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Abstract— We consider a perimeter defense problem in
which a single vehicle seeks to defend a compact region from
intruders in a one-dimensional environment parameterized by
the perimeter size and the intruder-to-vehicle speed ratio. The
intruders move inward with fixed speed and direction to reach
the perimeter. We provide both positive and negative worst-case
performance results over the parameter space using competitive
analysis. We first establish fundamental limits by identifying
the most difficult parameter combinations that admit no c-
competitive algorithms for any constant ¢ > 1 and slightly
easier parameter combinations in which every algorithm is at
best 2-competitive. We then design three classes of algorithms
and prove they are 1, 2, and 4-competitive, respectively, for in-
creasingly difficult parameter combinations. Finally, we present
numerical studies that provide insights into the performance of
these algorithms against stochastically generated intruders.

I. INTRODUCTION

This paper addresses a perimeter defense problem, which
is a class of vehicle routing problems, in which a vehicle
seeks to intercept mobile intruders before they reach a
specified region. In our problem, a robotic vehicle must
defend a subset of a line segment from intruders that are
generated at the endpoints of the line segment and move
towards the subset, with a fixed speed. The robotic defender
moves with maximum unit speed with the goal of capturing
the maximum number of intruders. This perimeter defense
problem is an online problem in that the input, consisting
of the arrival of intruders at specified times and locations, is
only revealed gradually over time.

While perimeter defense problems have been well-studied,
most prior work has focused on determining an optimal
strategy for a small number of intruders or assuming that the
input instance is generated by some stochastic process. While
these results provide valuable insights into the average-case
performance of defense strategies, they essentially ignore the
worst-case where intruders may coordinate their actions to
overwhelm the defense.

To understand how algorithms that specify vehicle motion
perform in the worst-case, we adopt a competitive analy-
sis technique [1]. In competitive analysis, we measure the
performance of an online algorithm A using the concept of
competitive ratio, i.e., the ratio of an optimal offline algo-
rithm’s performance divided by algorithm A’s performance
for a worst-case input instance. Algorithm A is c-competitive
if its competitive ratio is no larger than ¢ which means its
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performance is guaranteed to be within a factor ¢ of the
optimal for all input instances.

The primary application for our work is defending
a perimeter from intruders such as missiles or locusts.
Additional applications include gathering information on
mobile entities in surveillance or traffic scenarios.

Perimeter defense problems were first introduced for a
single vehicle and a single intruder in [2]. Since then,
perimeter defense has been mostly formulated as a pursuit-
evasion game. The multiplayer setting for the same has been
studied extensively as a reach-avoid game in which the aim is
to design control policies for the intruders and the defenders
[3], [4]. A typical approach requires computing solutions
to the Hamilton-Jacobi-Bellman-Isaacs equation which is
suitable for low dimensional state spaces and in simple
environments [5], [6]. Recent works include [7], which
proposes a receding horizon strategy based on maximum
matching, and [8], which considers a scenario where the
defenders are constrained to be on the perimeter.

In vehicle routing problems, inputs become available over
time. Introduced on graphs in [9], a typical approach requires
that the vehicle routes be re-planned as new information is
revealed over time [10]. The inputs may have multiple levels
of priorities [11] or can be randomly recalled [12]. We refer
the reader to [13] for a review of this literature. A common
way to analyze the performance of online algorithms is
competitive analysis [14], [15], [16].

Another area of related work is the class of Moving Target
Travelling Salesman Problem (MTTSP) on a single line
[17], [18]. Several variants of this problem are discussed in
[19]. Specifically, the authors provide an O(n?) algorithm to
capture n intruders on a line in minimum time.

Earlier, we introduced a perimeter defense problem for
a circular and rectangular environment with stochastically
generated input [20], [21]. The key distinction of the current
work from these past works is the characterization of
competitiveness of the algorithms for worst case inputs.

Our general contribution is the following: we introduce
a perimeter defense problem against mobile intruders using
competitive analysis to derive worst-case performance guar-
antees. Specifically, we consider an environment comprising
a line segment [—1,1] in which the intruders arrive as per
an arbitrary sequence at the endpoints. After arrival, the
intruders move toward the origin, with fixed speed v < 1,
with the objective of reaching the region [—p, p] called the
perimeter, for a given 0 < p < 1. A vehicle, modelled as a
first-order integrator with a maximum speed of unity, seeks



to capture (become coincident with) the intruders before they
reach the perimeter. Our specific contributions are as follows.
We first characterize a most difficult parameter regime in
v — p space in which no control algorithm (either online or
offline) for the vehicle can be c-competitive for any constant
c and a second, slightly easier, parameter regime in which
no algorithm is better than 2-competitive. We also show that
a class of simple algorithms, such as the First-Come-First-
Served, are not c-competitive, even for parameter regimes in
which other algorithms are. Next, we design and analyze
three algorithms establishing 1, 2, and 4-competitiveness,
respectively, for increasingly difficult parameter regimes. We
numerically characterize their performance when the intrud-
ers are generated as per a stochastic process. We observe that
the algorithms capture at least half the intruders generated
even for parameter settings beyond their respective parameter
regime.

The paper is organized as follows. In Section II, we
formally define our problem and the competitive ratio. We
derive fundamental limits on how competitive any algorithm
can be for difficult parameter regimes in Section III. In
Section IV, we design and analyze three algorithms. Section
V presents numerical simulations. In Section VI, we present
a summary and possible directions for future work.

II. PROBLEM FORMULATION

Consider an environment £(p) = {y e R : p < |y| < 1}
and let £ := [—1,1]. Intruders arrive over time at either
location —1 or 1 and move, with fixed speed v < 1, towards
the nearest point in £ out of —p or p. The defense consists
of a single vehicle with motion modeled as a first order
integrator. The vehicle can move with a maximum speed
of unity. The vehicle is said to capture an intruder when the
vehicle’s location coincides with it. An intruder is said to
be lost if the intruder reaches the perimeter without being
captured. Let n(t) denote the number of intruders arrived at
time instant ¢{. An input instance [ is a tuple comprising
the time instants, the corresponding number of intruders
generated at those instants and their corresponding initial
locations, is defined as I = {t,n(t),{—1,1}"®}7_,.

An online algorithm determines the velocity for the vehicle
as a function of the location of the intruders that have
arrived in the environment up to the current time instant .
Let Q(t,I) denote the set of instantaneous locations of all
intruders in the environment at time ¢ from the input instance
I. An intruder is removed from Q(¢,I) if it is captured or
lost. We now formally define an online algorithm as follows.

Online Algorithm: An online algorithm for a vehicle is
amap A : & xF — [-1,1], where F() is the set of
finite subsets of &, assigning a commanded velocity to the
vehicle as a function of the position of the vehicle, denoted as
z(t), and the location of the intruders, yielding the kinematic
model, &(t) = A(x(t), Q(¢,I)).

An optimal offline algorithm is a non-causal algorithm
having complete information of the input instance [ at any
time ¢ < T and thus, the velocity of the vehicle is a function
of current and future locations of the intruders.

Definition 1 (Competitive Ratio) Given an E(p), an input
instance I for E(p), and a given online algorithm A, let
na(I) denote the number of intruders captured by the
vehicle when following algorithm A on input instance 1.
Let OPT denote the optimal algorithm that maximizes
the number of intruders captured out of input instance
1. Then, the competitive ratio of A on I is defined as
call) = nopr(I)/na(I) > 1, and the competitive ratio
of A for environment € is c4(£) = supy ca(I). Finally, the
competitive ratio for environment £ is ¢(E) = inf 4 c4(E).
We say that an algorithm is c-competitive for € if c4(€) < c.

We assume that all of the input instances are non-adaptive
where the arrival of intruders is not based on the movement
of the vehicle.

Problem Statement: The aim of this paper is to design
c-competitive algorithms for the vehicle with minimum c.

In what follows, we provide only the outline of the proofs
for brevity. The detailed proofs are contained in [24].

II1. FUNDAMENTAL LIMITS

We begin by characterizing a property of an extreme speed
algorithm, ie., A’ : € xF — {—1,0,1}, which either moves
the vehicle with unit speed or keeps it stationary.

Lemma 1 (Extreme speed algorithms) Given an
arbitrary algorithm A and a non-adaptive input instance I,
there exists an extreme speed algorithm A’ that captures at
least as many intruders in I as A.

Proof: [Outline] We define the capture profile of A’s
execution on an arbitrary, non-adaptive input instance I as
the set of pairs (x;,k;) for 1 < ¢ < n where k; is the
time of the ¢th capture and z; is the point where the ith
capture occurred. The crux of this proof is showing that we
can create an extreme speed algorithm A’ that has the same
capture profile as A by getting to the next capture point x;
as quickly as possible and, if necessary, waiting at location
x,; until time k;. |

In light of Lemma 1, we can restrict our attention to
algorithms that either move the vehicle with maximum speed
or keep the vehicle at rest.

We now present the fundamental limits. We first present a
fundamental limit on achieving a c-competitive ratio for any
constant ¢ followed by a fundamental limit on achieving a
2-competitive ratio.

Theorem IIL.1 For any environment £ such that v > 12;;’,

1) there does not exist a c-competitive algorithm and
ii) no algorithm (online/offline) can capture all intruders.

Proof: [Outline] The idea behind the proof is to first
construct a worst case input for any online algorithm and then
compare the performance with the optimal algorithm. The
input instance consists of two phases: a stream of intruders
that arrive at the endpoint 1, 2 time units apart starting at time
1, and a burst of c+1 intruders who arrive at the endpoint —1



at time ¢ that corresponds to the first time the vehicle moves
to p according to any online algorithm. Then, for v > -2
any online algorithm captures at most 1 stream intruder and
loses the entire burst of ¢+ 1 intruders, however, the optimal
algorithm can capture all the burst intruders and at least all
but the last stream intruder. [ ]
The following theorem provides a fundamental limit on
achieving a 2-competitive ratio for any environment.

Theorem IIL.2 For the environment £ such that v > }%Z,
c(&) > 2.

Proof: [Outline] In this proof, we consider five dif-
ferent input instances consisting of two intruders, a and
b, arriving at opposite endpoints. We show that no single
online algorithm can capture both intruders from all five
input instances. In contrast, we then show there exists a
collection of algorithms, one of which captures both intruders
for each of the five input instances. [ ]

We now show that a natural algorithm, First-Come-First-
Served (FCFS), cannot be a competitive algorithm for this
problem for a sufficiently difficult parameter regime. We
define FCFS as the algorithm which sends the vehicle with
speed 1 towards the earliest intruder to arrive that is not lost
or already captured.

Lemma 2 For any £ where % +p> lfT” + € for some
small € > 0, FCFS is not c-competitive for any constant c.

Proof: [Outline] We prove this result by constructing
a worst case input instance I(c) against FCFS. Let the first
intruder be released at time 0 at 1. Let ¢ + 1 intruders be
released at time € at —1. Since, %H +p > 1;—" + €, it
follows that FCFS(I(c)) = 1, where A(I) is the number
of intruders captured by an algorithm A in an input instance
I. On the other hand, since the optimal algorithm has the
information of the entire input instance, OPT(I(c)) = ¢+
1. This result generalizes to any variation of FCFS which
captures the first arriving intruder, if possible, before any
later arriving intruder. [ ]
We now turn our attention to the design of algorithms with
provable guarantees on the competitive ratio. In the following
section, we describe and analyze three algorithms, charac-
terizing parameter regimes with provably finite competitive
ratios.

IV. ALGORITHMS

We now propose three main algorithms for the vehicle
that are provably 1, 2, and 4 competitive. As the competitive
ratio increases, the parameter regime that can be handled also
increases.

A. Sweeping algorithm

We define the Sweeping algorithm (Sweep) as follows. At
time O, the vehicle moves with unit speed toward endpoint
+1. From this point on, the vehicle only changes direction
when it reaches an endpoint +1 or —1, at which time it
moves with unit speed towards the opposite endpoint. Sweep

is an open-loop algorithm; that is, it ignores all information
about intruders. One logical variant is to stop moving in a
given direction if there are no intruders in that direction. We
show this variant achieves the same performance guarantee.

Theorem IV.1 For environment £, Sweep is 1-competitive if
v< 3 - " . If not, it is not c-competitive for any constant c.

Proof: Suppose that v < =5 holds We show Sweep

captures all intruders. Any 1ntruder 1 will take T" time to
get from its arrival location, which we now assume to be 1
without loss of generality, to p. In the worst case for Sweep,
which is that it has left 1 just before intruder ¢ arrived, it
will take 3 + p time to get to p moving towards intruder i.
If3+p< < 122 then vehicle will get to p first and 1ntruder
1 will be captured and the first result follows. For v > 3 +p
there is an input instance where 1ntruders only arrive at 1
just after the vehicle has left 1. As v > 3£, all intruders
will be lost and the second result follows [ ]

We observe that the upper bound in the proof holds for
the Sweep variant that stops moving in a given direction if
there are no intruders in that direction. The lower bound
requires introducing some intruders at —1 to ensure that
the Sweep variant will move the vehicle towards —1. These
intruders might be captured, but the lower bound still holds
by increasing the number of intruders which arrive at 1.

B. Compare and Capture (CaC) algorithm

We now present a Compare and Capture (CaC) algorithm
that is provably 2-competitive beyond the parameter regime
of the Sweep algorithm. CaC is not open-loop but is memo-
ryless, , i.e., its actions depend only on the present state of
the vehicle and the intruders.

We begin with some notation and definitions. An epoch &
for the CaC algorithm is the time interval when the vehicle
moves from location xj to location x4 and is about to
move from x4, capturing some intruders along the way.
Location xj, is always either p or —p. We denote the start of
epoch k using the notation kg. For epoch k, we define SE_.
as the set of intruders on the same side as the vehicle at time
ks, and S(’fpp as the set of intruders on the opposite side of
the vehicle that are between p + 2pv and p + 2vp + M
away from the origin at time kg. Specifically, if the vehrcle is
located at xj = p, then S’(’ji)p is defined as the set of intruders

20-0)) —(p 4 2pv)).

1+v

The CaC algorithm, summarized in Algorithm 1, works as
follows: At epoch k, for any k£ > 1, the algorithm computes
the number of intruders located in S¥ . and S(’fpp If the total
number of intruders in S¥ . is greater than the total number
of intruders in Sfpp, then the vehicle moves away from the
origin for at most p time to capture all intruders from
the set SE,.. and then returns to 1 = x). Otherwise, the
vehicle moves for at most 2p + 4&&;{? time to capture all
intruders located in S(’fpp and then returns to xy41 = —o.
At time 0, we assume the vehicle starts at the origin. CaC

waits at the origin until the first intruder that arrives in the

contained in [—(p + 2pv +




Algorithm 1: Compare-and-Capture Algorithm

1 Vehicle is at center and waits for w time units
2 if intruders in
[p + 3pv, 1] < intruders in [—1,—(p + 3pv)] then
| Move to —p
else
| Move to p.
end
for each epoch k > 1 do
if ar epoch k, |Sky.| < |Sk | then
‘ Move to capture all intruders located in S(’fpp
Move t0 Try1 = —Tk

e NN N e W

1 else
12
13
14 end
15 end

Move to capture intruders located in S& .
Move t0 Tpy1 = Tk

environment is 3pv + p distance away from the origin, i.e.,
the vehicle does not move until @ time units after the
first intruder arrives. If the total number of intruders located
in [p+ 3puv, 1] is greater than the total number of intruders
located in [—1, —(p+ 3pv)], then the vehicle moves to z1 =
p. If not, the vehicle moves to z; = —p. The first epoch
begins when the vehicle reaches ;.

To prove 2-competitiveness of CaC, we first prove that
any intruder not belonging to S&. or Sk in an epoch k
will not be lost during epoch k.

Lemma 3 In every epoch k, any intruder that lZies outside

of the set Sk, and Sk is not lost if 5 T Tz < 1.
Proof: [Outline] We show that any intruder that did not

belong to Sk, and S is at least p + 2pv distance away

from the origin at the end of epoch k. |

Lemma 4 In every epoch k of the CaC, S

opp IS well defined
, 2v(1—p)
ifp+2pw+ =7~ <1

Proof: Omitted for brevity. |

Theorem IV.2 CaC captures at least half of all intruders

and is 2-competitive in parameter regimes for which Lemma
3 and Lemma 4 both hold.

Proof: Based on Lemma 4, S(’fpp is well-defined in

every epoch k. This implies that Algorithm 1 is well-defined.

Lemma 3 ensures that every intruder will belong to SX__ or

S(’fpp for some epoch k. Because of the comparison in line

9 of Algorithm 1, in every epoch, the number of intruders
captured is at least the number of intruders lost. Note that an
intruder is not lost in epoch k if it belongs to Skt1 or Sk t?

in the subsequent epoch k 4+ 1. Thus, the algorithm captures
at least half of all intruders and is 2-competitive. |

43 cjt2 j+1 Jt1 o gjt2 J
1 P +1
—p +p

Fig. 1. Breakdown of the environment into regions of length 2pv by the
CAP algorithm. The triangle depicts the vehicle, whereas a dot depicts an
intruder

C. Capture with Patience (CAP) Algorithm

We now present another memoryless algorithm, Capture
with Patience (CAP), in which the vehicle stays in the range
[—p, p] waiting for and capturing intruders at p or —p. CAP
is only 4-competitive but can operate beyond the parameter
regime of the CaC algorithm.

A key feature in environment £ is the quantity z =
lv;p which represents the time required for any intruder
originating at +1 or —1 to reach the corresponding location
p or —p. CAP requires that z > 6p, equivalently v < lﬁ;p”.
This requirement ensures that incoming intruders take at least
6p time to get to either —p or p whereas it takes the vehicle
2p time to move from —p to p or vice versa.

CAP is formally defined in Algorithm 2 and is described
as follows. First, to simplify notation, it defines time O to
be the moment when the first intruder arrives. It then breaks
time up into intervals of length 2p. The 4th interval for ¢ > 1
is defined as the time interval [2(i — 1)p, 2ip]. We say that
a set of intruders S is on the same side as the vehicle if
the vehicle is located at p (resp. —p) and S C (p, 1] (resp.
[-1,—p)). Similarly, we say that S is on the opposite side
of the vehicle if the vehicle is located at p (resp. —p) and
S C[~1,—p| (resp. [p, 1]).

For i > 1, let S§,, and S, be the intruders in an input
instance I that arrive in the ith time interval that are on the
opposite side and same side of the vehicle, respectively. Let
|S| denote the cardinality of S.

CAP operates as follows in the steady state, i.e., after time
instant z. At any time instant 25p + z for j > 0, the vehicle
is stationed at either —p or p. Without loss of generality, we
assume that the vehicle is stationed at p. First, we observe
that the intruders in Sga;i are located between p and p+2pv,
the intruders in S%2 are located between p+2pv and p+4pv,
and the intruders in Sfdﬁ,g are located between p + 4pv and
p + 6pv (Fig. 1). Further, because z > 6p, this means all
the intruders in Sﬁaﬁi have arrived by time 2jp + z. Similar
conclusions can be drawn for the intruders in Sg';;l, Sg;f,Q,
and Sg;f,g. If |SI57| > [Slahe| + |SI2] + | Sk, then the
vehicle moves to —p arriving at time 2(j + 1)p + z which is
just in time to capture all the intruders in SZh2. If not, then
the vehicle stays at p and captures all the intruders in Sort
and reevaluates at time 2(j + 1)p + 2. The key observation
is that the vehicle moves from p to —p only when it sees
sufficient benefit in terms of the number of intruders in Sﬁ;f
to sacrifice all the intruders in SZiL, S7+2 and S213.

For the initial case, the vehicle stays at the origin until



Algorithm 2: Capture with Patience Algorithm

1 Vehicle stays at origin from time O (time first intruder
arrives) to time 2p, same side is right of origin
At time 2p, if |Sy | > [Sk.| then
| Move to x5 = —p, same side is left of origin
else
‘ Move to z2 = p, same side unchanged
end
Wait until time z
for each time instant z 4+ 2pj,j > 0 do
if | S9h7| > |Stie| + [ Stame| + | Sdame| then
10 ‘ Move to zj41 = —x;, same side changes
1 else
12 ‘ Stay at ; and capture interval Sgaﬁi
13 end
14 end

e N N R W N

time 2p. At time 2p, if [Sy,,| > |Sgme| (intruders to the
left of the origin are considered on the opposite side while
intruders to the right of the origin are considered on the same
side for this special case), then the vehicle will move to —p.
Otherwise, the vehicle moves to p. In either case, the vehicle
then stays at either —p or p until time z.

Lemma 5 CAP never moves the vehicle from p to —p and
then back to p (or vice versa) without capturing at least one
interval of intruders.

Proof: This holds as in order to move from p to —p
at time 2jp + z, it must be true that |Sg;§,2| > |S§Q§é| +
|Sfd}t£| + |SZ$1§| This implies |S§I;;2| > |S$afn§|. In order to
move directly to p without capturing the intruders in the
interval Sga;?, we would need |S§;§1§| > |S§;{,2\ + |S§§)3| +
|Sg;l;4|, but this cannot hold by the above observation. W
Corollary IV.3 For any i > 1, CAP will capture intruders

from one of S, or SiEL.

Proof: Omitted for brevity. [ ]

Theorem IV.4 CAP is 4-competitive for any environment £
with v < (1 — p)/6p.

Proof: [Outline] We show that for any input instance
I, CAP captures at least 1/4th of all intruders in I using
an accounting analysis where we “charge” lost intruders to
captured intruders, or equivalently, captured intruders “pay”
for the lost intruders. CAP only switches sides when the
payoff on the other side is large enough to pay for the lost
intruders on the original side. [ ]
We now prove some lower bounds on CAP’s competitive
ratio including showing that the bound is tight for some
parameter settings.

Lemma 6 CAP is no better than 3-competitive for v < 1(:7’)
1 1;/)}

and is no better than 4-competitive for v < min{g, o7

‘\ —— CAP algorithm
\\ CacC algorithm
08! Y Sweeping algorithm
‘\ === Theorem IIl.1
- -~ Theorem lll.2
0.6
0.4+
0.2
0 I . L LR
0 0.2 0.4 0.6 0.8 1

P

Fig. 2. Parameter regimes for our algorithms (solid lines, extend to the
left) and lower bounds (dashed lines, extend to the right).

Proof: [Outline] We consider an input instance [
consisting of two streams of intruders, one stream each
arriving at endpoints 1 and —1. At location 1, one intruder
arrives at time instant 6ip, 0 < ¢ < K for some large
K. At location —1, one intruder arrives at time instant
3p+ L +142p, 0 < i < K. CAP stays at p and captures
the less dense stream of intruders. Another algorithm stays
at —p and captures the dense stream of intruders regardless
of parameter regime to prove the 3-competitive lower bound.

For v < min{%, 16;13”}, we give an algorithm that captures
all intruders yielding the 4-competitive lower bound. [ ]

V. SUMMARY AND NUMERICAL PERFORMANCE
A. Summary of the results

Figure 2 shows a v-p plot summarizing our results. For
p > 0.3, as the curve defined by the conditions in Theorem
IV.2 for the CaC algorithm is above the curve defined by
the conditions in Theorem IV.4 for the CAP algorithm, one
should implement the CaC algorithm rather than the CAP
algorithm. This is because the CaC algorithm guarantees
to capture at least half of the total number of intruders,
whereas, the CAP algorithm captures only ith of the total
number of intruders. For any p < 0.3, there exist values of
v such that one might choose any of the three algorithms.
The curve defined by the conditions in Theorem IV.2 for
the CaC algorithm is completely below the curve defined by
the condition in Theorem III.2. This suggests that for the
values of v and p that lie above the curve defined by the
conditions for the CaC algorithm, either there may still exist
an algorithm which is 2-competitive or it may be possible to
tighten the analysis of Theorem III.2 and Lemma 3.

B. Numerical Performance

We now analyze the average case performance, as opposed
to the worst case performance, of our algorithms numerically.
Of specific interest is the case when the intruders are gener-
ated stochastically as per a spatio-temporal process [10].

We performed numerical analysis of our algorithms using
the following procedure. A Poisson process with rate A
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Fig. 3. Simulation result for A = 5 and p = 0.2. The error bars indicate
+1 standard deviation.
was used to model the arrival process of the intruders. The
intruders arrive with equal probability on the endpoints. We
simulated 50 runs per algorithm and present the mean and
standard deviation of the capture fraction obtained by each
algorithm for various values of v keeping p and X fixed to 0.2
and 5 respectively. The capture fraction is defined as the ratio
of the total number of intruders captured to the total number
of intruders arrived in the environment [21]. The value of
A was kept high because for low arrival rate (A — 0), the
number of intruders that arrive in the environment were very
few and the capture fraction obtained was misleadingly high.
Figure 3 shows the simulation result for each of the
algorithms. For values of v and p that lie above the blue
curve in Figure 2, the CaC algorithm captured, on average,
more than half of the intruders that arrived. Furthermore, the
capture fraction of CAP algorithm was approximately 0.5 on
average for all values of v. This is because the intruders being
uniformly distributed, the vehicle can just capture intruders
on one side and still ensure at least half of the total intruders
are captured. Moreover, as v increases the capture fraction
of Sweep algorithm approaches that of CaC algorithm. This
is because as v increases, the sizes of the sets Ssame and Sopp
increase and eventually they cover the entire environment,
thereby, converging to the Sweep algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper addressed a problem in which a single vehicle
is tasked to defend a line segment perimeter from intruders.
The key novelty of this work is an integration of concepts and
techniques from competitive analysis of online algorithms
with pursuit of multiple mobile intruders. We designed and
analyzed three algorithms, i.e., Sweeping, Compare and Cap-
ture, and Capture with Patience algorithms, and demonstrated
that they are 1, 2 and 4-competitive, respectively. We also
derived fundamental limits on c-competitiveness for any
constant c.

We plan to extend this work for the case when the intruders
need to move outward or can actively evade the vehicle
in order to reach the perimeter. Cooperative multi-vehicle
defense in higher dimensional environments that can yield
lower competitive ratios is another future direction.
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