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ABSTRACT

With phishing attacks, password breaches, and brute-force login

attacks presenting constant threats, it is clear that passwords alone

are inadequate for protecting the web applications entrusted with

our personal data. Instead, web applications should practice defense

in depth and give users multiple ways to secure their accounts.

In this paper we propose login rituals, which define actions that

a user must take to authenticate, and web tripwires, which define

actions that a user must not take to remain authenticated. These

actions outline expected behavior of users familiar with their in-

dividual setups on applications they use often. We show how we

can detect and prevent intrusions from web attackers lacking this

familiarity with their victim’s behavior. We design a modular and

application-agnostic system that incorporates these two mecha-

nisms, allowing us to add an additional layer of deception-based

security to existing web applications without modifying the appli-

cations themselves.

Next to testing our system and evaluating its performance when

applied to five popular open-source web applications, we demon-

strate the promising nature of these mechanisms through a user

study. Specifically, we evaluate the detection rate of tripwires against

simulated attackers, 88% of whom clicked on at least one tripwire.

We also observe web users’ creation of personalized login rituals

and evaluate the practicality and memorability of these rituals over

time. Out of 39 user-created rituals, all of them are unique and

79% of users were able to reproduce their rituals even a week after

creation.
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1 INTRODUCTION

Many applications which are used on a daily basisÐsuch as email,

online editors, social media, and file sharingÐare located on the

web. By using them, we entrust these applications with our highly

personalized accounts that often contain sensitive information. As

such, these applications are attractive targets to malicious web

users. The primary (and sometimes only) defense used by web ap-

plications are passwords, but they are often insufficient. Part of the

problem is that even if users create strong passwords, prior work

has shown that these passwords are often re-used across many

sites [11]. Accounts can be compromised through brute-force (re-

peatedly guessing passwords) or credential-stuffing (trying known

credentials from one site on other sites) [16]. In fact, researchers

have spent decades trying to improve upon or replace passwords [7],

but there has so far been no alternative that enjoyed widespread

adoption.

Some web applications opt to address the limitations of pass-

words by supplementing them with multi-factor authentication

(MFA). Password-based authentication schemes rely on only one

factor of authentication: they challenge the client to provide some-

thing that they would know if they were the real user. Multi-factor

authentication schemes attempt to challenge the client with com-

binations of the following: what the real user would know (e.g.

password), what the real user would have (e.g. phone), and what

the real user would be (e.g. fingerprint). A common implementation

is to ask a user to verify their identity by entering a one-time code

sent via SMS to their registered phone number.

The downside to MFA is that many implementations add an

inconvenient burden when logging in, making it unpopular. In

2015, Petsas et al. found that only 6.4% of Google users had enabled

two-factor authentication [22]. Even for the users who do rely on

MFA, online services are aware of the friction MFA adds to the user

experience and thus try to use it as little as possible, e.g., when

changing a password or when logging in from a new location.

In this paper, we present two methods for extending authenti-

cation on web applications beyond passwords. We propose web

tripwires and login rituals, two complementary ideas that take ad-

vantage of users’ familiarity with the applications they use often.

One defines what a user should do, while the other defines what

they should not do, in order to remain trusted by an application.

Web tripwires are deceptive intrusion detection mechanisms sim-

ilar to honeytokens [31] that are added into an application. They

are specific to each user allowing them to customize their own

intrusion detection traps. Contrastingly, login rituals are specific





the functionality is duplicated elsewhere, or because it corresponds

to a feature that the user does not need. These tripwires are in-

herently indistinguishable from the rest of the application because

no changes are made on the client side when an existing element

is made into a tripwire. This type of tripwire is effective against

bots and human intruders that have a specific set of actions they

plan to take. Transforming rarely used parts of the application into

tripwires is similar to the idea of web debloating in which unused

parts of applications are removed to reduce attack surface [5]. In

our case, the elements remain to be used for intrusion detection.

2.2 Login rituals

A login ritual is an additional authentication requirement imme-

diately following a standard password login. The idea is that after

users log in to a web application, they will then perform a pre-

scribed series of actions to confirm that they are the real owner of

the account (green elements in Figure 1). This is conceptually simi-

lar to entering a second password, but with a number of concrete

advantages. The first is that a login ritual is specific to a partic-

ular web application and cannot be re-used across multiple sites,

thereby organically addressing the problem of password reuse. For

example, a user could not reuse their banking login ritual on their

social-media account, not because the two sites explicitly forbid

them, but simply because they do not share common UIs. The sec-

ond advantage is based on the assumption that many users have

individual habits after logging in to websites they use frequently.

This makes rituals easier to remember and convenient since a ritual

can be a sequence of actions the user was going to do anyway.

Users can create their own rituals, and an intruder is logged out

(and potentially blocked at the network level, after repeated ritual

failures) if they do not immediately complete the ritual sequence.

The number of possible rituals that a user can create will deter-

mine how difficult it is for an attacker to guess the correct sequence

of actions. The number of possibilities depends on the application,

with more complicated user interfaces providing more options from

which to build rituals. We use an analogy to passwords where one

chooses a sequence of 𝑛 alphanumeric symbols. In this case there

are 62 symbols to choose from (or 95 with special characters) to

create one of 62𝑛 potential passwords of length 𝑛. A less secure,

but still commonly used scheme is 4-digit PIN codes, in which case

there are only 10 symbols leading to 10,000 possibilities. We also

compare to 3x3 pattern locks, popularized by Android, which pro-

vide up to 389,112 possibilities at length 8 [33]. In the case of rituals,

the symbols available to choose from are the interact-able elements

within an application. To evaluate the number of possible rituals,

we crawled the pages of our evaluated web applications (WordPress,

Roundcube, OwnCloud, PhpMyAdmin, and ShareLaTeX) counting

the number of links to estimate the number of symbols available.

Unlike passwords, the number of symbols varies depending on

which page the user is currently viewing. We chose to take the

average number of links found across all crawled pages within each

application and call that its number of symbols. We then estimate

the number of possible rituals to be 𝑠𝑛 where 𝑠 is this average num-

ber of symbols and 𝑛 is the length of the ritual. Note that this is

likely to be an underestimate since we only count <a> tags, whereas

in practice, multiple HTML elements can have click-related event

handlers, making them candidates for use in a ritual.

Figure 2 shows how many bits of entropy are available for rituals

in each application and compares to three other types of passwords.

We see that rituals are capable of providing similar levels of entropy

to these other techniques. PhpMyAdmin provides more options

than alphanumeric passwords and ShareLaTeX, which has fewer

UI elements, is similar to pattern locks until the pattern reaches

its maximum length of 8 and falls behind. Any of these may be

sufficient if we assume the user makes good random passwords and

the attacker makes random guesses. In each case, when the length

is 5 or more, the probability of guessing the code/password/ritual

within 5 attempts is less than 0.1%. As long as the number of failed

attempts is capped or rate limited, guessing attacks are very un-

likely to be effective. Rather, the primary concern with passwords

and PIN codes is re-use of common passwords and re-use across

applications. As we mentioned above, this is where rituals have the

advantage. Rituals are application-specific, and if the user chooses

elements that they created, such as an email folder, then they may

also be entirely user-specific and thus cannot be re-used. Since login

rituals provide offer similar protection against guessing attacks,

while avoiding the pitfalls of passwords, we have shown that they

contribute more to a user’s security than having a second password.

When used together, login rituals and web tripwires describe

the expected behavior from a real user by outlining actions that

they must do and those that they must not do. An intruder will fall

outside this expected behavior when their unfamiliarity with the

real user’s specific environment leads them to either fail the login

ritual or activate countermeasures by clicking on tripwires.

2.3 Threat model

Our defenses address attackers who have gained unauthorized

access to a user’s account on a web application using brute-forced

or stolen login credentials. Attackers may interact with the web

application through the user interface in a web browser, or theymay

send individually crafted requests directly. The tripwires portion of

our defense also addresses attackers who have hijacked an existing

user session either by stealing a session cookie or through access

to a user’s logged in device. Login rituals will not apply in this case

if the real user had already completed their ritual in that session.

We assume that the attacker is aware of the existence of rituals

and tripwires, but does not have knowledge of the victim’s specific

setup of ritual steps and tripwire placements.

3 ARCHITECTURE AND IMPLEMENTATION

Our goal is to design a system which can be deployed on top of

any web application with a minimal need for application-specific

configuration. In order to inject tripwires and enact countermea-

sures, our system needs to be able to inspect incoming requests

and modify outgoing responses. To satisfy these requirements, we

implemented our system using mitmproxy [9].

We use mitmproxy as un uncircumventable reverse proxy so

that all requests from all clients are received by the proxy, and

when it is done manipulating requests it forwards the requests to

the application server. The responses from the server return to the

proxy where they can be manipulated again, then sent back to the







Table 1: Quantity and types of follow-up requests triggered automat-

ically by the browser after logging in and loading the landing page of

each application.

WordPress Roundcube OwnCloud PhpMyAdmin ShareLaTeX

HTML 2 4 4 2 1

CSS 13 3 31 7 1

Images 5 21 36 33 0

Scripts 27 9 110 40 2

Data 0 0 5 5 0

Fonts 0 0 3 0 4

Other 0 3 0 0 1

Total 47 40 189 87 9

a critical web application vs. a less critical one) but also in an intra-

environment one (e.g. setting stricter policies for administrators vs.

regular users, on a single web application). While the countermea-

sures range from inconvenient to severe, a design with multiple

thresholds allows for policies to enact more strict countermeasures

progressively as the number of tripwire accesses increases.

3.3 Login rituals

Following every traditional login, the rituals module enforces a

user’s login ritual until it is completed or broken. Described below

are several steps required to handle certain complexities of login

rituals.

If rituals are enabled then the ritual progress is set to zero for a

device after a login is detected in the login module. While the ritual

progress is between zero and the length of the ritual, our system

inspects requests and increments the ritual progress if and only

if the request matches the current step 8 . Otherwise the ritual

is broken and the device is logged out using one of the methods

shown in Figure 5. When the ritual is completed, the progress is

cleared and all requests from the device will skip over the rituals

module until the next login.

Even though it is simple to determine if a request matches the

next ritual step to advance the progress, rejecting requests can be

much more difficult. The reason is that any action from a user can

cause the browser to request dozens of additional subresources,

such as, iframes, CSS, scripts, images, and videos. For example,

Table 1 shows the number of follow-up requests generated from

the landing pages of the applications we tested. These requests will

not necessarily happen in the same order, some may not happen

at all if they are cached, and new subresources can be added over

time as an application evolves and updates. We need to be able

to allow these requests without breaking the ritual when they are

the consequence of a user action that was a valid part of the ritual.

The goal then is to determine when a request is actually outside of

the ritual so that we can log out the device. We describe specific

challenges and our solutions below.

3.3.1 Response types. One way to handle follow-up requests could

be to allow requests for static resources based on their content

type. The problem with this is that the type cannot always be

determined from the request, and if our system waited for the

response to determine the type, then it has already passed the

potentially harmful request to the application server. Therefore,

our solution needs to only evaluate requests so that actions outside

of the ritual do not impact the server.

3.3.2 Anticipating follow-up requests. The most direct solution is

to consider the logic that causes a browser to initiate follow-up

requests. Our system predicts these requests by monitoring the

content of the application server’s responses for HTML which

will be interpreted by the client browser. When the rituals module

encounters an HTML response to an authenticated user who has

not yet completed their ritual, it parses the response and looks

for tags (<img>, <link>, <script>, etc.) that the browser will use

to fetch additional resources automatically 11 . From these tags,

we build a list of anticipated follow-up requests. When we receive

these requests we know that they were triggered by part of the

ritual, so we can forward them along to the server without logging

the user out 7 . For each of these anticipated requests, we also

keep a time-to-live value so that we only allow it for a short time

after seeing the parent document that we expect to trigger it. This

approach to identifying follow-up requests allows our system to

continue recognizing ritual requests even as the content of a site

changes over time.

The method above works best for applications that assemble the

view on the server side because our systemwill knowwhat requests

to expect. Some applications will also use JavaScript to trigger

requests for additional subresources which were not referenced in

HTML. While we could search for URLs in JavaScript resources that

pass through our proxy, theymay be hard to find if built dynamically

and it is hard to know whether they are triggered on load or require

user interaction first.

We tackle this challenge by taking advantage of client-side ca-

pabilities at the time of ritual creation. When a user first creates

their login ritual using our browser extension user interface, we can

record all requests made to the application server as well as what

was clicked on. By keeping track of when each request was sent

and when each user action was performed, we can construct an

attribution chain that tells us łuser action A triggered requests B, C,

and D." This technique is less resilient to changes in the application

because it gives us only a single snapshot, but it supplements the

above approach and allows us to handle requests that are generated

from JavaScript and cannot be identified in HTML responses.

3.3.3 Dynamic requests from JavaScript. Recording requests during

ritual creation identifies requests made from JavaScript, but if the

generated requests change as the application evolves over time we

may not recognize them. We first address two types of behavior

causing unknown JavaScript requests that can be dealt with using

application specific configurations set up by an administrator.

Some applications use AJAX requests to send heartbeat messages.

These are used to tell the server that the session is still active and

they are triggered by a timer without interaction from the user.

As such, they will not necessarily be captured at the time of ritual

creation, nor expected based on a parsed HTML document. If a

heartbeat message is received while a user is completing their login

ritual, then our module would treat it as a ritual violation since it

did not know to expect that request. Because these requests follow

a predictable pattern, an administrator can observe the form of

heartbeat requests and add that specific heartbeat endpoint to an

allowlist to be ignored by our system.

A related issue results from requests sent by JavaScript that con-

tain a timestamp or nonce in a URL parameter. While the behavior













decoy files which can be detected in different ways. Honeytokens

embed fake sensitive information, such as webmail credentials and

bank account/credit card numbers that are monitored on external

systems. They attempted to evaluate the decoys using honeypots

managing to attract 20 attackers.

In 2011, Salem and Stolfo [25] expanded on the work of Bowen

et al. Rather than relying on honeypots and real world attackers,

they chose to evaluate decoy files with user studies to find the right

number of decoys balancing false positives with detection rate. They

showed that 10-20 decoy files placed on volunteers’ own systems

generated a tolerable number of false positives over a 7 day period.

In another experiment, they simulated attackers using 40 volunteers

who were given 15 minutes with a laptop to steal information. They

were given instructions and a personal back-story motivating them

to steal data for financial gain. They were split into four groups

varying the number of decoys on the system. They found that all

volunteers were detected by at least one decoy and increasing the

number of decoys beyond 20 did not lead to a significant increase

in the number of accesses. This offers compelling evidence that

decoy files can used effectively for intrusion detection and produced

results which guide future decoy deployments. The setup of the

tripwire portion of our user study was inspired by this work, in

terms of the number of participants, the task we gave them, and

the number of tripwires we chose to deploy.

In 2015, Voris et al. [34] continued to build on decoy files with a

focus on automatic deployment. The authors used the same type

of user studies as Salem and Stolfo, but they evaluated different

schemes for automatically naming and placing decoy files. Their

work also included a long-term study of false positives with their

automatic deployment system. With decoy files on volunteers’ per-

sonal systems for a period of 2 months, they found that after an

initial spike just following deployment, decoy accesses were rare

for the majority of the experiment. This shows that users can get

used to decoys on their system and generate few false positives.

We expect that the same is true for our web tripwires and rituals

when deployed on often used applications, because their success is

based on long-term familiarity.

Deception on the Web. Recent work has explored some forms

of deceptive web resources for intrusion detection as well as ob-

fuscation contributing to moving target defenses. In 2017, Han et

al. [15] created a reverse proxy system to inject deceptive web

elements and evaluated their effectiveness in a capture the flag

setting. Their work focused on web elements that are hidden from

the user, such as cookies, form fields, fake accounts, and URLs in

robots.txt and HTML comments. Fraunholz and Schotten [12] used

a similar system but also included techniques such as returning

false version info and status codes meant to deceive crawlers rather

than detect intrusions. More recently in 2020, Sahin et al. [24] used

similar deceptive elements, but with the addition of a clone of the

web application to which attackers were redirected after detection.

These works primarily focus on defenses that will catch crawlers

and vulnerability scanners. Compared to these works, our system

implements tripwires as elements of the user interface. We focus

on protecting individual user accounts, and the personalized setup

for each means that users should have the familiarity necessary to

avoid false positives without having to hide our deceptive elements.

Network-level Login Rituals. The concept of login rituals in this

paper is inspired by the idea of port knocking and single packet au-

thentication (SPA). The idea behind port knocking is to keep a strict

firewall which drops all incoming connections until a monitor sees

SYN packets sent to a predetermined set of secret ports. Then the

server port is opened up to allow communication for a limited time.

SPA is very similar, but uses only a single packet which contains a

hashed password, instead of sending multiple requests where the

set of ports is the password. In 2006, Sebastien Jeanquier [17] sum-

marized the basics of port knocking and addressed practicalities,

limitations, and improvements. Some challenges identified include

allowing only the client that completed the knock, replay attacks

from an eavesdropper, and a single shared secret between multiple

clients. Several works have sought to improve port knocking pro-

tocols over the years [3, 10, 32], but the core concept is the same.

Login rituals are similar in that there is a sequence of steps that a

user must take before they are considered fully authenticated. If a

user account is analogous to the server which opens its port, then

one difference is that rituals do not conceal the existence of the user.

However, advantages over port knocking are that the dependence

on the specific application precludes password re-use, and rituals

can make use of actions that a user would take anyway.

Intrusion Detection via Behavior Modeling. In the area of model-

ing user behavior for attack detection, Shonlau et al. [28] collected

a data set of UNIX commands and presented techniques for change

detection to identify masquerading users. Salem and Stolfo [26] also

used behavior modeling, but focused on searches in a file-system.

In a web setting, Solano et al. [29] modeled mouse and keyboard

behaviors on the login screen to introduce a layer of risk-based

authentication. Tripwires and rituals are conceptually related to

behavior modeling in that there is an expected user behavior and

an attacker who deviates by not completing a ritual or by clicking

on a tripwire will reveal themselves as an intruder. A significant

distinction is that both of our mechanisms are deterministic. False

positives only occur when a user makes a mistake. Additionally,

because users create their tripwires and rituals, they are aware of

what they need to do to remain trusted, whereas statistical behav-

ior models are invisible to benign users. This makes false positives

more frustrating since the user does not know exactly what they

did to trigger an alert.

8 CONCLUSION

In this paper, we presented two techniques ś web tripwires and

login rituals ś that rely on deception to extend authentication in

web applications. We take advantage of users’ habits and familiarity

with applications they use every day to help protect their accounts.

Tripwires and rituals do not suffer from the re-use problem that

is common with passwords and can be combined with existing

MFA systems to reduce user friction and increase an account’s se-

curity in cases of sophisticated phishing attacks. We demonstrated

how these defenses can be realized with our reverse proxy system

and evaluated the mechanisms through an online user study. We

found that up to 88.2% of simulated attackers could be detected

by web tripwires and half of our study participants were able to

complete their rituals every time, even a week after setting them

up. While this work is not meant to replace standard authentication



practices, our results show that these deception-based mechanisms

can provide effective layers of additional security to existing web

applications, in an application-agnostic fashion.
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