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Data-rich environments rely on operators to collaborate, especially in light of workload changes. This work
explores the relationship between the operators’ shared visual attention patterns on a target area of interest
(AQI), i.e. the AOI causing a workload change, and how it affects collaborative performance. Eye tracking
data was collected from ten pairs of participants who completed two scenarios, the first being low workload
and the second being high workload, in an unmanned aerial vehicle (UAV) command and control testbed.
Then, best and worst performing pairs were compared in terms of two shared visual attention metrics: (1)
percent gaze overlap and (2) the phi coefficient for the target AOI. The results showed that coordinated visits
to and from the target AOI were associated with better performance during high workload. These results
suggest including quantitative measures of visual attention can be indicators of the adaptation process in real-

time.

INTRODUCTION

Dynamic and data-rich domains rely on multiple
operators to coordinate and complete tasks. Operators may
struggle to manage these tasks, especially when there are
changes in cognitive workload. For example, accidents in
unmanned aerial vehicle (UAV) command and control have
occurred when operators were not fully collaborating during
transitions between low and high workload (Williams, 2006).
Quantitative measures can potentially be used to assess
collaboration in real-time and prevent accidents. Of which,
eye tracking technology is a promising means to do so given:
(a) the majority of the information in these types of domains
include various visual displays and (b) studying visual
attention patterns can provide insights on changes in cognitive
load (Coral, 2016) and task completion processes (e.g.,
Chierichetti, Kumar, Raghavan, & Sarlos, 2012). However,
research is needed to understand whether eye tracking can
capture aspects related to successful collaboration, i.e., how
their shared visual attention patterns change when there are
changes in the environment.

Studying the visual attention of multiple people
collaborating in a shared environment has been examined in
various contexts (Bockler, Knoblich, Sebanz, & Bockler,
2012; Brennan, Chen, Dickinson, Neider, & Zelinsky, 2008;
D’Angelo & Begel, 2017). Research has shown that visual
attention is influenced by the presence of another individual,
but this influence depends on the context. For example, one
commonly used metric to characterize shared visual attention
is percent gaze overlap, which quantifies the amount of time
multiple observers are concurrently viewing the same
predetermined area of the display (Pietinen, Bednarik, &
Tukiainen, 2010). Increases in percent gaze overlap have
corresponded with improved performance (Gergle & Clark,
2011; Hajari, Cheng, Zheng, & Basu, 2016), but this is not
always the case (e.g. Villamor & Rodrigo, 2018).

Other measures may provide more insights about
collaboration. For example, in lag sequential analysis, two
time series in a dynamic system are studied quantifiably at

different lag times to understand the relationship between the
two time series (Bakeman & Gottman, 1997). A metric
associated with lag sequential analysis is the phi coefficient
(¢), which quantifies how much coordination there is between
two time series as a function of visits to and from a specific
state in the system. When studying two people’s visual
attention as they collaborate, the two time series in the system
consists of the scanpaths generated by each person. In this
work, scanpaths are based on the order in which areas of
interest (AOIs) on the display are visited, making AOIs the
states of the system. Therefore, the phi coefficient can provide
a real-time quantitative measure of how two people are
coordinating their scanpaths as a function of visits to and from
a target AOI, i.e. a predetermined AOI on the display.

The phi coefficient is calculated as a function of when the
scanpaths are and are not at a target AOIL. The phi coefficient
is typically calculated for different lag times to see if there is
leader/follower behavior between collaborators (Coco & Dale,
2014). Table 1 provides an example of two participants’
scanpaths (i.e. time series) over a 5 s window, assuming a
sampling rate of 1 s, on a display that has four AOIs. It
indicates when the target AOI—AOI 3 in this example—is
matched or mismatched between the two scanpaths for when
there is no lag and a 1 second lag, (i.e. a shift of participant 2’s
scanpath by one time period to the right).

TABLE 1: Hypothetical scanpath of two participants viewing
a display with four AOIs for a 5 s time window and an
indication of when scanpaths match at the target AOI (AOI 3)

5 s Time Window

Is 2s 3s 4s 5s
Participant 1 1 4 3 3 3
Participant 2 2 3 3 1 3
Participant 2’
(1's lag) 2 3 3 1
Participant 1 & Yes, Yes, Yes,
2 match w.r.t both not No both at No both at
target AOI? at AOI 3 AOI 3 AOI 3
Participant 1 & Yes, Yes, Yes,
2’ match w.r.t N/A both not | both at both at No
target AOI? at AOI 3 AOI3 AOI 3
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Calculating the phi coefficient requires creating a
contingency table that shows the frequency of when the two
scanpaths are matching and mismatching with respect to the
target AOI. Given the phi coefficient is calculated based on
visits to one target AOI, the contingency table only has two
rows and two columns: one representing the target AOI and
the other being a consolidation of all other AOIs. The rows
will be for one participant’s scanpath and the columns will be
for the other participant’s scanpath (Table 2). The table would
then be populated with number of instances when both
scanpaths are at the target AOI (4 in Table 2), when both are
not (D in Table 2), and when one is and one is not (B and C,
respectively, in Table 2).

TABLE 2: Contingency table used to calculate phi

coefficient
Scanpath 1 Target AOI All other AOIs
Scanpath 2
Target AOI A B
All other AOIs C D

Subsequently, the general formula of the phi coefficient,
where A, B, C, and D are the counts from the contingency
table (Table 2), is:

b= AD-BC
~ J@+B)(C+D)(A+C)(B+D)

)

Values for the phi coefficient range from -1 to +1, where
-1 indicates a perfect negative association between visits to the
target AOI and overall coordinated attention (i.e. visits to and
from the target AOI are detracting from coordination, all
counts are from B and/or C) and +1 being a perfect positive
association between the target AOI and overall coordinated
attention (i.e. visits to and from the AOI are directly
increasing coordinated visual attention, all counts are from A
and/or D). The strength of this association are determined by
the phi coefficient’s absolute values and are interpreted as
follows: 0-0.05 as none or very weak, 0.05-0.10 as weak,
0.10-0.15 as moderate, 0.15-0.25 as strong, and any magnitude
above 0.25 as very strong (Akoglu, 2018). For the example
from Table 1, the phi coefficient for participants 1 and 2
would be 0.17 (A=2, B=1, C=1, D=1) and for participants 1
and 2’ is 0.58 (A=2, B=0, C=1, D=1). This suggests that there
is a strong positive association between coordinated visits to
and from AOI 3 and overall coordination for participants 1
and 2 and a very strong positive association for participants 1
and 2 when participant 2’s scanpath is lagged 1 s. This
example shows that the phi coefficient can capture nuanced
coordination patterns between two collaborators, such as
coordinating views to the target AOI not being perfectly
synchronized (e.g., participants 1 and 2’) — a nuance_percent
gaze overlap cannot capture.

Previous research examining shared visual attention has
focused on performance; however, the effect a workload
change has on shared visual attention strategies and its
subsequent impact on performance has received less attention.
For example, studying the team adaptation process, i.e. actions
in response to an environmental change (Maynard & Kennedy,
2016), has been typically completed post-hoc and is

qualitative in nature. Quantitative measures, such as shared
visual attention, could shed new light on the adaption process
(Resick et al., 2010). These measures could also be studied
more granularly, therefore leveraging the design of technology
to support real-time collaboration (Fiore & Wiltshire, 2016;
Fussell, Kraut, & Siegel, 2000).

This research builds on previous work that examined
whether shared visual attention affected the collaboration
strategies of successful and unsuccessful pairs managing a
workload change (Devlin, Flynn, & Riggs, 2019). Our
previous work found the most successful pairs of participants
adapted both their task completion and shared visual attention
strategies more readily upon experiencing a change in
workload. Specifically, they substantially increased their
shared visual attention on the AOI causing the workload
change. This present work further examines how coordinated
visual attention to and from this AOI impacts performance by
measuring percent gaze overlap and the phi coefficient over
time for both best and worst performing pairs. The goal here is
to quantify the adaptation process of pairs over time. This in
turn could be used to inform technology design in the future
(Fiore & Wiltshire, 2016). The chosen application for this
work is UAV command and control given their aim to
incorporate quantitative measures in their technology design to
facilitate effective collaboration in real-time (Sibley, Coyne, &
Morrison, 2015).

METHOD
Participants

Ten pairs of undergraduate students (20 students total) at
Clemson University were recruited for the study (M =21.3
years, SE = .24 years). Each pair consisted of one male and
one female who did not previously know each other. The
experiment lasted from 75-90 minutes and participants were
compensated $10/hour for their time.

Experimental Setup

The design of the simulation was based on the ‘Vigilant
Spirit Control Station’ the U.S. Air Force uses to develop
interfaces to control multiple UAVs (Feitshans, Rowe, Davis,
Holland, & Berger, 2008). The simulation was developed
using the Unity gaming engine and ran on a desktop computer
(28” monitor, 2560x1440 screen resolution). Pairs were
collocated, but each participant viewed separate monitors and
used separate mice to input responses (Figure 1a). The
simulation was networked so participants could see inputs
from their partner in real-time (e.g., when participant 1
responded to a chat message, participant 2 could see his/her
response in real-time).

Two desktop mounted FOVIO eye trackers with a
sampling rate of 60 Hz were used to collect point of gaze data.
One eye tracker was placed below each monitor and
participants sat 26-28 inches from the monitor. The average
degree of error for this eye tracker is 0.78° (SD = 0.59°;
Eyetracking, 2011).
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Tasks

Each pair was responsible for completing one primary
task and three secondary tasks for up to 16 UAVs (Figure 1b).
Although all tasks were the pair’s responsibility, only one
participant from each pair had to complete each task. The
primary task was the target detection task where pairs
monitored each UAV’s video feed and indicated whether a
target (i.e., a semi-transparent cube) was present. This task
took place in the video feed panel. The secondary tasks
included a rerouting task (avoiding no-fly zones), fuel leak
task (maintaining UAV health), and chat message task
(responding to chat messages). More details can be found in
(Devlin et al., 2019).

Figure 1. (a) The experimental setup with two networked
computers simultaneously running the experimental testbed
(b) Screenshot of the experimental testbed with panels labelled

Workload

Workload was manipulated by varying the number of
UAVs the pair of participants needed to simultaneously
manage for the primary task (i.e., target detection task). There
were two workload conditions: low and high. For the low
workload condition, the pair was responsible for 3-5 UAVs at
all times and for the high workload condition they were
responsible for 13-16 UAVs at all times. Pairs always
completed the low workload condition before the high
workload condition. Due to workload being manipulated via
the rate of the primary task, the video feed panel is designated
as the target AOI for both shared visual attention metrics.

Procedure

Participants of each pair read and signed the consent form
and were then briefed about the study’s goals and task
expectations. Participants then independently completed a
five-minute training session. By the end of the training
session, participants had to demonstrate they could achieve
70% accuracy for all tasks. The pairs were then informed on
how the simulation was networked and were then provided
three minutes to introduce themselves to one another and
discuss anything they deemed necessary. The pairs then
completed the low workload condition, were provided a short
break, and then completed the high workload condition. Each
condition was a 15-minute testbed scenario.

Experimental Design

The independent variable in this study was pair
performance (best performing vs. worst performing). Best and
worst performing pairs were determined based on the total
points scored in the low and high workload scenario. The best
performing pairs were the three highest scoring pairs and the
worst performing pairs were the three lowest scoring pairs.
More details can be found in (Devlin et al., 2019). Dependent
variables included the two shared visual attention metrics of
the target AOI (i.e., video feed panel; Figure 1b): percent gaze
overlap and the mean of the maximum absolute value of the
phi coefficient for each minute of both scenarios.

RESULTS

The gaze data was screened to meet data quality
requirements as outlined in ISO/TS 15007-2:2014-09, which
states that at most 15% data loss is acceptable. Following this
guideline, no participants were excluded from the study and
the mean data loss was 9.23%. Given, previous work showed
that the best performing pairs had higher percent gaze overlap
on the target AOI (Devlin et al., 2019), percent gaze overlap
was then calculated for each minute of the scenario for the
target AOI only. The best performing pairs’ percent gaze
overlap ranged for each scenario (low workload range: 17.4-
33.0%; high workload range: 40.0-63.7%) and were
consistently higher than worst performing pairs, (low
workload range: 1.0-7.3%; high workload range: 9.9-22.2%).
These ranges show best performing pairs not only had higher
percent gaze overlap overall, but they also increased these
levels more from low to high workload.

The phi coefficient for the target AOI (i.e., video feed
panel) was calculated for each minute in both scenarios to
understand how visits to and from the target AOI impacted
shared visual attention patterns and how this impact evolves
over time during a workload change. The largest positive or
negative phi coefficient value was of interest as this indicated
when the pair’s visual attention coordination was most
impacted by the target AOI. Both values were found for each
minute by calculating the phi coefficient for each lag in a £10
s window (recommended by Dale, Kirkham, et al., 2011)
across both best and worst performing pairs’ scanpaths. Then
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the mean for both the largest positive and negative values was
calculated, with the maximum absolute value being plotted for
each minute for both scenarios (Figure 2 and 3). For the
majority of the low workload scenario, both the best and worst
performing pairs’ largest phi coefficient was negative (13 or
14 minutes of the 15-minute scenario, respectively) and had
either moderate, strong, or very strong associations (Akoglu,
2018; Figure 2). The worst performing pairs’ largest phi
coefficient remained relatively consistent during the low
workload scenario (except for the last minute of low
workload), whereas the best performing pairs’ largest values
fluctuated more over time.
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Figure 2. Mean maximum phi coefficient magnitude for video
feed panel over time for best and worst performing pairs
during the low workload scenario

For the high workload scenario, the best performing pairs
had more positive phi coefficient values (10 minutes of the 15-
minute scenario) whereas the worst performing pairs did not
(5 minutes of the 15-minute scenario; Figure 3). All
associations were moderate, strong, or very strong. This
suggests the coordination of best performing pairs was a
function of coordinated views to and from the target AOI
during high workload.
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Figure 3. Mean maximum phi coefficient magnitude for the
video feed panel over time for best and worst performing pairs
during the high workload scenario

For each phi coefficient value, there was also an
associated lag time: negative lag times correspond with
leading coordinated behavior whereas positive lag times
corresponding with lagging coordinated behavior. For the
analysis here, a lag time could change sign a minimum of zero
times (i.e., be the same sign the entire scenario) or a maximum
of 14 times (i.e., switch every minute of the scenario). We
found no trend in these lag times as the sign of the lag time
changed frequently over the course of each scenario for the
best and worst performing pairs. During the low workload
scenario, the sign of the lag time changed, on average, 7 times
for best performing pairs and 8 times for worst performing
pairs. For high workload, the sign changed, on average, 6
times for best performing pairs and 5 times for worst
performing pairs. The lag time values were also less or greater
than zero, suggesting there was always either leading or
lagging behavior.

DISCUSSION & CONCLUSION

This work aimed to understand how shared visual
attention of pairs changed over time when workload changed
from low to high. The results show there is a positive
relationship between gaze overlap and performance over time,
supporting previous work (Devlin et al., 2019; Gergle &
Clark, 2011; Hajari et al., 2016). It specifically suggests
performance is improved when participants substantially
increase their shared visual attention on the AOI causing a
workload change, (i.e. the target AOI) and sustain those levels
over time.

The results from the phi coefficient analysis revealed
differences between best and worst performing pairs when
workload changed. There were minimal differences between
best and worst performing pairs during low workload as the
majority of the largest phi coefficient values had at least a
moderate negative association between visits to the target AOI
and overall coordinated visual attention. This suggests
strategically coordinating visual attention to and from the
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target AOI was not critical for coordinating attention overall
or for improving performance during low workload. However,
this was not the case for high workload. Here the best
performing pairs largest phi coefficient values were positive,
suggesting coordinated visual attention to and from the target
AOI was associated with higher levels of coordination overall.
This suggests improved performance during a workload
increase is not only dependent on viewing the target AOI at
the same time, (as indicated by percent gaze overlap), but also
coordinating visual attention to and from it, (as indicated by
phi coefficient). Given the worst performing pairs’ largest phi
coefficient values remained similar between low and high
workload, our results show performance suffers when pairs do
not adapt specifically and strategically to the workload
increase (Maynard & Kennedy, 2016). This study provides a
potentially promising quantitative measure that can assess the
absence of adaptation in real-time, which is lacking in the
adaptation process literature. We do want to note that the
applicability of this analysis is context dependent on what is
defined as the target AOL

Our results showed there was no set pattern of the lag
times associated with the largest phi coefficient values for the
best and worst performing pairs. This finding may be
attributed to the fact we did not assign roles to each
participant, which is unlike previous studies. However, this
type of collaboration is expected to be the structure of future
UAYV command and control (Sibley et al., 2015). Although
more work is needed, incorporating lag times could help
inform Aow a pair is coordinating their visual attention
towards a target AOI and be used to inform sow the
technology should intervene to improve coordination. With
our initial analysis of lag time values, we found pairs often
switched between leading and lagging visual attention
behavior on the target AOIL. One possible explanation of this
finding may be due to participants taking turns on who
primarily attends to the target AOI when another AOI needs
attention. Future work could further extend on this preliminary
finding to better understand how these pairs’ specific approach
to managing a workload change impacted performance. For
example, our initial analysis found worst performing pairs
number of switches slightly decreased from low to high
workload while best performing pairs’ number of switches
remained similar. This potentially suggests continual dynamic
diversification of task responsibilities may be part of the
observed performance advantage.

Overall, this body of work shows that when workload
increases, coordinating shared visual attention improves
performance. The findings support the potential of using eye
tracking metrics such a percent gaze overlap and phi
coefficient in real-time to inform and improve collaboration.
Future research needs to explore how to effectively use and
present this information (e.g., the impact of seeing a partner’s
gaze in real-time; Schneider et al., 2018). These findings also
better inform what constitutes as a successful adaptation
process by using a quantitative, real-time measure. This can
help strengthen both the adaptation process literature and
technology design.

Copyright 2020 by Human Factors and Ergonomics Society. All rights reserved. 10.1177/107118132064 1083
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