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Data-rich environments rely on operators to collaborate, especially in light of workload changes. This work 
explores the relationship between the operators’ shared visual attention patterns on a target area of interest 
(AOI), i.e. the AOI causing a workload change, and how it affects collaborative performance. Eye tracking 
data was collected from ten pairs of participants who completed two scenarios, the first being low workload 
and the second being high workload, in an unmanned aerial vehicle (UAV) command and control testbed. 
Then, best and worst performing pairs were compared in terms of two shared visual attention metrics: (1) 
percent gaze overlap and (2) the phi coefficient for the target AOI. The results showed that coordinated visits 
to and from the target AOI were associated with better performance during high workload. These results 
suggest including quantitative measures of visual attention can be indicators of the adaptation process in real-
time.  
 

 
INTRODUCTION 

 
Dynamic and data-rich domains rely on multiple 

operators to coordinate and complete tasks. Operators may 
struggle to manage these tasks, especially when there are 
changes in cognitive workload. For example, accidents in 
unmanned aerial vehicle (UAV) command and control have 
occurred when operators were not fully collaborating during 
transitions between low and high workload (Williams, 2006). 
Quantitative measures can potentially be used to assess 
collaboration in real-time and prevent accidents. Of which, 
eye tracking technology is a promising means to do so given: 
(a) the majority of the information in these types of domains 
include various visual displays and (b) studying visual 
attention patterns can provide insights on changes in cognitive 
load (Coral, 2016) and task completion processes (e.g., 
Chierichetti, Kumar, Raghavan, & Sarlos, 2012). However, 
research is needed to understand whether eye tracking can 
capture aspects related to successful collaboration, i.e., how 
their shared visual attention patterns change when there are 
changes in the environment.  

Studying the visual attention of multiple people 
collaborating in a shared environment has been examined in 
various contexts (Böckler, Knoblich, Sebanz, & Böckler, 
2012; Brennan, Chen, Dickinson, Neider, & Zelinsky, 2008; 
D’Angelo & Begel, 2017). Research has shown that visual 
attention is influenced by the presence of another individual, 
but this influence depends on the context. For example, one 
commonly used metric to characterize shared visual attention 
is percent gaze overlap, which quantifies the amount of time 
multiple observers are concurrently viewing the same 
predetermined area of the display (Pietinen, Bednarik, & 
Tukiainen, 2010). Increases in percent gaze overlap have 
corresponded with improved performance (Gergle & Clark, 
2011; Hajari, Cheng, Zheng, & Basu, 2016), but this is not 
always the case (e.g. Villamor & Rodrigo, 2018).  

Other measures may provide more insights about 
collaboration. For example, in lag sequential analysis, two 
time series in a dynamic system are studied quantifiably at 

different lag times to understand the relationship between the 
two time series (Bakeman & Gottman, 1997). A metric 
associated with lag sequential analysis is the phi coefficient 
(ϕ), which quantifies how much coordination there is between 
two time series as a function of visits to and from a specific 
state in the system. When studying two people’s visual 
attention as they collaborate, the two time series in the system 
consists of the scanpaths generated by each person. In this 
work, scanpaths are based on the order in which areas of 
interest (AOIs) on the display are visited, making AOIs the 
states of the system. Therefore, the phi coefficient can provide 
a real-time quantitative measure of how two people are 
coordinating their scanpaths as a function of visits to and from 
a target AOI, i.e. a predetermined AOI on the display.  

The phi coefficient is calculated as a function of when the 
scanpaths are and are not at a target AOI. The phi coefficient 
is typically calculated for different lag times to see if there is 
leader/follower behavior between collaborators (Coco & Dale, 
2014). Table 1 provides an example of two participants’ 
scanpaths (i.e. time series) over a 5 s window, assuming a 
sampling rate of 1 s, on a display that has four AOIs. It 
indicates when the target AOI—AOI 3 in this example—is 
matched or mismatched between the two scanpaths for when 
there is no lag and a 1 second lag, (i.e. a shift of participant 2’s 
scanpath by one time period to the right).  

 
TABLE 1:  Hypothetical scanpath of two participants viewing 

a display with four AOIs for a 5 s time window and an 
indication of when scanpaths match at the target AOI (AOI 3) 
 5 s Time Window  
 1s 2s 3s 4s 5s 
Participant 1 1 4 3 3 3 
Participant 2 2 3 3 1 3 
Participant 2’ 
(1 s lag)  2 3 3 1 

Participant 1 & 
2 match w.r.t 
target AOI? 

Yes, 
both not 
at AOI 3 

No 
Yes, 

both at 
AOI 3 

No 
Yes, 

both at 
AOI 3 

Participant 1 & 
2’ match w.r.t 
target AOI? 

N/A 
Yes, 

both not 
at AOI 3 

Yes, 
both at 
AOI 3 

Yes, 
both at 
AOI 3 

No 
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Calculating the phi coefficient requires creating a 
contingency table that shows the frequency of when the two 
scanpaths are matching and mismatching with respect to the 
target AOI. Given the phi coefficient is calculated based on 
visits to one target AOI, the contingency table only has two 
rows and two columns: one representing the target AOI and 
the other being a consolidation of all other AOIs. The rows 
will be for one participant’s scanpath and the columns will be 
for the other participant’s scanpath (Table 2). The table would 
then be populated with number of instances when both 
scanpaths are at the target AOI (A in Table 2), when both are 
not (D in Table 2), and when one is and one is not (B and C, 
respectively, in Table 2). 

 
TABLE 2: Contingency table used to calculate phi 

coefficient  
Scanpath 1 

Scanpath 2 
Target AOI  All other AOIs 

Target AOI  A B 
All other AOIs C D 

 
Subsequently, the general formula of the phi coefficient, 

where A, B, C, and D are the counts from the contingency 
table (Table 2), is: 

 
 𝜙 =

𝐴𝐷−𝐵𝐶

√(𝐴+𝐵)(𝐶+𝐷)(𝐴+𝐶)(𝐵+𝐷)
     (1) 

 
Values for the phi coefficient range from -1 to +1, where  

-1 indicates a perfect negative association between visits to the 
target AOI and overall coordinated attention (i.e. visits to and 
from the target AOI are detracting from coordination, all 
counts are from B and/or C) and +1 being a perfect positive 
association between the target AOI and overall coordinated 
attention (i.e. visits to and from the AOI are directly 
increasing coordinated visual attention, all counts are from A 
and/or D). The strength of this association are determined by 
the phi coefficient’s absolute values and are interpreted as 
follows: 0-0.05 as none or very weak, 0.05-0.10 as weak, 
0.10-0.15 as moderate, 0.15-0.25 as strong, and any magnitude 
above 0.25 as very strong (Akoglu, 2018). For the example 
from Table 1, the phi coefficient for participants 1 and 2 
would be 0.17 (A=2, B=1, C=1, D=1) and for participants 1 
and 2’ is 0.58 (A=2, B=0, C=1, D=1). This suggests that there 
is a strong positive association between coordinated visits to 
and from AOI 3 and overall coordination for participants 1 
and 2 and a very strong positive association for participants 1 
and 2 when participant 2’s scanpath is lagged 1 s. This 
example shows that the phi coefficient can capture nuanced 
coordination patterns between two collaborators, such as 
coordinating views to the target AOI not being perfectly 
synchronized (e.g., participants 1 and 2’) – a nuance percent 
gaze overlap cannot capture.  

Previous research examining shared visual attention has 
focused on performance; however, the effect a workload 
change has on shared visual attention strategies and its 
subsequent impact on performance has received less attention. 
For example, studying the team adaptation process, i.e. actions 
in response to an environmental change (Maynard & Kennedy, 
2016), has been typically completed post-hoc and is 

qualitative in nature. Quantitative measures, such as shared 
visual attention, could shed new light on the adaption process 
(Resick et al., 2010). These measures could also be studied 
more granularly, therefore leveraging the design of technology 
to support real-time collaboration (Fiore & Wiltshire, 2016; 
Fussell, Kraut, & Siegel, 2000).  

This research builds on previous work that examined 
whether shared visual attention affected the collaboration 
strategies of successful and unsuccessful pairs managing a 
workload change (Devlin, Flynn, & Riggs, 2019). Our 
previous work found the most successful pairs of participants 
adapted both their task completion and shared visual attention 
strategies more readily upon experiencing a change in 
workload. Specifically, they substantially increased their 
shared visual attention on the AOI causing the workload 
change. This present work further examines how coordinated 
visual attention to and from this AOI impacts performance by 
measuring percent gaze overlap and the phi coefficient over 
time for both best and worst performing pairs. The goal here is 
to quantify the adaptation process of pairs over time. This in 
turn could be used to inform technology design in the future 
(Fiore & Wiltshire, 2016). The chosen application for this 
work is UAV command and control given their aim to 
incorporate quantitative measures in their technology design to 
facilitate effective collaboration in real-time (Sibley, Coyne, & 
Morrison, 2015).  

 
METHOD 

 
Participants 
 

Ten pairs of undergraduate students (20 students total) at 
Clemson University were recruited for the study (M = 21.3 
years, SE = .24 years). Each pair consisted of one male and 
one female who did not previously know each other. The 
experiment lasted from 75-90 minutes and participants were 
compensated $10/hour for their time.  
 
Experimental Setup  
 

The design of the simulation was based on the ‘Vigilant 
Spirit Control Station’ the U.S. Air Force uses to develop 
interfaces to control multiple UAVs (Feitshans, Rowe, Davis, 
Holland, & Berger, 2008). The simulation was developed 
using the Unity gaming engine and ran on a desktop computer 
(28” monitor, 2560×1440 screen resolution). Pairs were 
collocated, but each participant viewed separate monitors and 
used separate mice to input responses (Figure 1a). The 
simulation was networked so participants could see inputs 
from their partner in real-time (e.g., when participant 1 
responded to a chat message, participant 2 could see his/her 
response in real-time).  

Two desktop mounted FOVIO eye trackers with a 
sampling rate of 60 Hz were used to collect point of gaze data. 
One eye tracker was placed below each monitor and 
participants sat 26-28 inches from the monitor. The average 
degree of error for this eye tracker is 0.78° (SD = 0.59°; 
Eyetracking, 2011).  
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Tasks  
 

Each pair was responsible for completing one primary 
task and three secondary tasks for up to 16 UAVs (Figure 1b). 
Although all tasks were the pair’s responsibility, only one 
participant from each pair had to complete each task. The 
primary task was the target detection task where pairs 
monitored each UAV’s video feed and indicated whether a 
target (i.e., a semi-transparent cube) was present. This task 
took place in the video feed panel. The secondary tasks 
included a rerouting task (avoiding no-fly zones), fuel leak 
task (maintaining UAV health), and chat message task 
(responding to chat messages). More details can be found in 
(Devlin et al., 2019). 
 

 
(a) 

 

 
(b) 

 
Figure 1. (a) The experimental setup with two networked 

computers simultaneously running the experimental testbed 
(b) Screenshot of the experimental testbed with panels labelled 
 
Workload 

 
Workload was manipulated by varying the number of 

UAVs the pair of participants needed to simultaneously 
manage for the primary task (i.e., target detection task). There 
were two workload conditions: low and high. For the low 
workload condition, the pair was responsible for 3-5 UAVs at 
all times and for the high workload condition they were 
responsible for 13-16 UAVs at all times. Pairs always 
completed the low workload condition before the high 
workload condition. Due to workload being manipulated via 
the rate of the primary task, the video feed panel is designated 
as the target AOI for both shared visual attention metrics.  

 
Procedure 

 
Participants of each pair read and signed the consent form 

and were then briefed about the study’s goals and task 
expectations. Participants then independently completed a 
five-minute training session. By the end of the training 
session, participants had to demonstrate they could achieve 
70% accuracy for all tasks. The pairs were then informed on 
how the simulation was networked and were then provided 
three minutes to introduce themselves to one another and 
discuss anything they deemed necessary. The pairs then 
completed the low workload condition, were provided a short 
break, and then completed the high workload condition. Each 
condition was a 15-minute testbed scenario.  

 
Experimental Design 

 
The independent variable in this study was pair 

performance (best performing vs. worst performing). Best and 
worst performing pairs were determined based on the total 
points scored in the low and high workload scenario. The best 
performing pairs were the three highest scoring pairs and the 
worst performing pairs were the three lowest scoring pairs. 
More details can be found in (Devlin et al., 2019). Dependent 
variables included the two shared visual attention metrics of 
the target AOI (i.e., video feed panel; Figure 1b): percent gaze 
overlap and the mean of the maximum absolute value of the 
phi coefficient for each minute of both scenarios.  
 

RESULTS 
 

The gaze data was screened to meet data quality 
requirements as outlined in ISO/TS 15007-2:2014-09, which 
states that at most 15% data loss is acceptable. Following this 
guideline, no participants were excluded from the study and 
the mean data loss was 9.23%. Given, previous work showed 
that the best performing pairs had higher percent gaze overlap 
on the target AOI (Devlin et al., 2019), percent gaze overlap 
was then calculated for each minute of the scenario for the 
target AOI only. The best performing pairs’ percent gaze 
overlap ranged for each scenario (low workload range: 17.4-
33.0%; high workload range: 40.0-63.7%) and were 
consistently higher than worst performing pairs, (low 
workload range: 1.0-7.3%; high workload range: 9.9-22.2%). 
These ranges show best performing pairs not only had higher 
percent gaze overlap overall, but they also increased these 
levels more from low to high workload.  

The phi coefficient for the target AOI (i.e., video feed 
panel) was calculated for each minute in both scenarios to 
understand how visits to and from the target AOI impacted 
shared visual attention patterns and how this impact evolves 
over time during a workload change. The largest positive or 
negative phi coefficient value was of interest as this indicated 
when the pair’s visual attention coordination was most 
impacted by the target AOI. Both values were found for each 
minute by calculating the phi coefficient for each lag in a ±10 
s window (recommended by Dale, Kirkham, et al., 2011) 
across both best and worst performing pairs’ scanpaths. Then 
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the mean for both the largest positive and negative values was 
calculated, with the maximum absolute value being plotted for 
each minute for both scenarios (Figure 2 and 3). For the 
majority of the low workload scenario, both the best and worst 
performing pairs’ largest phi coefficient was negative (13 or 
14 minutes of the 15-minute scenario, respectively) and had 
either moderate, strong, or very strong associations (Akoglu, 
2018; Figure 2). The worst performing pairs’ largest phi 
coefficient remained relatively consistent during the low 
workload scenario (except for the last minute of low 
workload), whereas the best performing pairs’ largest values 
fluctuated more over time.  
 

 
Figure 2. Mean maximum phi coefficient magnitude for video 

feed panel over time for best and worst performing pairs 
during the low workload scenario  

 
For the high workload scenario, the best performing pairs 

had more positive phi coefficient values (10 minutes of the 15-
minute scenario) whereas the worst performing pairs did not 
(5 minutes of the 15-minute scenario; Figure 3). All 
associations were moderate, strong, or very strong. This 
suggests the coordination of best performing pairs was a 
function of coordinated views to and from the target AOI 
during high workload.  

 

 
Figure 3. Mean maximum phi coefficient magnitude for the 

video feed panel over time for best and worst performing pairs 
during the high workload scenario 

 
For each phi coefficient value, there was also an 

associated lag time: negative lag times correspond with 
leading coordinated behavior whereas positive lag times 
corresponding with lagging coordinated behavior. For the 
analysis here, a lag time could change sign a minimum of zero 
times (i.e., be the same sign the entire scenario) or a maximum 
of 14 times (i.e., switch every minute of the scenario). We 
found no trend in these lag times as the sign of the lag time 
changed frequently over the course of each scenario for the 
best and worst performing pairs. During the low workload 
scenario, the sign of the lag time changed, on average, 7 times 
for best performing pairs and 8 times for worst performing 
pairs. For high workload, the sign changed, on average, 6 
times for best performing pairs and 5 times for worst 
performing pairs. The lag time values were also less or greater 
than zero, suggesting there was always either leading or 
lagging behavior.  

 
DISCUSSION & CONCLUSION 

 
This work aimed to understand how shared visual 

attention of pairs changed over time when workload changed 
from low to high. The results show there is a positive 
relationship between gaze overlap and performance over time, 
supporting previous work (Devlin et al., 2019; Gergle & 
Clark, 2011; Hajari et al., 2016). It specifically suggests 
performance is improved when participants substantially 
increase their shared visual attention on the AOI causing a 
workload change, (i.e. the target AOI) and sustain those levels 
over time. 

The results from the phi coefficient analysis revealed 
differences between best and worst performing pairs when 
workload changed. There were minimal differences between 
best and worst performing pairs during low workload as the 
majority of the largest phi coefficient values had at least a 
moderate negative association between visits to the target AOI 
and overall coordinated visual attention. This suggests 
strategically coordinating visual attention to and from the 
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target AOI was not critical for coordinating attention overall 
or for improving performance during low workload. However, 
this was not the case for high workload. Here the best 
performing pairs largest phi coefficient values were positive, 
suggesting coordinated visual attention to and from the target 
AOI was associated with higher levels of coordination overall. 
This suggests improved performance during a workload 
increase is not only dependent on viewing the target AOI at 
the same time, (as indicated by percent gaze overlap), but also 
coordinating visual attention to and from it, (as indicated by 
phi coefficient). Given the worst performing pairs’ largest phi 
coefficient values remained similar between low and high 
workload, our results show performance suffers when pairs do 
not adapt specifically and strategically to the workload 
increase (Maynard & Kennedy, 2016). This study provides a 
potentially promising quantitative measure that can assess the 
absence of adaptation in real-time, which is lacking in the 
adaptation process literature. We do want to note that the 
applicability of this analysis is context dependent on what is 
defined as the target AOI.  

Our results showed there was no set pattern of the lag 
times associated with the largest phi coefficient values for the 
best and worst performing pairs. This finding may be 
attributed to the fact we did not assign roles to each 
participant, which is unlike previous studies. However, this 
type of collaboration is expected to be the structure of future 
UAV command and control (Sibley et al., 2015). Although 
more work is needed, incorporating lag times could help 
inform how a pair is coordinating their visual attention 
towards a target AOI and be used to inform how the 
technology should intervene to improve coordination. With 
our initial analysis of lag time values, we found pairs often 
switched between leading and lagging visual attention 
behavior on the target AOI. One possible explanation of this 
finding may be due to participants taking turns on who 
primarily attends to the target AOI when another AOI needs 
attention. Future work could further extend on this preliminary 
finding to better understand how these pairs’ specific approach 
to managing a workload change impacted performance. For 
example, our initial analysis found worst performing pairs 
number of switches slightly decreased from low to high 
workload while best performing pairs’ number of switches 
remained similar. This potentially suggests continual dynamic 
diversification of task responsibilities may be part of the 
observed performance advantage.  

Overall, this body of work shows that when workload 
increases, coordinating shared visual attention improves 
performance. The findings support the potential of using eye 
tracking metrics such a percent gaze overlap and phi 
coefficient in real-time to inform and improve collaboration. 
Future research needs to explore how to effectively use and 
present this information (e.g., the impact of seeing a partner’s 
gaze in real-time; Schneider et al., 2018). These findings also 
better inform what constitutes as a successful adaptation 
process by using a quantitative, real-time measure. This can 
help strengthen both the adaptation process literature and 
technology design.   
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