times and
decrease in accuracy rates. This may suggest that workload history effects with gradual transitions may be due
to a large, unexpected, increase in focal attention during low workload. Similarly, for gradual transitions, coef-
ficient K was significantly larger in the final low workload period compared to the first. The findings here may
indicate that an increase in focal attention during low workload periods of workload transitions may be an indi-
cator of future performance decrements (i.e., workload history effects) and not an improved acquaintance with
the environment like previous work suggests [34, 41, 45]. However, previous work has shown workload history
effects are more likely to be apparent during low workload periods [2, 6, 48], but now coefficient K provides a
quantitative explanation as to why this is the case—i.e., not using the appropriate visual attention type as a func-
tion of workload. Furthermore, even though coefficient K values eventually converged to similar patterns over
time for both transition rates, performance trends did not. One potential explanation could be adopting ineffec-
tive strategies at the onset may have both immediate and delayed effects on performance, even if more effective
strategies are eventually adopted as seen with gradual transitions here. It may also show that visual attention
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strategies adopted for sudden transitions may not be best for gradual transitions and vice versa. A follow-up
study should ideally examine workload history over a longer time frame to see if performance recovers when
an effective visual attention management strategy is eventually adopted.
Overall, these results suggest that it is not only important to adopt a strategy to account for workload transi-

tions, but that performance may irrevocably suffer (i.e., a workload history effect endures) if an ineffective visual
attention strategy is initially adopted. The findings also support the premise that people initially evaluate the
environment to develop a workload transition management strategy, but struggle to update this strategy over
time [52, 57]. The findings from this study add to the theoretical explanations of how operators manage work-
load transitions and how this process impacts performance. Previous research that examined workload history
with other psychophysiological measures are successful in detecting workload history effects, but the practical
interpretation of these measures is unclear [2, 40]. However, the findings here have shown the potential to be
used in real-time and inform the design of intelligent technology [22, 59].

6 LIMITATIONS

More work is needed before concretely relating coefficient K to workload history effects. First, a larger sample
size should be used to see if these results replicate. Second, it might be best to investigate how different lengths
of time at each workload level impact coefficient K results. Here, gradual and sudden transitions had different
amounts of time in low workload due to the experimental setup and it is unclear if this influenced the coefficient
K results [42]. Two potential ways this difference in duration could impact the coefficient K comparisons made
between the two transition rates include (a) coefficient K values in the low workload periods of the gradual
transition were more sensitive by major fluctuations in fixation duration and/or saccade amplitude or (b) the
longer durations in the low workload periods of sudden transitions gave participants more time to establish a
consistent visual attention strategy for that givenworkload period. Albeit, this is a limitation of the present study,
coefficient K still appears to be a promising metric in capturing changes to visual attention and performance
outcomes over time when workload changes. We also recommend that future work compare workload history
effects between subgroups of performers (e.g., best and worst performers). Given the spread of the data for both
the performance and visual attention type measures was considerable, it warrants further explanation at an
individual level. This analysis could also contribute to exploring the potential coefficient K has to be a real-time
indicator of any individual differences that are affecting performance.

7 CONCLUSION

In summary, this study highlights the nuanced nature surrounding workload history, in that these effects evolve
differently over time in dynamic, multitasking domains. The findings here suggest that eye-tracking technology
can be a powerful means of explaining these nuances over time. Namely, eye tracking can provide some insight
on how visual attentionwas impacted byworkload transitions and subsequently, its impact on performance. This
is critical if intelligent technology is going to be implemented to improve performance in dynamic environments
like UAV command and control. Specifically, this study addressed the need to consider different transition rates,
multitasking, multiple transitions, and eye tracking to understand the nuanced effects of workload history [36].
This work also shows how coefficient K has promise to be a real-time, proactive indicator of visual attention
strategies that might later lead to negative workload history effects during low workload. Therefore, coefficient
K can be the indicator of when the operator needs assistance and how to provide that assistance (e.g., encourage
the operator to engage in a certain visual attention type when workload transitions). This potential has not
been as promising with other real-time, cognitive-based measures (e.g., EEG) [2, 40]. Overall, this work further
supports the value of using process-based psychophysiological measures like eye-tracking to fill research gaps
in workload history literature as they provide a more complete picture of how the person manages workload
transitions, which can serve as the basis of informing technology design in dynamic environments.
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