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Abstract— We consider a perimeter defense problem in
which a single vehicle seeks to defend a compact region from
intruders in a one-dimensional environment parameterized by
the perimeter size and the intruder-to-vehicle speed ratio. The
intruders move inward with fixed speed and direction to reach
the perimeter. We provide both positive and negative worst-case

performance results over the parameter space using competitive
analysis. We first establish fundamental limits by identifying
the most difficult parameter combinations that admit no c-
competitive algorithms for any constant c ≥ 1 and slightly
easier parameter combinations in which every algorithm is at
best 2-competitive. We then design three classes of algorithms
and prove they are 1, 2, and 4-competitive, respectively, for in-
creasingly difficult parameter combinations. Finally, we present
numerical studies that provide insights into the performance of
these algorithms against stochastically generated intruders.

I. INTRODUCTION

This paper addresses a perimeter defense problem, which

is a class of vehicle routing problems, in which a vehicle

seeks to intercept mobile intruders before they reach a

specified region. In our problem, a robotic vehicle must

defend a subset of a line segment from intruders that are

generated at the endpoints of the line segment and move

towards the subset, with a fixed speed. The robotic defender

moves with maximum unit speed with the goal of capturing

the maximum number of intruders. This perimeter defense

problem is an online problem in that the input, consisting

of the arrival of intruders at specified times and locations, is

only revealed gradually over time.

While perimeter defense problems have been well-studied,

most prior work has focused on determining an optimal

strategy for a small number of intruders or assuming that the

input instance is generated by some stochastic process. While

these results provide valuable insights into the average-case

performance of defense strategies, they essentially ignore the

worst-case where intruders may coordinate their actions to

overwhelm the defense.

To understand how algorithms that specify vehicle motion

perform in the worst-case, we adopt a competitive analy-

sis technique [1]. In competitive analysis, we measure the

performance of an online algorithm A using the concept of

competitive ratio, i.e., the ratio of an optimal offline algo-

rithm’s performance divided by algorithm A’s performance

for a worst-case input instance. Algorithm A is c-competitive

if its competitive ratio is no larger than c which means its
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performance is guaranteed to be within a factor c of the

optimal for all input instances.

The primary application for our work is defending

a perimeter from intruders such as missiles or locusts.

Additional applications include gathering information on

mobile entities in surveillance or traffic scenarios.

Perimeter defense problems were first introduced for a

single vehicle and a single intruder in [2]. Since then,

perimeter defense has been mostly formulated as a pursuit-

evasion game. The multiplayer setting for the same has been

studied extensively as a reach-avoid game in which the aim is

to design control policies for the intruders and the defenders

[3], [4]. A typical approach requires computing solutions

to the Hamilton-Jacobi-Bellman-Isaacs equation which is

suitable for low dimensional state spaces and in simple

environments [5], [6]. Recent works include [7], which

proposes a receding horizon strategy based on maximum

matching, and [8], which considers a scenario where the

defenders are constrained to be on the perimeter.

In vehicle routing problems, inputs become available over

time. Introduced on graphs in [9], a typical approach requires

that the vehicle routes be re-planned as new information is

revealed over time [10]. The inputs may have multiple levels

of priorities [11] or can be randomly recalled [12]. We refer

the reader to [13] for a review of this literature. A common

way to analyze the performance of online algorithms is

competitive analysis [14], [15], [16].

Another area of related work is the class of Moving Target

Travelling Salesman Problem (MTTSP) on a single line

[17], [18]. Several variants of this problem are discussed in

[19]. Specifically, the authors provide an O(n2) algorithm to

capture n intruders on a line in minimum time.

Earlier, we introduced a perimeter defense problem for

a circular and rectangular environment with stochastically

generated input [20], [21]. The key distinction of the current

work from these past works is the characterization of

competitiveness of the algorithms for worst case inputs.

Our general contribution is the following: we introduce

a perimeter defense problem against mobile intruders using

competitive analysis to derive worst-case performance guar-

antees. Specifically, we consider an environment comprising

a line segment [−1, 1] in which the intruders arrive as per

an arbitrary sequence at the endpoints. After arrival, the

intruders move toward the origin, with fixed speed v < 1,

with the objective of reaching the region [−ρ, ρ] called the

perimeter, for a given 0 < ρ < 1. A vehicle, modelled as a

first-order integrator with a maximum speed of unity, seeks



to capture (become coincident with) the intruders before they

reach the perimeter. Our specific contributions are as follows.

We first characterize a most difficult parameter regime in

v − ρ space in which no control algorithm (either online or

offline) for the vehicle can be c-competitive for any constant

c and a second, slightly easier, parameter regime in which

no algorithm is better than 2-competitive. We also show that

a class of simple algorithms, such as the First-Come-First-

Served, are not c-competitive, even for parameter regimes in

which other algorithms are. Next, we design and analyze

three algorithms establishing 1, 2, and 4-competitiveness,

respectively, for increasingly difficult parameter regimes. We

numerically characterize their performance when the intrud-

ers are generated as per a stochastic process. We observe that

the algorithms capture at least half the intruders generated

even for parameter settings beyond their respective parameter

regime.

The paper is organized as follows. In Section II, we

formally define our problem and the competitive ratio. We

derive fundamental limits on how competitive any algorithm

can be for difficult parameter regimes in Section III. In

Section IV, we design and analyze three algorithms. Section

V presents numerical simulations. In Section VI, we present

a summary and possible directions for future work.

II. PROBLEM FORMULATION

Consider an environment E(ρ) = {y ∈ R : ρ ≤ |y| ≤ 1}
and let Ē := [−1, 1]. Intruders arrive over time at either

location −1 or 1 and move, with fixed speed v < 1, towards

the nearest point in Ē out of −ρ or ρ. The defense consists

of a single vehicle with motion modeled as a first order

integrator. The vehicle can move with a maximum speed

of unity. The vehicle is said to capture an intruder when the

vehicle’s location coincides with it. An intruder is said to

be lost if the intruder reaches the perimeter without being

captured. Let n(t) denote the number of intruders arrived at

time instant t. An input instance I is a tuple comprising

the time instants, the corresponding number of intruders

generated at those instants and their corresponding initial

locations, is defined as I = {t, n(t), {−1, 1}n(t)}Tt=0.

An online algorithm determines the velocity for the vehicle

as a function of the location of the intruders that have

arrived in the environment up to the current time instant t.
Let Q(t, I) denote the set of instantaneous locations of all

intruders in the environment at time t from the input instance

I . An intruder is removed from Q(t, I) if it is captured or

lost. We now formally define an online algorithm as follows.

Online Algorithm: An online algorithm for a vehicle is

a map A : Ē × F → [−1, 1], where F(E) is the set of

finite subsets of E , assigning a commanded velocity to the

vehicle as a function of the position of the vehicle, denoted as

x(t), and the location of the intruders, yielding the kinematic

model, ẋ(t) = A(x(t),Q(t, I)).
An optimal offline algorithm is a non-causal algorithm

having complete information of the input instance I at any

time t ≤ T and thus, the velocity of the vehicle is a function

of current and future locations of the intruders.

Definition 1 (Competitive Ratio) Given an E(ρ), an input

instance I for E(ρ), and a given online algorithm A, let

nA(I) denote the number of intruders captured by the

vehicle when following algorithm A on input instance I .

Let OPT denote the optimal algorithm that maximizes

the number of intruders captured out of input instance

I . Then, the competitive ratio of A on I is defined as

cA(I) = nOPT (I)/nA(I) ≥ 1, and the competitive ratio

of A for environment E is cA(E) = supI cA(I). Finally, the

competitive ratio for environment E is c(E) = infA cA(E).
We say that an algorithm is c-competitive for E if cA(E) ≤ c.

We assume that all of the input instances are non-adaptive

where the arrival of intruders is not based on the movement

of the vehicle.

Problem Statement: The aim of this paper is to design

c-competitive algorithms for the vehicle with minimum c.

In what follows, we provide only the outline of the proofs

for brevity. The detailed proofs are contained in [24].

III. FUNDAMENTAL LIMITS

We begin by characterizing a property of an extreme speed

algorithm, i.e., A′ : Ē ×F → {−1, 0, 1}, which either moves

the vehicle with unit speed or keeps it stationary.

Lemma 1 (Extreme speed algorithms) Given an

arbitrary algorithm A and a non-adaptive input instance I ,

there exists an extreme speed algorithm A′ that captures at

least as many intruders in I as A.

Proof: [Outline] We define the capture profile of A’s

execution on an arbitrary, non-adaptive input instance I as

the set of pairs (xi, ki) for 1 ≤ i ≤ n where ki is the

time of the ith capture and xi is the point where the ith
capture occurred. The crux of this proof is showing that we

can create an extreme speed algorithm A′ that has the same

capture profile as A by getting to the next capture point xi

as quickly as possible and, if necessary, waiting at location

xi until time ki.
In light of Lemma 1, we can restrict our attention to

algorithms that either move the vehicle with maximum speed

or keep the vehicle at rest.

We now present the fundamental limits. We first present a

fundamental limit on achieving a c-competitive ratio for any

constant c followed by a fundamental limit on achieving a

2-competitive ratio.

Theorem III.1 For any environment E such that v > 1−ρ
2ρ ,

i) there does not exist a c-competitive algorithm and

ii) no algorithm (online/offline) can capture all intruders.

Proof: [Outline] The idea behind the proof is to first

construct a worst case input for any online algorithm and then

compare the performance with the optimal algorithm. The

input instance consists of two phases: a stream of intruders

that arrive at the endpoint 1, 2 time units apart starting at time

1, and a burst of c+1 intruders who arrive at the endpoint −1



at time t that corresponds to the first time the vehicle moves

to ρ according to any online algorithm. Then, for v > 1−ρ
2ρ ,

any online algorithm captures at most 1 stream intruder and

loses the entire burst of c+1 intruders, however, the optimal

algorithm can capture all the burst intruders and at least all

but the last stream intruder.

The following theorem provides a fundamental limit on

achieving a 2-competitive ratio for any environment.

Theorem III.2 For the environment E such that v ≥ 1−ρ
1+ρ

,

c(E) ≥ 2.

Proof: [Outline] In this proof, we consider five dif-

ferent input instances consisting of two intruders, a and

b, arriving at opposite endpoints. We show that no single

online algorithm can capture both intruders from all five

input instances. In contrast, we then show there exists a

collection of algorithms, one of which captures both intruders

for each of the five input instances.

We now show that a natural algorithm, First-Come-First-

Served (FCFS), cannot be a competitive algorithm for this

problem for a sufficiently difficult parameter regime. We

define FCFS as the algorithm which sends the vehicle with

speed 1 towards the earliest intruder to arrive that is not lost

or already captured.

Lemma 2 For any E where 2
v+1 + ρ > 1−ρ

v
+ ε for some

small ε > 0, FCFS is not c-competitive for any constant c.

Proof: [Outline] We prove this result by constructing

a worst case input instance I(c) against FCFS. Let the first

intruder be released at time 0 at 1. Let c + 1 intruders be

released at time ε at −1. Since, 2
v+1 + ρ > 1−ρ

v
+ ε, it

follows that FCFS(I(c)) = 1, where A(I) is the number

of intruders captured by an algorithm A in an input instance

I . On the other hand, since the optimal algorithm has the

information of the entire input instance, OPT (I(c)) = c +
1. This result generalizes to any variation of FCFS which

captures the first arriving intruder, if possible, before any

later arriving intruder.

We now turn our attention to the design of algorithms with

provable guarantees on the competitive ratio. In the following

section, we describe and analyze three algorithms, charac-

terizing parameter regimes with provably finite competitive

ratios.

IV. ALGORITHMS

We now propose three main algorithms for the vehicle

that are provably 1, 2, and 4 competitive. As the competitive

ratio increases, the parameter regime that can be handled also

increases.

A. Sweeping algorithm

We define the Sweeping algorithm (Sweep) as follows. At

time 0, the vehicle moves with unit speed toward endpoint

+1. From this point on, the vehicle only changes direction

when it reaches an endpoint +1 or −1, at which time it

moves with unit speed towards the opposite endpoint. Sweep

is an open-loop algorithm; that is, it ignores all information

about intruders. One logical variant is to stop moving in a

given direction if there are no intruders in that direction. We

show this variant achieves the same performance guarantee.

Theorem IV.1 For environment E , Sweep is 1-competitive if

v ≤ 1−ρ
3+ρ

. If not, it is not c-competitive for any constant c.

Proof: Suppose that v ≤ 1−ρ
3+ρ

holds. We show Sweep

captures all intruders. Any intruder i will take 1−ρ
v

time to

get from its arrival location, which we now assume to be 1
without loss of generality, to ρ. In the worst case for Sweep,

which is that it has left 1 just before intruder i arrived, it

will take 3 + ρ time to get to ρ moving towards intruder i.
If 3 + ρ ≤ 1−ρ

v
, then vehicle will get to ρ first and intruder

i will be captured, and the first result follows. For v > 1−ρ
3+ρ

there is an input instance where intruders only arrive at 1
just after the vehicle has left 1. As v > 1−ρ

3+ρ
, all intruders

will be lost and the second result follows.

We observe that the upper bound in the proof holds for

the Sweep variant that stops moving in a given direction if

there are no intruders in that direction. The lower bound

requires introducing some intruders at −1 to ensure that

the Sweep variant will move the vehicle towards −1. These

intruders might be captured, but the lower bound still holds

by increasing the number of intruders which arrive at 1.

B. Compare and Capture (CaC) algorithm

We now present a Compare and Capture (CaC) algorithm

that is provably 2-competitive beyond the parameter regime

of the Sweep algorithm. CaC is not open-loop but is memo-

ryless, , i.e., its actions depend only on the present state of

the vehicle and the intruders.

We begin with some notation and definitions. An epoch k
for the CaC algorithm is the time interval when the vehicle

moves from location xk to location xk+1 and is about to

move from xk+1, capturing some intruders along the way.

Location xk is always either ρ or −ρ. We denote the start of

epoch k using the notation kS . For epoch k, we define Sk
same

as the set of intruders on the same side as the vehicle at time

kS , and Sk
opp as the set of intruders on the opposite side of

the vehicle that are between ρ+2ρv and ρ+2vρ+ 2v(1−ρ)
1+v

away from the origin at time kS . Specifically, if the vehicle is

located at xk = ρ, then Sk
opp is defined as the set of intruders

contained in [−(ρ+ 2ρv + 2v(1−ρ)
1+v

),−(ρ+ 2ρv)].

The CaC algorithm, summarized in Algorithm 1, works as

follows: At epoch k, for any k ≥ 1, the algorithm computes

the number of intruders located in Sk
same and Sk

opp. If the total

number of intruders in Sk
same is greater than the total number

of intruders in Sk
opp, then the vehicle moves away from the

origin for at most 1−ρ
1+v

time to capture all intruders from

the set Sk
same and then returns to xk+1 = xk. Otherwise, the

vehicle moves for at most 2ρ + 4v(1−ρ)
(1+v)2 time to capture all

intruders located in Sk
opp and then returns to xk+1 = −xk.

At time 0, we assume the vehicle starts at the origin. CaC

waits at the origin until the first intruder that arrives in the





Algorithm 2: Capture with Patience Algorithm

1 Vehicle stays at origin from time 0 (time first intruder

arrives) to time 2ρ, same side is right of origin

2 At time 2ρ, if |S1
opp| > |S1

same| then

3 Move to x2 = −ρ, same side is left of origin

4 else

5 Move to x2 = ρ, same side unchanged

6 end

7 Wait until time z
8 for each time instant z + 2ρj, j ≥ 0 do

9 if |Sj+2
opp | > |Sj+1

same|+ |Sj+2
same|+ |Sj+3

same| then

10 Move to xj+1 = −xj , same side changes

11 else

12 Stay at xj and capture interval Sj+1
same.

13 end

14 end

time 2ρ. At time 2ρ, if |S1
opp| > |S1

same| (intruders to the

left of the origin are considered on the opposite side while

intruders to the right of the origin are considered on the same

side for this special case), then the vehicle will move to −ρ.

Otherwise, the vehicle moves to ρ. In either case, the vehicle

then stays at either −ρ or ρ until time z.

Lemma 5 CAP never moves the vehicle from ρ to −ρ and

then back to ρ (or vice versa) without capturing at least one

interval of intruders.

Proof: This holds as in order to move from ρ to −ρ
at time 2jρ + z, it must be true that |Sj+2

opp | > |Sj+1
same| +

|Sj+2
same| + |Sj+3

same|. This implies |Sj+2
opp | > |Sj+3

same|. In order to

move directly to ρ without capturing the intruders in the

interval Sj+2
opp , we would need |Sj+3

same| > |Sj+2
opp | + |Sj+3

opp | +
|Sj+4

opp |, but this cannot hold by the above observation.

Corollary IV.3 For any i ≥ 1, CAP will capture intruders

from one of Si
same or Si+1

opp .

Proof: Omitted for brevity.

Theorem IV.4 CAP is 4-competitive for any environment E
with v ≤ (1− ρ)/6ρ.

Proof: [Outline] We show that for any input instance

I , CAP captures at least 1/4th of all intruders in I using

an accounting analysis where we “charge” lost intruders to

captured intruders, or equivalently, captured intruders “pay”

for the lost intruders. CAP only switches sides when the

payoff on the other side is large enough to pay for the lost

intruders on the original side.

We now prove some lower bounds on CAP’s competitive

ratio including showing that the bound is tight for some

parameter settings.

Lemma 6 CAP is no better than 3-competitive for v ≤ 1−ρ
6ρ

and is no better than 4-competitive for v ≤ min{ 1
3 ,

1−ρ
6ρ }.

Fig. 2. Parameter regimes for our algorithms (solid lines, extend to the
left) and lower bounds (dashed lines, extend to the right).

Proof: [Outline] We consider an input instance I
consisting of two streams of intruders, one stream each

arriving at endpoints 1 and −1. At location 1, one intruder

arrives at time instant 6iρ, 0 ≤ i ≤ K for some large

K. At location −1, one intruder arrives at time instant

3ρ + ρ
v
+ i2ρ, 0 ≤ i ≤ K. CAP stays at ρ and captures

the less dense stream of intruders. Another algorithm stays

at −ρ and captures the dense stream of intruders regardless

of parameter regime to prove the 3-competitive lower bound.

For v ≤ min{ 1
3 ,

1−ρ
6ρ }, we give an algorithm that captures

all intruders yielding the 4-competitive lower bound.

V. SUMMARY AND NUMERICAL PERFORMANCE

A. Summary of the results

Figure 2 shows a v-ρ plot summarizing our results. For

ρ > 0.3, as the curve defined by the conditions in Theorem

IV.2 for the CaC algorithm is above the curve defined by

the conditions in Theorem IV.4 for the CAP algorithm, one

should implement the CaC algorithm rather than the CAP

algorithm. This is because the CaC algorithm guarantees

to capture at least half of the total number of intruders,

whereas, the CAP algorithm captures only 1
4

th
of the total

number of intruders. For any ρ ≤ 0.3, there exist values of

v such that one might choose any of the three algorithms.

The curve defined by the conditions in Theorem IV.2 for

the CaC algorithm is completely below the curve defined by

the condition in Theorem III.2. This suggests that for the

values of v and ρ that lie above the curve defined by the

conditions for the CaC algorithm, either there may still exist

an algorithm which is 2-competitive or it may be possible to

tighten the analysis of Theorem III.2 and Lemma 3.

B. Numerical Performance

We now analyze the average case performance, as opposed

to the worst case performance, of our algorithms numerically.

Of specific interest is the case when the intruders are gener-

ated stochastically as per a spatio-temporal process [10].

We performed numerical analysis of our algorithms using

the following procedure. A Poisson process with rate λ



Fig. 3. Simulation result for λ = 5 and ρ = 0.2. The error bars indicate
±1 standard deviation.

was used to model the arrival process of the intruders. The

intruders arrive with equal probability on the endpoints. We

simulated 50 runs per algorithm and present the mean and

standard deviation of the capture fraction obtained by each

algorithm for various values of v keeping ρ and λ fixed to 0.2
and 5 respectively. The capture fraction is defined as the ratio

of the total number of intruders captured to the total number

of intruders arrived in the environment [21]. The value of

λ was kept high because for low arrival rate (λ → 0), the

number of intruders that arrive in the environment were very

few and the capture fraction obtained was misleadingly high.

Figure 3 shows the simulation result for each of the

algorithms. For values of v and ρ that lie above the blue

curve in Figure 2, the CaC algorithm captured, on average,

more than half of the intruders that arrived. Furthermore, the

capture fraction of CAP algorithm was approximately 0.5 on

average for all values of v. This is because the intruders being

uniformly distributed, the vehicle can just capture intruders

on one side and still ensure at least half of the total intruders

are captured. Moreover, as v increases the capture fraction

of Sweep algorithm approaches that of CaC algorithm. This

is because as v increases, the sizes of the sets Ssame and Sopp

increase and eventually they cover the entire environment,

thereby, converging to the Sweep algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper addressed a problem in which a single vehicle

is tasked to defend a line segment perimeter from intruders.

The key novelty of this work is an integration of concepts and

techniques from competitive analysis of online algorithms

with pursuit of multiple mobile intruders. We designed and

analyzed three algorithms, i.e., Sweeping, Compare and Cap-

ture, and Capture with Patience algorithms, and demonstrated

that they are 1, 2 and 4-competitive, respectively. We also

derived fundamental limits on c-competitiveness for any

constant c.
We plan to extend this work for the case when the intruders

need to move outward or can actively evade the vehicle

in order to reach the perimeter. Cooperative multi-vehicle

defense in higher dimensional environments that can yield

lower competitive ratios is another future direction.
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