Click This, Not That:
Extending Web Authentication with Deception

Timothy Barron
Yale University
New Haven, CT, USA
timothy.barron@yale.edu

ABSTRACT

With phishing attacks, password breaches, and brute-force login
attacks presenting constant threats, it is clear that passwords alone
are inadequate for protecting the web applications entrusted with
our personal data. Instead, web applications should practice defense
in depth and give users multiple ways to secure their accounts.

In this paper we propose login rituals, which define actions that
a user must take to authenticate, and web tripwires, which define
actions that a user must not take to remain authenticated. These
actions outline expected behavior of users familiar with their in-
dividual setups on applications they use often. We show how we
can detect and prevent intrusions from web attackers lacking this
familiarity with their victim’s behavior. We design a modular and
application-agnostic system that incorporates these two mecha-
nisms, allowing us to add an additional layer of deception-based
security to existing web applications without modifying the appli-
cations themselves.

Next to testing our system and evaluating its performance when
applied to five popular open-source web applications, we demon-
strate the promising nature of these mechanisms through a user
study. Specifically, we evaluate the detection rate of tripwires against
simulated attackers, 88% of whom clicked on at least one tripwire.
We also observe web users’ creation of personalized login rituals
and evaluate the practicality and memorability of these rituals over
time. Out of 39 user-created rituals, all of them are unique and
79% of users were able to reproduce their rituals even a week after
creation.

CCS CONCEPTS

« Security and privacy — Web application security; Intrusion
detection systems; Multi-factor authentication.

KEYWORDS

Intrusion detection, Deception, Multi-factor authentication

ACM Reference Format:

Timothy Barron, Johnny So, and Nick Nikiforakis. 2021. Click This, Not
That: Extending Web Authentication with Deception. In Proceedings of the
2021 ACM Asia Conference on Computer and Communications Security (ASIA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS °21, June 7-11, 2021, Virtual Event, Hong Kong.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8287-8/21/06...$15.00
https://doi.org/10.1145/3433210.3453088

Johnny So
Stony Brook University
Stony Brook, NY, USA
josso@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
Stony Brook, NY, USA
nick@cs.stonybrook.edu

CCS °21), June 7-11, 2021, Virtual Event, Hong Kong. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3433210.3453088

1 INTRODUCTION

Many applications which are used on a daily basis—such as email,
online editors, social media, and file sharing—are located on the
web. By using them, we entrust these applications with our highly
personalized accounts that often contain sensitive information. As
such, these applications are attractive targets to malicious web
users. The primary (and sometimes only) defense used by web ap-
plications are passwords, but they are often insufficient. Part of the
problem is that even if users create strong passwords, prior work
has shown that these passwords are often re-used across many
sites [11]. Accounts can be compromised through brute-force (re-
peatedly guessing passwords) or credential-stuffing (trying known
credentials from one site on other sites) [16]. In fact, researchers
have spent decades trying to improve upon or replace passwords [7],
but there has so far been no alternative that enjoyed widespread
adoption.

Some web applications opt to address the limitations of pass-
words by supplementing them with multi-factor authentication
(MFA). Password-based authentication schemes rely on only one
factor of authentication: they challenge the client to provide some-
thing that they would know if they were the real user. Multi-factor
authentication schemes attempt to challenge the client with com-
binations of the following: what the real user would know (e.g.
password), what the real user would have (e.g. phone), and what
the real user would be (e.g. fingerprint). A common implementation
is to ask a user to verify their identity by entering a one-time code
sent via SMS to their registered phone number.

The downside to MFA is that many implementations add an
inconvenient burden when logging in, making it unpopular. In
2015, Petsas et al. found that only 6.4% of Google users had enabled
two-factor authentication [22]. Even for the users who do rely on
MFA, online services are aware of the friction MFA adds to the user
experience and thus try to use it as little as possible, e.g., when
changing a password or when logging in from a new location.

In this paper, we present two methods for extending authenti-
cation on web applications beyond passwords. We propose web
tripwires and login rituals, two complementary ideas that take ad-
vantage of users’ familiarity with the applications they use often.
One defines what a user should do, while the other defines what
they should not do, in order to remain trusted by an application.

Web tripwires are deceptive intrusion detection mechanisms sim-
ilar to honeytokens [31] that are added into an application. They
are specific to each user allowing them to customize their own
intrusion detection traps. Contrastingly, login rituals are specific

sets of user actions that must be taken immediately after initial
authentication. These are intended to be used in addition to pass-
words, but one advantage is that they are specific to an application
so they cannot be re-used across web applications. Compared to
MFA these can be active at all times with less disruption to normal
use because they align with how a user interacts with the applica-
tion already. Moreover, our proposed mechanisms can be deployed
in parallel with other MFA and be used to further reduce friction
between users and MFA systems, e.g., prompt users for extra codes
and tokens only when they trigger a web tripwire or violate a login
ritual.
We summarize the contributions of this paper as follows.

e We propose web tripwires and login rituals for protecting
web applications against unauthorized access.

e We implement a system demonstrating how these mecha-
nisms can be realized in practice. We show that they can
be deployed on top of a variety of web applications by test-
ing with five popular open-source applications: WordPress,
phpMyAdmin, Roundcube, ownCloud, and ShareLaTeX.

e We evaluate our system with real web users, demonstrating
the strength of tripwires as a defense, with up to an 88%
detection rate, and the ability of users to understand and
remember login rituals over time, with rituals successfully
completed in 74% of the time.

2 DESIGN

This section will describe the two proposed mechanisms and the de-
sign goals. There are a few goals which apply to both mechanisms.
First, we are primarily concerned with protecting logged-in users.
This means we are not concerned with public parts of applications
and our threat model assumes that an attacker has either hijacked a
session or guessed/stolen the login credentials, and was able to com-
plete multi-factor authentication if there was any. Two important
overarching goals for both mechanisms is that we want our solu-
tion to be generally applicable to most if not all web applications
and we want to be able to deploy it on top of existing applications
with minimal configuration and without the web server having any
knowledge of our system.

2.1 Web tripwires

The idea behind web tripwires is that complicated web applications
such as Gmail or Facebook provide custom experiences to different
users. These users become very familiar with their own personal
view, but an intruder who has broken into an account does not
have that same familiarity. Therefore, a user can set up tripwire
elements that only they know about. A tripwire is a trap that can
be avoided by the legitimate owner of an account, but can trigger
countermeasures when activated (red elements in Figure 1). If a
tripwire access is detected, we assume it is due to an intrusion
since the legitimate user knows to avoid it. False positives are still
possible if the real user forgets or mis-clicks. To handle these cases,
we want to support per user policies that trigger countermeasures
if the number of tripwires accesses within a recent time window
exceeds a certain threshold. These countermeasures include logout,
banning an IP address, or disabling an entire account. Each of

&

Figure 1: Abstract example of a web page with ritual elements (green)
and tripwire elements (red). Ritual elements can be chained together
to create login rituals that must be performed immediately after log-
ging in. Tripwire elements must be avoided at all times.

=@=\WordPress
704 Roundcube
—8— OwnCloud
60 { —@— PhpMyAdmin
—8— ShareLaTeX
50 4 —8— PIN code
2 =@= Password
g Pattern lock
S 40 A
w“
o
£ 30
=
20
" /z'
0 B

2 4 6 8 10
Length of Ritual/Password

Figure 2: Comparison of rituals on different applications to alphanu-
meric passwords, n-digit PIN codes, and 3x3 pattern locks. Bits of en-
tropy are calculated aslog, (L) where L is the number of possibilities
for length n.

these countermeasures needs to be enforced by our system without
intervention from the application server itself.

We define multiple types of tripwires to address different attack
scenarios. The first is an injected tripwire. This is a new fake element
which is added into the web page by our system. The user can
create it to make it look like part of the real application and appear
attractive to attackers. The goal is that these injected tripwires
should be difficult to identify for anyone except the legitimate
owner of an account. We anticipate this type of tripwire being most
effective against human attackers who are manually exploring a
compromised account.

The next type is an existing tripwire. This is a real part of the
application which a user rarely (if ever) uses. This may be because

the functionality is duplicated elsewhere, or because it corresponds
to a feature that the user does not need. These tripwires are in-
herently indistinguishable from the rest of the application because
no changes are made on the client side when an existing element
is made into a tripwire. This type of tripwire is effective against
bots and human intruders that have a specific set of actions they
plan to take. Transforming rarely used parts of the application into
tripwires is similar to the idea of web debloating in which unused
parts of applications are removed to reduce attack surface [5]. In
our case, the elements remain to be used for intrusion detection.

2.2 Login rituals

A login ritual is an additional authentication requirement imme-
diately following a standard password login. The idea is that after
users log in to a web application, they will then perform a pre-
scribed series of actions to confirm that they are the real owner of
the account (green elements in Figure 1). This is conceptually simi-
lar to entering a second password, but with a number of concrete
advantages. The first is that a login ritual is specific to a partic-
ular web application and cannot be re-used across multiple sites,
thereby organically addressing the problem of password reuse. For
example, a user could not reuse their banking login ritual on their
social-media account, not because the two sites explicitly forbid
them, but simply because they do not share common Uls. The sec-
ond advantage is based on the assumption that many users have
individual habits after logging in to websites they use frequently.
This makes rituals easier to remember and convenient since a ritual
can be a sequence of actions the user was going to do anyway.
Users can create their own rituals, and an intruder is logged out
(and potentially blocked at the network level, after repeated ritual
failures) if they do not immediately complete the ritual sequence.
The number of possible rituals that a user can create will deter-
mine how difficult it is for an attacker to guess the correct sequence
of actions. The number of possibilities depends on the application,
with more complicated user interfaces providing more options from
which to build rituals. We use an analogy to passwords where one
chooses a sequence of n alphanumeric symbols. In this case there
are 62 symbols to choose from (or 95 with special characters) to
create one of 62" potential passwords of length n. A less secure,
but still commonly used scheme is 4-digit PIN codes, in which case
there are only 10 symbols leading to 10,000 possibilities. We also
compare to 3x3 pattern locks, popularized by Android, which pro-
vide up to 389,112 possibilities at length 8 [33]. In the case of rituals,
the symbols available to choose from are the interact-able elements
within an application. To evaluate the number of possible rituals,
we crawled the pages of our evaluated web applications (WordPress,
Roundcube, OwnCloud, PhpMyAdmin, and ShareLaTeX) counting
the number of links to estimate the number of symbols available.
Unlike passwords, the number of symbols varies depending on
which page the user is currently viewing. We chose to take the
average number of links found across all crawled pages within each
application and call that its number of symbols. We then estimate
the number of possible rituals to be s where s is this average num-
ber of symbols and n is the length of the ritual. Note that this is
likely to be an underestimate since we only count <a> tags, whereas

in practice, multiple HTML elements can have click-related event
handlers, making them candidates for use in a ritual.

Figure 2 shows how many bits of entropy are available for rituals
in each application and compares to three other types of passwords.
We see that rituals are capable of providing similar levels of entropy
to these other techniques. PhpMyAdmin provides more options
than alphanumeric passwords and ShareLaTeX, which has fewer
Ul elements, is similar to pattern locks until the pattern reaches
its maximum length of 8 and falls behind. Any of these may be
sufficient if we assume the user makes good random passwords and
the attacker makes random guesses. In each case, when the length
is 5 or more, the probability of guessing the code/password/ritual
within 5 attempts is less than 0.1%. As long as the number of failed
attempts is capped or rate limited, guessing attacks are very un-
likely to be effective. Rather, the primary concern with passwords
and PIN codes is re-use of common passwords and re-use across
applications. As we mentioned above, this is where rituals have the
advantage. Rituals are application-specific, and if the user chooses
elements that they created, such as an email folder, then they may
also be entirely user-specific and thus cannot be re-used. Since login
rituals provide offer similar protection against guessing attacks,
while avoiding the pitfalls of passwords, we have shown that they
contribute more to a user’s security than having a second password.

When used together, login rituals and web tripwires describe
the expected behavior from a real user by outlining actions that
they must do and those that they must not do. An intruder will fall
outside this expected behavior when their unfamiliarity with the
real user’s specific environment leads them to either fail the login
ritual or activate countermeasures by clicking on tripwires.

2.3 Threat model

Our defenses address attackers who have gained unauthorized
access to a user’s account on a web application using brute-forced
or stolen login credentials. Attackers may interact with the web
application through the user interface in a web browser, or they may
send individually crafted requests directly. The tripwires portion of
our defense also addresses attackers who have hijacked an existing
user session either by stealing a session cookie or through access
to a user’s logged in device. Login rituals will not apply in this case
if the real user had already completed their ritual in that session.
We assume that the attacker is aware of the existence of rituals
and tripwires, but does not have knowledge of the victim’s specific
setup of ritual steps and tripwire placements.

3 ARCHITECTURE AND IMPLEMENTATION

Our goal is to design a system which can be deployed on top of
any web application with a minimal need for application-specific
configuration. In order to inject tripwires and enact countermea-
sures, our system needs to be able to inspect incoming requests
and modify outgoing responses. To satisfy these requirements, we
implemented our system using mitmproxy [9].

We use mitmproxy as un uncircumventable reverse proxy so
that all requests from all clients are received by the proxy, and
when it is done manipulating requests it forwards the requests to
the application server. The responses from the server return to the
proxy where they can be manipulated again, then sent back to the

Login Module

Tripwires Module

Rituals Module

2
Enforce S B i — Ignore allowlisted Ignore Advance %
— actions Q password Pt S X " e expected ritual or log .> Lo}
[] (SUBMIT) Log out blocklisted requests out user (irimo)
User Applicaticn
é ,
REQUEST =) 9 =
D - D Logs Policies App Config Expected Rituals
""""""" F--- :‘______ Device entry |-====--===-[=" RofaSo " TTTT oo Tttt Tommmssmsssssmsdpe----------oso-------- followup [F------mmss---spe--------
RESPONSE W (eSS Ave oS requests
Users Tripwires =0
Devices
— >
[—\ Add
=] — session l\l T Cache-Control: no-store | |
(e=o) cookie y '{/ and Pragma: no-cache ———
Application C/\‘ //A User
10

Figure 3: The architecture of our reverse proxy system. The three modules shown are added to mitmproxy’s request/response pipeline. The top half
shows operations on requests, while the bottom half shows manipulations of the responses.

w
L

N
L

Tripwires clicked in last 2 min

-
L

T-6:00 T-4:00 T-2:00
Time (T-min:sec)

0 T
T-10:00 T-8:00 T-0:00

Figure 4: Policy enforcement example. Dotted vertical lines represent
five tripwire accesses. The orange and red lines are thresholds for a
logout and ban action respectively. The blue line is the number of
tripwires within the last two minutes.

client. To set up the reverse proxy so that all requests go through it
first, the DNS records for the application can be changed to point
to the proxy and the actual application server may remain behind
a firewall. This is similar to an application adopting a CDN service
(such as Akamai) or anti-DDoS service (such as Cloudflare) where
these services are responsible for handling client requests and for-
warding some of these requests to the true application server, as
necessary. Aside from this change, the original web application
remains oblivious to our system. It is also possible to set up our
proxy alongside other network middleboxes, including load bal-
ancers, by ensuring that each application server instance has its
own tripwire/ritual reverse proxy instance.

Mitmproxy’s modular design allows us to create custom add-
ons that are added to a pipeline of handlers that each request and
response passes through. The overall architecture of our system
is shown in Figure 3. The three modules shown are mitmproxy
add-ons, and we describe the workings of each of these below:

3.1 Identifying logins

Since our system is designed to protect logged-in users, it is impor-
tant that we are able to recognize when a request is coming from a
logged-in user and to be able to distinguish between users. To do
this, we inspect incoming requests and check form fields submitted
in the body or encoded in the URL for a username and password
(Step @ in Figure 3). Once we identify that a request contains a
pending login, we save it in memory and wait for the correspond-
ing response. If a response sets a session cookie and matches a
saved pending login (9), then our system infers that the login was
successful and we create (or update) the user and device records.
These include the username, session ID cookie value, IP address,
and a device fingerprint derived from the User-Agent header.

For all future requests, when a module needs to know which
user is responsible for a given request, we can look up the user
in our database by their session cookie. The specific field names
used for usernames, passwords, and session cookies depend on the
application therefore our system relies on configuration parameters
that an administrator would populate when setting up our system
for the first time.

3.2 Web tripwires

Our database contains a list of tripwires for each logged in user.
This includes the type of tripwire (injection or existing), the request
path that we will use to detect when this tripwire is clicked, an
anchor location at which to inject the tripwire, and the HTML
snippet that is injected. These can be set up by the users themselves
and/or populated automatically with default tripwires for each new
user our system encounters.

There are three parts to the tripwire implementation which we
describe below.

3.2.1 Injection. On every outgoing response for a logged-in user
that carries an HTML body, we check the list of tripwires for that
user and determine if any need to be injected on this page (i.e. on the
current outgoing response). If so, we parse the HTML, use the stored
anchor selector to find the correct location, and insert the stored
tripwire HTML snippet (10). The result is that the client receives
the web page with the embedded tripwire(s). Listing 1 shows a
simple example of injecting a tripwire. In this case, our system

<li class="mailbox _unread" id="rcmliTmV3cw" ... >

News

</1li>
<li class="mailbox_unread" id="rcmliaGVzdB" ... >

Financials

</1li>
<li class="mailbox_unread" id="rcmliUHJvbW90aW9ucw" ... >

Promotions

Listing 1: A tripwire with the highlighted HTML snippet injected
below the anchor point #rcmliTmV3cw. Some attributes of the elements
are replaced with “...” for brevity.

is adding a fake email folder within Roundcube (a popular open-
source email web application that we use in this paper) between
News and Promotions. The tripwire is saved in the database with
the anchor location corresponding to the <1i> element for News.
This allows our system to select that specific location to insert the
highlighted HTML snippet.

3.2.2 Detection. To detect when a user has interacted with one
of the tripwires, we retrieve the list of tripwires for that user and
check whether an incoming request matches the path of any of
their tripwires (3). In the case of injected tripwires, this path is in the
href attribute of the injected HTML snippet. For existing element
tripwires, this is the same request path that it would generate
normally. When we detect that the user interacted with a tripwire,
we log the event in the database and trigger a policy check. Note
that because the detection of tripwires happens at the server side,
there is nothing sent to clients (e.g. some special property of the
markup) that could be used by attackers to differentiate between
regular links as opposed to existing and injected tripwires.

3.2.3 Policy enforcement. After a tripwire interaction is detected
we check the policy for the user and determine whether to trigger a
countermeasure (4). A policy is defined for a user as <X, Y,Action>
for a time period X, a threshold Y, and one of the actions described
below. We check the log of tripwire events for the user/device
during the last X seconds, and if the number of events within that
period exceeds Y, then we take the corresponding action.

An example of this process is illustrated in Figure 4. The five
vertical dotted lines indicate times when we detected tripwires were
accessed. The orange line corresponds to a policy <120, 2, logout
device> and the red line corresponds to a more strict policy <120,
4, ban device>. The first tripwire accessed is essentially forgiven.
After the third, the user is logged out of this device. When they log
back in and continue to click on two more tripwires their device
is banned. The blue line then tapers off as the two minute sliding
window continues and no other tripwires are clicked. This does not
undo the ban on the device because device and account ban actions
have a separate duration that can be configured as part of the policy.
Note that in a real world deployment a longer time window may
be appropriate so that an intruder has more trouble avoiding the

Authenticated Requests

{Sessien-—cookie} _
— > —>
Reverse o
Proxy =
401 Unauthorized Application
Nlogout?nonce=koJ4PIXO —x\
5] -
Reverse
Proxy |
D — 200 Ok L
Application

Figure 5: Two methods for implementing the logout countermeasure.
(Top) Stripping session cookies. (Bottom) Send logout request with
nonce extracted from HTML page.

thresholds via a “low and slow” attack. We also allow tripwires to
be weighted so that some can be treated as more severe than others,
but in this example all the weights are equal.

Enforcing the countermeasures is also handled by the reverse
proxy. There are four actions that our system can take: i) logout a
single device, ii) logout all devices for a user, iii) ban a device, and
iv) ban all devices for a user.

When we log out a user they can log in again if they know the
password, but this addresses cases where an intruder hijacked an
existing session (e.g. stealing someone’s session cookie or using
an unlocked workstation with an authenticated session). There are
two methods for logout which are shown in Figure 5. An intuitive
solution is to send a logout request to the server on behalf of the
user (). This is complicated by the fact that many applications
will require a nonce with the logout request to prevent users from
being logged out by Cross-Site Request Forgery (CSRF) attacks.
Our system is capable of extracting logout URLs, including the
nonce, from HTML pages found in responses, but this requires
a configuration specifying a selector to the logout button. The
other solution is to strip the session cookie from requests before
passing them on to the application. This will typically result in a 401
response or redirection to the login page if the resource required
the user to be logged in. To do this, our system saves a flag for the
device/user (5) and continues stripping the blocked session cookie
until it sees a new successful login (D.

To ban a device or user, we set a flag in the database (5) and
we can drop their future requests (). The duration of the ban is a
configurable part of the policy. Once the ban expires, we reset the
flag and allow requests to continue. Bans can be made indefinite, but
this may require administrator attention to un-ban users or devices
in some cases. Banning a device is an appropriate action if the
intruder guessed or stole the login credentials. Banning the entire
account can prevent an attacker logging in from a new device. We
reason that the small friction that this step adds (i.e. the legitimate
owner of the account contacting the administrator, changing their
password, and getting access back into the account) is preferable
compared to allowing attackers to freely roam into a system with
compromised credentials.

Overall, the policies and actions supported by our system allow
administrators to choose between a wide range of countermeasure
responses, not only in an inter-environment fashion (e.g. securing

Table 1: Quantity and types of follow-up requests triggered automat-
ically by the browser after logging in and loading the landing page of
each application.

‘WordPress | Roundcube | OwnCloud | PhpMyAdmin | ShareLaTeX

HTML 2 4 4 2 1
CSs 13 3 31 7 1
Images 5 21 36 33 0
Scripts 27 9 110 40 2
Data 0 0 5 5 0
Fonts 0 0 3 0 4
Other 0 3 0 0 1
Total 47 40 189 87 9

a critical web application vs. a less critical one) but also in an intra-
environment one (e.g. setting stricter policies for administrators vs.
regular users, on a single web application). While the countermea-
sures range from inconvenient to severe, a design with multiple
thresholds allows for policies to enact more strict countermeasures
progressively as the number of tripwire accesses increases.

3.3 Login rituals

Following every traditional login, the rituals module enforces a
user’s login ritual until it is completed or broken. Described below
are several steps required to handle certain complexities of login
rituals.

If rituals are enabled then the ritual progress is set to zero for a
device after a login is detected in the login module. While the ritual
progress is between zero and the length of the ritual, our system
inspects requests and increments the ritual progress if and only
if the request matches the current step (8). Otherwise the ritual
is broken and the device is logged out using one of the methods
shown in Figure 5. When the ritual is completed, the progress is
cleared and all requests from the device will skip over the rituals
module until the next login.

Even though it is simple to determine if a request matches the
next ritual step to advance the progress, rejecting requests can be
much more difficult. The reason is that any action from a user can
cause the browser to request dozens of additional subresources,
such as, iframes, CSS, scripts, images, and videos. For example,
Table 1 shows the number of follow-up requests generated from
the landing pages of the applications we tested. These requests will
not necessarily happen in the same order, some may not happen
at all if they are cached, and new subresources can be added over
time as an application evolves and updates. We need to be able
to allow these requests without breaking the ritual when they are
the consequence of a user action that was a valid part of the ritual.
The goal then is to determine when a request is actually outside of
the ritual so that we can log out the device. We describe specific
challenges and our solutions below.

3.3.1 Response types. One way to handle follow-up requests could
be to allow requests for static resources based on their content
type. The problem with this is that the type cannot always be
determined from the request, and if our system waited for the
response to determine the type, then it has already passed the
potentially harmful request to the application server. Therefore,
our solution needs to only evaluate requests so that actions outside
of the ritual do not impact the server.

3.3.2 Anticipating follow-up requests. The most direct solution is
to consider the logic that causes a browser to initiate follow-up
requests. Our system predicts these requests by monitoring the
content of the application server’s responses for HTML which
will be interpreted by the client browser. When the rituals module
encounters an HTML response to an authenticated user who has
not yet completed their ritual, it parses the response and looks
for tags (, <link>, <script>, etc.) that the browser will use
to fetch additional resources automatically @ From these tags,
we build a list of anticipated follow-up requests. When we receive
these requests we know that they were triggered by part of the
ritual, so we can forward them along to the server without logging
the user out (7). For each of these anticipated requests, we also
keep a time-to-live value so that we only allow it for a short time
after seeing the parent document that we expect to trigger it. This
approach to identifying follow-up requests allows our system to
continue recognizing ritual requests even as the content of a site
changes over time.

The method above works best for applications that assemble the
view on the server side because our system will know what requests
to expect. Some applications will also use JavaScript to trigger
requests for additional subresources which were not referenced in
HTML. While we could search for URLs in JavaScript resources that
pass through our proxy, they may be hard to find if built dynamically
and it is hard to know whether they are triggered on load or require
user interaction first.

We tackle this challenge by taking advantage of client-side ca-
pabilities at the time of ritual creation. When a user first creates
their login ritual using our browser extension user interface, we can
record all requests made to the application server as well as what
was clicked on. By keeping track of when each request was sent
and when each user action was performed, we can construct an
attribution chain that tells us “user action A triggered requests B, C,
and D." This technique is less resilient to changes in the application
because it gives us only a single snapshot, but it supplements the
above approach and allows us to handle requests that are generated
from JavaScript and cannot be identified in HTML responses.

3.3.3 Dynamic requests from JavaScript. Recording requests during
ritual creation identifies requests made from JavaScript, but if the
generated requests change as the application evolves over time we
may not recognize them. We first address two types of behavior
causing unknown JavaScript requests that can be dealt with using
application specific configurations set up by an administrator.

Some applications use AJAX requests to send heartbeat messages.
These are used to tell the server that the session is still active and
they are triggered by a timer without interaction from the user.
As such, they will not necessarily be captured at the time of ritual
creation, nor expected based on a parsed HTML document. If a
heartbeat message is received while a user is completing their login
ritual, then our module would treat it as a ritual violation since it
did not know to expect that request. Because these requests follow
a predictable pattern, an administrator can observe the form of
heartbeat requests and add that specific heartbeat endpoint to an
allowlist to be ignored by our system.

A related issue results from requests sent by JavaScript that con-
tain a timestamp or nonce in a URL parameter. While the behavior

[_]

.../edit-comments.php
.../load-styles.php...
.../message.css?ver=1.3.8
.../load-scripts.php...
../heartbeat.min.js?ver=5.1.6
... 54 more...
.../edit.php
.../menu.css?ver=1.4.8
.../wp-auth-check.min.js?ver=5.1.6
.../post.php?post=1&action=trash...
../loadingAnimation.gif
... 46 more...
. ./post-new.php
. 105 more...

Continue lanore Ritual
ritual g violated

Figure 6: A shortened example of a ritual for WordPress. The user’s
ritual includes clicking on Comments, Posts, and then Add New. The
requests in green correspond to these actions. Requests in grey are
follow-ups to be ignored. The request in red is a request to trash a
post which violates the ritual and would log the user out.

that triggered the request may have been observed and recorded
during ritual setup, it will appear different each time. In general,
our system needs to be as strict as possible in matching URLs while
enforcing rituals because the format of requests varies widely de-
pending on the application, and even query parameters can have
a dramatic impact on the resource that will be returned from the
application. However, when a request differs only by a timestamp
or nonce component, it is appropriate to treat it the same as the
initial anticipated request. This also requires an administrator with
some knowledge of the web application’s behavior, but our system
supports a configuration that specifies query keys to ignore while
still evaluating the rest of the request URL.

A more significant challenge comes from changes in an appli-
cation’s content which are fetched by name from JavaScript. For
example, a new image that was not seen when the ritual was cre-
ated can be fetched by a script. Our system would not know to
ignore this request even though it was loaded automatically as a
follow-up request to a valid ritual action. This can be addressed
by configuring more general patterns of request URLs to ignore
during ritual enforcement. As an example, one might add requests
for image resources to the allowlist if scripts are fetching images
and more are added over time. It may be an acceptable risk to al-
low access to images without completing a ritual, but this depends
on the application. To complement the allowlist and reign in po-
tentially dangerous actions, an administrator can also configure
a blocklist of request patterns that must not be allowed until the
ritual is fully completed. Checking against these configured lists is
the first procedure applied to requests in the rituals module (¢).

3.3.4 Caching. Caching is used for resources that are accessed
frequently but modified infrequently to reduce latency and im-
prove performance. If the responses for a user’s ritual actions are
cached, then the reverse proxy will not see the request and the rit-
ual cannot be advanced. Our system addresses this by first clearing
the browser’s cache for the application while a ritual is being cre-
ated, and then adding the Cache-Control: no-store and Pragma:
no-cache headers for future responses to the ritual paths @ set up
by the user. These headers ensure that the user’s browser will trigger
the necessary requests to complete the ritual as users interact with
the web application. Note that we do not need to disable caching
for the entire application. Only the initial requests corresponding
to ritual actions are affected. All other responses, including static
resources fetched by follow-up requests to the ritual action, may
still be cached as normal.

Figure 6 shows a real example of a login ritual for the WordPress
web application and how our system will react given requests that
continue the ritual, requests that need to be ignored, and requests
that violate the ritual.

3.4 User interface

An important part of both tripwires and rituals is that they will be
the most memorable and most effective if users create their own.
This allows them to take advantage of their own familiarity with the
application and makes it more likely they will remember the ritual
and which tripwire elements to avoid in the future. This means we
want to make it easy for users to set them up, without requiring
them to understand HTML or HT TP requests.

To this end, we built a user interface as a Chrome extension
which gives us client-side access to the user’s interactions with the
web page and allows us to highlight elements to help guide users.
For a visual demonstration of the interface, we encourage read-
ers to visit click-this-not-that.github.io which has videos
showing tripwire and ritual creation.

The same session cookies that we use to recognize users in the
tripwires and rituals modules are used to authenticate users creat-
ing new tripwires or rituals. Changing either of these is similar to
changing an existing password, so we suggest that a real deploy-
ment may want to force the user to re-authenticate before using
this interface.

In ritual creation mode, the browser extension first clears the
browser’s cache to make sure all requests will be sent to the server.
The user can then click on a sequence of elements throughout
the application while the extension records all outgoing requests
to the application server and the elements that were clicked. The
current steps of the ritual are shown in an overlay box and when
the user is finished they click save in this overlay. The ritual is
sent to the back-end and enforced following the next log in. As
discussed above, the recorded requests are used to enforce the ritual
and Cache-Control: no-store and Pragma: no-cache headers
are added to responses for ritual requests so that our system will
continue to receive requests for those paths after future logins.

Setting up tripwires offers users more flexibility in terms of
customizing what their tripwires look like and where they are
placed. Again the user can enter tripwire-creation mode from within
our extension which will disable navigation and start highlighting

elements that the user is hovering over with their mouse. They can
click to select an element and then choose which type of tripwire
they are trying to create. If they choose existing, that part of the
application will be treated as a tripwire. If they choose injection
then the selected element becomes the anchor point at which to
insert a new tripwire element. The default behavior is to duplicate
the selected element. The user can then customize the content and
tripwire URL path. These are the most important options for the
believability of a tripwire. We allow the user to choose a deception
that they think is most effective. To make this easier in some cases,
we provide a suggestion for the tripwire path. This is based on a
Markov model of a subset of URLs in the Common Crawl dataset [1]
and seeded with strings from the application so that the generated
path matches the other paths. Advanced settings can allow a user to
directly edit the HTML snippet to be injected or adjust the injection
location, but our goal is to abstract this away from most users.

4 USER STUDY

In order to test rituals and tripwires, we designed an online user
study and recruited participants using Amazon Mechanical Turk
and student emails. There are two parts to this study which are
described in detail below.

All parts of the study were coordinated through a web portal
we built to walk participants through the instructions and tasks.
From there they were directed to a Roundcube webmail application
where they would interact with tripwires and login rituals. We
chose Roundcube as the application because its interface is similar
to other webmail clients such as Gmail, and user familiarity with
the interface is an important aspect of tripwires and rituals. We
populated an account on Roundcube with emails by subscribing
to mailing lists and further customized the inbox by manually
creating emails, such as bill notifications, social media invites, and
personal messages. We created a large number of accounts and
copied all these emails into each new mailbox. Each user was given
a different account so that none of their actions would impact other
participants, but the set up remained the same.

To obtain a clear picture of what each study participant did on
Roundcube, we made use of a commercial record-and-replay ser-
vice [2]. We embedded the session recording script into every page
on Roundcube and modified it to proxy events through our study
server. This allowed us to verify that a participant had successfully
recorded some action before allowing them to continue, and to
save a reference to the recording for later use. A video showing a
live example of a user going through the first part of the study is
available at click-this-not-that.github.io.

4.1 Effectiveness of tripwires

The first part of the user study was designed to test how well
tripwires perform at detecting intrusions. The setup of the study
was inspired by Salem and Stolfo [25] who conducted a user study
in 2011 to test decoy documents deployed in the file system of a
laptop. They recruited 40 volunteers who were given 15 minutes
with a laptop to steal information.

Participants in our study were given a scenario in which they
have broken into a webmail account with stolen credentials that
we provided. To motivate their exploration, we asked them to find

Table 2: Tripwires included in the user study sorted by the number of
times participants clicked on them.

Type Element Number of clicks
Existing | Special folders settings section 47
Injection | Fake account settings category 42
Injection | Duplicate Important folder 27
Injection | Financials folder 27
Injection | Advanced search icon 11
Injection | Advanced settings section 11
Injection | Search tools button
Injection | Account link

Injection | Work addresses group
Injection | Help link

Existing | Add contact button
Existing | Contact QR code

Injection | Archive icon

Existing | Add new identity button
Injection | Duplicate save draft button
Injection | Email delete button

O

SO, =W A

1.04
0.81

0.6

0.4

0.2

0 2 4 6 8 10
Number of tripwires touched

Fraction of participants

Figure 7: Cumulative distribution of the number of tripwires clicked
by each participant that found at least one flag.

three flags embedded in different parts of the application and enter
the discovered flags’ values in a form on the study web page. These
flags were embedded images with secret words on them. We created
16 tripwires spread throughout different parts of Roundcube (listed
in Table 2). Some tripwires are visible only within certain views.
For example, two tripwires were added to the list of email fold-
ers which are in the inbox view. Other tripwires, like the injected
“Account” link, are visible from any view. Instead of targeting a
specific number of total tripwires, our strategy was to have a few
tripwires present across the most common views. Note that in real
deployments of our system, there is no right or wrong number of
tripwires. The decision could be made individually by each user or
by the administrators of a system, finding the right compromise
between false positives (i.e. benign users triggering their own trip-
wires) and false negatives (i.e. attackers not triggering tripwires).
Participants were warned that parts of the application would be
tripwires that would detect their intrusion if they clicked on them.
We did not provide any other details about how tripwires work or
where they were placed. All of the participants’ sessions record-
ings were saved and our system recorded each tripwire access. We
chose not to enable any policies with countermeasures during this
experiment so that we could observe how many tripwires would
be encountered without interruption.

—
40 1
H}
c
©
a
Y 301
i
©
Qo
.«
o
5 20 -
Qo
£
=1
=
10 A [First tripwire
[Second tripwire
[Third tripwire
0 T T T T T T — T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

Minutes

[First tripwire
[Second tripwire

404 [Third tripwire
b}
c
©
a
Y 301
€
©
Q
.«
o
5 20
Q
[S
=1
z

10

0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Percent into session duration

Figure 8: Cumulative distribution of time taken before a simulated attacker clicked on one, two, or three tripwires, presented in raw time on the

left and normalized by the overall duration of sessions on the right.

Many users who came to our study site did not follow through
on the tasks, so we focus the analysis in this part on 51 participants
who successfully found at least one of the flags embedded in the
application (41 of them found all three). Figure 7 shows the distri-
bution of the number of tripwire accesses recorded by our system
for each user. The most notable result is that 88.2% of users clicked
on at least one tripwire. This indicates that the tripwires system
has a good chance of detecting intrusions.

Since we want to detect these intrusions as soon as possible, it is
useful to see how long it took before the tripwires were encountered.
Figure 8 shows how long since loading the login page it took for
users to click their first, second, and third tripwires. 91.1% hit their
first tripwire within 5 minutes. Depending on how strict the tripwire
policies are set, this could log users out right away. Otherwise, 66.7%
could be caught in the first 10 minutes with a more relaxed policy
that waits for two tripwires to be clicked.

Finally, we examine the types of tripwires that were most ef-
fective. Table 2 shows how many times each tripwire was clicked.
While injected tripwires were more attractive than existing trip-
wires overall, the fact that the most clicked tripwire was existing
shows that this can be effective. A real user needs to be careful that
existing tripwires are not elements they need to use. To be conser-
vative in our placement, the other existing elements we chose were
located in deeper Uls of the web application. We see that certain
prominent injected elements such as email folders received a high
number of clicks. This type of tripwire can be particularly effective
because they are hard to distinguish even for someone who does
have intimate knowledge of the normal user interface for another
account. The wide range of clicks for different tripwires indicates
that successful detection is less about the total number of tripwires
added and more about their specific placements and how enticing
they appear.

4.2 Ritual composition and memorability

In the second part of our study, we explained the concept of login
rituals, then instructed participants to log in to Roundcube and take
a sequence of actions to create a login ritual for themselves. We

Table 3: Categories of actions chosen by participants when creating
their login rituals.

Other
25.64%

Folders
82.05%

Emails | Settings
33.33% 5.13%

Top level pages
30.77%

observed 39 ritual creations, ranging in length from 1 to 24 with an
average of 6.1 steps.

Since participants were not specifically instructed on what el-
ements make a good ritual, we examine the choices they made
based on their understanding. We manually labeled the rituals and
categorized actions as follows.

Folders Opening an email folder on the inbox page.

Emails Opening or marking an email.

Settings Clicking on settings sub-menus.

Top level pages Navigating to Mail, Contacts, or Settings.
Other Any other actions such as refreshing, searching, compos-
ing an email, etc.

Table 3 shows the percentage of rituals that included each category.
82% of the rituals involved opening an email folder. We believe this
is a good choice because it is reproducible and in a real-world setting
they could use folders they created making it easier to compose a
unique combination of actions. Along those lines, we notice that
all 39 rituals created by participants were unique. This diversity
suggests that users can create individualized rituals that are difficult
for an intruder to guess.

The next part of the study asked participants to return to our
site each day to reproduce the ritual they created. This allowed us
to learn how well users can remember their rituals. Participants
recruited through email received email reminders and both groups
were able to opt in to push notifications when it was time to return
for the next step. Since this was an online user study and returning
each day is an additional inconvenience, we saw the participation
decrease significantly even though compensation was greater for
finishing all tasks. 14 participants returned for at least 5 days in the
following week.

1] 2]3]4a]5]s
1|V VIV VIV |V
20V |V VIV IV |V
3|V VI VIV IV |V
sV IV IVIVIVIV
sV |V V|V V|V
s|V |V IVIVIVIM
7|V |V V|V |V |M
8 v M|V V|V
9 (VARVARY v
10|RIvV |M|V [V [V
11 VARVARVARY
12IRIR| M| RV [V
13 v
14| M

Figure 9: Ritual completion over time. Each row represents one study
participant. Each cell indicates whether they completed the ritual ('),
failed the ritual (X), asked for a reminder (R), or missed the day (M).

Figure 9 displays the results of the ritual follow-up tasks for
each of these 14 participants. Each cell represents a day where they
either completed the ritual, failed the ritual, or missed the task.
They also had the option to ask for a reminder if they could not
remember their ritual. In this case, they could click a link to view
a recording of what they did to set up the ritual. Days when they
requested reminders were counted as failures in our analysis, but
for the two participants who used this feature, we see that they were
eventually able to reproduce the ritual. A real world deployment
could implement some form of reminder for a limited time to help
new users become accustomed to login rituals.

Half of the participants managed to complete their ritual every
time. In some cases of failure, they had forgotten only a single step
or duplicated a click. These cases are similar to a user mistyping
their password. The fact that we see these same users succeed in
their other attempts indicates that they would likely be able to
re-login and complete the ritual. 11 out of 14 participants (79%)
succeeded more often than they failed. We had hypothesized that
some users might remember their rituals at first and then forget
them, but we did not observe this pattern. In fact, failures (including
requests for reminders) were more likely to occur earlier in the
week, then corrected afterwards. In Figure 10 we see the distribution
of ritual lengths among these 14 participants, and notice that the
only case with no successes was also the one with the longest
ritual. Meanwhile, the cluster of points in the top left represents
the shorter and easier to remember rituals.

4.3 Ethical considerations

We obtained approval from our IRB to conduct this online user study.
The session recordings collected from each user do not include any
personal information and are carried out on a dummy application
set up specifically for this study. AMT workers recruited for only the
tripwires task were paid $1.00, while others recruited for tripwires

100 (] [] (] (] []

80 [] []

2
o
® 601 ®
w
o
IS
3
@
5 40 °
2
<
20 °
0 [)
4 6 8 10 12 14
Ritual length

Figure 10: Observed success rate at reproducing rituals based on the
length of the ritual.

and rituals tasks were paid $8.00. Students recruited through email
were entered into a raffle for a $50.00 gift card. Email addresses and
AMT worker IDs, which were used to organize participation, were
removed from the data-set following completion and compensation.

5 PERFORMANCE

There is a performance trade-off in using our system. Our reverse-
proxy solution intercepts requests, checks a database for specific
tripwire or ritual paths, and parses/modifies HTTP responses. In
order to measure the overhead that this incurs, we set up tests
using a Selenium crawler to log in and load the main page on five
open-source web applications.

We compare the page load times under three different setups
to quantify the slowdown caused by our system. Each test begins
with an empty client-side cache, so we are measuring performance
when all resources need to be fetched from the server. As a control,
we first run the crawlers against the web application itself with
no proxy. We then repeat this process with mitmproxy running
in reverse proxy mode, but not loading any additional modules.
Finally, we run the crawlers against the application with the trip-
wires and rituals modules enabled on mitmproxy. Figure 11 shows
the results of these performance tests. We report the steady-state
performance after an initial run to warm up server-side caches.
The performance overhead varies across each application, but we
see that introducing a reverse proxy increases load times with the
greatest slowdown seen in phpMyAdmin. Despite the fact that our
modules parse and sometimes modify requests/responses, the re-
sults show that the parsing and potential modification has a small
effect compared to mitmproxy alone. One of the weaknesses of
mitmproxy is that it is single threaded, but there is the potential
to develop a proxy which allows rewriting requests and response
with a focus on performance. Proxy-based web re-hosting services,
such as proxysite.com (ranked in the Alexa top 5K), are examples
of successful large-scale applications with similar requirements
because they rewrite responses to point links back to their proxy
domain.

Finally, it is important to stress that when a page-load time
increases from 2 seconds to 4 seconds, this does not mean that
users stare at a blank screen for an additional 2 seconds. Each
page is comprised of HTML code and tens of remote resources, all
of which will have to be fetched, before a browser marks a page

as completely loaded. Web browsers start rendering content as
soon as the first remote resource is loaded, allowing users to start
“consuming” the content and interacting with the page, long before
the page-load event is triggered. As such, we argue that even with
a non-optimized solution such as mitmproxy, the perceived delay
will be significantly smaller than the measured page-load delay.

6 DISCUSSION

Limitations and future work

Phishing web pages can convince users to give up their login cre-
dentials while masquerading as a real web application. Particularly
sophisticated phishing pages can also behave as a web proxy, for-
warding requests to the real application and responses back to the
victim [13]. This type of man-in-the-middle attack can observe
multi-step authentication from a user to capture their cookies and
hijack their session. In the same way that this attack bypasses most
forms of two-factor authentication, it is also capable of bypassing
login rituals by fooling victims into logging in and completing their
ritual through the phishing proxy. Tripwires, however, are still
valuable in this setting because the real user knows not to click
on tripwires. Therefore, the users’ specific tripwires will not be
identified to the attacker by observing their behavior through the
phishing proxy. Once the session has been hijacked, the attacker
will still have to avoid the tripwires. If they trigger a tripwire pol-
icy, then their stolen session could be invalidated and their device
blocked.

Our user study evaluated how users will approach creation of
rituals, but due to challenges associated with a fully online study
with no live guidance, we did not evaluate tripwire creation. Fu-
ture work could build on the creation interface and observe how
users approach the design and placement of deceptive elements.
Additionally, if these are deployed on a live application, there is an
opportunity to measure false positives for these custom tripwires
over time.

Role of deception in web authentication

In this paper we showed that it is possible to build an application-
agnostic system that can add deceptive capabilities to the authen-
tication component of web applications, enabling users to further
authenticate themselves via the mechanisms of tripwires and rituals.
Our user study showed that, even for users who have no particular
incentive in getting it right, the majority were able to choose rituals
and successfully use them to authenticate themselves to the web
application, over a period of one week.

We want to underline that the proposed system is not the panacea
for all web authentication problems and, in certain cases, it is en-
tirely reasonable for administrators to choose not to deploy it, given
the need to train users in using it. In other cases, only some of the
features provided by our system will be useful. For example, in en-
vironments, where attackers are able to register their own accounts,
they may be able to compare the links available to their accounts,
against the links in a compromised account, thereby identifying
the injected links that serve as tripwires. The administrators of
these environments can therefore configure our system to only use
existing links, thereby removing that differential-analysis capability
from attackers.

Control .
Mitmproxy .

Rituals/Tripwires.

Owncloud
——
T

Sharelatex

Roundcube

Phpmyadmin

Wordpress

Page load time (seconds)

Figure 11: Results of performance tests showing loading times of 5
applications running on their own, with basic mitmproxy, and with
our tripwires and ritual modules enabled.

In general, our goal with this paper was to design, implement, and
evaluate a generic system for using deception in web authentication,
which the administrators of different deployed web applications
can use according to their needs and nature of their applications.
This is one of the main reasons why we will be open-sourcing our
system, to enable both the research community as well as security
practitioners to experiment with deception and further understand
exactly how it can be applied to real-world deployments of web
applications.

7 RELATED WORK

Web tripwires are closely related to the idea of honeypots [30].
Honeypots are traditionally thought of as fake servers, but many
works have extended the concept to create honeytokens, decoys,
and traps for various other contexts and types of resources [4, 6,
14, 18-20, 23, 35]. Additionally, the use of deception for intrusion
detection has been explored in the context of decoy files [8, 25, 34],
decoy mobile applications [27], and even decoy source code [21].

Intrusion Detection via Decoy Files. In 2009, Bowen et al. [8] began
afoundation for using decoy files to detect intrusions. They formally
defined a set of seven generally applicable properties of decoys
to guide design and deployment. They introduced three types of

decoy files which can be detected in different ways. Honeytokens
embed fake sensitive information, such as webmail credentials and
bank account/credit card numbers that are monitored on external
systems. They attempted to evaluate the decoys using honeypots
managing to attract 20 attackers.

In 2011, Salem and Stolfo [25] expanded on the work of Bowen
et al. Rather than relying on honeypots and real world attackers,
they chose to evaluate decoy files with user studies to find the right
number of decoys balancing false positives with detection rate. They
showed that 10-20 decoy files placed on volunteers’ own systems
generated a tolerable number of false positives over a 7 day period.
In another experiment, they simulated attackers using 40 volunteers
who were given 15 minutes with a laptop to steal information. They
were given instructions and a personal back-story motivating them
to steal data for financial gain. They were split into four groups
varying the number of decoys on the system. They found that all
volunteers were detected by at least one decoy and increasing the
number of decoys beyond 20 did not lead to a significant increase
in the number of accesses. This offers compelling evidence that
decoy files can used effectively for intrusion detection and produced
results which guide future decoy deployments. The setup of the
tripwire portion of our user study was inspired by this work, in
terms of the number of participants, the task we gave them, and
the number of tripwires we chose to deploy.

In 2015, Voris et al. [34] continued to build on decoy files with a
focus on automatic deployment. The authors used the same type
of user studies as Salem and Stolfo, but they evaluated different
schemes for automatically naming and placing decoy files. Their
work also included a long-term study of false positives with their
automatic deployment system. With decoy files on volunteers’ per-
sonal systems for a period of 2 months, they found that after an
initial spike just following deployment, decoy accesses were rare
for the majority of the experiment. This shows that users can get
used to decoys on their system and generate few false positives.
We expect that the same is true for our web tripwires and rituals
when deployed on often used applications, because their success is
based on long-term familiarity.

Deception on the Web. Recent work has explored some forms
of deceptive web resources for intrusion detection as well as ob-
fuscation contributing to moving target defenses. In 2017, Han et
al. [15] created a reverse proxy system to inject deceptive web
elements and evaluated their effectiveness in a capture the flag
setting. Their work focused on web elements that are hidden from
the user, such as cookies, form fields, fake accounts, and URLs in
robots.txt and HTML comments. Fraunholz and Schotten [12] used
a similar system but also included techniques such as returning
false version info and status codes meant to deceive crawlers rather
than detect intrusions. More recently in 2020, Sahin et al. [24] used
similar deceptive elements, but with the addition of a clone of the
web application to which attackers were redirected after detection.
These works primarily focus on defenses that will catch crawlers
and vulnerability scanners. Compared to these works, our system
implements tripwires as elements of the user interface. We focus
on protecting individual user accounts, and the personalized setup
for each means that users should have the familiarity necessary to
avoid false positives without having to hide our deceptive elements.

Network-level Login Rituals. The concept of login rituals in this
paper is inspired by the idea of port knocking and single packet au-
thentication (SPA). The idea behind port knocking is to keep a strict
firewall which drops all incoming connections until a monitor sees
SYN packets sent to a predetermined set of secret ports. Then the
server port is opened up to allow communication for a limited time.
SPA is very similar, but uses only a single packet which contains a
hashed password, instead of sending multiple requests where the
set of ports is the password. In 2006, Sebastien Jeanquier [17] sum-
marized the basics of port knocking and addressed practicalities,
limitations, and improvements. Some challenges identified include
allowing only the client that completed the knock, replay attacks
from an eavesdropper, and a single shared secret between multiple
clients. Several works have sought to improve port knocking pro-
tocols over the years [3, 10, 32], but the core concept is the same.
Login rituals are similar in that there is a sequence of steps that a
user must take before they are considered fully authenticated. If a
user account is analogous to the server which opens its port, then
one difference is that rituals do not conceal the existence of the user.
However, advantages over port knocking are that the dependence
on the specific application precludes password re-use, and rituals
can make use of actions that a user would take anyway.

Intrusion Detection via Behavior Modeling. In the area of model-
ing user behavior for attack detection, Shonlau et al. [28] collected
a data set of UNIX commands and presented techniques for change
detection to identify masquerading users. Salem and Stolfo [26] also
used behavior modeling, but focused on searches in a file-system.
In a web setting, Solano et al. [29] modeled mouse and keyboard
behaviors on the login screen to introduce a layer of risk-based
authentication. Tripwires and rituals are conceptually related to
behavior modeling in that there is an expected user behavior and
an attacker who deviates by not completing a ritual or by clicking
on a tripwire will reveal themselves as an intruder. A significant
distinction is that both of our mechanisms are deterministic. False
positives only occur when a user makes a mistake. Additionally,
because users create their tripwires and rituals, they are aware of
what they need to do to remain trusted, whereas statistical behav-
ior models are invisible to benign users. This makes false positives
more frustrating since the user does not know exactly what they
did to trigger an alert.

8 CONCLUSION

In this paper, we presented two techniques — web tripwires and
login rituals - that rely on deception to extend authentication in
web applications. We take advantage of users’ habits and familiarity
with applications they use every day to help protect their accounts.
Tripwires and rituals do not suffer from the re-use problem that
is common with passwords and can be combined with existing
MFA systems to reduce user friction and increase an account’s se-
curity in cases of sophisticated phishing attacks. We demonstrated
how these defenses can be realized with our reverse proxy system
and evaluated the mechanisms through an online user study. We
found that up to 88.2% of simulated attackers could be detected
by web tripwires and half of our study participants were able to
complete their rituals every time, even a week after setting them
up. While this work is not meant to replace standard authentication

practices, our results show that these deception-based mechanisms
can provide effective layers of additional security to existing web
applications, in an application-agnostic fashion.

Acknowledgments: We thank the reviewers for their valuable
feedback. This work was supported by the Office of Naval Research
under grant N00014-20-1-2720 as well as by the National Science
Foundation under grants CNS-1813974 and CNS-1941617.
Availability: To encourage exploration of tripwires and rituals
as practical defenses for real-world applications, we plan to open-
source our system and share anonymous data obtained from our
user study. These will be be made available at:

click-this-not-that.github.io

REFERENCES

(6

=

(71

=
X0

[10

[11]

[12]

[13]

[15]

2020. Common Crawl. https://commoncrawl.org/the-data/get-started/
2020. Mouseflow: Session Replay, Heatmaps, Funnels, Forms & User Feedback.
https://mouseflow.com/features/.

Hussein Al-Bahadili and Ali H Hadi. 2010. Network security using hybrid port
knocking. IFCSNS 10, 8 (2010), 8.

Spiros Antonatos, Iasonas Polakis, Thanasis Petsas, and Evangelos P Markatos.
2010. A systematic characterization of IM threats using honeypots. In ISOC
Network and Distributed System Security Symposium (NDSS).

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is more:
quantifying the security benefits of debloating web applications. In 28th USENIX
Security Symposium (USENIX Security 19). 1697-1714.

Marco Balduzzi, Payas Gupta, Lion Gu, Debin Gao, and Mustaque Ahamad.
2016. Mobipot: Understanding mobile telephony threats with honeycards. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security. ACM, 723-734.

Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In IEEE Symposium on Security and Privacy.

Brian M Bowen, Shlomo Hershkop, Angelos D Keromytis, and Salvatore J Stolfo.
2009. Baiting inside attackers using decoy documents. In International Conference
on Security and Privacy in Communication Systems. Springer, 51-70.

Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2010—
. mitmproxy: A free and open source interactive HTTPS proxy. https://
mitmproxy.org/ [Version 5.0].

Rennie Degraaf, John Aycock, and Michael Jacobson. 2005. Improved port knock-
ing with strong authentication. In 21st Annual Computer Security Applications
Conference (ACSAC’05). IEEE, 10-pp.

Dinei Florencio and Cormac Herley. 2007. A large-scale study of web password
habits. In Proceedings of the 16th international conference on World Wide Web.
Daniel Fraunholz, Daniel Reti, Simon Duque Anton, and Hans Dieter Schotten.
2018. Cloxy: A context-aware deception-as-a-service reverse proxy for web
services. In Proceedings of the 5th ACM Workshop on Moving Target Defense.
40-47.

Kuba Gretzky. 2018. Evilginx 2 - Next Generation of Phishing 2FA Tokens.
https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-
tokens/.

Payas Gupta, Bharath Srinivasan, Vijay Balasubramaniyan, and Mustaque
Ahamad. 2015. Phoneypot: Data-driven Understanding of Telephony Threats. In
NDSS.

Xiao Han, Nizar Kheir, and Davide Balzarotti. 2017. Evaluation of deception-
based web attacks detection. In Proceedings of the 2017 Workshop on Moving Target

Defense. 65-73.

Troy Hunt. 2017. Password reuse, credential stuffing and another billion records
in Have I been pwned. troyhunt.com. (2017).

Sebastien Jeanquier. 2006. An Analysis of Port Knocking and Single Packet
Authorization MSc Thesis.

Steffen Liebergeld, Matthias Lange, and Collin Mulliner. 2013. Nomadic Hon-
eypots: A Novel Concept for Smartphone Honeypots. In Workshop on Mobile
Security Technologies (MoST). San Francisco, CA.

Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. 2016. What
happens after you are pwnd: Understanding the use of leaked webmail credentials
in the wild. In Proceedings of the 2016 Internet Measurement Conference. 65-79.
Youngsam Park, Jackie Jones, Damon McCoy, Elaine Shi, and Markus Jakobs-
son. 2014. Scambaiter: Understanding targeted Nigerian scams on craigslist. In

Proceedings of the Network and Distributed System Security Symposium (NDSS).
Younghee Park and Salvatore J Stolfo. 2012." Software decoys for insider threat.

In Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security. 93-94.

Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris Ioan-
nidis. 2015. Two-factor authentication: is the world ready? Quantifying 2FA
adoption. In Proceedings of the eighth european workshop on system security. 1-7.
Fabien Pouget, Marc Dacier, and Hervé Debar. 2003. White paper: honeypot,
honeynet, honeytoken: terminological issues. Rapport technique EURECOM 1275
(2003).

Merve Sahin, Cédric Hebert, and Anderson Santana de Oliveira. 2020. Lessons
Learned from SunDEW: A Self Defense Environment for Web Applications.
In NDSS Workshop on Measurements, Attacks, and Defenses for the Web (MAD-
Web’20).

Malek Ben Salem and Salvatore J Stolfo. 2011. Decoy document deployment for
effective masquerade attack detection. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 35-54.

Malek Ben Salem and Salvatore J Stolfo. 2011. Modeling user search behavior for
masquerade detection. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 181-200.

Malek Ben Salem, Jonathan Voris, and S Stolfo. 2014. Decoy applications for
continuous authentication on mobile devices. In Symposium on Usable Privacy
and Security (SOUPS), Vol. 2.

Matthias Schonlau, William DuMouchel, Wen-Hua Ju, Alan F Karr, Martin Theus,
and Yehuda Vardi. 2001. Computer intrusion: Detecting masquerades. Statistical
science (2001), 58—74.

Jesus Solano, Lizzy Tengana, Alejandra Castelblanco, Esteban Rivera, Christian
Lopez, and Martin Ochoa. 2020. A few-shot practical behavioral biometrics model
for login authentication in web applications. In NDSS Workshop on Measurements,
Attacks, and Defenses for the Web (MAD Web’20).

Lance Spitzner. 2003. Honeypots: tracking hackers. Vol. 1. Addison-Wesley Read-
ing.

Lance Spitzner. 2003. Honeytokens: The other honeypot.

Vikas Srivastava, Alok Kumar Keshri, Abhishek Dutta Roy, Vijay Kumar
Chaurasiya, and Rahul Gupta. 2011. Advanced port knocking authentication
scheme with QRC using AES. In 2011 International Conference on Emerging Trends
in Networks and Computer Communications (ETNCC). IEEE, 159-163.

Sebastian Uellenbeck, Markus Diirmuth, Christopher Wolf, and Thorsten Holz.
2013. Quantifying the security of graphical passwords: the case of android
unlock patterns. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. 161-172.

Jonathan Voris, Jill Jermyn, Nathaniel Boggs, and Salvatore Stolfo. 2015. Fox in
the trap: thwarting masqueraders via automated decoy document deployment.
In Proceedings of the Eighth European Workshop on System Security.

Susan Marie Wade. 2011. SCADA Honeynets: The attractiveness of honeypots as
critical infrastructure security tools for the detection and analysis of advanced
threats. (2011).

	Abstract
	1 Introduction
	2 Design
	2.1 Web tripwires
	2.2 Login rituals
	2.3 Threat model

	3 Architecture and implementation
	3.1 Identifying logins
	3.2 Web tripwires
	3.3 Login rituals
	3.4 User interface

	4 User study
	4.1 Effectiveness of tripwires
	4.2 Ritual composition and memorability
	4.3 Ethical considerations

	5 Performance
	6 Discussion
	7 Related Work
	8 Conclusion
	References

