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Abstract—Speech emotion recognition (SER) systems find ap-
plications in various fields such as healthcare, education, and
security and defense. A major drawback of these systems is their
lack of generalization across different conditions. For example,
systems that show superior performance on certain databases
show poor performance when tested on other corpora. This
problem can be solved by training models on large amounts of
labeled data from the target domain, which is expensive and time-
consuming. Another approach is to increase the generalization of
the models. An effective way to achieve this goal is by regularizing
the models through mulfitask learning (MTL), where auxiliary
tasks are learned along with the primary task. These methods
often require the use of labeled data which is computationally
expensive to collect for emotion recognition (gender, speaker
identity, age or other emotional descriptors). This study proposes
the use of ladder networks for emotion recognition, which
utilizes an unsupervised auxiliary task. The primary task is a
regression problem to predict emotional attributes. The auxiliary
task is the reconstruction of intermediate feature representations
using a denoising autoencoder. This auxiliary task does not
require labels so it is possible to train the framework in a
semi-supervised fashion with abundant unlabeled data from the
target domain. This study shows that the proposed approach
creates a powerful framework for SER, achieving superior
performance than fully supervised single-task learning (STL)
and MTL baselines. We implement the approach with sentence-
level or frame-level features, demonstrating the flexibility of
our approach. Additionally, the generalization of the ladder
networks is evaluated in cross-corpus settings using sentence-
level features, obtaining important improvements. Compared to
the STL baselines, the proposed approach achieves relative gains
in concordance correlation coefficient (CCC) between 3.0% and
3.5% for within corpus evaluations, and between 16.1% and
74.1% for cross corpus evaluations, highlighting the power of
the architecture.

Index Terms—Semi-supervised emotion recognition, ladder
networks, speech emotion recognition.

I. INTRODUCTION

Recognizing emotions is a key feature needed to build
socially aware systems. Therefore, it is an important part of
human computer interaction (HCI). Emotion recognition can
play an important role in various fields such as healthcare
(mood profiles) [1], education (tutoring) [2] and security and
defense (surveillance) [3]. Speech emotion recognition (SER)
have enormous potential given the ubiquity of speech-based
devices. However, it is important that SER models generalize
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well across different conditions and settings showing robust
performance.

Conventionally, emotion recognition systems are trained
with supervised learning solutions. The generalization of the
models is often emphasized by training on a variety of samples
with diverse labels [4]. The state-of-the-art models for standard
computer vision tasks utilize thousands of labeled samples.
Similarly, automatic speech recognition (ASR) systems are
trained on several hundred hours of data with transcriptions.
Generally, labels for emotion recognition tasks are collected
with perceptual evaluations from multiple evaluators. The
raters annotate samples by listening or watching to the stim-
ulus. This evaluation procedure is cognitively intense and
expensive [5]. Therefore, standard benchmark datasets for SER
have limited number of sentences with emotional labels, often
collected from a limited number of evaluators. This limitation
severely affects the generalization of the systems.

An alternative approach to increase the generalization of the
models is by building robust models. An effective approach
to achieve this goal is with multitask learning (MTL) [6],
where relevant auxiliary tasks are simultaneously solved along
with the primary task. By solving relevant auxiliary tasks,
the models are regularized by finding more general high-
level feature representations that are still discriminative for
the primary task. Multitask learning has been successfully
used for emotion recognition tasks [7]-[10]. While these MTL
methods have achieved promising results, most of the proposed
solutions have focused on MTL problems that utilize super-
vised auxiliary tasks. Examples include gender recognition
[10], [11], speaker information [10], other emotional attributes
[8], [9] and secondary emotions [7]. This approach requires
the use of meta labels which further limits the training of
the models. In many scenarios, it is possible to collect large
amount of data without labels from the target domain. It is
important to build models that can effectively utilize unsuper-
vised auxiliary tasks to regularize the model, leveraging these
unlabeled recordings. This study explores this idea with ladder
networks, building upon our previous work [12]. The ladder
network architecture is a framework that combines supervised
tasks with unsupervised auxiliary tasks. These auxiliary tasks
correspond to the reconstruction of feature representations at
various layers in a deep neural network (DNN). Since, this
reconstruction is completely unsupervised, this framework has
clear advantages: (a) it improves the regularization of the
model through auxiliary tasks without the need for extra labels,
and (b) it increases the generalization of the model by utilizing
unlabeled data from the target domain. The uniqueness of the
framework is the skip connections between the corresponding
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encoder and decoder layers, which reduce the load on the
encoder layers to carry information for decoding the layers.
With this approach, the higher layers of the encoder learn
discriminative representations for the supervised task.

This study provides a comprehensive analysis of auxiliary
tasks for speech emotion recognition on the MSP-Podcast
corpus [13]. The study focuses on regression problems, where
the primary task is to predict the arousal, valence and dom-
inance scores. The proposed implementation uses high-level
descriptors (HLDs), computed at the speaking turn-level as
feature inputs. The evaluation compares the performance of the
proposed ladder network framework for emotion recognition
against single-task learning (STL) and MTL baselines. The
experimental results show the benefits of the framework, ob-
taining state-of-the-art performance on this speech emotional
corpus. This study also examines the performance of the
proposed architectures for cross-corpus experiments, where the
models are trained on the MSP-Podcast corpus and tested on
other popular databases for SER tasks (USC-IEMOCAP and
MSP-IMPROV corpora). The proposed architectures achieve
significant improvements in the cross-corpus experiments,
leading to models that generalize better to unseen conditions.
Finally, this study replicates the proposed architecture for two
low-level feature inputs: (a) dynamic low-level descriptors
(LLDs), and (b) Mel-frequency band (MFB) energies. The
model with ladder networks achieve significant improvements
over the baselines in most cases.

With respect to previous studies, including our own work
[12], this study includes the following contributions:

e We train ladder networks in a semi-supervised fashion,
where the reconstruction of intermediate layers and the predic-
tion of emotional attributes are jointly optimized. We utilize
unlabeled data for the reconstruction loss. This formulation
extends our previous work that trained ladder networks exclu-
sively on fully labeled data [12].

« We demonstrate that the proposed ladder network architec-
ture can be trained with features extracted at the sentence-
level (high-level descriptors), or at the frame-level (low-level
descriptors), facilitating end-to-end training of the models.

e We provide a comprehensive analysis of training ladder
networks for speech emotion recognition, showing its capabil-
ity in within corpus evaluations, and cross-corpus evaluations,
where we observe significant performance gains.

The rest of the paper is organized as follows. Section II
reviews studies on research areas that are relevant to this work.
Section III presents the proposed architecture that exploits
unsupervised auxiliary tasks to regularize the network. Section
IV gives details on the experimental setup including the
databases and features used in this study. Section V presents
the exhaustive experimental evaluations, showing the benefits
of the proposed architecture. Finally, Section VI provides the
concluding remarks, discussing potential areas of improve-
ments.

II. BACKGROUND

This study uses the emotional attributes arousal, valence
and dominance to describe emotions. SER systems for these

problems are often built to recognize individual emotional
attributes. Most frameworks are trained in a supervised fashion
with labeled data. Given the limited size of most speech
emotional databases, these supervised emotion recognition
frameworks are commonly trained with a few hours of labeled
data. Using unlabeled data is an interesting method to increase
the generalization of the models to a new domain.

A. Semi-Supervised Learning

Previous studies for semi-supervised learning have consid-
ered the inductive learning technique, where a classifier is
first trained on the labeled samples. The trained classifier is
then used on the unlabeled set to obtain predictions. The
training set is then augmented with samples having highly
confident predictions. The classifier is retrained with this
augmented training set. This process is iterated a fixed number
of times after which the performance often saturates. Zhang
et al. [14] used this inductive learning procedure for SER to
leverage unlabeled data. They enhanced their supervised learn-
ing approach with this method, obtaining better predictions
on labeled data [15], [16]. Cohen et al. [17], [18] proposed
a similar strategy for facial expressions using probabilistic
Bayesian classifiers.

Another approach for semi-supervised learning is the co-
training or multi-view learning procedure [19]. In this method,
the classifiers are trained on distinct feature partitions (views).
The different classifiers are used for predictions on the un-
labeled data, augmenting the training set with samples that
are consistently recognized by the classifiers. Mahdhaoui and
Chetouani [20] proposed multi-view training for SER using
different sets of acoustic features. Similarly, Zhang et al. [21]
utilized co-training along with active learning where they only
annotated emotional labels for samples where the predictions
were made with low confidence by the multi-view classifiers.
Liu et al. [22] proposed multi-view learning for SER, where
they used temporal and statistical acoustic features. Studies
have also considered multi-view learning by incorporating
multiple modalities [11], [15], [16].

This study is more closely related to the recent advances
in deep learning that combine supervised and unsupervised
learning. Similar to our work, Deng et al. [23] proposed
combining an autoencoder and a classifier for SER. Their
framework is based on a discriminative Restricted Boltzmann
Machine (RBM), which considers unlabeled samples as an
extra garbage class in the classification problem. Huang et
al. [24] proposed learning affect sensitive features using a
semi-supervised implementation of a convolutional neural
network (CNN) for SER. In this study, general features are
learned using an unsupervised CNN architecture, and then
these features are fine-tuned for affect recognition. Similarly,
Mao et al. [25] trained a CNN to learn salient features for
SER. The CNNs were first trained on unlabeled samples
using a sparse autoencoder and a reconstruction penalization.
The invariant features were then used as inputs for learning
affect sensitive feature representations. Our work follows
these studies, further extending semi-supervised SER. Our
study differs from previous studies by effectively training an
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autoencoder and a regressor together, such that the auxiliary
task of reconstructing the input feature vector and intermediate
feature representations helps the primary supervised learning
task. Jointly training the autoencoder (auxiliary task) and the
regression problem (primary task) is an important contribution
leading to more discriminative SER models.

B. Auxiliary Tasks and Multitask Learning

There are multiple studies that have analyzed the regular-
izing benefits of auxiliary tasks for SER. Xia and Liu [9]
combined the learning of emotional categories and emotional
attributes. The primary task was the classification of emotional
categories. The secondary task was either classification or
regression of emotional attributes. Parthasarathy and Busso
[8] proposed to jointly predict arousal, valence and domi-
nance scores using a MTL framework, where recognizing
one of the attributes was the primary task and recognizing
the other two attributes were the secondary tasks. The MTL
framework learned the inherent correlation between the vari-
ous emotional attributes leading to improvements over STL.
Similarly, Chang and Scherer [26] used arousal prediction as
an auxiliary task for a valence classifier. Chen et al. [27]
showed similar improvements in performance for the pre-
diction of time-continuous emotional attributes. Their system
jointly predicted arousal and valence scores, obtaining the
best performance for the affect sub-task in the audio/visual
emotion challenge (AVEC) in 2017 [28]. Le et al. [29]
also used a MTL framework for time-continuous attribute
recognition. Their framework trained classifiers by discretiz-
ing attribute scores into discrete classes using the k-means
algorithm with k € {4, 6,8, 10}. The different classifiers were
then learned together as multiple auxiliary tasks using MTL
framework. (e.g., learning together a four-class problem and
a six-class problem). Similarly, Lotfian and Busso [7] showed
improvements for categorical emotion recognition by using a
MTL framework for learning the dominant emotion (primary
task) and secondary emotions also conveyed in the sentence
(auxiliary task).

Previous studies have also considered using other auxiliary
tasks to improve SER. Kim et al. [30] used gender and
naturalness recognition as auxiliary tasks for emotion recog-
nition. The naturalness task consisted of a binary classifier
that determines whether the sentences were natural or acted
recordings across different databases. Tao and Liu [10] used
gender recognition and speaker identification as auxiliary tasks
for classifying emotional categories on the USC-IEMOCAP
corpus. Similarly, Zhao et al. [16] transferred age and gender
attributes as auxiliary tasks to predict emotion attributes.
Abdelwahab and Busso [31] used an auxiliary task for cross-
corpus SER. The auxiliary task learned common representa-
tion between the source and target domains using a domain
adversarial neural network (DANN).

C. Ladder Networks

The idea of ladder networks was first proposed by Valpola
[32]. This work showed the benefits of using lateral shortcut
connections to aid deep unsupervised learning. Rasmus et al.

[33], [34] further extended this idea to support supervised
learning. Classification and regression tasks were added to
the unsupervised reconstruction of inputs through a denoising
autoencoder. Finally, Pezeshki et al. [35] studied the various
components that affected the ladder network, noting that lateral
connections between encoder and decoder and the addition of
noise at every layer of the network greatly contributed to the
improved performance of this framework.

D. Sentence-Level and Frame-Level Features

Conventionally, SER problems are formulated using
sentence-level features over short speech segments. Previous
studies often rely on statistics estimated over LLDs, where
popular examples include the feature sets proposed for the
paralinguistic challenges at Interspeech [36], [37]. An alterna-
tive approach is to directly use a sequence of features extracted
at the low-level over short segments (e.g., 40 ms). We refer
to these features as low-level features or frame-level features.
Cummins et al. [38] borrowed successful CNN architectures
from the computer vision domain by treating speech spectro-
grams as images. Mao et al. [25] performed SER in a two
step approach using a CNN architecture on low-level features.
The first step learned features from unlabeled data and a sparse
autoencoder. These features were then used for the recognition
task. Trigeorgis et al. [39] proposed a CNN architecture to
perform end-to-end SER that took raw speech waveforms as
inputs. Neumann and Vu [40] proposed an attention based
convolutional neural network for emotion recognition. Yang
and Hirschberg [41] predicted arousal and valence using CNNs
trained on spectrogram inputs. Likewise, Aldeneh and Provost
[42] proposed to train 1-D CNNs on mel-filter bank energies to
capture regional saliency for emotion recognition. Following
these previous works, our study also examines the effect of
our system using CNNs on low-level features, demonstrating
that the proposed ladder network architecture can also be
implemented with these features (Sections III-D and V-C).

E. Relation to Prior Work

This study presents important contributions with respect to
previous studies, including our previous work. The use of
ladder network for SER is appealing since the auxiliary task
is unsupervised, so we can use data from the target domain
without labels. This feature of the proposed approach is a key
distinction between our work and most MTL studies, which
use supervised auxiliary tasks. When compared to the work
of Parthasarathy and Busso [12], this study (1) implements
the ladder networks in a semi-supervised fashion instead
of a supervised fashion, (2) demonstrates that the proposed
architecture can be implemented with different features both
at the sentence level, and the frame-level, and (3) evaluates the
proposed architecture with extensive within-corpus and cross-
corpus evaluations.

The closest study to our paper is the work of Huang
et al. [43], which was simultaneously developed with our
preliminary study [12]. They also proposed ladder networks
for SER tasks. A key distinction between this study and our
paper is that Huang et al. [43] only used ladder network to
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learn feature representations, where the final classifier was a
separate support vector machine (SVM). This two-step process
is equivalent to training an autoencoder followed by a clas-
sifier. Instead, our proposed formulation jointly optimizes the
unsupervised reconstruction and the supervised regression task
in a single step. The proposed ladder network provides the final
predictions for the emotional attribute without any additional
regressor, which (1) creates better feature representations that
are discriminative for the target task, and (2) allows our
formulation to be trained as an end-to-end system (Sec. V-C).

III. PROPOSED METHODOLOGY
A. Motivation

As stated in Section II, data with emotional labels are
limited. Furthermore, data from the source domain (train set)
is not guaranteed to have the same distribution as the target do-
main (test set). Therefore, most supervised frameworks trained
on one corpus do not generalize well when tested across differ-
ent tasks and corpora. Therefore, there is a fundamental need
to regularize architectures such that they generalize across
different tasks. This study aims to increase the generalization
of SER models with (1) unsupervised auxiliary tasks, (2)
and unlabeled data from the target domain. Our motivations
are based on solving unsupervised auxiliary tasks, which aid
the primary emotion recognition task. First, we want to fully
utilize available labeled data which is expensive to annotate. To
this extent, we build a MTL framework (Section III-C) where
we jointly learn the dependencies between multiple emotional
attributes. The MTL framework regularizes our architecture,
but it still demands the utilization of expensive data labeled
with emotional information. While labeling audio data for
emotion is expensive, unlabeled data is more easily available.
The amount of unlabeled data is often greater than the amount
of labeled data. The unlabeled data from the target domain
can be used to reduce the gap between the source and target
domains. We propose to use ladder networks (Section III-B)
to effectively leverage unlabeled data. Collectively, the MTL
approach combined with the ladder network creates a semi-
supervised architecture that effectively generalizes to new
domains. This study shows that these powerful representations
created by our model can be used across emotional corpora to
achieve state-of-the-art SER performance.

B. Ladder Network for Speech Emotion Recognition

Ladder networks, at their core, combine an unsupervised
auxiliary task with a supervised classifier or regressor. Using
an autoencoder for supervised tasks is not new. Traditionally,
the autoencoder is trained separately from the supervised task,
where its goal is to learn features representations that are
useful for reconstructing the input. However, the information
needed to reconstruct the input does not necessarily create a
discriminative representation for the classification or regres-
sion task. Therefore, it is important to combine the training
of the autoencoder with the supervised task, which is a key
feature of the ladder networks. Figure 1 illustrates a conceptual
ladder network. A noisy version of the encoder is created by
adding noise at every layer of the encoder. The goal of the
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Fig. 1. Ladder network architecture using auxiliary tasks for emotion attribute
prediction. The network has a noisy encoder, decoder and clear encoder used
for inferences. The ladder connections connect the noisy encoder with the
decoder.

autoencoder is to reconstruct the feature representations at the
input and intermediate layers. The core concept of the autoen-
coder in the ladder network involves skip connections between
corresponding encoder and decoder layers. Effectively, these
skip connections provide a shortcut between the decoder and
encoder, bypassing higher layers of the encoder. Therefore, the
top layers of the encoder can learn representations better suited
towards the primary discriminative task. This is a fundamental
difference with simple autoencoders. Note that the ladder
network combines the supervised task with an unsupervised
auxiliary task. Therefore, the true benefit of the architecture
is when it is used in a semi-supervised fashion. The rest of
this section explains in detail the encoder and decoder of the
ladder network.

Encoder: The encoder consists of a multilayer perceptron
(MLP). A zero-mean Gaussian noise with variance o is added
to each layer of the MLP (N(0,02) in Fig. 1). The decoder
is constructed to denoise the noisy latent representations z at
every layer. Therefore, a clean copy of the encoder path is
built to get the targets z for reconstruction (clean encoder
in Fig. 1). Since the architecture reconstructs intermediate
layers, z, a trivial solution to minimize the cost is z = z =
constant. To avoid this trivial solution, intermediate layers are
normalized using batch normalization. Batch normalization is
performed on all layers except the input layer. The scaling
and bias values are learned as trainable parameters before
applying the activation. Besides encoding the representations
for reconstruction, the final layer of the encoder, zM) is used
for training the supervised regression task, which in our case is
the prediction of emotional attributes. The noisy representation
z further regularizes the network. The clean representations z
are used during inference.

Decoder: Similar to the encoder, the decoder of the ladder
network is a MLP (decoder in Fig. 1). The layers of the de-
coder network mirrors the layers of the encoder. The decoder is
constructed to denoise the noisy representations of the encoder.
The denoising process combines top down information from
the decoder (z0+1)) with lateral information from the corre-
sponding encoder layer (z(V'). With the lateral connections,
the network passes the information needed for denoising the
latent representations, bypassing the top layers of the encoder,
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Fig. 2. Multitask learning (MTL) architecture to jointly predict arousal, va-
lence and dominance [8]. The ladder network architecture can be implemented
with MTL, combining supervised and unsupervised auxiliary tasks.

which can, instead, provide abstract discriminative information
for the supervised regression task. As a result, an unsupervised
auxiliary cost is added without sacrificing the performance of
the architecture for the supervised task. Different denoising
functions, g(+), can model different probability distributions of
the latent variables [33], [35]. Previous studies have shown that
a single layer MLP combining top decoder layers and lateral
encoder layers works the best for most tasks. Our preliminary
experiments concluded that the same observation also holds
for SER tasks. The denoising function g(-) takes as input u, z
and u ® z (layer abbreviations are dropped for clarity), where
u is a batch normalized projection of the decoder layer above
2041 7 is the corresponding noisy representation, and u ® z
is a element wise product between the decoder and encoder
elements. The element wise multiplication assumes that the
latent variables are conditionally independent and modulates
the encoder representation with the previous decoder layer
(2(1+1))_
The overall loss for the ladder network is given by

CLadder = Cc + Z )\lC((ll) (1)
l

where Cc(ll) is the reconstruction loss at layer [ and )\; is a
hyper-parameter that weighs the reconstruction loss at that
layer. The supervised loss for predicting the emotional at-
tributes, C., is added when labeled samples are available.
Section IV-D gives the implementation and experimental setup
used to train the regressor using the proposed ladder network
framework.

C. Multitask Learning for Emotion Recognition

While the ladder network architecture makes efficient use of
unlabeled samples to regularize the models, the generalization
of the models can also be achieved by better utilizing labeled
samples. For the prediction of emotional attributes, one appeal-
ing method is to jointly learn multiple emotional attributes.
This procedure can be effectively done through MTL with
shared and attribute-dependent layers [8]. Figure 2 illustrates
a MTL network with shared hidden layers that jointly predicts

arousal, valence and dominance scores. The overall loss for the
MTL architecture is given by

CMTL = acaro + Bcval + (1 - — 5)Cdoma (2)

where Cy0, Cya and Clg,,y, are individual losses for the
prediction of arousal, valence and dominance, respectively.
These losses are multiplied by the hyper-parameters o and
B, respectively, with a, 8 € [0,1] and o + 8 < 1. Particular
solutions of this formulation are the STL frameworks for
arousal (@« = 1, f = 0), valence (¢« = 0, § = 1) and
dominance (o = 0, 5 = 0).

An interesting extension of the proposed ladder network
formulation for SER is combining the unsupervised and su-
pervised auxiliary losses. We achieve this goal by replacing
C. in Equation 1 with C'y;7;, from Equation 2. In Section V,
we evaluate the implementation of the ladder network with
STL and MTL.

C’Lad-',-MTL = acam + Bcval + (1 - — /B)Cdom
+> ney 3)
l

D. Extension of the Architecture for Low-Level Features

The evaluation section mostly considers the proposed ladder
networks implemented with sentence-level features, where a
feature vector with fixed duration is obtained regardless of
the duration of the segment (Sec. IV-B). In Section V-C, we
also present results with low-level descriptors to illustrate the
flexibility of the proposed architecture for SER. Toward this
goal, we present an extension of our architecture using CNNss,
which are used to learn discriminative features facilitating end-
to-end training.

Most previous frameworks designed for low-level features
rely on either low-level features (e.g., MFB) or audio wave-
forms to learn discriminative features for the task at hand. Such
methods enable end-to-end learning, where the features and
the classification or regression tasks are jointly learned during
training. Following this formulation, this study explores the
use of the proposed ladder networks with low-level features.
We consider two alternative low-level features: (1) using the
LLDs of the ComParE feature set (65D vector — see Sec.
IV-B), and (2) MFB energies. Similar to previous studies, we
use n=40 bands for the MFB [42]. These models are compared
with systems trained with HLDs.

Figure 3 shows the proposed CNN-based architecture for
low-level features. The input to the CNN is a 65D x7T" matrix
(ComParE LLD) or a 40D xT'(MFB) matrix, where T is
the time dimension. The CNN architecture consists of four
convolutional layers followed by two fully connected (FC)
layers and a linear output layer. The convolutional layers
perform 1D convolutions along the time axis with the low-
level features as the inputs for the first convolutional layer. We
use a 1D max pooling layer after every convolutional layer to
sequentially reduce the dimension of the time axis. We flatten
the outputs from the final convolutional layer before passing
them to the FC layers. While the downstream convolutional
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Fig. 3. CNN architecture to predict emotional attributes with low-level features (LLDs or MFB). The architecture contains 4 blocks of 1D convolutional layer
followed by a 1D maxpooling layer. After flattering the last convolution layer, the network includes two fully connected layers and the output prediction layer

(ks: kernel size, ps: pool size and fc: fully connected).

layers can deal with variable length sequences, the upstream
FC layers require a fixed length input. Therefore, we fix 1" at
1000, which corresponds to 10 seconds of speech (100 fps).
We use this value, since most speech segments in the different
datasets used in this study are less than 10 seconds. Segments
with duration greater than 10 seconds are truncated. Sentences
with duration less than 10 seconds are padded with zeros.

IV. EXPERIMENTAL SETUP
A. Datasets

This study uses multiple datasets for the different experi-
ments in Section V. The primary corpus is the MSP-Podcast
(Version 1.2) [13], used for all the within corpus experiments
(Sec. V-A). The MSP-Podcast contains speech collected from
online downloadable audio shows, covering various topics
such as politics, sports, entertainment, and motivation talks.
Therefore, they contain naturalistic speech spanning the emo-
tional spectrum observed during natural conversations. We use
a diarization toolkit which identifies segments from distinct
speakers. The podcast conversations are sequentially analyzed
by automatic algorithms to remove music, silence portions and
noisy recordings. We also remove segments with overlapped
speech. The selected segments contain a single speaker with
duration between 2.75s and 11s. To balance the emotional
content of the corpus, we retrieve samples that we believe are
emotional following the idea proposed in Mariooryad et al.
[44]. Overall, the corpus contains 50 hours of speech (29,440
speaking turns), which were annotated with emotional labels
using Amazon Mechanical Turk. The perceptual evaluation
used a modified version of the crowdsource-based protocol
presented in Burmania et al. [45] to track in real-time the
performance of the annotators. The data was annotated for
both categorical emotions as well as emotional attributes. This
study focuses on the emotional attributes. Each speaking turn
was annotated on a scale from one to seven by at least five
raters for arousal (1 - very calm, 7 - very active), valence (1
- very negative, 7 - very positive) and dominance (1 - very
weak, 7 - very strong). We manually identified speaking turns
belonging to 346 speakers in the MSP-Podcast database. The
test set contains data from 50 speakers (7,341 speaking turns).
The development set contains data from 20 speakers (3,753
speaking turns). The training set has the remaining labeled
speaking turns (18,346 segments). This data partition aims to
create speaker independent sets for the train, development and

testing sets. Besides the labeled data, the MSP-Podcast also
contains more than 300 hours of unlabeled data (175,196 seg-
ments), corresponding to the pool of clean segments identified
from the podcasts, which have not been annotated. This study
uses these segments to train the ladder networks (Sec. III-B) in
a semi-supervised fashion (within corpus evaluation). Section
V-A presents the results of the experiments conducted on the
MSP-Podcast corpus.

Besides the MSP-Podcast corpus, we use two other
databases for cross corpora evaluations (Sec. V-B). The first
database is the USC-IEMOCAP corpus [46], which contains
interactions between pairs of actors improvising scenarios.
The database contains 10,527 speaking turns from 10 actors
appearing in five dyadic sessions. The speech segments were
annotated for arousal, valence and dominance by two raters
on a five-Likert scale. More information about this corpus is
provided in Busso et al. [47]. We also use the MSP-IMPROV
corpus [48], which contains interactions between pairs of
actors improvising scenarios. In addition to the improvised
scenarios, the dataset also contains the interactions between
the actors during the breaks, resulting in more naturalistic
data. The MSP-IMPROV corpus was annotated with emotional
labels using Amazon Mechanical Turk using the approach
proposed by Burmania et al. [45]. Each sentence was annotated
for arousal, valence and dominance by five or more raters
using a five-Likert scale. More information about this corpus
is provided in Busso et al. [48].

B. Acoustic Features

This study predominantly uses the acoustic features intro-
duced for the paralinguistic challenge at Interspeech 2013
[37]. These features, which are referred to as the ComParE
feature set, are extracted in a two-step procedure. First, LLDs
are extracted over 20 millisecond frames (100 fps). These
LLDs include loudness, mel-frequency cepstral coefficients
(MFCCs), fundamental frequency (F0), spectral flux, spectral
slope, jitter and shimmer. Second, segment-level features are
calculated over the LLDs, leading to a fixed dimensional
feature vector. These statistics are referred to as high-level
descriptors (HLDs) and include various functionals such as
the arithmetic and geometric means, standard deviations, peak
to peak distances and rise and fall times. The ComParE feature
set contains 130 LLDs (65 LLDs + 65 delta) and 6,373 HLDs.
Most databases are annotated at the segment-level with a
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single annotation capturing the emotional content of the entire
segment. Since speech segments have variable lengths, most
emotion recognition algorithms have to deal with variable
length inputs. The HLDs alleviate this problem by creating a
fixed dimension input regardless of the length of the sequence.
Previous studies have shown the benefits of HLDs for SER
tasks [8], [49].

C. System Description

This study uses two baselines and different implementations
of the proposed approach to analyze the performance of
the ladder network architecture. All regression systems are
trained on the train set, optimizing their performances on
the development set. The best system per condition in the
development set is then evaluated on the test set, where we
report the results.

The study uses two baselines to compare the performance
of the proposed architecture. The first baseline uses the STL
framework, which is the conventional method for the regres-
sion of emotional attributes. The STL framework considers
only one of the emotional attribute at a time, creating separate
models for arousal, valence and dominance. This approach
is referred to as STL. The second baseline uses the MTL
framework proposed by Parthasarathy and Busso [8] (Sec-
tion III-C). This system jointly predicts all three emotional
attributes, but it only uses supervised auxiliary tasks without
the ladder network. It is expected that the MTL systems should
provide a stronger baseline compared to the STL systems,
since they use supervised auxiliary tasks. This approach is
referred to as MTL.

The ladder network architecture, denoted with Lad, is
studied using four implementations grouped into two settings.
The first setting only uses the labeled portion of the corpus.
The ladder network is implemented as a supervised problem.
We denote this setting by adding the term L to the name of
the system. The second setting uses the entire corpus con-
taining the labeled and unlabeled portions of the corpus. The
ladder network is implemented as a semi-supervised problem.
For training with the unlabeled set, we alternate between a
mini-batch of unlabeled samples and a mini-batch of labeled
samples. During training, the losses are not in the same scale
when labeled and unlabeled data are alternatively considered.
When we present labeled data in the batch, the regression loss
is added leading to a total cost that is about twice as high as
the reconstruction loss considered with only unlabeled data.
As the models are trained, the regression loss for predicting
the attributes eventually reduces, leading to equivalent losses
for both conditions. Our preliminary experiments indicated
that the alternate use of unlabeled and labeled data worked
better than learning the models by combining the labeled
and unlabeled data. This result indicates that the learning
scheme itself regularizes the model as is the case when MTL
architectures are used instead of the STL architectures. We
denote this setting that uses unlabeled data by adding the term
UL to the name of the system. For both settings, we implement
the ladder network with either STL (Eq. 1) or MTL (Eq. 3). We
denote the corresponding implementation by adding the term

STL or MTL to the name of the system. For example, the ladder
network trained with labeled and unlabeled data using STL is
denoted as Lad + UL + STL. We expect that combining MTL
with the ladder network should result in improved performance
as we use both supervised and unsupervised auxiliary tasks to
aid our primary task of predicting emotional attributes.

D. System Architecture

The baselines and the proposed ladder network models
are implemented with feed forward dense networks using
sentence-level features as inputs. The dense networks contain
two hidden layers with 256 nodes in each layer. The activation
of the neurons in each layer corresponds to the rectified linear
unit (ReLU). The input to the dense network is a 6,373D
feature vector containing the HLDs for a speaking turn (Sec.
IV-B). The output is the predicted value of the emotional
attribute. The features and labels are normalized using the z-
normalization with the mean and standard deviation calculated
over the train set. The models are trained with a learning rate
of 5e—5 for 100 epochs. The model with the best performance
on the development set across epochs is evaluated on the test
set.

For the architectures of the STL and MTL baselines, we
include a dropout of p = 0.5 between the input and the
first hidden layer, and between the first and second hidden
layers. This setting provides the best regularization on the
development set.

The hyper-parameters for the MTL methods are optimized
using the development set using a grid search approach with
a step size is 0.1 for both « and (. These parameters are
separately optimized for each emotional attribute. Therefore,
we have three systems, one for each attribute, with different
combination for o and S. This search approach is indepen-
dently conducted for the MTL, Lad + L + MTL and Lad +
UL + MTL networks. Figure 4 shows the performance of the
MTL models on the development set as a function of « and .
The figure highlights the values for o and 3 that produce the
best results with the Lad + L + MTL network (e.g., o = 0.7
and 8 = 0.3 for arousal).

For the ladder network, we only use dropout between the
input layer and the first hidden layer, following our previous
work [12]. The dropout is set to p = 0.1. Since the ladder
network is also regularized by unsupervised auxiliary tasks,
reducing the influence of dropout led to better performance
on the development set. For the noisy encoder (Fig. 1), we
add a Gaussian noise with variance o2 = 0.3 to the encoder.
The hyper-parameter for the reconstruction loss is setto \; = 1
(Egs. 1 and 3). A preliminary search on the development set
showed no significant difference between \; = 1, A\; = 0.1 and
A; = 10. We do not optimize the value of \; to reduce the
computational resources needed to train the system, acknowl-
edging that better results may be possible by conducting an
exhaustive search for this parameter over the development set.
The mean squared error (MSE) function is used to measure
the reconstruction loss.

All our models are trained and evaluated using the concor-
dance correlation coefficient (CCC). The CCC maximizes the
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Fig. 4. Finding the optimal hyper-parameters on the development set for the MTL networks using a grid search with step size is 0.1 for both o and 3. The
figures show the optimal values for the Lad + L + MTL network using sentence-level features (HLDs).

TABLE I
WITHIN-CORPUS EVALUATION ON THE MSP-PODCAST CORPUS. THE
RESULTS CORRESPOND TO THE CCC VALUES ACHIEVED BY DIFFERENT
IMPLEMENTATIONS OF THE LADDER NETWORK ARCHITECTURE ON THE
DEVELOPMENT AND TEST SETS. (® INDICATES THAT ONE MODEL IS
SIGNIFICANTLY BETTER THAN THE STL BASELINE; * INDICATES THAT
ONE MODEL IS SIGNIFICANTLY BETTER THAN THE MTL BASELINE).

Task Development ]
Arousal [ Valence |  Dominance
[43] Lad + L + STL + SVR 0.768 0.355 0.696
STL 0.773 0.491 0.713
MTL 0.782 0.509 0.726
Lad + L + STL 0.793%* 0.489 0.732°
Lad + L + MTL 0.795°* 0.497 0.736°
Lad + UL + STL 0.792°* 0.489 0.733°
Lad + UL + MTL 0.792°* 0.489 0.733°
Test
Arousal [ Valence |  Dominance
[43] Lad + L + STL + SVR 0.739 0.202 0.650
STL 0.743 0.312 0.670
MTL 0.745 0.293 0.671
Lad + L + STL 0.765%* 0.303 0.678
Lad + L + MTL 0.763°* 0.293 0.690°*
Lad + UL + STL 0.770°* 0.301 0.700°*
Lad + UL + MTL 0.770°* 0.301 0.700°*

Pearson’s correlation between the true and predicted values,
while minimizing the difference between their means. Previous
studies have shown the benefits of training with CCC as the
objective function over the MSE [12], [39], [50]. All neural
networks in this study are trained using the NADAM optimizer
[51].

V. EXPERIMENTAL RESULTS
A. Within Corpus Results

The experimental evaluation in this section analyzes the
power of the proposed ladder network systems for within
corpus experiments in the MSP-Podcast corpus.

The unlabeled data comes from segments that are not part of
the train, development, or test sets. These recordings are from
all the podcasts from where we extracted the segments in the
corpus, but have not been retrieved for annotation (Sec. IV-A).
Since the segments from the test set were also retrieved from
these podcasts, we expect the model to see data that are more
similar to the test set by including these unlabeled segments,
reducing the mismatch between train and test sets. Notice that

CCC

0 L L L
0 20 40 60

Epochs

80 100

Fig. 5. Performance of the proposed approach for arousal in terms of CCC
for multiple initializations of the Ladder + L + MTL model. The performance
is presented as a function of the number of epochs. The figure illustrates the
convergence of the model.

the unlabeled samples do not have emotional labels so it is
not a problem to use them during training, even if they were
recorded by the same speakers in the test set. The systems
are trained and tested on the MSP-Podcast corpus using the
ComParE feature sets (Section IV-B). We analyze the perfor-
mance in terms of CCC for arousal, valence and dominance.
In this section, we report and compare the performance of
our models on the development and test sets to evaluate the
generalization of our approach (Table I). The development
set includes the best performance, per model, across epochs
obtained on this set. We compare the CCC scores of the
proposed models against the baselines, asserting whether the
differences in performance are statistically significant using the
Fisher Z-transformation test (one-tailed z-test, p-value<0.05).

Before we start with the evaluation, we empirically study
the convergence of the proposed networks. Using the multiple
systems trained to identify the optimal parameters for o and
in Equation 3, we estimate the mean and standard distribution
of the CCC values for the emotional attributes as a function
of the epochs. This analysis is conducted on the development
set. Figure 5 shows an example for arousal using the Ladder
+ L + MTL model. The figure shows that the mean value of
the predictions is very stable. The results also show that the
standard deviation tends to increase, indicating that after some
epochs the models may start to overfit. The results for valence
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and dominance are similar to the results shown in Figure 5,
where the CCC values quickly converge to stable values.

On the development set, Table I shows that the best perform-
ing systems for ladder network architectures are significantly
better than the STL baseline for arousal and dominance. For
these emotional attributes, the best performance is achieved by
the ladder network implemented with MTL with only labeled
data.

The results on the test set are very consistent with the trends
observed in the development set, demonstrating the general-
ization of the models (Table I). However, the CCC values are
lower for the test set compared to the development set (also
shown in Fig. 6). The difference can be explained since the
development and test sets are different. Also, the results on
the development set consist of the best performance obtained
during training. In contrast, the results on the test set are CCC
values observed with the best configuration of the models
evaluated on data that have not been seen before. For arousal,
the results of the ladder network frameworks are statistically
significantly better than the results achieved by both baseline
methods. For dominance, the ladder network architectures
trained with labeled and unlabeled data lead to statistically

significant improvements over both baseline frameworks. The
frameworks trained with unlabeled data give the best perfor-
mance for both arousal and dominance. Under this setting,
the ladder network truly utilizes the abundant unlabeled data
and generalizes to unseen data. Table I shows that for within
corpus evaluations, the baseline methods achieve better results
for valence. We will show in Section V-B that this is not
the case for cross corpus evaluations, where our proposed
ladder network architectures achieve better performance than
the baseline methods for all the emotional attributes.

Figure 6 shows the CCC results for the development and test
sets for each of the methods, to visualize the general trends
in the results. The statistically significant improvements over
the baseline methods are denoted with symbols on top of the
bars. Overall, we achieve relative gains of 3.0% for arousal,
and 3.5% for dominance using the proposed architectures over
the STL method. The performance of the models is lower for
valence, following the general patterns reported in previous
studies that have shown the difficulty of predicting valence
from acoustic cues [50], [52]-[56].

As discussed in Section II-E, the closest study to our work
is the approach presented in Huang et al. [43]. This approach
uses a two-step process for classification/regression. Similar
to autoencoders, the ladder networks in these architectures
are used to learn features, which are then used as inputs
of a classifier/regressor for the emotion recognition task. We
compare our approach with this network, which we refer to
as [43] Lad+L+STL+SVR. We follow as close as possible the
implementation provided by the authors. First, the features
are learnt with the ladder network using a single task learning
approach (e.g., Lad+STL). The feature representation learned
by this system is used as input of a separate regressor. Since
the task in Huang et al. [43] was a classification problem,
they used SVM. Since our task is a regression problem, we
use support vector regressor (SVR). Following the parameters
presented in Huang et al. [43], we used a radial basis function
(RBF) kernel with the regularization parameter equals to
C = 1.0, and the tolerance margin equals to 0.1. Table I
lists the results, which show that the strategy presented in
this paper, where the feature representation and the regression
problem are jointly learned leads to significant improvements
over the approach presented by Huang et al. [43]. Therefore,
the rest of the study will focus on comparisons with the
baselines described in Section IV-C.

B. Cross Corpus Results

This study also explores the generalization of the proposed
ladder network with cross-corpus experiments. Specifically,
we train the models on the MSP-Podcast corpus maximizing
performance on its development set. The models are then
tested on either the USC-IEMOCAP corpus or MSP-IMPROV
corpus. We compare the results with within corpus evaluations
using the STL framework, where the models are trained and
tested with data from the same corpus (Within-corpus (WC)
Baseline in Table II). For the within corpus evaluation, the
USC-IEMOCAP and MSP-IMPROV corpora are divided into
speaker independent partitions. The results are reported across
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TABLE 11
CROSS-CORPUS EVALUATION WHERE THE MODELS ARE TRAINED ON THE
MSP-PODCAST CORPUS AND TESTED ON EITHER THE USC-IEMOCAP
OR THE MSP-IMPROV CORPORA. THE TABLE REPORTS THE AVERAGE
CCC VALUES ACROSS FOLDS AND THE STANDARD DEVIATION. WC
Baseline CORRESPONDS TO THE WITHIN-CORPUS BASELINE. (e INDICATES
THAT ONE MODEL IS SIGNIFICANTLY BETTER THAN THE STL BASELINE; *
INDICATES THAT ONE MODEL IS SIGNIFICANTLY BETTER THAN THE MTL

BASELINE).

Task IEMOCAP ‘

Arousal [ Valence Dominance
STL 0.560 4 0.122 0.135 + 0.070 0.378 £ 0.103
MTL 0.584 + 0.078 0.144 4+ 0.067 0.370 4 0.097
Lad + L + STL 0.590 4 0.074°* | 0.154 4 0.052® |0.391 £ 0.107°**
Lad+ L+ MTL |0.589 &+ 0.065* |0.141 &£ 0.056 0.408 + 0.103°**
Lad + UL + STL | 0.603 #+ 0.043°** | 0.092 £ 0.071 0.476 + 0.076°*
Lad + UL + MTL | 0.623 4 0.036°* | 0.235 4= 0.056°* | 0.441 £ 0.086°*
WC Baseline 0.661 4 0.051 0.487 + 0.044 0.512 4+ 0.055

MSP-IMPROV

Arousal Valence Dominance
STL 0.471 £ 0.112 0.235 4+ 0.078 0.440 £+ 0.134
MTL 0.442 + 0.116 0.231 4+ 0.082 0.449 4+ 0.128
Lad + L + STL 0.490 4+ 0.108* | 0.287 4+ 0.075°* | 0.436 £+ 0.130
Lad+L+MTL |0.480 % 0.107* |0.293 4+ 0.073** | 0.464 £+ 0.123°*
Lad + UL + STL | 0.547 4+ 0.094°* | 0.349 4+ 0.087°* | 0.463 4 0.096°**
Lad + UL + MTL | 0.547 4+ 0.094°* | 0.328 4 0.091°** | 0.463 £ 0.096°*
WC Baseline 0.599 4+ 0.112 0.408 4 0.090 0.471 £+ 0.098

all the test partitions. For consistency, the results for the ladder
networks are also estimated for each partition, reporting the
average across folds.

We train the ladder network architectures introduced in
Section IV-C using labeled and unlabeled data. For the labeled
setting, we use samples only from the MSP-Podcast corpus.
For the unlabeled setting (UL in Table II), we assume we
have access to the samples from the target corpus. We include
the target corpus for the unsupervised reconstruction using
the autoencoder. The use of unlabeled data from the target
domain (test set) is not a problem since we do not require the
emotional labels, which is the strength of our semi-supervised
approach. Since the target domain is used for the unsupervised
reconstruction loss, we can guarantee that the distribution
of the unlabeled data is exactly the same as the test set,
reducing the train-test mismatch. Since the emotional attributes
in the MSP-Podcast and the target corpora are annotated on
different scales, we transform the attribute scores of the MSP-
Podcast corpus to match the scales of the target corpora using
an affine transformation. We report the mean and standard
deviation over all the test partitions. We compare the CCC
values obtained by the ladder networks with the results from
the baselines, testing their significance with the one-tailed,
matched-paired t-test asserting significance at p-value<(0.05.
Table II describes the results for the cross-corpus experiments.
Figures 7 (USC-IEMOCAP) and 8 (MSP-IMPROV) illustrate
the mean performance across test partitions.

First, we discuss the results for the USC-IEMOCAP
database. Under the fully labeled setting, the ladder network
systems achieve significant improvements over the STL base-
line for arousal and dominance. Additionally, the systems sig-
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Fig. 7. Cross-corpus evaluation, when the models are tested on the USC-
IEMOCAP corpus. The figure reports the average CCC values across folds
(e indicates that one model is significantly better than the STL baseline; *
indicates that one model is significantly better than the MTL baseline).

nificantly improve the performance for dominance compared
to the MTL baseline. For valence, we achieve significant gains
over the STL baseline with the Ladder + L + STL model. With
unlabeled data from the USC-IEMOCAP corpus (UL setting),
we obtain significant gain over the baselines. The systems
perform significantly better than the baselines for all three
emotional attributes. We observe relative gains up to 11.3%
for arousal, 74.1% for valence, and 25.9% for dominance over
the STL baseline (Fig. 7). The CCC values for these systems
are closer to the results obtained by the within-corpus baseline.
The significant gains reported in this section show the potential
of the ladder network architecture, especially when unlabeled
data from the target corpus is available.

We observe similar results in the evaluation on the MSP-
IMPROV database, where most of the architectures using
ladder network achieve significant improvements in the CCC
values over the STL and MTL baselines. For valence, the
proposed architectures perform significantly better than both
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Fig. 8. Cross-corpus evaluation, when the models are tested on the MSP-
IMPROV corpus. The figure reports the average CCC values across folds
(e indicates that one model is significantly better than the STL baseline; *
indicates that one model is significantly better than the MTL baseline).

baselines. For arousal and dominance, the use of unlabeled
data leads to statistically significant improvements over the
STL and MTL baselines. Figure 8 shows that the inclusion of
unlabeled data from the target corpus greatly improves the
performance of the ladder network architectures, achieving
CCC scores that are closer to the within-corpus baseline.
Under this setting, the proposed systems are significantly better
than the baselines for all three emotional attributes. Overall,
the Lad + UL +MTL architecture achieves relative gains of
16.1% for arousal, 40% for valence, and 5.5% for dominance
over the STL baseline. These results demonstrate the real
benefits of the ladder network architecture, which generalizes
better in cross corpus SER problems.

C. Results with Low-Level Features

This section evaluates the extension of the proposed ap-
proach for low-level features described in Section III-D. This

TABLE III
EVALUATION OF LADDER NETWORK WITH LOW-LEVEL FEATURES. THE
RESULTS CORRESPOND TO WITHIN-CORPUS EVALUATIONS USING THE
MSP-PODCAST CORPUS. THE TABLE REPORTS CCC FOR DIFFERENT

ARCHITECTURES USING CNNS TRAINED WITH EITHER LLDS OR MFB (e
INDICATES THAT ONE MODEL IS SIGNIFICANTLY BETTER THAN THE STL

BASELINE; * INDICATES THAT ONE MODEL IS SIGNIFICANTLY BETTER

THAN THE MTL BASELINE).

Task LLD-CNN
Arousal | Valence | Dominance
STL 0.756 0.244 0.682
MTL 0.759 0.223 0.684
Lad+STL+L 0.768° 0.274°* 0.687
Lad+MTL+L 0.769° 0.274°* 0.681
Lad+STL+UL 0.769° 0.279°%* 0.687
Lad+MTL+UL 0.771°* 0.269* 0.685
MFB-CNN
Arousal | Valence | Dominance
STL 0.733 0.204 0.659
MTL 0.738 0.254° 0.659
Lad+STL+L 0.744 0.200 0.659
Lad+MTL+L 0.741 0.200 0.659
Lad+STL+UL 0.743 0.232° 0.655
Lad+MTL+UL 0.740 0.184 0.656

analysis aims to show the flexibility of this approach, facilitat-
ing an end-to-end training. The analysis in this section includes
only within corpus experiments on the MSP-Podcast corpus.
All the parameters for the CNN architecture are optimized
on the development set of the MSP-Podcast corpus. Training
ladder networks with low-level features is computationally
expensive. To ease this process, we impose two constraints
on the ladder networks trained with low-level features. First,
the reconstruction costs are implemented only on the two
fully connected layers after the flattening layer (i.e., layers
fcl and fc2 in Fig. 3). This network is similar to the 7
network suggested by Valpola et al. [32]. Second, we do not
use the entire unlabeled portion of the corpus in every epoch.
Instead, we use the same number of unlabeled and labeled
samples for every epoch, randomly selecting 29,440 unlabeled
samples in every epoch. The STL and MTL baselines are also
implemented with CNNs.

Table III shows the results for the different systems using
the CNN-based architecture trained with either LLDs or MFB
features. Similar to Section V-A, we evaluate the differences
in CCC values using the Fisher Z-transformation (one-tailed
z-test, p-value<0.05). When the CNNs are trained with LLDs,
we observe that the ladder networks provide significant gains
over the baseline for arousal (STL) and valence (STL, MTL).
For valence, the proposed architectures provide relative gains
up to 14.3% on the test set. For dominance, the models achieve
similar performance to the baselines, where the differences
are not statistically significant. When the CNNs are trained
with MFB, we observe similar performance. We observe
statistically significant improvements over the STL baseline
only for valence using the Lad+STL+UL network. We expect
that a better result can be achieved if the reconstruction loss
is implemented to also include the convolutional layers.

Finally, we also compare the overall trends of the models
trained with sentence-level features (HLD) and low-level fea-
tures (CNN-LLD, CNN-MFB). For arousal and dominance, we
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observe similar performance for systems trained with either
the HLDs (sentence-level features), or the CNN-LLD (low-
level features). In contrast, the system trained with sentence-
level features achieves better results for valence. Notice that
models trained with HLDs are still very competitive over end-
to-end systems trained with frame-level features [57]. The
results are consistently lower when using MFB. MFB features
only provide spectral information, while the LLDs and HLDs
also provide prosodic and voice quality information, which are
important cues for SER problems [58].

VI. CONCLUSIONS

This study proposed the use of ladder network in speech
emotion recognition. The approach combines the unsuper-
vised auxiliary task of reconstructing intermediate feature
representations, with the primary task of predicting emotional
attributes. The unsupervised nature of the auxiliary task eases
the pressure on the expensive emotion labeling process by
leveraging unlabeled data from the source domain. The unsu-
pervised auxiliary task reconstructs the input and the interme-
diate feature representations through a denoising autoencoder.
The ladder networks contain skip connections between the
noisy encoder and the decoder, allowing the higher layers of
the encoder to learn discriminative representations. Different
implementations of the proposed system were evaluated in
within corpus evaluations and cross-corpus evaluations. In
the within-corpus evaluations, we analyzed the benefits of
the proposed architectures over competitive STL and MTL
baselines, showing significant improvements for arousal and
dominance. In the cross-corpus evaluations, the models were
trained on the MSP-Podcast corpus and evaluated on the USC-
IEMOCAP and MSP-IMPROV corpora. The results indicated
significant gains when using the proposed models, underlying
the generalization power of the ladder networks. The improve-
ments were particularly high when using unlabeled data from
the target domain, exploiting all the benefits of the proposed
architecture. Finally, the study analyzed the performance of the
proposed architecture for different feature inputs. We showed
that we can achieve similar performance with a CNN-based
implementation trained on low-level features.

Based on the cross-corpus results, our future work will
explore the use of the representations learned by the ladder
networks as inputs for emotion recognition tasks in general.
We will also explore the ladder network architecture for
emotion recognition from other modalities such as video and
image. The results in this study agree with the observations
reported in previous studies that have shown the difficulty in
predicting valence from acoustic cues [50], [52]-[56]. Our
recent study has shown that acoustic cues for valence are
highly speaker dependent, where the networks require higher
regularization [52]. Our future research direction will use
these findings to improve the ladder network architectures for
predicting valence scores. Our future research direction will
use these findings to improve the ladder network architectures
for predicting valence scores. Finally, we aim to improve the
performance of the ladder network architecture with low-level
features, paying special attention to valence, extending the
scope of our data-driven speech emotion recognition systems.
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