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ABSTRACT. This paper considers the Alt-Caffarelli free boundary problem in a
periodic medium. This is a convenient model for several interesting phenomena
appearing in the study of contact lines on rough surfaces, pinning, hysteresis
and the formation of facets. We show the existence of an interval of effective
pinned slopes at each direction e € S?~'. In d = 2 we characterize the
regularity properties of the pinning interval in terms of the normal direction,
including possible discontinuities at rational directions. These results require a
careful study of the families of plane-like solutions available with a given slope.
Using the same techniques we also obtain strong, in some cases optimal, bounds
on the class of limit shapes of local minimizers in d = 2, and preliminary results
ind> 3.

1. INTRODUCTION
Consider the Bernoulli type free boundary problem in a heterogeneous medium,

Au=0 in {u > 0}

(1.1) |Vu| = Q(z/e) on d{u > 0},

where the field Q is assumed to be Z%periodic, positive, and Lipschitz continuous
on RZ. This is the Euler-Lagrange equation associated with the Alt-Caffarelli-type
energy functional,

(1.2) E.(u) = / Vul? + Q(a/e)1(usoy do.

Our main physical motivation for studying this problem is the connection with
capillarity problems on a rough surface, in that case the dimension of interest is
d = 2. Dimension d = 3 is also of interest in connection with problems involving
flows in porous media.

The global energy minimizers, generally speaking, converge as ¢ — 0 to the
global minimizer of

(13) Eo(w) = [ V6P + (@)1 00y

We are interested instead in the limiting shape of local minimizers or critical points.
In that case, formally speaking, the scaling limit is a free boundary problem of the
form

Au=0 in {u >0}

(14) [Vu| € [Q«(ny), @*(ny)] on O{u > 0}
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where n,, is the inward unit normal to {u > 0} at . The interval of stable slopes,
or pinning interval, [Q.(n), Q*(n)] defined for each n € S9! is determined by a cell
problem. We call the pinning free boundary problem, or the pinning problem.

In this paper we will show that, in d = 2, solutions of correspond to local
minimizers of for € > 0 small. There are some important additional restrictions
on the result which will be explained below. In the process we study the fine
properties of Q.,Q*, directions of continuity and discontinuity. These properties
give qualitative information on the structure of the free boundary. In future work
we plan to show how discontinuities in Q*, Q. are responsible for formation of
facets in the free boundary under a monotone quasi-static motion. It was already
discovered by Caffarelli and Lee [6], and explored further by the author and Smart
[16], that, in a convex setting, discontinuities in Q* result in facets in the minimal
supersolution of .

One of the most interesting aspects of this problem is that macroscopic hysteresis
arises from inhomogeneities in a microscopic system which is reversible. This is
well known in the physics literature, and has been explored in some aspects in the
mathematical literature |11[8}[15L20421].

The interval of stable slopes, or pinning interval, [Q.(e), @*(e)] defined for each
e € S9! is determined by the following cell problem. We say p € R?\ {0} is a
stable or pinned slope if there exists a solution on R? of

Au=0 in {u>0}
(1.5) [Vu| = Q(z) on Hu >0}
Suppa |[u(x) — (p-x)4| < +00.

Our first main result is on the qualitative properties of @*, @, as functions of the
normal direction.

Theorem 1.1. Suppose that Q : RY — (0,00) is Z%-periodic and Lipschitz contin-
wous. The following properties holds for the pinning interval endpoints:
(i) Let e € S there exist Q.(e) < (Q%)Y/? < Q*(e), respectively lower and
upper semicontinuous in e, such that, there exists a global solution of
with slope p = ae if and only if a € [Q«(e), Q*(e)].
(ii) For any o € (Q.(e),Q*(e)) U (Q>)'/? there exist solutions of which
are local energy minimaizers.
(iii) When d =2, Q*, Q. are continuous at irrational directions e € S\ RZ2.
(iv) When d = 2, directional limits of Q*, Q. exist at rational directions e €
ST NRZ?, part.

Furthermore:

(v) Given any k-dimensional rational subspace, 1 < k < d — 1, there exists Q
as above such that Q*, Q. are discontinuous on that subspace.

(vi) There exists Q as above such that the pinning interval is nontrivial at every
direction, infga—1(Q* — Q) > 0 > 0.

In the paper below parts d above appear as Theorem part
appears as Theorem part |(iv)| appears as Theorem part |(v)| appears in
Section and part appears as Lemma

Qualitative properties of @*, Q. are important to study, both for our homoge-

nization result, and to understand the structure of the free boundary for solutions
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to . As explained above, there is a direct connection between the formation of
facets in the free boundary and the discontinuities in Q., Q*.

In a previous work with Smart [16] we considered the scaling limit of a free
boundary problem on the lattice Z? analogous to (1.1)). In that case we were able
to find an explicit formula for I(p) = [Q.(p), Q*(p)]. There I(p) has jump discon-
tinuities along every rational subspace of co-dimensions 1 < k < d — 1. Still I(p)
satisfies a continuity property, easiest explained in d = 2, left and right limits of I(p)
exist at every p. Our expectation is that, generically, a similar structure is present
here. Theorem gives examples supporting the presence of discontinuities, and
proves the sharp continuity result in d = 2.

The key in the proof for parts and of Theorem is the construction of
certain foliations of R? by the free boundaries of global plane-like solutions. These
foliations allow to construct approximate solutions at nearby directions by sewing
together solutions along the foliation. One of the major difficulties we face, and it
is fundamental to the problem, is that these are not truly foliations. At irrational
directions there may be gaps in the foliations, we are able to show that the gaps
are localized in a certain sense which still allows for the sewing procedure. At
rational directions the foliations keep an orientation which only allows to construct
approximate plane-like solutions on one side. As we will see below this issue can
potentially lead to additional facets at rational directions, which we do not yet fully
understand.

Now we discuss the limit to for general, not asymptotically linear,
solutions. This limit is slightly unusual from the perspective of homogenization
theory in that there is no uniqueness for the limiting equation . Nonetheless
it is precisely this non-uniqueness that explains the multitude of local minimizers
for the rough coefficient energy FE..

Our main result has two parts. The first part is that limits of solutions to ([1.1]
solve , this type of statement is usually all that is needed for typical elliptic
homogenization problems. In fact it has already been considered by Caffarelli and
Lee [6], and it is also a corollary of the result of Kim [21] on a related dynamic
problem. We include the statement for completeness not for novelty.

Theorem 1.2 (Caffarelli-Lee [6], Kim [21]). Let U C R? open. Suppose that u®
is a bounded sequence of solutions to in U. Then u® are uniformly Lipschitz
and if, along a subsequence, u® — wu locally uniformly in U, then u solves m
the viscosity sense.

Note that the full statement of Theorem that we make here is not proven in
[6], however almost all of the main ideas of the proof can be found there. Of course
it is possible, with only the information of Theorem that the class of limits of
u® satisfy some stronger condition than just . A proof of Theorem can be
found in Section

The second part of the homogenization result, which is completely new in this
paper, is to show that for an arbitrary solution u of there exists a sequence of
solutions u® of converging to u. In analogy with the language of I'-convergence
we call this the existence of a recovery sequence for u. Furthermore, we would like
this sequence u® to be local minimizers of the energy functional . Actually we
do not prove such a general result. We give a sufficient condition here, we leave to
future work to answer the question of whether such a condition is necessary.
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FIGURE 1. On the left is a schematic drawing of Q. and Q* as
functions on S, in blue and black respectively. On the right is
additionally included the graph of Q) con: in red. Except for the
radial symmetry at irrational directions, the picture represents the
bounds proved in Theorem and Theorem

We need to augment the information provided by the upper and lower endpoints
of the pinning interval with additional microscopic information. We call this the
continuous part of the pinning interval

(1.6) [Q« cont(€), Qeont(€)] C [Qu(e), Q7 (e)]-

The definition is rather technical so we drop some of the details, the full exposition
can be found in Section m Define Q. cont(€) to be the smallest slope a such that,
for sufficiently small § > 0, and any smooth test function ¢ with |V — ae| < 4,
there exists a recovery sequence of subsolutions ¢° solving and ¢ — @4 as
¢ — 0. Then @},,; is defined similarly in terms of recovery sequences for smooth
supersolutions with approximately constant gradient.

It will follow easily from the definitions that Q) cont and @
upper/lower-semicontinuity properties from @, and @Q*, and

(1.7) limsup Q. (') < Qu,cont(e) and Q. (e) < hgl_if;f Q(¢).

e —e

*
ront have the reversed

Our conjecture is that equality holds in , however we do not have evidence in
either direction at the moment. Assuming equality holds, with minor nondegener-
acy caveats, we could construct recovery sequences for arbitrary solutions of
in d = 2. Although we do not prove the full conjecture, we make significant steps
in that direction, in particular we prove that equality holds in at all irrational
directions in d = 2, and only fails by a small amount for rational directions with
large modulus. This is stated precisely below.

Before stating our results we explain what role I..,; plays. In terms of I.,.¢
we specify the subclass of solutions to the pinning problem for which we can
construct a recovery sequence. We will call this new problem the augmented pinning
problem. Consider a convex setting, let U C R? an open domain with R%\ U convex
and compact. Say that u is a solution of the augmented pinning problem if {u > 0}
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is convex and

Au=0 in {u>0}NU
(18) |V’U,| € [Q*,cont(nz)7 Q* (TLI)] on 8{u > 0} NnU
u=1 on JU.

Here the subsolution condition is upper semicontinuous and so needs to be inter-
preted carefully. The theory for this type of problem was developed in the previous
paper of the author and Smart [16]. The augmented pinning problem can also be
stated in the case when U is compact and convex. Say that u is a solution of the
augmented pinning problem in this case if {u = 0} is convex and

Au=0 in{u>0}NU
(1.9) [Vu| € [Qu(ng), Qfpni(ng)] on d{u>0}NU
u=1 on OU.

Here the supersolution condition is the one which needs to be interpreted carefully
since it is lower semicontinuous. The problems (|1.8)) and ([1.9)) are, in a sense, dual
to each other.

Remark 1.3. Unfortunately our results currently do not apply to (1.9). The ob-
struction is not in the homogenization but in the difficulties of the macroscopic
problem . In this “concave” setting there is non-uniqueness even for isotropic
problems with no pinning. The set of solutions (for the minimal / maximal equa-~
tion) may still consist of isolated points (local uniqueness), in which case our tech-
niques should apply, but this needs further investigation.

This paper only gives a notion of solution to the augmented pinning problem in
these convex settings, it is not clear how a solution should be defined in the non-
convex setting. The solution condition would seem to depend on the local convexity
or concavity of the free boundary.

We do not currently have any example of a homogenization problem where equal-
ity fails in . However, in Appendix we give an example of a limit procedure
approximating by other homogeneous problems of the form (1.4) where the
limit equation is indeed an augmented pinning problem of the form

Now we state our main result about I on:(p).

Theorem 1.4. Suppose that Q : R — (0,00) is Z%-periodic and Lipschitz contin-
wous. The following properties hold for the continuous part of the pinning interval.
See Section [7] for the precise definitions of Q}yni(€) and Qu cont(e).
(i) Let e € S there ewist
lim sup Q*(G/) < Q*,cont(e) < <Q2>1/2 < onnt(e) < lim inf Q*(e/)
e/ —se e/ —e
respectively upper and lower semicontinuous in e such that the subsolution
(supersolution) perturbed test function argument works for a > Qs cont(€)
(resp. for o < Qiony), see Section[7 for the precise definitions.
(ii) If d = 2 then, for irrational directions e € S* \ RZ?, Q*(e) = Q%,..(e) and
Q+(€) = Qu cont(e). Fore= % rational, with & € Z* \ {0} irreducible,

Qucont(€) < Qu(e) + CIEITY2 and Qloile) = Q(€) — Cle| ™12
Jor € = C(min Q, max Q, | VQ).
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(1i1) If d = 2 then directional limits of Q,,; and Q. cont exist at rational direc-
tions e € S*NRZ? and agree with the directional limits of Q. and Q*.

In the paper below part appears as Lemma part [(ii)| appears as Lemma
and part appears as Theorem and Corollary

See Figure [I] for a drawing representing ., @* and @« cont- The reader may
notice that Theorem mirrors the first three parts of Theorem this is true
at the level of the proofs as well. Basically the same techniques are used to prove
both results, as described above the key idea is the construction of approximate
foliations by plane-like solutions. Then we sew together along the foliation to
construct approximate sub/supersolutions near smooth sub/supersolutions ¢ with
small variation in the gradient.

Our main result is the existence of recovery sequences in the convex setting for
solutions of the augmented pinning problem .

Theorem 1.5. Suppose that Q : RY — (0,00) is Z%-periodic and Lipschitz con-
tinuous. Suppose that u solves @ in a domain U C R?, R\ U is convex and
compact, and {u > 0} is convex. Then there exists a sequence of solutions us of
which converge uniformly to u and the positivity sets converge in Hausdorff
distance. The sequence u® can be taken to be a local minimizers of the inhomoge-

neous Alt-Caffarelli energy .

In the paper below this theorem appears as Proposition part
One key new idea in the proof of Theorem [1.5]is that the construction of solutions

to , or local minimizers of , can be reduced to the convergence of the
minimal supersolution and maximal subsolution. In effect this means that the
construction of curved subsolutions and supersolutions can be localized using the
perturbed test function method. Such localized construction is exactly the content
of Theorem In a previous paper the author and Smart [16] developed viscosity
solution tools to prove the convergence of minimal supersolutions and maximal
subsolutions. We will use those tools again here, with some necessary refinements.
These ideas should also work without convexity.

Note that the convergence of the minimal supersolutions in the convex setting
is a corollary of the statement Theorem As described above, at the level of
the proof, Theorem should really be seen as a corollary of the convergence of
the minimal supersolutions (and maximal subsolutions). The sequence of minimal
supersolutions to were previously studied by [6], they show subsequential
convergence to a supersolution of (1.4).

Last we make a minor remark that all of the above Theorems will hold if @ is
only assumed to be continuous instead of Lipschitz continuous. The only state-
ment which would slightly change is Theorem part (ii) where the particular
quantitative dependence on |£|~! would depend on the modulus of continuity.

1.1. Literature and motivation. One of the main physical motivations for our
work is to explain the shapes of capillary drops on rough or patterned solid surfaces.
It has been observed in experimental literature that water droplets placed on micro-
patterned surfaces with a lattice structure can appear to have polygonal shapes,
see Raj et al. [26]. A similar phenomenon appears in patterned porous media, see
[1441922]. One is led to wonder whether these shapes are a microscale phenomenon,
or a macroscale phenomenon that remains in the homogenization limit. Starting in
our previous work with Smart [16] we have been investigating this question. In that
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paper we derived an equation like from a scaling limit for a discrete version
of the Alt-Caffarelli functional. From this perspective we argued that these facets
appearing the physical experiments are indeed a macroscale phenomenon and they
are caused by discontinuities of the pinning interval in the normal direction. Then
the shape of the large scale facets can be understood by studying the problem
using viscosity solution techniques. In this paper we are now able to derive at
least some of the same results in the continuum. The situation for the continuum
problem is much more complicated, still many parts of the philosophy there have
carried over here.

The closest results to the present paper are the works of Caffarelli and Lee [6],
Caffarelli, Lee and Mellet 7], Kim [21], and Kim and Mellet [20]. Caffarelli and
Lee [6] studied the same problem as us, they constructed plane-like solutions of the
cell problem at the maximal slope. They used this to show that any subsequential
limit of the minimal supersolutions to is a supersolution of . They also
introduced, with some very beautiful arguments, the idea that facets in the free
boundary are caused by discontinuities in Q*. Caffarelli, Lee and Mellet [7] studied
a flame propagation problem which combines homogenization with a singular limit
leading the the Alt-Caffarelli free boundary problem. Among their results, they
show existence of minimal slope plane-like solutions with Birkhoff monotonicity
properties. Kim [21] studied an evolution associated with 7 she showed the
homogenization for that problem and the possibility of non-trivial pinning interval
in laminar media. The result of Kim, when specified to the case of stationary
solutions, gives Theorem recalled above. Kim and Mellet [20] studied a 1-d
evolutionary problem associated with on an inclined plane, they showed the
existence of travelling wave, volume constrained solutions and explained the affects
of pinning and de-pinning in that model. We also mention a connection with the
work of Pozar [25], on the space-time periodic Hele-Shaw flow, where resonances
cause pinning of the velocity at some directions. In numerical experiments, see
Pozér and Palupi [24], velocity pinning at a single direction also appears to cause
creation of facets in the flow.

There have been several mathematical investigations of hysteresis phenomena
in the capillarity model. The earliest we are aware of is Caffarelli and Mellet [8]
which shows the existence of non-axially symmetric local minimizers in a slight
generalization of the laminar setting. DeSimone, Grunewald and Otto [15] have
introduced a quasistatic rate-independent dissipative evolution to model the effects
of hysteresis. This was studied further by Alberti-DeSimone [1]. In that model
the contact angle hysteresis is “baked in” and rotation invariance is assumed for
the pinning interval. For us the lack of rotation invariance, and the presence of
discontinuities in the pinning interval, is one of the key difficulties. It would be
very interesting to derive an energy-based quasistatic evolution of this type by
homogenization of a microscopic model without hysteresis.

We also mention a connection with the boundary sandpile model introduce by
Aleksanyan-Shahgholian [2,[3]. This was the original discrete model which moti-
vated [16] and, as we showed in there, the scaling limit of the steady state for the
boundary sandpile model is the minimal supersolution of a problem like .

We explain the relation between our results and the results in Caffarelli and Lee
[6]. There is a small overlap where, in Section [3] we reprove the existence of global
plane-like solutions of at the maximal slope Q*(e). There are some minor
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technical changes in the proof. This result is stated here as a subset of Theorem

part The other parts of Theorem part are new, but still very much
inspired by @ and also by Caffarelli and de la Llave .

1.2. Acknowledgments. The author thanks Inwon Kim, Felix Otto and Charlie
Smart for helpful conversations and suggestions which have helped to improve the
exposition.
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2. BACKGROUND

We recall some basic properties of solutions to the free boundary problem

(2.1) { Au=0 in {u>0}NU

[Vu| =Q(z) on d{u>0}NU
and/or minimizers/local minimizers/critical points of the Alt-Caffarelli energy

(2.2) EwU) = /U IVo]? + Q(2)°1(y>0y da

over some domain U C RY Most of this section is review of results from the
literature, however some additional arguments are needed in certain places.
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2.1. Notation. We explain some notations and conventions which will be used in
the paper. We will say that a constant C' or ¢ is universal if depends at most on
the dimension d, the upper and lower bounds 0 < min@Q < @ < max (), and the
Lipschitz norm of Q. These constants may change from line to line. For u,v > 0
we say
u<v if w<wv and w<wv in {u>0}.

We say an open set € is inner/outer-regular if every boundary point has an inte-
rior/exterior ball touching at that point. We say that Q is r-inner/outer-regular if
the touching balls have radius at least r. For a continuous u > 0 we may say that
u is inner/outer-regular if {u > 0} is inner/outer regular.

2.2. Viscosity solutions and comparison principle. The equation will
be interpreted in the sense of viscosity solutions. We will also work with local mini-
mizers for , in that case we will typically need to establish that the minimizers
we create are viscosity solutions.

Let U a domain of R

Definition 2.1. A supersolution of is a non-negative function u € LSC(U)
such that, whenever ¢ € C>(RY) touches u from below in U, there is a contact
point x such that either

Ap(r) <0
or

p() =0 and [Vi(z)] < Q(x).

Definition 2.2. A subsolution of is a non-negative function u € USC(U)
such that, whenever ¢ € C*(R?) touches u from above in {u > 0} N U, there is a
contact point x € {u > 0} N U such that either

Ap(z) >0
or
p(x) =0 and [Vep(z)| = Q(x).
Definition 2.3. We will say that u is a strict supersolution (subsolution) of
if it is a supersolution (subsolution) of for AQ(z) with some A <1 (A > 1).

Typically we will want to work with super/subsolutions which are actually har-
monic in their positivity set. For this we can use the harmonic lift.

Lemma 2.4. Suppose that U is outer-reqular and u is a super/subsolution of
and let w be the minimal supersolution of

max{Aw,u —w} =0 in {u>0}NU with w=0 in U\ {u>0}.
Then w is a super/subsolution of .

Proof. The unusual definition of the harmonic lift is due to the possible irregularity
of the set {v > 0} N U which is not even necessarily open in the subsolution case.
We check that case since it is slightly more interesting. Suppose that ¢ touches
w from above in {w >0} NU at some z. First suppose ¢(x) > 0. Then either
w(z) = u(z), in which case the subsolution condition for u applies, or w(z) > u(x)
in which case the subsolution condition for w implies

0 < max{Ap(z), u(z) - w(z)} = Ap(z).
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If o(x) = 0 then 0 = p(z) = w(z) = u(z) and so the subsolution condition for u
applies. ([

Lemma 2.5 (Strict comparison). Suppose that v and v are respectively a sub and
supersolution of mU,u<wvinU, andu <v on OU. Then u cannot touch v
from below in U at a regular free boundary point x € 0{u > 0} N d{v > 0}.

If w is inner regular and v is outer regular then any touching point would have
to be a regular point.

There is a standard and convenient way to create inner-regular supersolutions /
outer-regular subsolutions which is by inf/sup convolution. Given u : U — [0, 00)
and § > 0 we define

(2.3) u’(x) = sup u(y) and wus(z) = inf u(y).
Bj(z) Bs(x)

These are well defined in the domain

U= J Bs).

Bs(xz)CU

Lemma 2.6. Suppose that u is a supersolution (resp. subsolution) of (2.1)) in U
and 6 > 0. Then ugs (resp. u®) is a supersolution (resp. subsolution) of in U°
for

Q‘S(x) = sup Q (resp. Qs(x) =infp, ) Q).

Bs(x)
Furthermore {us > 0} is outer-reqular with exterior balls of radius 6 at every bound-
ary point (resp. {u® > 0} is inner-regular with interior balls of radius §).

The sup/inf convolutions actually have a stronger property called the R-subsolution
(or R-supersolution) property. See [9, Chapter 2] for the proof.

We just state the R-subsolution property, the R-supersolution property is similar.
Say v is an R-subsolution if the following hold.

(i) v is a viscosity subsolution of ([2.1)
(ii) Whenever xg € 9{v > 0} has an interior touching ball then

v(z) = Q(zo)[(z — x0) - 1]+ + o(|z — o))
where n is the unit vector pointing from the center x( to the center of the
touching ball.

Note that the usual subsolution property requires the free boundary to be outer reg-
ular at a point to get the asymptotic expansion, for R-subsolutions the asymptotic
expansion also holds at inner regular free boundary points. For the sup convolution
every free boundary point is inner regular.

R-subsolutions and R-supersolutions satisfy a stronger comparison principle.
Again, see |9, Chapter 2] for the proof.

Lemma 2.7. Suppose that u and v are respectively an R-subsolution and a super-
solution of mU,u<vinU, andu < v on OU. Then u cannot touch v from
below in U at an inner reqular free boundary point x € 0{u > 0} N d{v > 0}.

The R-subsolution and R-supersolution condition and the corresponding com-
parison principle turn out to be rather useful for energy minimization arguments.
However, in any case we use them, they are really just a convenient rephrasing of
the following trick: If u® = sup By (z) W(Yy) touches v from below at a free boundary
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point, then u%/2 touches vs 2 from below at a free boundary point. In particu-
lar Lemma and Lemma [2.5] are really the same when the R-supersolution or
R-subsolution in question is an inf or sup convolution.

Finally we include a result on the asymptotic expansion for a positive harmonic
function in a domain 2, vanishing on 0f2, near one-sided regular boundary points.
This is copied from [9, lemma 11.17].

Lemma 2.8 (Lemma 11.17 |9]). Let u be a positive harmonic function in a domain
Q. Assume that xg € 00 and u vanishes on By(x9) NOQ. Then the following hold.

(i) If xg is an inner regular boundary point then either u grows more than any
linear function near xo or it has the asymptotic expansion

u(x) > aa|(z — xo) - n)y + of|z — zo|)

for some o > 0, with n the inward normal of the touching ball at x.
Equality holds in every nontangential region.

(ii) If xo is an outer regular boundary point then either u grows slower any
linear function near xo or it has the asymptotic expansion

u(z) < af(z —xo) - 1y + of|z — o)

for some a > 0, with n the outward normal of the touching ball at xy.
Equality holds in every nontangential region and, in the case o > 0 actually
n is the normal direction to 02 at xg.

2.3. Minimal supersolutions / maximal subsolutions. One important way
of creating viscosity solutions of is by Perron’s method, finding the mini-
mal supersolution or maximal subsolution above or, respectively, below a certain
obstacle.

These properties can also be localized.

Definition 2.9. Let U C R¢ a domain. We say that v € LSC(U) is a mini-
mal supersolution in U if it is a supersolution and, for any D C U open and a
supersolution v € LSC(D) with v > w on 9D, also v > u in D.

Definition 2.10. Let U C R? a domain. We say that u € USC(U) is a maximal
subsolution in U if it is a subsolution and, for any D C U open and a subsolution
v € USC(D) with v < w on 9D, also v < w in D.

It is standard to check that if u is a minimal supersolution or maximal subsolution
in U then w is a solution in U. In particular, actually v € C(U). Moreover, as we
will see in the next section, u will satisfy a Lipschitz bound.

Theorem 2.11. Let U be an outer regular domain and g be a continuous function
on OU. Suppose U is an outer regular, continuous, R-supersolution in U with g < v
on OU. Then the function

u(x) =sup{w : w is a subsolution in U, w < g on OU, and w < in U}

is a viscosity solution of the free boundary problem in U with uw € C(U) and
u=g on dU.

The result for existence of minimal supersolutions is analogous and can be found
in [9, theorem 6.1]. The Perron’s method argument for the maximal subsolutions
is similar but not exactly same as the supersolution case.
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2.4. Linear growth at the free boundary. In this paper we will only use the
most basic level of the local regularity theory for free boundary problems. This
is the Lipschitz bound and nondegeneracy at the zero level set. Morally speaking
the Lipschitz bound follows from the supersolution property |Vu| < A on the free
boundary, while nondegeneracy follows from the sub-solution property |Vu| > A on
the free boundary.

First the Lipschitz bound, see Caffarelli-Salsa [9, lemma 11.19] for the proof.

Lemma 2.12 (Lipschitz continuity). Suppose that u > 0 is a harmonic function
in {u>0}NBy. If u solves |Vu| < A on 0{u > 0} N By, in the viscosity sense,
then w is Lipschitz continuous with constant C(d)A in By ;.

Together with the harmonic lifts this allows to show that minimal supersolutions
and maximal subsolutions of are both Lipschitz with universal constant.

The nondegeneracy, it turns out, requires more information than just the sub-
solution property. As far as we are aware, nondegeneracy is known to hold for
minimal supersolutions, energy minimizers, a-priori outer-regular free boundaries,
and, in d = 2, for maximal subsolutions.

Lemma 2.13 (Non-degeneracy). Take one of the following assumptions:

(i) w is a minimal supersolution in By.
(i) d =2 and u is a mazimal subsolution in B.
(iii) u is an energy minimizer in By in the sense that, for any v € H'(By) with
v >0 and u— v compactly supported in B,

E(U,Bl) S E(U,Bl).

(iv) u solves |Vu| > X on 0{u > 0}, in the viscosity sense and the positivity set
{u > 0} has an exterior ball at x € d{u > 0} with radius 1.

For any x € 0{u > 0} N By 2, or the specific x € O{u > 0} from and r <1/2

sup u > c(d, N)r.
B, (x)

In case and for any x € By,
u(z) > e(d, N)d(z, 0{u > 0}).

Parts and can be found in Alt-Caffarelli [4], or the book Caffarelli-
Salsa [9]. Part a straightforward barrier argument. See Orcan-Ekmekci [23]
for nondegeneracy of largest subsolution in d = 2. Since the nondegeneracy of the
maximal subsolution is not always a given, we will say that a maximal subsolu-
tion u is nondegenerate in a domain U if the estimate of Lemma holds with a
universal constant for every x € 0{u > 0} NU and ball B,(z) C U.

Note we can get nondegeneracy at another scale r by applying Lemma 2.13] to

u(rz)

v(x) = —=,

r

since the solution property / minimization property and the nondegeneracy esti-
mate are invariant under this rescaling.
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2.5. Energy minimizers. In this section we discuss the existence of local mini-
mizers for the Alt-Caffarelli energy E(-,U). Here U could be an outer regular
domain of R? such that U is compact, a half-space, or all of R?. It is natural to
consider direct minimization of E over subsets of H!(U) when OU is compact.

Note that the meaning of local minimizer or critical point needs to be made
precise, the functional E is not differentiable on the natural space H!(U) where
it is defined. We say that w is a local energy minimizer for E(-,U) if there exists
d > 0 such that, for any v € H'(U), v > 0, with

sup|v —u| < ¢ and dg({v>0tNU,{u>0}NU)<d
U

it holds
E(u,U) < E(v,U).
This is a slightly different notion of local minimizer than the one appearing in
Alt-Caffarelli [4].
We say that u is an absolute minimizer if for any precompact subdomain D C U
and any v € H*(D), v > 0 and v — u compactly supported in D

E(u,D) < E(v, D).

The concept of absolute minimizer replaces the notion of global energy minimizer
when the total energy is not finite.

In order to find local minimizers we will often look at admissibility conditions
of the following type. Suppose that g : U — R is Lipschitz continuous and v < o
Lipschitz continuous functions in U with v < g < o on U. Consider the class

Az{vEH;(U):nggﬁ}

where H)(U) = {v € H'(U) : v — g € Hj(U)}. Existence of a global minimizer
of E(-,U) in the class A is straightforward by the direct method, the issue is that
the constrained minimizer may touch one of the barriers in its positivity set and,
therefore, not be a local minimizer.

Lemma 2.14. Suppose that v <7 in U and v and T are, respectively, a nondegen-
erate, inner reqular, R-subsolution and an outer regular R-supersolution of m
U. Then there exist minimizers for E(-,U) on A, and any such minimizer u is a
viscosity solution of and satisfies

v<u~<7 in U.

Note that u constructed in Lemma [2.14] is a local minimizer in the previous
sense. The proof is following Alt-Caffarelli [4] and Caffarelli 11} theorem 4], which
do not deal with constrained minimization of the type we consider so we need some
additional arguments.

Proof. The existence of a minimizer u for E(-,U) over A is standard by the direct
method.

We check the Lipschitz continuity and nondegeneracy of u, we just sketch the
proofs which are from [4] to point out where the obstacles come in. The key point
for the Lipschitz estimate is the following: there is a universal constant C' such that
for any B,(x) CU

1
if 7][ u>C then w>0 in B,(x).
" JoB,(z)
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The proof of the estimate requires perturbing u by replacing with the harmonic
lift 4 in B,(x). By maximum principle this replacement preserves the ordering
@ < v as long as B,(z) C {v > 0}. This is [4, lemma 3.2], to prove the Lipschitz
estimate, as in [4, corollary 3.3] the estimate only needs to be applied in balls
Byye(z) with B.(z) C {u > 0} and € > 0 sufficiently small. Thus there is a
potential issue only when B,.(z) touches {u > 0} from the inside at a point of
O{u > 0} N o{v > 0}. However in this case we use the Lipschitz estimate of T,
following from the supersolution property Lemma and x € 9{T > 0} so that
v(z) < Crin B,(z) and

1 1
|Vu(x)\§f][ ugf][ v < C.
" JoB.(x) " JoB.(x)

Next we check the nondegeneracy of u, the argument has a similar flavor. Let = €
O0{u >0} and r > 0, if B, 5(z)NJ{v > 0} is nonempty then use the nondegeneracy
of v, otherwise B, 5(z) C {v = 0} and so arbitrary downward perturbations of u
(of course preserving nonnegativity) are allowed and the nondegeneracy argument
of |4 lemma 3.4] applies.

We show that u cannot touch v from above in {v > 0}, and T cannot touch «
from above in {u > 0}. Then the argument of |11, theorem 4] carries over and the
viscosity solution condition holds for w.

Suppose g € 0{u > 0} N O{v > 0}, the other case is similar. Since {v > 0} is
outer regular, x is an outer regular point for {u > 0}, thus u has the asymptotic
expansion at zg, for some n € S41 and a > 0,

u(z) < af(z — o) - nlt + o(|Jzr — zo|) as z — x

with equality in any non-tangential region, this is by Lemma [2.8] Note that oo > 0
because of the nondegeneracy, in the case u touches T from below we would instead
use the Lipschitz estimate to get the linear blow-up. In the case of u touching v from
above we use the assumption that v is nondegenerate. Since v is an R-supersolution
it also has an asymptotic expansion, by Lemma [2.8] at

o(x) < Bl(z — 20) -y + of|z — 2o]) with § < Q(x0)

by the ordering u < 7, a < 8, and so a < Q(zo).

The proof of |4, lemma 5.4] applies just as well in our constrained setting, to
show that the blow-up ug(z) = af(x — x¢) - n]4+ is a one-sided minimizer of Ey on
R< in the sense that for any ¢ € H}(B) for some ball B C R? with ¢ <0

Eo(uo, B) < Ey(ug + ¢, B)
where

Eo(v,U) = / Vol + Q(20)*L1uso; da.
U

We claim this is inconsistent with o < Q(x¢). The “correct” proof is by comparing
the energy per unit length (of the free boundary) of linear solutions, but we take a
shortcut using the known results on uncontrained global minimizers. Let vp be a
global minimizer in B with data ug on 0B. Without loss we can assume vg > ug in
B, otherwise vp Aug is a valid perturbation of ug and so Eo(vp Aug, B) > E(ug, B).
On the other hand

E(vp ANug, B) + E(vp V ug, B) = E(ug, B) + E(vp, B),
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and so E(vg V ug, B) < E(vp, B) i.e. vg V ug is also a global minimizer with the
same boundary data. Now, since vg > ug, we translate ug in the —n direction
until it touches ug from above at some free boundary point, then the subsolution
condition for vg from |11 theorem 4] implies

Q(zg) < au.

This is a contradiction.

3. PLANE-LIKE SOLUTIONS AND THE PINNING INTERVAL

The effective stable slopes are determined by a cell problem. We would like to
identify for which values of p € R?\ {0} there exists a solution of the free boundary
problem behaving, at large scales, like (p- ). More precisely we would like to find
a global solution of

(3.1) { Au=0 in {u> 0}

|[Vu| =Q(z) on 0{u> 0}
with, for some universal C' > 1,
(3.2) pz—C)p<ulx)<p-z+C);t.

We call such a solution a plane-like solution.
The main goal of this section and the next is the following result on the existence

of solutions of (3.1)-(3.2).

Theorem 3.1. Let e € S ! there exist Q.(e) < (Q*)Y/? < Q*(e) such that,
there exists a global solution of — with slope p = ae if and only if a €
[Q.(e),Q*(e)]. Furthermore, when o € (Q.(e), Q*(e)) U{(Q)'/?}, this solution can
be chosen to be a local minimizer of the energy.

This is the result of parts [(i)] and of Theorem from the introduction.
The proof of this theorem appears below, after a series of building up lemmas, as
Lemma and Proposition (which shows the existence of locally minimizing
plane-like solutions).

The construction of a maximal slope solution to — was carried out by
Caffarelli-Lee [6]. We construct solutions from scratch here, taking a slightly dif-
ferent approach. The slight differences in our argument are not the main point of
the presentation. We will need to see the intermediate stages of the construction
in order to study the qualitative properties of Q*, Q. in more detail, which is one
of the aims of this article.

The main issue is in proving that the free boundary for solutions of an approx-
imate corrector problem stays within a band of finite width. Here we follow the
idea of [6], which itself followed an idea of Caffarelli and de la Llave [12].

We start with an approximate corrector problem, for ¢ > 1 define u; to be the
minimal supersolution of

Aup =0 in {u;>0}Nn{z-p<0}
(3.3) [Vu | = Q(z) on Of{uy >0}N{z-p<0}

up(x) =t on z-p=0



16 WILLIAM M FELDMAN

We define the minimal distance from x - p = 0 to the free boundary of u; and the
approximate slope of u;
r(t)= inf |z-p| and «(t) =t/r(t).
x€d{u>0}

We first show a universal bound on the oscillation of the free boundary in the
direction p. Then we use this to show that the quantity r(t) is approximately
subadditive, this allows us to conclude that the sequence of slopes «(t) has a limit
ast — 0o. Symmetrical arguments will work for the maximal subsolution of , in
that case we would find an approximately superadditive quantity. There is a small
subtlety here due to the different nondegeneracy results (Lemma available in
the minimal supersolution / maximal subsolution case, see below for more details.

First we establish the so-called Birkhoff property which takes advantage of the
periodicity and the minimal super-solution / maximal subsolution property to get
monotonicity with respect to lattice translations. The Birkhoff monotonicity prop-
erty in direction p, for a function v on R?, is

(3.4) vz + k) <v(z) if k€ Z% with k-p <O0.

Although u; is not defined on R¢ we can extend to R? by defining u;(z) = t for
z-p>0.

Lemma 3.2. The solution u; of satisfies the Birkhoff property .
Proof. Note that u.(- + k) solves (1.1) in p- 2 < 0 with boundary data
u(x+k)<t on x-p=0 since (z+k)-p<0.

Since the minimal supersolution property is preserved under restriction of the do-
main, and us(x) > ug(x + k) on p-z =0, up(x) > u(x — k) on p-z < 0. O

Now using also the nondegeneracy, Lipschitz estimates, and periodicity we get
an oscillation bound on the free boundary for both minimal supersolutions and
maximal subsolutions. Note that the known nondegeneracy properties are a bit
different for minimal supersolutions and maximal subsolutions, we will only use the
nondegeneracy at outer regular free boundary points, Lemma part which
only uses the viscosity solution property |Vu| > A on the free boundary.

Lemma 3.3. There is a universal constant C such that

osc z-p<C.
zed{us>0}
Proof. Let x¢ € 0{u; > 0} with p- 2o <1+ inf,coqu,>03 ¢ - p. For any r > 1 slide
the ball B,(zg + tp) in from ¢ = —oco until it touches {u; > 0} from the outside.
The touching point occurs at some xq with x1-p <o -p <1+ infocppu,>0) 7 - p-
By the nondegeneracy Lemma part and Lipschitz estimate Lemma [2.12]

er < | m?‘li( 12 ur = ug(yo) < Cd(yo, 0{us > 0})

so that
Beor(yo) C {uy > 0} N B,(z1).
Choose 7 = ¢; 'V/d so that cor = v/d = diam([0,1]?). Now for any k € Z? with
k-p>0
B /i(yo) +k C {uy > 0} + &k C {u; > 0}.



THE ALT-CAFFARELLI ENERGY FUNCTIONAL IN INHOMOGENEOUS MEDIA 17

Now let 2 with 0 > 2 -p > g - p, « is in some unit cell O = k + yo + [0, 1] of the
lattice Z¢ + yo. By convexity of [J one of the extreme points (Z¢ + yo) N O must
also lie in & - p > yo - p. Call this point yo + k satisfying (yo + k) - p > yo - p, i.e.
k-p>0. Then

r€0C B 4(yo) +k C{us >0}
Thus

{0>z-p> inf xz-p+C}C{u >0}
z€d{u>0}

Lemma 3.4. Fort > 0 sufficiently large universal and x with x -p =0
[Vuy(z) — a(t)p| < C/t.

Proof. From the Lipschitz bound Lemma[3.3||Vu| < C. Extend u by odd reflection
about x - p =0 by
ug(x) = 2t —ug(x — 2(x - p)p) for x-p < 0.

From the bound on the width of d{u; > 0}, Lemma and using maximum
principle,
(a®)r -p+t) A2t <u(z) < (a(t)r-p+t+C)VO.

Now, for any = - p = 0, Vu; — a(t)p is harmonic in B.(z) and

/ (Y — a(t)p) dy
Bei(x)

/ (ur — a(t)y -p—t)n(y) dS,| < Ct* 1.
OBt (z)

Then by the mean value theorem
[Vus(z) — a(t)p| < C/t.

Lemma 3.5. The distance function r(t) is approzimately subadditive
r(t+s) <r(t)+r(s)+C

and therefore the limit exists

@(e) = Jim o
Proof. We create a supersolution for the problem with data ¢ + s. Call @ = «a(t) —
Co/t, for universal Cj as in the statement of Lemma[3.4] Call @ = —s/@ and define
T - >x-p>
o(@) = t+s+ax-p for 0>z-p>a
Up,a(T) for z-p<a.

To see that v is a supersolution of the free boundary problem we just need to
check that the interior supersolution condition holds on x - p = a which amounts to
requiring the correct ordering of the normal derivatives of the piecewise components,

p - [Vuge — (at) — Co/t)p] > 0,

which indeed holds by Lemma Now since u; is the minimal supersolution,
u; < v and therefore,

r(t+s) S r(t) +C +lal = 7(t) + 5/(a(t) = Co/t) + C < (L+ Dr(t) + C(L+ 7).
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Switching the roles of ¢, s we find,

r(t+s) < min{(1 + ;)(r(t) +C),(1+ g)(r(s) +C)}

<rt)+rs)+C

where in the last step we used min{a,b} < Aa+ (1 — A\)b in this case with A\ = H%S
To complete the proof we just note that the approximate sub-additivity we
proved is enough to carry out the usual argument for the convergence of subadditive

sequences. U

Lemma 3.6. For any a € [Q., Q*] there exists a solution v of - . The
solution can be chosen to have the Birkhoff monotonicity property . If the
maximal subsolution u, constructed above has the nondegeneracy property of Lemma
[2.13 at every free boundary point, then v can be chosen to have it as well.

Proof. First we construct a solution with the maximal slope Q*, the construction
for Q. is symmetric. Take u; as above the minimal supersolution of (3.3]) and take
an arbitrary, but fixed for each t,

k(t) € ZE N {=r(t)e > z-e > —(r(t) + Vd/2)e}.

Then define
ve(x) = w(x + k().
The v; satisfy the bounds, by maximum principle as in Lemma
(3.5) (a)(xz+ k@) e+ t)r <v(z) < (alt)(x+k(t)) - e+t+ ).
Now
a(t)k(t) e < —rt)a(t) = —t

and

a(t)k(t) - e > —r(t)a(t) — at)Vd/2 > —t — C.
Plugging these estimates into we find

(a(t)z-e— O)1 < vi(a) < (a(t)z-e+C)s

Now from Lemma a(t) converge to some Q* as t — 0o, and the v; are uniformly
Lipschitz continuous, Lemma and so we can extract a subsequential locally
uniform limit v* with

(Qz-e—C)p <v™(z) < (Q'w-e+C)y.

Since the viscosity solution property is preserved under locally uniform limits u
solves the free boundary problem and combining with the above bound we see
that v* solves the global corrector problem —. The monotonicity property
holds for the v; by Lemma and therefore it also holds in the limit for v*.

Now we construct correctors for slopes a € (Q«, @*). Consider the minimal and
maximal slope solutions of -, vy and v* constructed above. By making an
appropriate Z¢ translation of v, we can retain all the properties of — and
also have

V() < Qu(z-€)y < Q*(x-e)y <v*(x) in RL

Now consider N N
ue(z) = —v,(z) and u*(z) =

v*(x).
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By assumption Qi > 1 and 5‘* < 1 and therefore u, and u* are respectively sub
and supersolutions of (|1.1)), still satisfying u. < u* and now with

(3.6) (azx-e—C)y <ulx) < (az-e+C); for ue {u,,u"}.

Thus by Perrons method there is a solution to Uy < v < u* which, satisfying
the above bounds, is a solution to (3.1]).

We need to be a bit more precise about the construction to get the monotonicity
(3.4) and nondegeneracy properties. Fix data v(z) = at on x - e = t, by the above
set up ux(z) < at < u*(z) on x-e = t. Now find the minimal supersolution v,
between w, and u* on {z-e < t} with the given Dirichlet data. The Birkhoff
property, Lemma holds for v; by almost the same proof as before, now using
also Lemma [3.2] applied to v,.

Now for nondegeneracy, let x € d{v; > 0} and r > 0. Suppose that B, ,(z) C
{usx = 0}, then the usual nondegeneracy proof for minimal supersolutions carries
over. Suppose otherwise, then y € B, /o(x) N d{u, > 0} and by the nondegeneracy
estimate of wu,

Sup vy > Ssup Uy > Cr.
By.(x) Bv*/z(y)

Finally we send t — oo and extract a subsequential locally uniform limit v. Then
v solves the equation, has the bounds (3.6)), the Birkhoff property is preserved in

the limit and so is the nondegeneracy.
O

We make a useful note about periodic plane-like solutions, as exist in the case
of rational slope ¢ € Z4\ {0}. Not only do these solutions stay within bounded
distances of a plane, but actually, away from the free boundary, they converge with
exponential rate to a particular linear function with the appropriate slope.

Lemma 3.7. Let & € Z4\ {0} irreducible and let v be a solution of with slope
af which is £*-periodic and

sup [v(z) — a(z - §)4| < C
then there exists s € R such that

sup [v(x) — (ax - &+ 5) 4| < Cexp(—Ct/[€]).
z-E>t

Proof. The function v(z) — a(z - £)4 is bounded, £é--periodic and harmonic in the
half space x - é > (Y for an appropriate Cy. Then it is a classical result that
there is boundary layer limit with exponential rate of convergence, see [17] for a
complete proof. Basically the idea is to use the Harnack inequality oscillation decay
at distance C|¢| from the half-space boundary = - &€ = Cy to get the oscillation to
decay by a factor of 1/2 on the entire plane z - £ = Cy + C|¢| (using periodicity).
Then iterating one gets the exponential decay of oscillations. (|

Finally we establish an alternative characterization of the pinning interval end-
points which is well suited to checking the viscosity solution condition in the ho-
mogenization limit.

Lemma 3.8. The upper and lower endpoints of the pinning interval are character-
ized by:
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(1) Q*(e) is the supremum over all o > 0 such that there exists a global super-
solution u of with
u>ale-x)r and inf uw=0.
> ale-x)y ot
(2) Q.(e) is the infimum over all o > 0 such that there exists a global superso-

lution u of with

u<ale-x)y and sup u>0.
B¢ (0)

Proof. We just do the characterization of @*. From the above construction, Lemma
for o < Q*(e) there exists such a global supersolution. Take an appropriate
lattice translation of é’* u*.

If there was such a supersolution v existing for some a > @Q*(e). Translate to
ve(2) = v(z + Lte) so that vy(z) >t on z-e = 0 and therefore v; > u; the minimal
supersolution of . Then since inf g, ) v = 0,

0= inf wv> inf w; implies r(t) <t/a—C.
Beo(—4te) Be(—£te)

Sending ¢t — oo we get lim inf % > a > Q*(e) which contradicts the definition of

Q*, Lemma [3.5] O
4. ENERGY MINIMIZERS

In this section we group several results related to energy minimization. The
first goal is to complete the proof of Theorem The last part of Theorem
is to show that the slope <Q2>1/ 2 achieved by the global energy minimizers is in
the pinning interval and to construct locally minimizing plane-like solutions with
slope ap € (Q.(p), Q*(p)) U (Q%)'/2. The ideas are quite similar to the work of
Caffarelli-de la Llave [12], and the proof is basically a rehash of Section [3| using
energy minimization to find solutions instead of Perron’s method.

We will use the same ideas to construct energy minimizers near curved surfaces.
The techniques are similar to those we will use for the cell problem, the usefulness
will come later when we begin to discuss the continuous part of the pinning interval.

4.1. Local and global energy minimizing plane-like solutions. Here we fin-
ish the proof of Theorem
We also need to discuss the meaning of local minimizer for states on R%,

Proposition 4.1. For all p € S%1

(@)'? € [Q(p), Q" (p))-
Furthermore for all o € (Q.(p), Q* (p)) U (Q?)/? there exists a global plane-like so-

lution of — which is a local minimizer (absolute minimizer if o = (Q?)'/?)
and satisfies the Birkhoff property .

The proof of this proposition will complete the proof of Theorem part

Remark 4.2. In general it is not clear to us whether one can construct local
minimizers with minimal/maximal slope Q.(p), @*(p). In the d = 1 case it is not
possible, a straightforward calculation checks that plane-like solutions with the min-
imal/maximal slope are not local minimizers when @” is not zero at its min/max.
The situation is degenerate. In the d = 2 laminar case these 1-d perturbations that
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violate the local minimization property are not compactly supported and therefore
are not valid perturbations, it is possible the situation is better in higher dimen-
sions.

Proof. The heuristic idea is that the global energy minimizer solves the free bound-
ary problem and for this solution the optimal configuration results in an approxi-
mate slope <Q2>1/ 2, First we construct an, appropriately defined, energy minimizing
solution of the approximate corrector problem . Then we show that the free
boundary for the minimal energy minimizing solution satisfies the same oscillation
bound as for minimal supersolutions / maximal subsolutions. The proof of the
oscillation bound relies on uniqueness, previously this came from the minimal su-
persolution or maximal subsolution property. In this case we will take the smallest
energy minimizer, which will have a similar uniqueness property. Once we have
proven that the free boundary is flat we can compute the energy explicitly as a
function of the slope and minimize.

We assume that p = £ for a lattice direction £ € Z? \ {0}. We will show the
existence of a global plane-like solution w satisfying the Birkhoff property Lemma
with slope <Q2>1/ 2p. This solution will also be an absolute energy minimizer in
the sense that

E(u,B) < E(v,B)
for ball B and any v > 0 in H} (R?) such that u — v is compactly supported in
B. Then the existence of such a solution at irrational directions follows by taking
limits.

1. Consider minimizing the Alt-Caffarelli functional E on an open domain U of
R¢ with OU compact

E@.U) = [ V6P + Q)10 do
U

over v € H'(U) with v = g on 9U (call the admissible class H,(U)). Since dU is
compact there are finite energy states. Suppose that 4 and v both minimize E(-,U)
over Hgl(U)7 then v A v and v V v are admissible and

(4.1) EwAv,U)+ E(uVv,U)=E(u,U)+ E(v,U).

Thus u A v and v V v are both minimizers as well.

We can define a smallest energy minimizer u with the property that that any
other minimizer v must have v > u. Call M C Hy(U) to be class of energy
minimizers and let ux € M be a sequence with fU U — infyepq fU v. Without loss
uy, are monotone decreasing, otherwise take instead the sequence u; A--- Aug. By

Lemma the wuy are solutions of (2.1) and by Lemma they are uniformly
Lipschitz continuous. Since the energies F(uy,U) are constant, up to taking a

subsequence the upy — w in H'(U) and uniformly in U. Thus v € H,(U) and
E(u,U) < liminf E(ug,U), so u € M, and

u = inf V.
U veM U

Therefore there cannot be any v’ € M with v’ < u somewhere.
2. What we would like to do is consider the global minimizer in the domain
U={x-p<0}of

E(v,U) = /U Vo2 + Q@)1 (ysoy do
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over v € H} (U) with v(z) =t on x-p > 0. We would expect this minimizer
to have the Birkhoff property. This does not quite make sense due to the infinite
domain.

We take a different approach, finding compactness by enforcing periodicity. We
use that p is rational, then pNZ< is a periodicity lattice for @ and for the boundary
data on OU. Find the smallest energy minimizer v, over the periodized domain
U mod mp*NZ2. Now (U mod mp*NZ?) = U mod mp*NZ? which is compact,
so the argument of the first part of the proof still applies to prove existence of a
smallest minimizer. The v,, solve , they are uniformly Lipschitz continuous
and mp* N Z%-periodic. Furthermore almost the same argument of Lemma
applies and v,, satisfy the Birkhoff property

(4.2) Um(-+ k) > vp() inU for k-&>0.

In particular v, is actually p~NZ%periodic, and therefore v,, = v;. By Lemma ??
v is also viscosity solution of (2.1)), and by the same proof as above in Lemma
the free boundary stays in a bounded width slab, in particular independent of ¢,

(4.3) {z-p>-—r@®)}c{v' >0} c{z-p>rt)-C}

where 7(t) = inf,ep(y>0y [ - p| and C' is universal.

Now we can check that v; is an absolute energy minimizer. Let ¢ € H{(B) for
any ball B C U. For m sufficiently large B is contained in a single unit period cell
of mpt NZ®. Then, consider the periodization of ¢

pla)=" >, wlz+k)

kemp+nzd

which is well defined and equal to (- + k) in B + k for any k € p N Z? and zero
in the complement of Uye,rnzeB + k. Abusing notation we also write B for the
subset of U mod p* N Z¢ corresponding to it. Using the minimization property of
V1 = Um

E(vi + ¢, B) + E(v1,U mod p* NZ%\ B) = E(v; + §, U mod p™ N Z%)

> E(v1,U mod pt NZ%)

= E(v1,U mod p* NZ%\ B) + E(v1, B)
which proves the absolute minimum property for v;.

3. Now we can compute the energy per unit period cell of the smallest energy
minimizing solution v; = v as a function of the approximate slope

t) = — ith t) = inf * Pl
olt) = g with r(t)= _inf |e-p)

Call Q, to be the unit period cell of p~ N Z4. For any § > 0 and ¢ > 1/§ we can
compute the energy

@)E(v, U mod pJ— N Zd) — Oé(t)Qr(t) + <Q2>T(t) +0(5%)

= [a(t) + (Q*)a(t) ™" + O()]t
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Compare this with the energy of the linear solution £(x) = ((Q?)*/?p-x+t), which
is also p*~ N Z% periodic,

1
E(v,U mod p* NnZ%) <
@l

= (@)

1
E(¢,U mod p*t n7Z%)
1o
t
<Q2>1/2
+/ QQ(m)l{,t/<Q2>1/2<x,p<0} dx
U mod pLnzd

=20Q)Y2t +0(1).

Putting these together,

C
at) +(Q)a(t) ™ < 2Q*)? + 7.
Note that the function a — o + (Q*)a~! is convex and has its unique minimum
on Ry at a = <Q2>1/ 2 furthermore the second derivative has a lower bound by

¢(Q?)~'/2 in a unit neighborhood of the minimum, thus

C
alt) = @)% < 175

4. Now we take the limit ¢ — oo, the minimizer v constructed above of course
depends on t which we now need to keep track of, write v = v*. Now translate, let
k; € 7% with |k; - p+ r(t)| < Vd. Define

ot (z) = v (x — k).
The o" are uniformly Lipschitz continuous, by the bounded width (4.3])
{z-p>-Clc{t">0yc{z-p>C}

for a universal C, v? satisfy the Birkhoff property, and they are absolute minimizers
in the sense that for any ball B C {z-p < |k;-p|} and any perturbation ¢ € H}(B)

(4.4) E(@', B) < E(@" + ¢, B).

Using again the bounded width, the boundary data o' = ton x-p = k; - p =
r(t) + O(1), and the maximum principle

(a(t)z-p— O)s <) < (alt)a - p+C)s.

Finally we take the limit t — oo, up to a subsequence the ¥’ converge locally
uniformly to some w, by the nondegeneracy of global minimizers Lemma the
boundaries 9{%" > 0} converge locally in Hausdorff distance to O{w > 0}. By the
stability of viscosity solutions under uniform convergence w is a solution of in
R?,

Next we aim to show that V&' — Vw almost everywhere. By the Hausdorff
convergence of 9{0" > 0} if z € R?\ 8{w > 0} then B,(z) C R?\ 9{3" > 0} for
sufficiently small r and large t. Then o' is either harmonic or identically zero in
B, (z) so Vo' — Vw uniformly in B, j5(z). We just need to show that d{w > 0} has
measure 0, the argument is from [5], if the set had positive measure there would have
to be a point zg € d{w > 0} with lebesgue density 1. Then by Lipschitz continuity
w(z) = o(|x — x¢|) as @ — x, this contradicts the nondegeneracy Lemma [2.13]
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It is easy to check by the uniform convergence, and Hausdorff convergence of
positivity sets that w inherits the bounded width, Birkhoff property, and the bounds

(@) e -p—C)y <0'(x) < ((Q1) 2z -p+C)y

since a(t) — (Q?)1/? as t — 0o as shown above. The energy minimization property
follows from the local Hausdorff convergence of 9{%* > 0} and the a.e. convergence
Vo' — Vw, from that the energies on both sides of converge.

Finally we need to cover the irrational directions. Take a sequence w,, as con-
structed above with slopes (Q?)'/2p,, with p,, rational converging to p. As before, up
to extracting a subsequence, w,, converge to some w locally uniformly, 9{w,, > 0}
converge in Hausdorff distance, and Vw,, — Vw almost everywhere. As just argued
above, all of the desired properties are stable with respect to this convergence.

5. Finally we show the existence of global locally minimizing plane-like solutions
with the Birkhoff property and slope a € (Q.(p), @*(p)). The argument is almost
exactly the same as above except that, in step 2 instead of looking for the smallest
energy minimizer of E(-,U mod p+ N Z%) with boundary data v = t on 9U, we
constrain the minimizer using the minimal and maximal plane-like solutions. Let
v, and v* be, respectively, plane-like solutions of with slopes Q. (p) and Q*(p)
as constructed in Lemma B.6] with lattice translations so that
(4.5)
afz-p—C)y < Q*L(mv* < a(z-p-Vd)y < alzp+Vd)y < Q*L(mv* < a(z-p+C)4.
Since 775y > 1> gy we can choose § > 0 sufficiently small, depending on «a;, so
that the sup/inf convolutions
[e3

o) =2l veBote) v-ly) and W) = g7 yeiélafu)v*(y)

are, respectively, an inner-regular R-subsolution and an outer regular R-supersolution
of (2.1) still satisfying (4.5). Now define the constraint set
o(-+ k) <v<T(-+ke), }

./4 —{ve Hl Rd .
t { toc(R%) v is p* N Z%periodic, and v = t on AU

Here ky € Z% with [k, - p+ | < V/d so that
viE)<t—-C<t+C<v(z) on (z+k)-p=0.

The constraints are pNZ%-periodic by Lemma so the arguments above give the
existence of a smallest periodic minimizer v in A;. By Lemma the minimizer
vt is a solution of (2.1)) and

o(- 4 k) < v <T(- + ky).

Almost all of the remainder of the arguments in parts 2 and 4 above are the same,
except we will only get the local minimization property, for any ball B C U with
sufficiently small radius and any ¢ € H{(B) with |¢|/« sufficiently small,

E(Uth) < E(Ut"_(paB)

After taking the limit of the v;(x — k), we get a Z? Np*-periodic solution w of (2.1
on R? with v < w < 7, we need to check that w does not touch the constraints in
{w >0}

inf (w—wv)>0 and inf (T—w) >0
{v.>0} {w>0}
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so that the same local minimization property as above holds. By periodicity and
maximum principle if one of the infima above is zero, then touching must happen
at a point € 9{w > 0}, but this is a contradiction of the comparison principle for
inner regular R-subsolutions / outer regular R-supersolutions Lemma

|

4.2. Energy minimizers near curved surfaces. Now we make our last main
argument having to do with energy minimization. We construct global energy
minimizers whose free boundary stays close to the graph of a smooth function.
Basically the argument amounts to the I'-convergence of the energies E. (1.2)) to
Eq (L.3).

We define a convenient type of domain for our construction. Let e € S¢~! and
U C {z - e = 0} relatively open and connected. Define

D(U)={zcR:z-¢e>0 and = — (z-e)e € U}.
It is the part of the half-space = - e > 0 above U.

Lemma 4.3. Let e € S ! and the domain D = D.(U) for some relatively open,
connected, and bounded U C {z-e = 0}. If p € C>°(D) is harmonic in {¢ > 0}ND,
infiy @ > 0, ¢ is a strict subsolution of

Vel > (@%)'? on 0{p>0}ND,

and v
(p . —_— —
——-e>0 m {p>0}ND,
Vel te=0
then for all € > 0 there exists a subsolution v¢ of in D such that
lim sup [v° —v| =0, lim inf(v® —v) >0,
e—=0 gp e—=0 D
and

lir% dp({v® >0} ND,({v° >0tU{p>0})ND)=0.
E—r
The same result holds for smooth supersolutions with the inequalities reversed.

Proof of Proposition[{.3 The construction of the solution is by finding the global
energy minimizer. Let v be any solution of

(4.6) Av=0 in D'N{u>0} with [Vo|=(Q*Y? on d{v> 0}

with v = ¢ on dD. Then we claim v > . If not slide ¢;(z) = p(z — te) increasing
t, and decreasing , until it touches v from below at a free boundary point x.
Touching cannot occur on 0D because v = ¢ > ¢, there for ¢ > 0, and it cannot
occur in {v > 0} by the strong maximum principle. Now since ¢ is smooth the
viscosity supersolution condition says |V (x)| < (Q%)'/? which is a contradiction
of the strict subsolution property of ¢.

Let v° be a global minimizer of the energy F. on the constraint set

A={we H'(D'): w=¢ on OD}.

By Lemma there exists such a minimizer, v is a viscosity solution of (1.1f) in
D, and it satisfies the usual Lipschitz and nondegeneracy properties Lemma
and Lemma Also there exists a minimizer v° corresponding to Ey solving

[5).
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By [4, Theorem 4.3, Theorem 4.5], which only relies on the upper and lower
bounds for @ and not the regularity, the free boundary 9{v® > 0} satisfies the
Hausdorff dimension bound

cr®t < HIH9{v® > 0} N B,(x)) < Crd~!

for any = € 9{v® > 0} with B,.(x) C D. Thus the total number of the eZ? lattice
cubes which intersect d{v® > 0} U dD is bounded from above by

#{k ez (0{v° >0} UID) N ([0,6) +ck) # 0} < Ce'~¢
where the constant C depends on the domain D. Therefore
|E-(v%) — Ep(v°)| < Ce.

Since O{v > 0} has the same Hausdorff measure bounds, the same estimate holds
for v. Then using the minimization properties of each v and v* we obtain

| Eo(v) — Eo(v°)] < Ce.

Now, taking a subsequence as we did in the proof of Proposition vV = ou
uniformly, by nondegeneracy {v > 0} — {u > 0} in Hausdorff distance in D, and
Vv® — Vu almost everywhere. This means that the energies converge and

Eo(u) = Eo(v)

with the same boundary data on dD. Thus u minimizes Ej over A, and, and there-
fore is a solution of (4.6). Thus every subsequence has a subsequence converging
uniformly to some v > ¢ and therefore

lim inf(v® — ¢) > 0.

e—=0 D

5. EXAMPLES

In this section we give several examples where we can either exactly compute
Q.+, Q" or achieve some explicit bounds. The contents of this section will prove

parts and of Theorem

5.1. Laminar media. Consider the special case of a laminar medium, Q = Q(z1)
depends only one a single variable. The pinning interval can be explicitly identified,
for p € S4-1,

(@)'/? p# +er
I(p) = .
[min Q, max Q] p = *e;.
The cell problem can be solved exactly in the case p = e; (or —ey), for any a €
[min @, max Q),
UQ(I) = O‘[(I - xa) : 6’1]+ for any =z, € Qil({a})'

From Proposition we already know that (Q2)'/2? € I(p). The following lemma
completes the characterization of I(p) in the laminar case, and is a bit more general.

Lemma 5.1. Suppose that VQ - e = 0 for some unit direction e. Then if p-e # 0
then Q.(p) = Q*(p) = (Q*)'/*.
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The idea for this lemma was communicated to us by I. Kim. Basically if there
were two distinct slopes in the pinning interval we could slide the smaller slope
solution in the direction e until it touches the larger slope solution from below
contradicting the strong maximum principle. There are some technical difficulties,
the usual difficulty of regularity in comparison principles for viscosity solutions,
the unbounded domain, and the lack of a nondegeneracy estimate for the maximal
subsolutions in dimensions d > 3 all need to be dealt with. Unfortunately this
causes the proof to be rather long despite the simple idea.

Proof. Suppose that p-e # 0, and that Q.(p) < @*(p). We take p-e > 0, the other
case is similar. There are solutions to (3.3]) u. and u* with respective slopes Q.
and Q* and
(5.1) sup [u*(z) — Q" (z-p)4+| < C and sup |u.(z) — Qu(x - p)+| < +o0.
z€ERC zERd
We need to regularize u*, u, a bit for our comparison argument, we do standard inf
and sup convolutions
uwi(z) = inf w*(z) and ul(z)= sup wu.(z).
ly—z|<8 ly—z| <8
Now uj and u? satisfy the same bounds as above, are, respectively, sub and super
harmonic in their positivity sets, and satisfy the free boundary condition, in the
viscosity sense,
[Vusl(z) < sup Q(y) and [Vul|(z) > inf Q(y)
Bs(x) Bs(x)
for  in the respective free boundaries d{u} > 0} and 9{ul > 0}.
Call A = (1 — 2[|VQ||ccd/ min @), then
AVaiI(2) <X sup Qo) < int Q) for « € O{u; > 0},
s(x) sl
For § sufficiently small A\Q* > Q. still.
Next translate Auj in the e direction by

ve(x) = Auz(x — te).

From the invariance of @ in the e direction v is still a supersolution with |Vu;|(z) <
inf, (z) @(y) on the free boundary and

sup |vy(z) — AQ™(z - p —te-p)4.

z€R
For sufficiently large positive ¢, t > T, we will have v (x) > ud(x) in {u > 0},
while for sufficiently large negative ¢, t < T_, sup,(u’(z) — v¢(z)) > 0. Then
decreasing ¢ from Ty to T_, by continuity, we find that infm(vtU —ul) =0 at
some value tg.

If the infimum is not achieved, take a sequence of lattice translations k,, with

|kn - p| < C so that

min (v, — ud)(z + k) < 1/n.
[0,1)dn{ud>0}

Say that the minimum occurs at a point z,, € [0,1)%. By the Lipschitz continuity,
Lemma [2.12] up to taking a subsequence we can assume that x, — . and the
translations vy, (z + k,,) and ul(x + k,,) converge locally uniformly to some v and
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u respectively, and hence satisfy the same viscosity solutions conditions. Now we
need to check that the touching point x, is actually in {u > 0}. For this we want
to use the nondegeneracy Lemma Note that v, as an inf convolution of the
minimal supersolution wuj, satisfies the nondegeneracy estimate from Lemma m

vy () > cd(x, 0{vy, > 0}).

Now vy (2, + k) < 1/n and so there is a point y, € O{vs, (- + k) > 0} with
|y — 25| < C/n. The positivity set {vs, (-+ky) > 0} has an exterior ball B of radius
§ at yn, let B’ be the touching ball of radius §/2. Then slide B’ by B’ + t(x,, — yn)
until it touches {ui > 0} from the outside at some point z, for some 0 < ¢ < 1.
Since the ball has moved by at most distance C/n the touching could only occur
at a point of 9B’ which is within distance C/n of 9B. The boundaries of 9B’ and
0B separate quadratically near y,

d(z,0B) > §|z —yn|? for z € 0B

and so the touching points z, = y, +O(n~14+82n"1/2) = 2, +O(n= 1 +6/2n=1/2),
in particular it also converges to zo, as n — co. Thus for any 0 < r < §, by the
nondegeneracy at outer regular points, Lemma |2.13
sup ul(- + k) > cr.
B, (zn)
Passing to the limit we obtain the same nondegeneracy at x., for u implying that
indeed zo € 0{u > 0}.

Thus we find v and v sub/superharmonic in their positivity sets, {u > 0} and
{v > 0} are respectively 0 inner regular and § outer regular, u and v are respectively
sub and supersolutions of |Vw| = infp,) Q(y) on d{w > 0}, they have distinct
asymptotic slopes Q. < AQ*, and u touches v from below at some point of R%.
This contradicts Lemma 2.5 O

5.2. An example with pinning at every direction. The special structure of
laminar media prevents pinning except at the laminar direction. Without special
structural assumptions our conjecture is that pinning at every direction is generic.
Despite this expectation it is not that obvious even to come up with one field Q
with this property, we give such an example here.

Let p be a smooth radially symmetric bump function, p = 0 outside of By /5(0)
and fp2 > 1. Given parameters A > 1, 1 > § > 0 to be chosen large and small
respectively, define

Lemma 5.2. Let Q as above. If § is sufficiently small, depending on dimension,
and A > C(d)6~@=V/2 then [Q.(e), Q*(e)] is nontrivial for all e € ST,

This lemma establishes Theorem part
Proof. By the results of the previous section
Q*(e) > <Q2>1/2 > (1 —|—A25d)1/2.

Next, for § sufficiently small universal, we construct a subsolution with slope at
most 1 + C§, a small perturbation of (e - )4, yielding

Q.(e) <1+ C6.
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Then as long as
A > Cv(sf(dfl)/Q7

for a sufficiently large universal C, the pinning interval is nontrivial.

To make the second part of the argument precise it is convenient to use the type
of perturbations described below in Lemma and Lemma Consider A the
projection of Z4 N {—25 < z-e < —§/2} onto = - e = 0. For § sufficiently small,
universal, each pair z,w € A are separated by at least distance 1/2. Let {(s) be a
smooth function on R which is equal to 1 for 0 < s < 1/5 and equal to zero for
s > 1/4. Suppose that §/2 < 1/5. Define

h(z) =6+ 36¢ (d(z, A))

and
Ay =0 inx~e>—%5
43 >
P(z) = h(z)7t d 23 onz-e=—36
logh(z) d=2

Since h is smooth with ||h||c2 < C4, by the boundary regularity for the Dirichlet
problem

[¥ller < C677 ind>3or [[¢llr <C in d=2.

Then define ¢(x) = 1(z)?~¢, or p(z) = exp(¥(x)) in d = 2. By maximum principle
§ < < 5§/2. Since h is smooth with ||h||cz < C4, by the boundary regularity for
the Dirichlet problem, ||V¢l|loo < C4. Furthermore, calling 2’ =z — (x - e)e,

§<p(x) <8(1+CH) for —25<z-e<—§ and d(2',A) >1/5.
Then define the sup convolution

i) = sup [z + 0 (w) -

By Lemmal8.4]and Lemma[8.5] using the upper bound on ||V¢||s, v is subharmonic
in its positivity set and

[Vo(z)] >1—-C§ on 9{v > 0}.

We aim to show that the free boundary of v does not intersect a §/2 neighborhood
of any lattice point. Then (1 4+ C§)v will be a subsolution of and we could
conclude.

Call the infinite cylinder I', = {|2| < r}. Away from A+T' 5 the free boundary
of v(x) satisfies

H{o>01N(A+Ty5)° C{-(1+C8i <z e< -0}

For § sufficiently small so that C'§ < 1/2 this will not intersect the Z? + Bj s2- On
the other hand, for any z € A,

Hv>0}N(z+Ty5) ={rv-e=-50/2} NTy5

which, by the set up, will also not intersect Z? + Bs /2-



30 WILLIAM M FELDMAN

5.3. Structure of discontinuities of Q*, Q. in d > 3. Now we combine the
previous two examples, take @ as in the previous section on R? and then extend to
R3 as a constant in the z3 direction. That is

Q(z) =1+ > Ap(=3%)
kez?
where z = ' + x3e3. Then by Lemma and Lemma

[Q:(p), Q" ()] = (Q)'/* for ps #0

while for p3 = 0 it holds Q*(p) > (Q*)'/? > Q.(p). Thus the endpoints of the
pinning interval are discontinuous along the hyperplane p3 = 0.

A similar construction is possible for any rational subspace, we carry it out
below.

Proof of Theorem part . Let &,...& € Z9\ {0} linearly independent and

consider the rational subspace spanned by the columns of = = [£1,...,&]. Com-
plete &1,... &, to a basis of R? by addending lattice vectors &y1,...,&q. We will
choose @ with {41 - VQ =---=&;-VQ = 0.

Then, by Lemma if e € S971\ = then e &; # 0 for some k+ 1 < j < d and
therefore

Q.(e) = Q"(e) = (@32,
Now, to be more precise, we choose

r-& —m x-&,—m
Q) =1+ Y Ap(——rs—. .. =)

mezZkr

If e € Z then, using the invariance of Q in the =+ directions, by Section [3| above
there are cell problem solutions sharing the same invariances, so we can just look
for a cell problem solution of the form

v(z)=u(x- fi,...,z- fr)
where F = [f; ... fx] is an orthonormal basis for = and u : R¥ — [0, 00) is a solution
of
Au=0 in {u>0}, with |Vu|(y)=Q(Fy) on I{u> 0}

with

sup [v(y) — ale - Fy)4| < +oo.

R
Now @ is periodic with respect to the lattice generated by Z = {FT¢&;};21. .
even though this is not the lattice Z*, basically the same arguments as Lemma
[6-2) show that for § sufficiently small and A sufficiently large, depending only on
universal parameters and the minimum distance between lattice points of Z, there
is a nontrivial pinning interval bounded below in width independent of e. O

6. LIMITS OF SOLUTIONS TO THE £-PROBLEM

Let U C R% an open domain, consider a sequence of solutions u® to

Auf =0 in{u>0}NU
(6.1) {|Vu5 =Q(x/e) ond{u>0}NU
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which converge locally uniformly in U to some u. Then, we will show in this section,
that u solves in the viscosity sense

{Au:O in {u > 0}

(6.2) Vu € [Q«(Vu), Q*(Vu)] on d{u > 0}.

The above equation is to be interpreted in the viscosity sense. This is the content
of Theorem [L.2l

As mentioned in the introduction The result of this section is not new, it can
be derived from the paper of Kim [21] on an associated dynamic problem. Also, a
special case is done Caffarelli-Lee |6, lemma 3.4]. We include the argument here for
completeness, and because it is quite simple in the static setting we consider here.

Note that, assuming the u® are uniformly bounded, they are also uniformly
Lipschitz continuous by Lemma and therefore have a uniformly convergent
subsequence. Convergence of the whole sequence is unlikely to hold without some
additional specification, e.g. minimality, maximality, energy minimization or in
the case Q*(e) = Q.(e) at every direction. We will make this rigorous below in
Section when we discuss the limits of the minimal supersolution and maximal
subsolution.

Proof of Theorem[I.3 It is standard to check Au = 0 in {u > 0}. We check the
supersolution condition on the free boundary, the subsolution condition is analo-
gous. Suppose ¢ is a smooth test function touching v from below at some point
xo € 0{u > 0} NU with

A(p(.’lﬁo) > 0.

By standard arguments one can perturb so that p(z) < wu(x) for x # z¢ and
Ap(z) > 0 in a small neighborhood of g, which we still call U. Now there exists
a sequence U > z. — xg and constants c. such that

o(x) + ¢ touches u(z) from below at z. in K CC U.

Since u® are harmonic and ¢ is strictly subharmonic the touching points z. must be
on the free boundary 9{u® > 0} N9{p +c. > 0}. Let k. € eZ% with |k. — x| < Ce
and k. — z. - V(z:) > 0. Up to taking a subsequence

e M k® —x.) — 1 with 7-Ve(z0) > 0.
Now we blow up at k., defining

1 1
v (z) = gua(ks +ex) and ¢f = ggo(kg +ex).

By the Lipschitz estimate, Lemma ve(z) < C+C|z| and is uniformly Lipschitz
continuous. Thus, up to a subsequence, we can take limits v* — v and ¢* —
V(xo) - (x + 7) locally uniformly. Then, by the stability of viscosity solutions
under uniform convergence, v solves in R¢

Av=0 in {v>0}, with |Dv|=Q(z) on 9{v >0},
and furthermore
v(z) > (Vo(xo) - (x+7))4 > (Veo(z) - 2)4 in RY

By Lemma |3.8
Vip(wo)| < Q" ().
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Thus we obtain the viscosity solution condition, if ¢ is a smooth test function
touching u from below at some point z¢ € d{u > 0} N U,

min{|Vep(z0)| — Q" (&), Au(o)} < 0.

7. THE CONTINUOUS PART OF THE PINNING INTERVAL

In this short section we give an abstract definition for what we call the continuous
part of the pinning interval I.,,:(e) which will be a subset of the pinning interval
I(e) = [Q«(e),RQ*(e)]. The definition is basically exactly designed so that the
perturbed test function argument will work when we consider the convergence of
the minimal supersolutions / maximal subsolutions. This makes the perturbed test
function argument easy, the entirety of the difficulty is transferred onto proving
properties of I.opns.

Recall the half-space subsets we introduced before. Let e € S ! and U C
{z - e = 0} relatively open and connected. Define

D(U)={zecR:z-¢>0 and = — (z-e)e € U}.

The definitions will use domains of this type because they come up naturally in the
perturbed test function argument.

Definition 7.1. Let e € S9!, we say that the slope ae is subsolution continuously
pinned if the following holds. For all A > 0 there exists a § > 0 such that if ¢ smooth
on D = D.(U), for some U a domain of {x - e’ = 0},

+ e/ —e| <6,

sp |28 e
DN{p>0} Vel

¢ is harmonic in {¢ > 0} N D(U), and is a subsolution of
[Vo| > (1+ MNa on d{¢ >0} ND,
then for all ¢ > 0 there exists a subsolution v of (L.1]) in D such that

lim sup [v° —v| =0, liminf(v® —v) >0,
e—=0 5p e—=0 D

and
lim dg ({v® > 0}NAD, {p > 0}NID) = 0, lim di ({v® > 0}ND, {v°Vy > 0}ND) = 0.
E—r E—r

Supersolution continuously pinned is define analogously with inequalities reversed
where necessary.

We call I.,,:(€) to be the set of slopes e which are both subsolution and super-
solution continuously pinned. As we will see below I..n:(e) is actually an interval.
The parameter XA > 0 in the above definition is necessary to make sure that I.,,:
closed and nonempty. It turns out that on the interior of I.,,; a stronger condition
holds, basically it is Definition [7.I] without the parameter A > 0. We write that out
here.
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Definition 7.2. Let e € S%!, we say that the slope ae is strongly subsolution
continuously pinned if the following holds. There exists a 6 > 0 such that if ¢
smooth on D = D./(U), for some U a domain of {x - ¢ = 0},

\%
‘v—i'—e + e —e] <4,

sup
Dn{e>0}
¢ is harmonic in {¢ > 0} N D(U), and is a subsolution of
Vol >a on d{e >0}ND,
then for all € > 0 there exists a subsolution v¢ of in D such that

li f—wv|=0, liminf(v* —v)>0
sl_l}ésglll)ﬂv v| , 61_I>r(1)1%(v v) >0,

and
lin% dg ({v® > 0}NdD, {¢ > 0}NID) =0, lin% dg ({v® > 0}nND, {v*Vy > 0}ND) = 0.
E— e—

Strongly supersolution continuously pinned is define analogously with inequalities
reversed where necessary.

We give a result collecting some easy consequences of the definitions, plus a more
difficult result, but it is one we have already proven above in Proposition

Lemma 7.3. Let e € S 1,

(i) The set of subsolution continuously pinned slopes at direction e is an in-
terval [Q«,cont(€),00). The interior values are strongly subsolution contin-
uously pinned.

(ii) The set of supersolution continuously pinned slopes at direction e is an
interval [0, Q% (€)]. The interior values are strongly supersolution contin-
wously pinned.

(111) The endpoints Qy cont(€) < Qi ni(€) are, respectively, upper semicontinuous
and lower semicontinuous as functions on S~ 1.

(iv) The energy minimizing slope is both subsolution and supersolution contin-
uously pinned

Q*ﬁcont(e) é <Q2>1/2 S Q:ont(e)'
The proof of this Lemma will complete the proof of Theorem part

Definition 7.4. Let e € S9!, we say that the slope e is continuously pinned if
it is both subsolution and supersolution continuously pinned, i.e. a € I.oni(e) =

[Q*,cont(e)a Q:ont<e)]'

We reiterate that the definition is designed to be exactly what we need to
prove Theorem The difficulty is then transferred to showing nice properties of
Icont(e). The strongest possible result we could expect to prove about Q. cont and
Q%o is that

Qx,cont(€) = limsup Q. (e) and QF,,(e) = liminf Q" (e).
e’ —e e'—e
In d = 2 we will make significant steps in this direction, see below in Section |[8] We
will prove that the above hold at irrational directions, and hold approximately at

rational directions with large modulus. In d > 3 the best estimate we will obtain is
the one above in Lemmapart To really handle d > 3 we expect it would be
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necessary to refine Definition significantly to keep information about the range
of Vf, i.e. if it is faceted, lying in a certain rational subspace.

Proof of Lemma[7.3 The conditions Definition [7.1] are monotone. If ae is subso-
lution continuously pinned then sae is subsolution continuously pinned for s > 1.
This is because if ¢ is a subsolution as in Definition then sy is as well. One can
argue analogously for supersolutions with s < 1.

Suppose ae is subsolution continuous pinned then let o’ > «. Suppose that
¢ is a strict subsolution with the free boundary condition |[V¢| > o/. Then also
Vol > (14 N with A = %' — 1. Then apply Definition using that ae is

subsolution continuously pinned, there is a § > 0 depending on % — 1 so that

Definition [Z.2] holds.

The conditions Definition [7.1] are closed. Suppose o’ is subsolution continuous
pinned for every o/ > a, by the above o’ is strongly subsolution continuously
pinned. Let A > 0 and choose o' = (1 + A)a, there is § > 0 so that .

We prove the upper semi-continuity of

Q+.cont(e) = inf{a : ae is subsolution continuously pinned}.

Suppose that Q. cont(e) < &’ < aso o’ and « are strongly subsolution continuously
pinned. Let ¢ > 0 from Definition for o’e, suppose that D = D (U), €',¢" €
S with |/ —e| < /3, |¢” — €| < /3, and ¢ is a subsolution with

Vol >a' on d{¢ >0}ND and  sup \E—e'\gé/i’).

DN{p>0} Vel

Then there exists a sequence of subsolutions v to (|1.1)) converging to ¢ in D in the
sense of Deﬁnition Thus Q. cont(e) < & < a, and so {Q+ cont < a} is open for
every a.

Finally part was already proven in Proposition (I

8. IRRATIONAL DIRECTIONS

In this section we consider plane-like solutions at irrational directions, e not
parallel to any lattice vector in Z? \ {0}. The main result of this section is the
continuity of @Q,,Q* at irrational directions in d = 2, Theorem part which
we repeat here.

Theorem 8.1. When d = 2 the upper and lower endpoints of the pinning interval,
Q* and Q. respectively, are continuous at irrational directions e € S*\ RZ2.

By the same techniques we are also able to derive information on Q. cont and
Q*cont at irrational directions and rational directions with large modulus, which is
Theorem part from the introduction.

Lemma 8.2. Let d = 2.
(i) Let & € 72\ {0} irreducible. Then

Qucont(€) < Qul€) + CIEI™Y? and Qpn(€) > Q(€) — Cle| ™1/,
(ii) Let e € S'\ RZ? irrational. Then
Qu.cont(§) = Qx(e) and Q7o (€) = Q7 (e).
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We make some remarks. The result of Theorem cannot be true as stated in
d > 3. As we have seen in Section [f it is possible for Q*, Q. to be discontinuous
at some irrational directions when d > 3. In the author’s previous work with
Smart [16] we studied the scaling of a discrete free boundary problem with a similar
structure, in that case @*, Q. are only continuous at the totally irrational directions,
those satisfying no rational relations & - e = 0 for some ¢ € Z4\ {0}. In d > 3 there
are irrational directions which satisfy some nontrivial rational relations. A similar
structure here is plausible, and, as we have shown in Section [5] discontinuities of
any co-dimension are possible in this problem as well.

We divide the proof into several parts. First, in Section [8:I] will be the con-
struction of a foliation of R? x (0, 00) by the graphs of plane-like solutions. This is
not quite possible, in general the foliation may have gaps, the main result is that
we still recover a weak type of continuity for the foliation. Next, in Section [8.2] we
will introduce a method for bending solutions of the free boundary problem while
still maintaining, approximately, the sub or supersolution property. This is based
on a nice family of perturbations suited to the problem which were introduced by
Caffarelli [10]. Then, in Section we sew the plane-like solutions of the foliation
together using the bending perturbations to create approximate plane-like solutions
at nearby directions, to show the continuity of Q)., @*, the same method is used to
show Lemma [R2

8.1. A family of plane-like solutions sweeping out R?. The main tool in
the proof will be a monotone one-parameter family of global plane-like solutions
vs(x) with slope p = ae for a € [Q.(p),Q*(p)], s € S for some closed index
set S. In the irrational case S = R. In the rational case, p = £/|¢| for some
¢ € 2%\ {0} irreducible, S is 1/|¢|-periodic on R. The graphs of the family v,(x)
will be, approximately, a foliation of R? x (0, c0).

More precisely, we claim there exists a family with the following properties. Let
p € 89! and a € [Q.(p), Q" (p)]-

(i) vs : R? — [0,00) defined for s € S, S is a closed subset of R which is 1/|¢]
periodic if p = ¢/[¢] for an irreducible lattice vector ¢ € Z\ {0}, or S =R
if p is irrational.

(ii) For every s € S, v, solves

Avs =0 in {vs >0}
(8.1) [Vus| = Q(x) on 0{vs >0}
(ap-z+s+C)p <vs(x) < (ap-z+s+C)+

for a universal constant C.
(iii) The family vs is monotone increasing in s and continuous in the following

sense. For all § > 0 there exists r(d) > 1 so that for 0 < o < §, any interval
I C R of length at least r, and any ¢ > 1

inf sup [veyo — vs](y'pt + tp) < CL6.

v'eljt<e
Note that it is possible SN [s,s+ o) = {s} in which case the statement is
trivial.

Proposition 8.3. For any p € S ! and a € [Q.(p),Q*(p)] there exists a family
of solutions vs of as above.
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Proof of Proposition[8-3 Let v be the solution of (3.1)-(3.2) constructed in Lemma

Call T = {k-p: k € Z2}, then for p irrational T is dense in R. For p = &

rational with & € Z4\ {0} irreducible T is a 1/|¢|-periodic discrete subset of R.
Define, for s € T',

vs(z) = v(x 4+ k) for the k such that p-k = s.

In the rational case p - k = s does not uniquely specify k, but, by periodicity, it
does uniquely specify v(x + k). By Lemma Vg is monotone increasing in s.

When p is irrational extend vs to s € S = T = R by left limits, i.e. define

vs(x) = Tahsl/n/s vy ().

When p is rational we also call S = T = T for convenience. The limit exists by
monotonicity arguments. By the Lipschitz bound on v the limit is actually locally
uniform in R%. By the stability of the viscosity solution property under uniform
convergence v, solve . Now wg, so defined, is continuous in s with respect to
locally uniform convergence, except for at most countably many s € R. Note that
if {v = 0} is not connected then vy would necessarily have jump discontinuities
in s. We expect, although it is not proven, that this is possible for the minimal
supersolution when ) has strong and localized de-pinning regions.

Consider

Vi(z) = vs(x) = (p-z + 5)4.
These are bounded uniformly in s. Let § > 0 and k € Z%\ {0} such that §/2 >
|k - p| > 0 small. Call
A(0) = inf{|k| : k € Z* with |k-p| <4/2}).

When p is irrational there is guaranteed to be such a k as long as 6 > 2/|¢| and in
that case A(2/|¢]) < [€].
Consider a rectangle with axes parallel to the p and p* directions

Oer={y:ly-pl <€/2, ly-p| <r/2}

and corresponding translations Uy . (z). Let 6 > 0, or 6 > 1/|¢] if p is rational, and
k such that |k - p| < 0, and |k| = A(S). Note that

O (2)AOe (2 — k)| < |k - plr + |k 'pllﬁ
Then, using the boundedness of V,

1

5 A
i | e Vet

1
(52) < C—(k-plr+Ik-pH10) < O +

).

r

Callt =y-pand ' =y - p to be the coordinates in the p, p basis and then
1 1 I'pL+T/2 1 s+£/2

! / /!
S vl =1 [ [ W)Vt oy
T J0¢, 0 (2) T Japt—r/2 s—0/2
so there is a ' with |y/ — z - p*| < r/2 and

CA(6)

r

s+£/2
/ Virrp(tsy') — Vit y/)dt
s—L/2

<06+ ).
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Now rephrasing in terms of vyyx.p — s

s+£/2 éA 1)
/ [Us+k‘p(t7 yl) - Us(tv y/)]dt S 0(6(5 + #)
s—£/2

Then using the Lipschitz continuity of vs, and emphasizing the dependencies of the
parameters on the right hand side,

CA(0)
, N —w(t,y)) < —2) <
H/Qrélggwﬂ(vm.p(t,y) vs(t,y) < CWo + — =) < Clo
as long as r > r¢(9) = A(0)/4.
(]

8.2. Bending the free boundary. Before we proceed with the proof of Theorem
[8:1] we need a technical tool. In order to construct sub and supersolutions at
nearby directions out of the family v, we will need to bend the free boundary while
approximately maintaining the solution property.

A suitable family of perturbations has been constructed already by Caffarelli [10],
the book of Caffarelli-Salsa |9, Lemma 4.7 and Lemma 4.10] is a convenient refer-
ence. We recall the main points here.

Lemma 8.4 (Lemma 4.7, Caffarelli-Salsa [9]). Let ¢ be a C? positive function
satisfying

(d -1Vl

Ap > n Bj.

Let u be continuous, defined in a domain 2 sufficient large so that

w(z) = sup u(z + (w)o)
lo|<1

is well defined in By. Then if u is harmonic in {u > 0}, w is subharmonic in

{w > 0}.

We consider applying the above type of perturbation to one of the plane-like

solutions v with slope p, defining
v¥ = sup v(z + p(z)o)
lo|<1

By the previous Lemma, as long as ¢ is defined and satisfies the condition pAyp >
|V¢|? in a sufficiently large neighborhood of {v > 0} we will have v¥ subharmonic
in {v¥ > 0}. The following Lemma explains how the perturbation affects the free
boundary condition.

Lemma 8.5. Let v and ¢ as above, then v¥ satisfies, in the viscosity sense,

|[Vu?(z)] > (1 = |[Ve(z)]) inf Q on 9{v¥ > 0}.
By () (2)

This is a minor modification of Lemma 4.9, 4.10 from [9]. An analogous super-
solution condition holds for the corresponding inf-convolution.

Now this bending procedure will cause a strict increase in v near the free bound-
ary, due to nondegeneracy, and far from the boundary due to the linear growth.
In the intermediate region there may be degeneracy, we deal with this by doing a
“harmonic lift”. As in the proof of Lemma

|Vu(z) —p| < Crlz )y
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In particular for Ry > 1 universal there is a universal lower bound on the gradient
(8.3) Vo) > pl/2> ¢ for z-p> Ro.
Then we define the lift 7% by solving

AT¥ =0 in {v?>0}N{z -p < Ry}

¥ =0 ondf{v? >0}

¥ =0v¥ onz-p> Ry
Since v¥ was a subsolution ¥ > v¥ and is still a subsolution of the condition in
Lemma [8.5] As we will make precise later, if ¢ is small then v¥ is close to v and
also ©¥ is close to v.

We make more precise the choice of ¢. Note that a positive ¢ is a solution of

(8-4) pAp = (d—1)|Ve|?

if and only if ¢2>~% is harmonic, or log ¢ harmonic in d = 2 (as is the case for us).
This property is preserved by dilation and scalar multiplication. We proceed in the
case d = 2, but all of this works with minor modification in d > 3 as well.

Let M to be chosen (will be universal) and h : R — [1, M] be smooth, even,
radially decreasing, h(t) = M for |¢t| < 1/3, h(t) =1 for |t| > 2/3 and |Vh| < CM.
Let 1 be the solution of

A =0 in {z-p>0}
() = log[h(z-p*)] on {z-p=0},
there is a unique bounded solution of the above problem with 0 < ¥ < log2.

Furthermore, by the continuity up to the boundary of solution of the Dirichlet
problem, for any 0 < 8 < 1

[ (x) —log[h(z - p*)]| < Cllog(h)]ca (@ - p)”
The estimate could be improved for |z - p*| > 1, but we will only care about the
behavior of ¥ in the strip —1 < z-p < 1 and for z-p < 1. The quantity [log(h)]cs
is universal.
Now we define,

(8.5) p1(x) = exp(¥(x)).
Then 1 < 91 < M in - p > 0 and
logm <C(z-p)’

Thus for some ¢ > 0 universal
(8.6) h(z)/2 < p1(x) <2h(z) for 0<z-p<ec.

Next we take the sup-convolution of a plane-like solution v by a rescaling of ¢,
v = ep1(-/r) with € > 0 small and r > 1 large. Due to the nondegeneracy of v
the sup convolution causes a strict increase of order ~ . This is expressed in the
following Lemma.

Lemma 8.6. Let ¢ = ep1(-/r) and v a solution of (3.1)-(3.4). If r > CM then
cp(z) <%(x) —v(z) < Co(x)

with constants ¢, C' universal (in particular independent of M ). The right inequality

holds everywhere, the left holds for x such that d(x,0{v > 0}) < p(x)/2.
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Proof. By the nondegeneracy Lemma [2.13]

(8.7) T () > v¥(x) > v(x) + cp(x) for zst. d(xz,0{v>0}) < p(x)/2
By (8.3), for - p > C universal [Vu(z)| > |p|/2 > ¢ universal and so

(8.8) ¥ (x) = v¥(x) > v(z) + cp(x) on z-p> Ry.

Thus by maximum principle, combining ({8.7), (8.8), the subharmonicity of ¢ (8.4]),
and the harmonicity of the lift 7% in {v¥ > 0} N{z - p < Ro},

¥ (x) > v(x) + cp(z) for all z s.t. d(z,{v>0}) < p(x)/2

This gives one direction of the estimate.
On the other hand, by the Lipschitz estimate Lemma

v (z) < v(x) 4+ Cop(x).

In z-p > Ry this is the same for v¥. Then, using again the equation for ¢ , and
|Vp|?/¢o < CM?e/r?, by maximum principle in the strip {v¥ >0} N{z-p < Ro},
¥ () < v(w) + Cp(z) + CREM?e /r?.

Then we can choose r sufficiently large in order that CR3M?/r? < 1 and so
7% (x) <v(z) + (C + 1)p(z).
O

8.3. Curved surface near an irrational direction. With the set-up above we
finally are able to carry out the proof of Theorem We prove Lemma [8.2] at the
same time since the proof is the same.

Proof of Theorem and Lemma[8.2 We just do the subsolution case, the super-
solution case is similar. We argue fE)r rational and irrational directions at once. In
the rational case suppose that e = ¢ for some irreducible ¢ € Z7\ {0}. We will use
|€|71 as a parameter, in the irrational case we abuse notation and say [£|~! = 0.
Let A > C|¢|~'/2? and suppose that 1 smooth on D = D, (U), for some U a
domain of {z - ¢’ =0},
T
pn{y>oy | VY
1 is harmonic in {¢ > 0} N D(U), and is a subsolution of
V)| > (14 XN)Qx«(e) on d{yp >0} N D.

The parameter 7y will be chosen small below depending on e and A. Write the free
boundary 0{Li(-/L) > 0} as a graph over z-e =0 by

+ e’ —e| <o,

T 2, =7et + Lf(t/L)e for 7€ U.
Then f is C! and ||f/||« < Cno. In the proof of Theorem D =R% ¢ is a

half-plane solution ¢ (z) = a(e’ - )4, with a > (1 + A)Q.(e) and f(7) = —7 e;;?:.

Let 6(\) = chA? so that § > 1/|¢|. By Proposition [8.3] there exists ro(\, e) > 1
large such that, for all s € R, 0 < ¢ < ¢ and interval I C R of length at least r,

(8.9) inf sup (vsio — vs)(Ter +te) < CchRoA.
Tt <Ro /X




40 WILLIAM M FELDMAN

The constants ¢y and Ry will be chosen, universal, in the course of the proof, call
¢1 = CeoRy for convenience. Now we specify 1y, we require that || f'||L~ < Cno <
0/3rg and call r = 3ry.

Let 7; = jr for j € Z and push forward the partition {7;},cz of the domain onto
the range

sj = [Lf(r;/L)]s
Then
5541 — 85 <1 f[loor < 0.

From for each j there is y;, z; with |y; — 7j_1] < ro <7/3 and |z; — Tj41] <
ro < r/3 such that

(8.10)
sup v, , — v, |(yset +te) <ciA and  sup |vs, , — v, |(zjet +te) < e
[t]<1/A [t]<1/A

Now use the bending sup-convolutions of Section to create a subsolution.
With ¢; as in Section let ¢ = c1Ap1(+/r), defined as above in with the
parameter M in the definition of ¢; still to be chosen (it will be chosen universal).
For each j € Z define

_ _p(—zry)
wi(r) =7s; 7 ().
Each @; is harmonic in its positivity set and, on 9{w; > 0},

(8.11) V| > (1= CMeN)(Q(2) = 2[VQllasMerd) > (1+ 3)7'Q(2),

for ¢; (M) chosen sufficiently small. We reiterate M will be chosen later universal,

and will not depend on ¢;. Localize each ), to a vertical strip near z - el = 7;

(1+ Dw,(z) ify; <w-et <z
wj(@) = {—oo o elsej ]

which is a subsolution of (2.1)) in the strip where it is finite. Finally define, for
x € LD,

x
— , Lu(Z —
w(zx) max{r;(leazij (z), w(L Ke)}
the translation K, universal, will be specified below. Although this appears to be a

maximum over an infinite set, at each = only three of the w;(z) take a finite value.
We will show that

Wj(z) < Wj_1(x) on z-pt=y;, v-e<Lf(z-et/L)+ Ro/A,

(8.12) . . . R

w;(x) <wjy1(z) on z-p- =2z, x-e< Lf(x-e-/L)+ Ro/A,
and
(8.13) w(z) = maxjez wj(z) for z € d{w > 0} + By,

w(z) = Ly(% — Ke) forz-e>Lf(z-et/L)+ Ro/\

Once these two are proven, then w defined as above will be continuous subsolution

of .



THE ALT-CAFFARELLI ENERGY FUNCTIONAL IN INHOMOGENEOUS MEDIA 41

First consider (8.12). Let x -e < Ro/\ with # - et = y;, then by (8.10) and
Lemma [R.6]

Wj—1(x) = vs;_, () + cp(x —ar,_,)
> v, (x) — 1A+ cMey A
> wj(x) = Co(x —27,_,) — 1A+ cMcy A,
> wj(x) +cr(eM —C)A
while, similarly, on z - e+ = Zj

ﬂ}j+1(gj) > Us;qq (.’,E) =+ CSO(I - ‘TT]'-H)
> g, (x) — 1A+ cMer A
> wj(z) +c1(ecM — C)A.
Choosing M large universal so that ¢cM — C > 0 above, we get (8.12). Now we
also see that the choice of ¢;, depending on M and universal quantities, is indeed

universal as well.

Now we aim to show (8.13)). We assume f(0) = 0 and show the result in |z-et| <
r. The bounds for w_1, Wy and w; gives

(8.14) Qu(e)(z-e—0C)p < I?Eag(wj(w) <Q.e)(z-e+C)y in |z-et] <7

Note that since f is C!
[Lf(r/L) = f(0)7| <w(r/L)

where w is the modulus of continuity of f’. Now let L > Lo = r~tw™1(1) so we have
w(r/L) <1for |r| <rand L > Ly. Note r = 3rg(A, e) so the choice of Ly depends
on A, e, and the modulus of continuity of f’. Then, since |f'(0)7] < Cnor < C§ < 1,

|ILf(r/L)| <2 for |r| <r.
Therefore as long as K chosen large enough universal,
Lz/;(%—Ke)zO in —C<z-e<(C
and the first part of holds.
Let z- et =7and z-e= Ro/\

Ly(7 ~ Ke) = V(") - (2 = 2y — Ke) + Of| — . /L)

= (14 N)Qu()( - ¢ ~ Lf(r/L) = K) + Ol 557 + )
Note that A~y = 6/(3roA) = coA/(3rp) < 1 and, choosing L > Lo()) larger if
necessary also ﬁ < 1. Thus, using 1'

LY(F — Ke) 2 (14 N)Qu(e)(@ €)= C = Qule)(w-€) + R — 2K > w(a)

as long as Ry is sufficiently large universal. This completes the proof of . Also
we see now, since Ry is universal, and ¢; = C' Rycg was chosen to be small universal,
also ¢y can be chosen small universal to fulfill the needed requirements.

Finally we take ¢ = 1/L < g9 = 1/Lg and define

w®(z) = ew(z/e).
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From the estimates proven above w® — ¢ uniformly in D and also
dg(0{w® >0} ND,o{yp >0}ND)—0

as € — 0. This is actually stronger than Definition [7.1] requires.

9. RATIONAL DIRECTIONS

In this section we consider more carefully the solutions of the cell problem at
a rational direction. As before we will consider a general dimension d > 2 for as
long as possible, but eventually we will focus on the case d = 2. The main reason
for this restriction is the lack of nondegeneracy estimate Lemma for maximal
subsolutions in d > 3.

Let ¢ € Z%\ {0} irreducible and we consider the cell problem at direction &.
As seen in Section bl @* and Q. may be discontinuous at £. Define the directional
limits, for 7 € £+ N S4-1

Q7(§) = limsup Q7 (e) and Q. r(§) = limsup Qx - (e)

e & e, &
where we say a sequence e, —, &£ to mean that e, — £ and

n § =71 for n sufficiently large.
|en - E‘

The 7 direction limit of the pinning interval is defined

I‘r(g) = [Qi(f)a@*,r(&)]

When d = 2 there are only two directional limits, which we refer to as the left and
right limit. Recall that we take the convention £+ = (&, —&;), we call directions
enS?1 with e- &+ > 0 to be to the right of ¢, and with e- £+ < 0 to be to the left
of £&. We define the left and right limits of Q*, Q.

Q;(§) =limsupQ*(e) and  QF(§) = limsup Q" (e),

(9.1) et e
Que(§) =limsupQu(e) and Qo (€) = limsup Q. (e),
e— € e—rg

and corresponding I,(§) and I,.(€).

Speaking informally, the free boundary can bend in the 7 direction when the
slope |Vu| € I.(Vu). In this section we will make this idea rigorous at the level of
the z-dependent problem.

The main result of the section is Theorem part that the limsup’s and
liminf’s in actually exist as limits.

Theorem 9.1. Suppose £ € Z2\ {0} is a rational direction. Left and right limits
of Q*, Q. exist at &, i.e.

lim I(e) =1,(¢) and lim I(e) = I.(§).

e—)gé 6_)7‘2

The restriction to d = 2 in this theorem is only because we do not know the

nondegeneracy estimate Lemma [2.13] for maximal subsolutions when d > 3. We
expect that a more general result, along the same lines, computing the limit of I(e)
given a sequence of approach directions would be possible using similar ideas.
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As a corollary of Theorem[9.1)and Lemmal[8.2] we obtain also part of Theorem
ra

Corollary 9.2. Suppose & € Z2 \ {0} is a rational direction then left and right
limits of Ieont exist at & and agree with the left and right limits of 1(e)
lm Ieone(e) = 10(€) and lim Iooni(e) = I ().

e— € e—

This is just because if e, = &, converges to & rational with ej, # & then |&;| — oo
necessarily. Then, by Lemma [8.2] I ont(ex)AI(ey)| — 0 as k — oo.

9.1. A family of periodic plane-like solutions with oriented connections
sweeping out R2. The first goal is to construct a continuous family of plane-like
solutions sweeping out R?, as we did in the irrational direction case. This will be the
main tool in the proof of Theorem The situation here is a bit different however,
as can be guessed by considering the case of laminar media. In general the sweepout
family will consist of a monotone family of £+ N Z2-periodic plane-like solutions,
possibly with gaps, and plane-like but non-periodic heteroclinic connections which
fill the gaps. This construction could be generalized to d > 2, but things become
more complicated dealing with a hierarchy of rational/irrational conditions and a
corresponding hierarchy of heteroclinic connections, we plan to revisit this in a
future work.

Definition 9.3. Let ¢ € Z2 \ {0} irreducible, 7 € £+ N St and let o € I, (£). A
T-oriented sweepout family of plane-like solutions consists of a closed set S C R, the
parametrization domain, which is a |¢|~!-periodic, and strictly monotone decreasing
family of plane-like solutions {v,}secs solving (3.1)), £+ N Z2-periodic and
lim Ju,(2) — (az - &+ 5)4| =0,
z-£—00

and for each pair s; < sp € S with (s1,82) NS = @ there is a plane-like solution
Vs,.s,, Monotone increasing with respect to éX N Z? translations with k-7 > 0,
connecting vs, at z -7 = —00 to v, at x - 7 = 400 in the sense that

Vs, < Vgy .50 < Vg, ON RY

and
GHm v s, (- +m) =vs, and  lim v, s, (-—m) = v,
meetzd meetze

with the limits holding uniformly in -7 > r and z -7 < r respectively for any fixed
reR.

Remark 9.4. Note that if (S, {vs}ses) is an oriented sweepout such that S = R
has no discrete part, then actually it is 7-oriented for any 7 € £+ N S9!, However
we should not expect to have this situation except in a very special case. By
considering the laminar medium Q(x) = Q(x1), one may guess that S being a
discrete set of R is generic. Note that in that case, any oriented sweepout family
with slope (Q2)'/2e; must have S C (Q*)~Y2{z; : Q(z1) = (Q*)'/?} which is,
generically, a discrete set.

Lemma 9.5. For each a € I.(€) there exists a T-oriented sweepout family of plane-
like solutions with slope a.

We also point out a regularity property of the family vs in the s variable.
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Lemma 9.6. Suppose that (S, {vs}ses) is an oriented sweepout as defined in Def-
mition . Then vg : S — C(R?) is continuous in the supremum norm.

Of course this statement is only interesting when S is not a discrete set.

Remark 9.7. We expect this regularity could be made quantitative (Lipschitz in
s) with some quantitative information about the Poisson kernel in the rough, half-
space-like, domain {vs; > 0}. See Kenig-Prange |18, Prop. 21] for the required
Poisson kernel estimate when the domain is a graph.

The proof of existence of this family is rather delicate, we explain some heuristic
ideas. The solutions v,,., at the nearby direction will be close to periodic solu-
tions with slope ae over large regions. However, because the direction e,, # é the
Va,e, Will have to leave any neighborhood of a particular solution with slope ozé .
This could occur by a heteroclinic connection, transferring over a unit length scale
from a small neighborhood of one periodic solution with slope aé to a small neigh-
borhood of another such periodic solution. Another possibility is the existence of
a continuous family of periodic solutions with slope aé , then the vy, ., can vary
slowly (length scale > 1) between them. Vaguely speaking we think that v,,e,
is built out of a monotone family of periodic solutions of slope aé, with possible
heteroclinic connections between pairs of periodic solutions when there is a gap in
the monotone family.

These heuristics motivate the basic idea of the proof, which is to take limits of
lattice translations of the v,,.,. This sounds extremely simple, the difficulty is
that such a monotone family may not be unique, so to prove existence we need
to construct a subsequence of the v,, ., which is, asymptotically, built out of a
single such monotone family. Furthermore, in order to construct the heteroclinic
connections we need the monotone family to be maximal in an appropriate sense.
Constructing such a maximal family is the main issue of the proof.

Proof of Lemma[9.5 1. (Existence of periodic limits) First take an arbitrary se-
quence of plane-like solutions w, solving — with slope ape, such that
en -7 >0 for all n and a,, = a € I(§). Up to a subsequence (not relabeled), they
converge locally uniformly to a plane-like solution w with asymptotic slope aé . Let
k be the lattice vector with minimal norm parallel to 7. Then k - e,, > 0 for all n
and so, by Lemma |3.0

wp (- + k) <w,(-) for all n.

Hence the same holds in the limit for w. Consider the sequence w(- + mk) for
m € N. By the previous argument w(- + mk) is a decreasing sequence and so,
taking into account the Lipschitz estimate Lemma the sequence converges
locally uniformly to some v, which is also a plane-like solution with asymptotic
slope a€. Now k is a period of v, since w(z +mk + k) converges to both v, (z) and
ve(z £ k) as m — oo.

By a standard argument one can choose a subsequence (not relabeled) so that
wy, (- + nk) converges locally uniformly to v, as n — oco. As lattice translates of
plane-like solutions are still plane-like solutions, and we can also ensure that ne,, - k
remains bounded by taking another subsequence if necessary, we can just redefine
wy (- + nk) = wy(+).

2. (A monotone family of periodic limits) Consider a sequence w,, of plane-like
solutions with slope aye,, as constructed above, converging locally uniformly to



THE ALT-CAFFARELLI ENERGY FUNCTIONAL IN INHOMOGENEOUS MEDIA 45

some &+ NZ2-periodic plane-like solution v, with slope a€. Consider now the larger
family F consisting of all v which are e’ N Z%periodic and are local uniform limits
of translates of the w,,:

v(z) = nhHH;O wy(z + ky,) for some sequence k, € Z%.

By the set up in the previous part we know that F is nonempty, at least containing
the single plane-like solution v, with slope af and all of its lattice translates.
We index the family F by the boundary layer limit s € R, via Lemma [3.7, which
is the value such that
lim [v(z) — (€ -z +5)4] = 0.

Tr-— 00

The index set S C R is |£|~!-periodic. It is not immediately clear that the corre-
spondence between v € F and s € S is one-to-one, this will be justified below.

We claim that this family is monotone increasing, i.e. that if s; > so then
Vs, < Vg, ON RY. Let v!,v? € F with respective boundary layer limits s; > s9, there
exist corresponding sequences k!, k2 € Z? such that w,(x + kJ) converge locally
uniformly on R? to the respective v/. Now the sequence (kL —k2)-e, € R is either
non-positive or non-negative infinitely often, and so either w, (- + kL) — w, (- + k2)
is either non-positive or non-negative on all of R¢ infinitely often. Thus v! —v? has
a sign on R?. Since the limit at 2 - & — oo is non-negative, the sign is non-negative.
It also follows immediately that s — vs € F is single valued, since we have derived
that if s7 = s3 = s then v! < v2 < vl

3. (Existence of a maximal family) Now it is possible that by taking a subse-
quence of the w,, we could enlarge S. Let us show that, after taking an appropriate
subsequence, this is not possible.

Consider the class of subsequences X = {f : N — N : f strictly increasing}
partially ordered by the relation

f<g if f(M+N)cCg(N) for M € N sufficiently large.

That is f(-+ M) is a subsequence of ¢ for sufficiently large M € N. Corresponding
to each subsequence f € X is a monotone family m(f) = (5, {vs}ses)(f) given by
the above construction. Call the class of such monotone families

M={m: m=(5{vs}ses)(f) for some fe€ X}
partially ordered by the relation
m! <m? if S' ¢ % and v! = v? on S*.
Note that in the case m* = m(f!) and m? = m(f?) for some f! > f? indeed
m! < m?2.

Actually every ordering in M arises in that form. Suppose that m(f!) < m(f?)
but there is no ordering between f' and f2. We can define another subsequence f >
f, f? with m(f) = m(f1!). Simply choose f to count the elements of f(N)U f2(N)
in increasing order, since f! < f it is clear that m(f) < m(f!). For s € S*

1}; (z) = nh_}Héo W1 (n) (x + k}‘l(n)) = nh—{go W2 (r) (x+ k‘fcz(n))

for some sequences of lattice vectors kj,k? € Z¢ defined on f!(N), f(N) respec-

tively. Then define k; on f(N) as kj on f'(N) and k3 on f?(N). Then v =
limy, 00 Wr(n) ( + kp(ny) and so m(f1) < m(f).
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Suppose that N' C M is a totally ordered family. Let Soo = U(g {v,})enS. For
s € Seo we have s € S for some m = (S, {vs}ses) with m € N, define v3° = v;.
Note that this definition is consistent, if s € SN .S’ for some m = (5, {vs }ses) and
m = (9, {v.}scs) with m,m’ € N, then by total ordering without loss m < m’.
By the above vs = v for s € SN S’ = S. Now consider the family

m> = (Soov {US}SGSOO)

which is a natural candidate for an upper bound on N, however we need to check
that it actually arises as m(f) for an appropriate subsequence f. Actually we will
show that m® < m(f) for some subsequence f.

Since So is a subset of R it is separable, call S, C S to be a countable dense
subset. There is a countable collection f7 of subsequences with m(f/) € A so
that the union of S(f7) contains S’ and, by the total order, m(f7) < m(f*1) for
all j. By the arguments of the second paragraph above, we can also ensure that
f7 < fi*t! for all j, up to a replacement of the sequences which does not change
the values m(f7). Taking a diagonal subsequence, f(n) = f"(n), we find an f such
that S, C S(f) and v$° = v,(f) for s € S._.

Now we claim that actually Soo C S(f) and v = vs(f) for s € Soo. Let s € S,
there is a sequence s; € S, converging to S and corresponding sequences of lattice
vectors kJ such that

Wy (T + k) = v (x) asn — oo in R
Then, by a basic analysis argument, we can choose a g € X so that
Wiy (@ + k™) — 02(x) asn — oo in R

We have proven that m(f) € M is an upper bound for N.

Since every totally ordered family in M has an upper bound in M, by Zorn’s
Lemma there is a maximal element in M. That is, there is a sequence w, (a
subsequence of the original w,) such that the monotone family (S, {vs}scs) of
limits of lattice translations associated with the sequence w, cannot be enlarged
by taking a subsequence of w,,.

4. (Existence of left-right connections in the maximal family) For the final part of
the proof we will work with a monotone family of plane-like solutions (S, {vs}ses) as
constructed in part 2 above, which is maximal in the sense that applying the same
construction to any subsequence of the w,, cannot enlarge the monotone family.

Let 51,80 € S with 81 < sy and SN (s1,50) = 0. By &+ N Z%-periodicity and
strong maximum principle vs, < vs, — 0 for some § > 0 in {vs, > 0}. Since
en -7 > 0, for x - 7 sufficiently large and positive wy,(z) > v, (x), while for z - 7
sufficiently large and negative wy,(x) < vs, (x). Since {vs, > 0} is connected, and
{z-£ > s14+C} C {vs, > 0} for sufficiently large universal C also {vs, > 0}N{z-€ <
s1 + C} is connected. Thus, by continuity and the previous connectedness, there is
Zn € {vs, >0} N {z-£ < s + C} such that

Vs, (@) +0/2 < wp () < sy (2) — 5/2.

Let k,, € Z¢ be a closest lattice point to x,.
Now consider the sequence wy,(z + k), taking a subsequence if necessary the
wy(x + k,,) converge locally uniformly on R? to some v. The monotonicity

v(-+m) >wv(-) forany m L & withm-7>0
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holds for v since the same monotonicity holds w,. This is because
m-e, =m-(en —&) = len — |7 -m.

Suppose that m; L £ is a sequence with m; ,* +oco. Then v(- +m;) and v(- —m;)
are respectively monotone increasing and monotone decreasing in j and therefore
the sequences converge locally uniformly on R? to respective limits v, and v_.
Actually, by the monotonicity property,

o Hm v(z+m)=wvy(x) and m'Tli_r>n_oo v(ix —m) = vy (x)
meetze meetzd

with the limits hold uniformly on any set of the form -7 > rorxz-7 < r
(respectively). By the arguments in part 1 above the limits v, > v_ are £+ N Z%-
periodic solutions. We claim that the respective limits are actually

Uy =Vg, and v_ =vg,.

The arguments for both are basically the same, so we just consider the first limit
above.

First we point out that v, = v,, for some s, € S, this is the key place where
we need the maximality property. Otherwise we could choose a subsequence of the
wy, and a sequence of lattice vectors £,, such that w, (- + ¢,) converges to vy, but
this contradicts the maximality property of w,,. Recall that v, (z) < v(z) < vs,(x)
at some point within distance v/d/2 of the origin, and vy, > v. Thus vy > v, at
some point, and hence everywhere by monotonicity of the family, and so s > s;.
Since SN (s1,82) = 0 then sy > s and vy > v,,. By a similar argument v_ < vy, .

Last we show v; < vg,. Consider the sequence wy,(z+k,) — v as n — oo (along
a subsequence). We know that wy, (z+¥,) — vs, as n — oo for some other sequence
of translations ¢, € Z?. Note that £, - £, k, - £ must converge in R since w,, are
strictly monotone in the £ direction for n sufficiently large. If (¢, — ky,) - 7 remains
bounded along any subsequence then w, (x + ¢,,) converges to a lattice translation
of v, this is not possible since v # vs,. Otherwise lim, oo |(¢n, — kn) - 7| = 00.
First lets suppose the limit is —oo. Then for any m L £ with m -7 > 1 there is n
sufficiently large such that ¢, - 7 < k,, - 7 — m - 7, then by the monotonicity of w,

Vs, (T) = nh_)n;o wp(x+£,) < nh_)rrgo wp(x + ky, —m) = v(x —m).
Sending m - 7 — oo we find vs, < v_ < v, which is not the case. Thus the limit
limy, 00 (br, — kp) - €+ = +00. Then for any m - 7 > 1 we find

Vs, (T) = nhHH;O wp(z +£6,) > nh%ngo wp(z + ky, +m) = v(x + m).
Sending m - 7 — oo we find vs, > vy, this was the desired result. (I

Proof of Lemma[9.6, Suppose that vy, is a sequence of s; € S with s; — 5. With-
out loss we can assume s; < s, otherwise just split into two subsequences and argue
separately, so any subsequential limit of the vy, is < vs. The v, are periodic with
respect to &1, uniformly Lipschitz continuous, and due to the remark

[0, (2) — (0@ - €+ 55) 4] < Cexp(—Clow - &+ 55)+ /I€])

with constants independent of j. Thus any subsequential limits are uniform on R?.
Again by the uniform estimate above any subsequential limit v of the v,, will have

lo(z) — (az-E+5)4| =0 as z-& = oo



48 WILLIAM M FELDMAN

the same as vs. As in part 2 of the proof of Lemma [0.5] since v < v, and both
have the same boundary layer limit they must agree. Finally since s — v, is a con-
tinuous |¢|~!-periodic function R — C(R?) (with supremum norm) it is uniformly
continuous. (]

9.2. Left and right limits of Q.,Q* exist. Using the oriented sweepouts con-
structed in the previous section we can prove that left and right limits of Q*, Q.
exist at rational directions. The proof is quite analogous to the proof of continuity
of Q*, Q). at irrational directions.

Proof of Theorem[9.1. We just consider the case of a left limit for Q., the right
limit and Q* cases are similar. Let & € Z? \ {0} irreducible and call p = £/|¢| the
unit vector in the same direction. As in the proof of Theorem [8.1] we construct a
plane-like subsolution at a nearby direction ¢ with ¢-p* < 0 and with slope slightly
larger than Q. ¢(p).

Let (S, {vs}ses) be the left oriented sweepout with slope Q. ¢(p) which is given
by Lemma [9.5] Let ¢ > 0, by Lemma [0.6] there is § > 0 such that if

(9.2) 5,8 € S with |s — s'| < ¢ then sup |vs — vy | < e.

We will always assume ¢ - p= > 1/2, but will make further requirements based on
€ later.
We divide S up into a discrete and continuous part

Seont = U{(s,s’] :0<s" —5<§/3, 5,5 €8} and Sgise =5\ Scont-

Note that Scont is not really a subset of S, but every point of S.o,: is at most
distance §/4 from a point of S. Viewed as a subset of the torus R/|¢|71Z, Scont is
a finite union of half-open intervals and Sg;s. is a finite set of points. Now create a
partition so < --- < sy, sy = so + |£| !, of the unit periodicity cell of S by points
of S in the following way, include all the points of Sg;s., for each (maximal) interval
(a, b] of Scont there is a finite partition by points of S such that every interval of the
partition has length at most § and at least 6/3. More precisely, given s; € [a,b) we
know S'Ns; 4 (6/3,26/3] is nonempty so choose s;;1 maximal from the set, unless
b € (20/3,6] in which case choose sj;1 = b.

Now consider the collection of kink-type solutions connecting the points of Sy;sc,
Vs; 4,5, With s; € Sgise. Recall from Definition [9.3] that for each j there is r =
r(e) > 0 such that

(9.3) Vs, s, () > vs,_, (x) —€ for z-pt < —r/3
and
(9.4) Vs, 1.5;(x) <, () +e for a-pt >1/3.

Since this collection is finite there is an r(¢) which works for all Vs, 1,855 85 € Saisc-
Without loss we can assume that this r(¢) > C/e, and fix it from here on.

Now use the bending sup-convolutions of Section to create a subsolution.
Write the hyperplane ¢ - x = 0 as a graph over = - p = 0 by

1
T x,=Tpt —7T p.
q-p
Pull back the partition {s;};cz of the range into the domain
. q'p
Tj = — T Sj

q-p
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which is well defined and still an increasing sequence since ¢-p* < 0. Now we want
that 7; — 7;_1 > r for each s; € Sgisc, we will enforce it actually for all j. For this
is suffices that |q - p*| < §/6r since
T = Tl = *qq_ppL (sj = sj-1) = §0la-pl/la-pH| >

Note that since 9, r are already fixed depending on €, the requirement on the size of
|g-p™| is also a function only of . Choosing  larger if necessary depending on ||, we
can choose £; to be an integer multiple of |¢| such that /3 < min{¢; —7;, 741 —¢;}.

We use the bending sup-convolutions again as in Section let o = epi(-/r),
defined as above in with the parameter M still to be chosen (it will be chosen
universal). For each j € Z, if s; € Sg;sc then

~ _p(—zr;)
w](z) = Usj—lasjj (1‘ - ij_)
while if 55 € Scont
,‘P('fw'rj)

W;j(r) = Vs, (z).
Each w; is subharmonic in its positivity set and
(9.5) V| = (1 - CMe)(Q(x) - 2[VQ|loMe) on d{w, >0}

Then localize each @; to a vertical strip near z - p* = 7;

_Jwi(x) it <az-opt <7
w](m) I else

Finally define
w(e) = max{max w; (z), (14 £)(Quelp)a g — Co))

although this appears to be a maximum over an infinite set, at each x only three of
the w;(x) take a finite value. The constant Cy, depending on universal parameters,
will be specified below. We will show that

(9.6) w(z) = max{w;_1(x), w;(x),wj1(2)} = w;(x) on z-p= =7, x-p<CJe
and
(9.7 w(@) = (1+)(@uep)z - a — Co)y for z-p> Ce,

once these two are shown then w defined as above will be continuous subsolution.
Since w will satisfy (9.5 on the free boundary, (1 4+ Ce)w will be a subsolution of

(3.1) with slope (1 + Ce)Q..¢(p)g showing that Q.(q) < (1 + Ce)Q.e(p).
The proof of (9.7) is basically the same as in the proof of Theorem SO we
skip it. Now consider . Let x-p < O/e with - p*t = Tj, then, if s; € Scont,

wj(x) > v, (x) + cp(x — xr,) > vs,_, (x) — €+ cMe,
using Lemma 8.6 and (9.2), or in the case s; € Saisc
w;j(x) > vs,_y 5, (x — Liph) + cMe > vy, (x) — e+ cMe
using again Lemma and
(@ —Llp™) - p- = —(mj1 —45) < —1/3

so (9.3) applies.
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For wjt1(x), if 841 € Scont
wy11(2) < gy, () + Copl — 25,
< s, (2) + Co(r — 27, ,)
< s, (z) + Coe
using the monotonicity of vs and Lemma 8.6 If s;;1 € Sgisc then
Wjs1(2) < Vs, s, (2 — LpT) 4+ Ce < vy, (2) + Coe
using again Lemma 8.6 and the monotonicity.
For wj_q(x), if sj_1 € Scont
wj—1(z) < vy, (x) + Co(x —x7,_,) < v, (x) + Coe
while if s;_1 € Sgisc
wj_1(z) S vs; 45, 5(x —Li—1pT) + Ce < vy, (x) + £+ Ce
using again Lemma and
(@ = Goap™) = (75— 1) 2 7/3

so (9.4) applies.
Combining all the above, if we choose M > Cy/cg then we have confirmed .
a

10. MINIMAL SUPERSOLUTIONS / MAXIMAL SUBSOLUTIONS

In this section consider the minimal supersolutions / maximal subsolutions of
in the complement of a convex obstacle. Then the existence of a recovery
sequence for general solutions of the augmented pinning problem will follow
from a simple argument. This will prove Theorem as a consequence of a more
general result which appears below as Proposition part

Let U C R be outer regular with R? \ U convex and compact. Consider the
minimal supersolutions and maximal subsolutions of

Au=0 in{u>0}NU
(10.1) [Vu| =Q(z/e) on d{u>0}NTU
u=1 on R4\ U.

We aim to show that the sequence of minimal supersolutions converges to the
solution u of

Au=0 in{u>0}NU
(10.2) [Vul = Q*(Vu) on d{u>0}NU
u=1 on R4\ U.

This result can be found below in Proposition [10.5]
For the sequence u® of maximal subsolutions the goal is, instead, to show that
(@ — u®)4+ — 0 uniformly where @ solves

Au=0 in {u>0}NU
(10.3) IVul = Qi cont(Vu) on d{u>0}NU
u=1 on R%\ U.
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This result can be found below in Proposition part

The asymmetry between the results has to do with the convexity assumption on
R?\ U. If we imposed that U is convex and compact instead the results would be
reversed. The more difficult part is the convergence of the maximal subsolutions,
however all of the hard work was already done in Section [7] and Section [8 At this
stage the proof is a relatively easy application of the definition of the continuous
pinning interval Definition [7.4}

The main ideas to prove the convergence of the minimal supersolution outside of
a convex obstacle have already been developed in the author’s previous work with
Smart [16]. The main work is to give the correct subsolution property satisfied by
the minimal supersolution, and then to prove a comparison principle. Basically we
are defining a notion of viscosity solution problems of the form

Ayu=0 in {u >0}, and H(Vu)=1 on of{u> 0}

when the free boundary condition H(p) is only lower semi-continuous in the gradient
variable. Those results are recalled below.

10.1. Viscosity solutions with discontinuous Hamiltonian.

Definition 10.1. A supersolution of (10.2)) is a function u € LSC(R?) that is
compactly supported, satisfies u > 1ga\y7, and such that, whenever ¢ € C>(R%)
touches u from below in U, there is a contact point x such that either

Ap(x) <0
p(r) =0 and |[Vo(z)| < Q" (Ve(x)).

It is standard to check, by Perron’s method, that there is a minimal supersolution
of (10.2)) and it satisfies the following subsolution condition.

Definition 10.2. A subsolution of (10.2) in a function v € USC(RY) that is
compactly supported, satisfies u < 1ga\y and such that, whenever ¢ € C>(R%)

touches u from above in {u > 0} N D some D C U open, there is a contact point x
such that either
Ap(x) >0,
or ¢(z) =0 and
Vip(@)| 2 liminf Q"(Veo(y))-

Again one can check by standard techniques that the maximal subsolution, in
the sense of Definition[10.2} of (10.2) is a supersolution. Also note that the maximal
subsolution of (10.3)) satisfies this same pair of conditions, of course with @* replaced
by @« cont, since Qx cont is upper semi-continuous just like Q*.

In a convex setting a weaker subsolution condition is sufficient to identify the
minimal supersolution. Basically, the free boundary condition only needs to be
checked by linear test functions.

Definition 10.3. A weakened subsolution of (10.2)) in a function u € USC(R?) that
is compactly supported, satisfies u < 1ga\yy and such that, whenever ¢ € C>(R%)

touches u from above in {u > 0} N D some D C U open, there is a contact point x
such that either
Ap(z) >0,
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or ¢(x) = 0 and either
[Ve(z)] = Q" (Vep(2)),
or

V(U) contains two linearly independent slopes.

One of the main results of [16] was comparison principle / uniqueness for the
above notion of solution when the set R? \ U is compact and convex.

Theorem 10.4 (Theorem 3.19 of [16]). Suppose R?\ U is compact, convez, and
inner reqular. There exists a unique u which s a supersolution and a weakened
subsolution of (10.3). Moreover {u > 0} is convez.

In particular the minimal supersolution of , when RY\ U is convex, is the
same as the maximal subsolution, in the sense of Definition [10.3] Furthermore,
given a supersolution u of , one only needs to check the weakened subsolution
condition Definition [[0.3] to see that u is minimal. Note that the same result
applies to because the equation satisfies all the same assumptions (upper
semi-continuity of Q. cont)-

Thus, in the convex setting, to show the convergence of the minimal supersolu-
tions u® to to the minimal supersolution u of , we just need to show
the supersolution and weakened subsolution property for any subsequential limit of
the u®.

Proposition 10.5. Let u® be the minimal supersolution of o Ifut — u
uniformly along some subsequence € — 0 then wu is a supersolution and weakened

subsolution of .

Proof. The supersolution property has already been established in Section [6] and
u harmonic in {u > 0} is standard. Note that, by Lemma the uniform
convergence u° — u also implies that the free boundaries 9{u® > 0} converge in
Hausdorff distance to d{u > 0}. Suppose that ¢ = p-(x —x¢) touches u from above
in {u > 0} N D for some open D C U with

Ip| < Q*(p)

for some p € R?\ {0}. We may assume that D is compact since {u > 0} is compact.
By the strong maximum principle the contact set is a compact subset of O{u >
0} N D. By the strict ordering on dD we may choose 6 > 0 so that {u > ¢ — 4} N
{u > 0} N D is compactly contained in D.

Let v = Q'f’(lp)v* where v* is a plane-like solution with slope Q*(p), then v is a
supersolution of since |p|/Q*(p) < 1. There is a sequence of points k, € Z?
such that

rz—ekp
€

ev( ) = (¢ — )+ uniformly in D

and the free boundaries converge in the Hausdorff distance. Thus {v¢ < v®}N{u® >
0} N D is nonempty for sufficiently small € > 0. Then

w® =

VAUt €D
u® x¢ D

is a strictly smaller supersolution than u of (10.1). This is a contradiction. [



THE ALT-CAFFARELLI ENERGY FUNCTIONAL IN INHOMOGENEOUS MEDIA 53

10.2. Augmented pinning problem. In this section we introduce a free bound-
ary problem with pinning interval, with some additional information augmenting
the free boundary condition. We will motivate this problem by deriving it as a limit
of spatially homogeneous problems.
Suppose that we are given [Q., Q*] satisfying all the properties of Theorem [1.4

That is

(a) Q.,Q* are respectively lower and upper semi-continuous on S¢~1.

(b) There is some number (Q?)'/2 € [Q.(e), Q*(e)] for all e € S4 1.

(c) Left and right limits of Q.,Q* exist at every e € S?~! and Q,,Q* are

continuous at irrational directions.

satisfying

Then we augment this with a continuous pinning interval [Q« cont, @fone)

(d) Qx.conts Qons are respectively upper and lower semi-continuous on S¢-1.

(e) FOI' all e e Sd_17 <Q2>1/2 € [Q*,Cont(e)vQZont(e)] - [Q*(€)7Q*(€)]

(f) Left and right limits of Q. cont, Q%o €Xist at every e € S4-1 and [Qx.cont, Q
[Q., Q*] at irrational directions.

Note that, combining assumptions, the left and right limits of Q cont and @Q,,; at
a rational direction agree with the corresponding left and right limits of Q., Q*.

We do not claim to completely classify the limit shapes. We will just consider the
exterior case R? \ U is convex and compact, analogous results hold for the interior
case U convex and compact. Consider the problem

Au=0 in {u>0}NU
(10.4) [Vu| € [Qucont(Vu), Q" (Vu)] on H{u>0}NU
u=1 on R4\ U.

Note that, unlike in (1.4)), the subsolution condition is upper semi-continuous. This
means we need to be careful with the notion of subsolution.

Definition 10.6. A subsolution of (10.4) in a function v € C(R?) supported in
a compact convex domain {u > 0}, satisfying u < 1ga\;y and such that, whenever
¢ € C®(R?) touches u from above in {u >0} N D some D C U open, there is a
contact point x such that either

Ap(z) =0,

or p(z) =0 and

|v50(x)‘ Z hm lIlf Q*,cont(vsp(y))
{u>0}>y—=z

10.3. Limit shapes of local minimizers.

Proposition 10.7. Let U such that R\ U is compact and conver.
(i) Let u® be the minimal supersolution of . Then u® — u where u is the
minimal supersolution of .

(i) Let u® be the mazimal subsolution of . Suppose that u® — u along
some subsequence, then u > u where u is the maximal subsolution of
(or, equivalently, ).

(15i) Let u be a solution, in the sense of Deﬁnition and Definition
such that {u > 0} is compact and convex. Then there exists a sequence
u® solving , local energy minimizers in the sense of Section such
that u* — u as € — 0.

Zont] =
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Note that part of the Proposition is the result stated in the introduction as
Theorem [LH]

Remark 10.8. Actually the proof of part (iii) still works in the case when R¢\ U
is only assumed to be strictly star-shaped, as long as we add the assumption that
{u > A} is compact and convex for all sufficiently small A > 0. Based on numerical
simulations of related problems, |2}/3], there is some reason to expect convexification
of the small A level sets under an expanding quasi-static dynamics even without
convexity of the data R%\ U.

Proof of Proposition and, in particular, Theorem[I1.5 We have already addressed
the convergence of the minimal supersolutions above in Proposition [10.5] First we
prove the result on the maximal subsolutions, then we show how the first two parts
imply the third.

1. Let u® be the maximal subsolution of and suppose that u® — u uni-
formly along some subsequence (not relabeled). The maximal supersolution @ of
Definition is also the minimal supersolution of with Qx« cont- We aim to
show the supersolution property

|V’LL| < Q*,cont(vu) on a{u > 0}

Then we will find v > w.

Let ¢ € C°(R?) touch u from below in D at a free boundary point zy for some
open D C U, without loss take xg = 0. Call e to be the unit vector in the direction
V(zo). Suppose that

Ap(0) <0 and |Vg|(0) > a > Qx cont(e).
Let § > 0, we can assume, by shrinking D, perturbing ¢ by a quadratic, and making
a small translation in the e direction, that

[Vl > a ond{p >0}ND, ¢0)>u0)=0,¢~<u ondD,
and
||§—& x)—e| <6 for x€D.
From the definition of Q. cont(e), if & > 0 is sufficiently small ¢ has a recovery
sequence v subsolutions of (1.1]) in D with
- B S . -
E11_1}(1)1115’["(1)E wy) >0, ;1_1)1(1)5611[5)\115 vl =0

and
;i_I)I(l)dH({UE >0}ND,({v°*>0}U{p>0})ND)=0.

In particular ve < u on 9D and v°(0) > u(0) = 0 for € > 0 sufficiently small, and
therefore,
7 (z) = vé(z) Vus(z) forxze D
u® forx e U\ D
is a strictly larger subsolution than u®, which is a contradiction.
2. Without loss 0 is in the interior of R?\ U. Note that when u is a solution
of (10.4) and {u > 0} and R?\ U are both compact and convex, the super-levels

{u > A} are compact and convex for all 1 > X\ > 0, this follows from a result of
Caffarelli and Spruck [13]. Choose a level set {u > A} convex, and rescale

Ky=(1—-Co\N{u>A} and K* = (14 CoA){u > \}.
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The universal constant Cy will be made precise below. Then define u* and wuy
mapping R? — [0, \] to be, respectively, the minimal supersolution and maximal
subsolution of (10.4)) in the respective domains U* = R%\ K* and Uy = R%\ K
with

=X on K* and uy =X on K,.
Similarly let ™ and u§ be, respectively, the minimal supersolution and maximal
subsolution of respectively in Uy and U, with data

uM* =X on K* and u§ =\ on K.
As shown in Theorem both {u* > 0} and {uy > 0} are convex. Furthermore
ut < u(ﬁ) in U*,
because u( 55 -) is a strict supersolution and * is the minimal supersolution and

they agree on OK*, similarly u(ﬁ) < uy in U,.

Non-degeneracy follows from Lemma [2.13] and then using the upper bound
uM,uy < A
dp (0{u§ > 0},0K)) + dy (0{u™* > 0},0K*) < CA
with C universal. Now Cj is chosen so that
{u™* > 0} € K\ + Bex € K cc {u™* > 0}.

This is possible because of the star-shapedness of K with respect to a neighborhood
of the origin.

As shown above u™¢ — v and liminf._, u§ > uy as € — 0 uniformly in R4,
Thus, by nondegeneracy Lemma [2:13] for € > 0 sufficiently small

{u* >0} cC {u(i355) > 0} and {u(;=5) > 0} CC {u§ > 0}
and by maximum principle
ute < u(ﬁ) in U» and u(ﬁ) <u§ in U,.
Extend v and u§ to U by
() = {UA,E(LL‘) re U ond v (z) = {ui(w) x € Uy
u(ﬁx) r € K* u(ﬁm) x € K.

Then the superharmonic/subharmonic properties of v° and v° are easily checked,
for x € 9K and r > 0 sufficiently small

_ 1 1 _
7 (@) = ulrehe) = g7 /B ulrebszy) > /B () dy

and similar for v°.
Now, using v* < v°, we apply Lemma to find that there is a minimizer v®
of the energy F.(-,U) in the constraint set

A={vec H'(U):v* <v <7 and v=1 on 9U}
which is, furthermore, a viscosity solution of satisfying the strict separation
v® <" <.
Thus, for any £ < go(A),
[v° —u| < CA and dg({v° > 0}, {u>0}) < CA.

Since A > 0 was arbitrary we conclude. [
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APPENDIX A. AUGMENTED PINNING PROBLEM AS A LIMIT OF SPATIALLY
HOMOGENEOUS PROBLEMS

In this section we derive the augmented pinning problem via a limit of regular
spatially homogeneous pinning problems. This gives at least a plausibility argument
for why Q. cont and/or QF,,; may be nontrivially different from the upper and lower
semicontinuous envelopes of @, and Q™.

Consider a natural limiting procedure to derive , one might choose to reg-
ularize the jump discontinuities of [Q,, Q@*]. It is natural to do this in a monotone

way by an inf/sup convolution. We define the inf and sup convolving operators
O..n and 0% respectively on LSC(S? 1) and USC(S471)

O, nf(e) = inf {f(e)+nle’ —e|} and O f(e) = sup {f(e') —nle’ —el}.
e'eSd-1 e’egd—1
Note that O, , f and 0% f are Lipschitz continuous with constant n on S%~!. The
natural monotone approximation procedure would be to define

Qun(e) = 0unQu(e) and Q(e) = T,Q5(e).

Basically we are regularizing the discontinuities of I(e), replacing by Lipschitz
spikes. In this case it is straightforward to check that the minimal supersolution w,,
and maximal subsolution %,, associated with Q. , and @}, do converge, respectively,
to the minimal supersolution u and maximal subsolution u of .

Now we consider a different approximation procedure which is not monotone.
Assume that we are given I(e) = [Q.(e), Q*(e)] and Ioni(€) = [Qx cont(€), @roni(€)]
satisfying the assumptions listed in Section Define
(A.1)

Q*,m(e) =

0%, Qu.cont(e) € irr&?tional and Q (¢) = OvmQloni(e) e irra.btional
Q.(e) e rational Q*(e) e rational

and send m — oo. This isn’t really a regularization, Q. and Q;, may still have
jump discontinuities at rational directions, but one can think of regularizing again

Qumon(e) = OunQum(e) and Q:n,,n(e) =[0,Q7,.(e).

and sending both m,n — oo but with m = o(n).

The pinning intervals I, (e) still converge as m — oo pointwise to I(e), however
the convergence is no longer monotone. Are all solutions of achieved as a limit
of solutions to (1.4),, for the approximating pinning intervals [Q. m(e), @%,(e)]? It
turns out that the answer is no, limits of solutions to m actually satisfy a
stronger condition in general.

Proposition A.1. Let d =2, U such that R?> \ U is convex. We refer to m

for problem with pinning interval [Qu.m, Q%] as defined in .
(i) Let u,, be the minimal supersolution of s
where u is the minimal supersolution of .
(i) Let u,, be the mazimal subsolution of
where u is the mazximal subsolution of .
(iii) Let u be a solution to with convex support. Then there exists a
sequence of solutions umm such that u,, — u uniformly as m —

00.

then u,, — w uniformly

then u, — u uniformly

m?’
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Proof. We show convergence of the minimal supersolution and maximal subsolu-
tion. The last part follows as in Proposition [10.7]

First the minimal supersolutions. Suppose that w,, — w uniformly along some
subsequence. By Theorem we just need to check the supersolution and weak
subsolution property for u. The supersolution property is easy because of the
monotonicity @}, * Q*. The weak subsolution property is also easy because we
only need to test with linear functions, the convergence @, — @* pointwise on
S9=1 is enough.

Now the maximal subsolutions, again we just need to check the subsolution and
weakened supersolution condition. Suppose that u,, — u uniformly along some
subsequence. The supersolution property in the limit is, for any ¢ touching u from
below at z € U N d{u > 0} either Ap(z) <0 or

IVel(z) < limsup Qum(Ve(y)).

Y—x,m—>00

Since Q.cont is upper semicontinuous for any € > 0 there is a neighborhood
N of Vy(z) such that for m sufficiently large and e € N we have Q. n(e) <
Q*,C(mt(Vgo) + €. Thus

IVel(@) < Qucont (Vo ().

Now we consider the weak subsolution condition, this is the interesting part. Sup-
pose that p(z) = (p - z)+ touches u from above at 0 € 9{u > 0} N U in some
domain D C U with p rational. Then we can find z,, — 0 such that ¢(z — z,,) =
[p- (x—xm)]+ touches u,, from above at z,, € d{u,, > 0}. Since {u,, > 0} is con-
vex |Vuy,| is defined and concave on the facet {p- (z — z,,,) = 0} N O{u,, > 0}. For
m sufficiently large the left and right limits of Q. ., at e are Q. cont(€). We argue
below that the facet must be a singleton {p - (z — z,,) = 0} N dH{upy > 0} = {zn }
This means that given r > 0 small enough that B,(z,,) C D and for |¢ — p| suf-
ficiently small w,, > [¢ - (x — z,)]+ is compactly contained in B, (x,,) so for an
appropriate choice of z,, now [¢- (x — a,,)]+ touches u,, from above in B,(z,,) at
x,, € 0{up, > 0}. Therefore

la] > Qu.m(q)
and
pl= lim Tm  Qumn(a) = Qucont(p)

mM—00 q—p, qF
The case of irrational p is easy because of the correct monotonicity.

Now we argue that if wu,, solves (10.2)) with convex support and the left and
right limits of Q. ,, at p agree, with value Q. cont in this case, then the facet with
normal p, call it €, is trivial. This fact was used above. The argument is in
Caffarelli-Lee [6, Lemma 3.5], but it is very brief so we repeat it here with more
details. Suppose 2, is a non-trivial line segment, without loss 0 € ,,. Then |V,|
is concave on the facet and therefore must be identically equal to Q+ cont(p). Then
extend u by reflection through Q, and subtract off the linear function Q*(p)z - p
to obtain a harmonic function v in an open domain R? > V > §,, with v = 0 and
|Vu| = 0 on §,. We identify R? with the complex plane C and after rotation we
can assume that €, is a segment of the real line. Then

© = Uy — Uy

is analytic in V and ¢ =0 on VNR. Thus ¢ =0 in V and u is linear with slope p
in €, this is not the case.



58

(1

2]
(3]
(4]

[5

(6]
7]

(8]
[9]
(10]
(11]
(12]
(13]

[14]

(15]
(16]
(17)
(18]
(19]
20]
(21]
(22]

(23]

24]

WILLIAM M FELDMAN

REFERENCES

Giovanni Alberti and Antonio DeSimone, Wetting of rough surfaces: a homogenization ap-
proach, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2053, 79-97.
MR2124194

H. Aleksanyan and H. Shahgholian, Discrete Balayage and Boundary Sandpile, ArXiv e-prints
(July 2016), available at |1607.01525,

, Perturbed divisible sandpiles and quadrature surfaces, ArXiv e-prints (March 2017),
available at 1703.07568.

H. W. Alt and L. A. Caffarelli, Ezistence and regularity for a minimum problem with free
boundary, J. Reine Angew. Math. 325 (1981), 105-144.

Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman, Variational problems with two
phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984), no. 2, 431-461.
MR732100

L. Caffarelli and K. Lee, Homogenization of oscillating free boundaries: the elliptic case,
Comm. Partial Differential Equations 32 (2007), no. 1-3, 149-162.

L. A. Caffarelli, K.-A. Lee, and A. Mellet, Homogenization and flame propagation in periodic
ezcitable media: the asymptotic speed of propagation, Comm. Pure Appl. Math. 59 (2006),
no. 4, 501-525. MR2199784

L. A. Caffarelli and A. Mellet, Capillary drops: contact angle hysteresis and sticking drops,
Calc. Var. Partial Differential Equations 29 (2007), no. 2, 141-160. MR2307770

Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems 68 (2005),
x+-270.

Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. I. Lips-
chitz free boundaries are C%*, Rev. Mat. Tberoamericana 3 (1987), no. 2, 139-162. MR990856
, A Harnack inequality approach to the regularity of free boundaries. II. Flat free
boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1989), no. 1, 55-78. MR973745
Luis A. Caffarelli and Rafael de la Llave, Planelike minimizers in periodic media, Comm.
Pure Appl. Math. 54 (2001), no. 12, 1403-1441. MR1852978

Luis A. Caffarelli and Joel Spruck, Convezity properties of solutions to some classical vari-
ational problems, Comm. Partial Differential Equations 7 (1982), no. 11, 1337-1379.
Laurent Courbin, Etienne Denieul, Emilie Dressaire, Marcus Roper, Armand Ajdari, and
Howard A. Stone, Imbibition by polygonal spreading on microdecorated surfaces, Nature Ma-
terials 6 (2007/08/12/online), 661 EP —.

Antonio DeSimone, Natalie Grunewald, and Felix Otto, A new model for contact angle hys-
teresis, Netw. Heterog. Media 2 (2007), no. 2, 211-225. MR2291819

W. M Feldman and C. K Smart, A free boundary problem with facets, ArXiv e-prints (No-
vember 2017), available at |1711.00965|

William M. Feldman and Inwon C. Kim, Continuity and discontinuity of the boundary layer
tail, Ann. Sci. Ec. Norm. Supér. (4) 50 (2017), no. 4, 1017-1064. MR3679620

Carlos Kenig and Christophe Prange, Uniform Lipschitz estimates in bumpy half-spaces,
Arch. Ration. Mech. Anal. 216 (2015), no. 3, 703-765. MR3325774

Hyoungsoo Kim, Zhong Zheng, and Howard A Stone, Noncircular stable displacement pat-
terns in a meshed porous layer, Langmuir 31 (2015), no. 20, 5684-5688.

Inwon Kim and Antoine Mellet, Liquid drops sliding down an inclined plane, Trans. Amer.
Math. Soc. 366 (2014), no. 11, 6119-6150. MR3256195

Inwon C. Kim, Homogenization of a model problem on contact angle dynamics, Comm.
Partial Differential Equations 33 (2008), no. 7-9, 1235-1271.

Roland Lenormand, Liquids in porous media, Journal of Physics: Condensed Matter 2 (1990),
no. S, SA79.

Betul Orcan-Ekmekci, On the geometry and regularity of largest subsolutions for a free bound-
ary problem in R2: elliptic case, Calc. Var. Partial Differential Equations 49 (2014), no. 3-4,
937-962. MR3168617

I. Palupi and N. Pozér, An efficient numerical method for estimating the average free bound-
ary velocity in an inhomogeneous Hele-Shaw problem, ArXiv e-prints (August 2018), available
at 11808.03044.



1607.01525
1703.07568
1711.00965
1808.03044

THE ALT-CAFFARELLI ENERGY FUNCTIONAL IN INHOMOGENEOUS MEDIA 59

[25] Norbert Pozar, Homogenization of the Hele-Shaw problem in periodic spatiotemporal media,
Arch. Ration. Mech. Anal. 217 (2015), no. 1, 155-230. MR3338444

[26] R. Raj, S. Adera, R. Enright, and E. Wang, High-resolution liquid patterns via three-
dimensional droplet shape control, Nature Communications (2014).

Email address: feldman@math.utah.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CiTY, UT 84112, USA



	1. Introduction
	2. Background
	3. Plane-like solutions and the pinning interval
	4. Energy minimizers
	5. Examples
	6. Limits of solutions to the -problem
	7. The continuous part of the pinning interval
	8. Irrational directions
	9. Rational directions
	10. Minimal supersolutions / maximal subsolutions
	Appendix A. Augmented pinning problem as a limit of spatially homogeneous problems 
	References

