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1 Introduction

The cosmic initial conditions problem presents an unusual theoretical puzzle. Typically, in
understanding a dynamical system, the challenge lies in finding the right (differential) equa-
tions that describe how the system evolves with time. The specific point at which one starts
solving the evolution equations is of no particular importance, especially because the intent
is to apply the same equations to understanding the behavior over a wide range of systems
and initial conditions. In cosmology, on the other hand, the relevant dynamical equations
are well-known. Measurements of the cosmic microwave background and other astrophys-
ical experiments confirm that Einstein’s classical theory of general relativity describes the
time evolution of our large-scale universe since primordial nucleosynthesis to an astonishing
accuracy, if we specify the initial geometry and radiation-matter content. The very same ob-
servations, though, also teach us that the cosmic initial conditions cannot be explained by the



same physics that underlies the evolution equations because, in that context, they are expo-
nentially rare or finely tuned. Some mechanism operating before primordial nucleosynthesis
is needed to explain how these initial conditions arise.

The goal of this paper is to show that slow contraction is a ‘robust’ smoothing mecha-
nism that can naturally generate the cosmic initial conditions. The slow contraction phase
is induced by a canonical scalar field evolving down a steep negative potential coupled to
Einstein general relativity, as postulated in many bouncing and cyclic cosmological mod-
els [17, 18, 20, 26]. We adapt the tools of numerical general relativity to solve the full set
of coupled Einstein-scalar field equations beginning from a wide range of highly inhomoge-
neous and anisotropic states that would not be compatible with observations of the cosmic
microwave background and large-scale structure if there were not a robust smoothing and
flattening mechanism. The measure of ‘robustness’ is how sensitive the outcome is to the
initial state and whether the outcome converges closely and rapidly to the initial conditions
needed to explain cosmological observations.

More precisely, the large-scale universe evolves as predicted by the Einstein equations if
the cosmic initial conditions at primordial nucleosynthesis are very precisely set as follows:

i. the background spacetime geometry is smooth and spatially flat described by a sin-
gle dynamical quantity, the Friedmann-Robertson-Walker (FRW) scale factor a(r), or
equivalently, the associated Hubble radius © = |H~!|. (Here and throughout, the
Hubble parameter H is defined as the logarithmic time derivative of the scale factor
H = d'/a and prime denotes differentiation with respect to the proper FRW time
coordinate 7.);

ii. to first sub-leading order, there is only a single kind of deviation from this geometry,
namely a nearly scale-invariant and gaussian spectrum of adiabatic curvature fluctua-
tions;

iii. there are no measurable first-order tensor, vector, or isocurvature fluctuations in the
initial space-time geometry;

iv. the initial background geometry as well as the initial spectrum of curvature fluctuations
are correlated over 10%° (or, equivalently, ¢50) Hubble-sized patches.

Notably, under these initial conditions, the Finstein equations dramatically simplify and the
subsequent large-scale evolution of 14 billion years is given by the Friedmann equation,

dH!
dr

= Eoff, (1.1)

where o = (3/2)(14p/p) is the equation of state of the dominant stress-energy component,
relating its pressure p to its energy density p. (Throughout, we work in reduced Planck units.)
Furthermore, as the background slowly expands, the initial curvature fluctuations in the
space-time geometry grow and become the seeds from which galaxies, stars and planets form.

However, in a classical general relativistic space-time, this combination of initial con-
ditions is highly non-generic if the stress-energy is sourced by ordinary (baryonic or dark)
matter and radiation. Accordingly, the cosmic initial conditions problem consists in identify-
ing a mechanism that generically (i.e., for most initial data) leads to the conditions as given
through (i.)—(iv.).



The traditional approach to resolving the cosmic initial conditions problem has been
to propose a ‘classical’ smoothing mechanism [8]. For this purpose, it is necessary that the
mechanism possesses a dynamical attractor solution in which the relative contribution of
small inhomogeneities and anisotropies to the total energy density shrinks with time. In all
known examples, classical smoothing is achieved by introducing a novel stress-energy com-
ponent, typically sourced by scalar field ¢, that evolves to dominate all other contributions
to the generalized Friedmann constraint,

H2:}<@m or @)_ﬁ a?
3 a?  ab’

ad | at e (1.2)

Here, om, or, 04 represent the energy density of matter, radiation and the scalar field ¢,
respectively, at some initial time to, and the scale factor is normalized such that a(tp) = 1.
The last two terms correspond to spatial curvature and anisotropy.

From eq. (1.2), it is immediately clear that there can only be two kinds of classical
smoothing mechanisms:

e in an expanding universe (H > 0): 0 < e < 1 (inflation);
e in a contracting universe (H < 0): € > 3 (slow contraction).

The respective equation of state ¢ is achieved by choosing a suitable potential energy density
V(¢). For example, assuming a scalar field with canonical kinetic energy density and a
negative exponential potential

V(¢) = Voexp(—¢/M), (1.3)

where Vj < 0, the contracting FRW space-time is stable to small perturbations and hence a
dynamical attractor solution of the Einstein-scalar field equations, if the characteristic energy
scale M < /6. In this case, M=t = /2.

In addition, both inflationary expansion and slow contraction transform quantum fluc-
tuations generated on scales smaller than the Hubble radius into ‘squeezed modes’ on scales
larger than the Hubble radius, as required by condition (ii). During slow contraction, for
example, the characteristic wavelength of a fluctuation, A, decreases in proportion to the
scale factor, A — A x a(t); but the Hubble radius decreases more rapidly, as © ~ a° where
e > 3. Consequently, a mode that originates on scales much smaller than a Hubble patch
evolves to a wavelength extending over scales exponentially larger than the Hubble radius.

Yet, classical smoothing is necessary but not sufficient by far to explain our large-scale
universe. Satisfying this criterion alone would mean that only an infinitesimal set of initial
conditions, namely small classical perturbations around FRW, lead to a universe as we observe
it. Another, obvious requirement is that the classical evolution remains stable to quantum
fluctuations. Notably, inflation is a classical but famously not a quantum smoother [16, 27,
30]; but slow contraction is both a classical and a quantum smoother [8].

More importantly, a classical smoothing phase, even if it is stable to quantum fluctu-
ations, does not solve the cosmic initial conditions problem if it is only stable under small
perturbations around a smooth and flat FRW background. After all, the set of space-time
geometries that represent small deviations from a FRW space-time only represent a measure-
zero set of all permitted and (physically) plausible initial conditions. To generically drive
the universe towards a flat, homogeneous and anisotropic space-time, a classical smoothing



mechanism must be a ‘robust’ smoother, i.e., insensitive to a wide range of arbitrary initial
conditions including those well outside the perturbative regime of the attractor FRW solution.

In this paper, we examine quantitatively the robustness of slow contraction using a
numerical scheme that enables the variation of all freely specifiable physical quantities that
characterize the initial spatial hypersurface, such as the initial shear and spatial curvature
contributions as well as the initial field and velocity distributions of the scalar that drives
the cosmological evolution. In fact, the only restrictions we have on the initial data result
from imposing periodic spatial boundary conditions and choosing an initial three-metric that
is conformally flat.

In particular, we ‘empirically’ confirm the well-known ultra-locality conjecture [6] and
demonstrate that, generically, all gradients rapidly become negligible as the evolution pro-
ceeds. Finally, we show that the homogenous end states we identified numerically are the
only stable attractor solutions of the underlying relativistic system of evolution and constraint
equations.

2 Evolution and constraint equations in orthonormal tetrad form

To study the robustness of slow contraction in smoothing and flattening the universe, we solve
the full Einstein-scalar field equations for a wide range of highly non-perturbative initial con-
ditions using the techniques of numerical general relativity. The study entails numerically
evolving a system of coupled non-linear, second-order partial differential equations. Per-
forming such a computation necessitates finding a ‘good’ formulation of the field equations
satisfying two criteria:

e the formulation is ‘well-suited’ to the physical situation; and
e the formulation is well-posed.

The term ‘formulation’ is given multiple definitions in the literature. Here, we follow the
convention established in mathematical relativity (e.g., see [15]): a ‘formulation’ (sometimes
called an initial value formulation) of a given theory is the representation of the underlying
system of differential equations obtained by choosing a particular coordinate system. Fur-
thermore, we define a formulation to be ‘well-posed’ if the underlying system of differential
equations can be put into a form such that, for given initial conditions, there exists a unique
solution that depends continuously on the initial conditions. Note that a formulation is not
equivalent to a gauge choice. Different gauge conditions can be implemented in the same
formulation, but not all gauge choices lead to a well-posed formulation.’

Typical cosmological studies in the literature are perturbative and only consider the
second criterion. The diffeomorphism invariance of the field equations is exploited to simplify
the theoretical analysis and straightforwardly relate the predictions of different cosmological
models to observations.

For example, in studying the evolution of perturbations away from FRW in the very
early universe, a coordinate basis using the well-known (3 + 1) or Arnowitt-Deser-Misner
(ADM) decomposition [2] proves to be well-suited. The ADM formulation naturally rests on
the homogeneity and isotropy of the FRW background solution, enabling the separation of

'We note that some fields use the phrase ‘well-posed problem’ as we use ‘well-posed formulation’ here. The
latter is a common usage in the modern relativity literature and implicitly includes that appropriate boundary
conditions and initial data are specified.



linear perturbations around this background into decoupled scalar, vector, and tensor degrees
of freedom that each evolve independently mode by mode [3, 14, 22]. Finally, a suitable gauge
choice is made for the physical situation at hand. In a gauge such as unitary, the scalar part
of the linearized spatial metric component can be identified with the co-moving curvature
perturbation, an invariant of the linear theory that directly determines the temperature
anisotropies of the cosmic microwave background (CMB) [5, 23].

However, for the non-perturbative numerical analyses presented in this paper, the com-
mon procedure adapted in the cosmology literature is insufficient. Without a well-posed
formulation of the full (non-perturbative) Einstein-scalar field equations, the existence of a
unique solution is not guaranteed. For a given set of initial conditions, the system of equa-
tions might admit no solution at all or it might admit multiple solutions. That is, in an
ill-posed formulation, no predictions can be derived. A common manifestation is the ‘blow
up’ of the numerical code within finite time even if there is no fundamental instability in the
underlying theory.

Notably, many formulations of the Einstein-scalar field equations, including the ADM
decomposition popular with cosmologists, are ill-posed. In particular, for the case where the
lapse and shift are given by algebraic relations, it is straightforward to show that the resulting
partial differential equations for the evolution subsystem of the Einstein-scalar field system
is only weakly hyperbolic rather than well-posed (strongly hyperbolic). Strictly speaking,
cosmologists focusing on perturbative cosmological analyses are only able to get by with an
ADM decomposition because there exist other formulations of Einstein scalar-field equations
that are well-posed and that have been shown to uniquely admit the FRW solution assumed
in ADM.

In general, we must not only choose a well-posed formulation of the field equations but,
in some cases, one that also admits an effective constraint damping scheme. Constraint damp-
ing is a common tool used in numerical relativity. In principle, by choosing initial conditions
that satisfy the Hamiltonian and momentum constraints, i.e., the Einstein equations pro-
jected orthogonally onto a spacelike hypersurface at some initial time ¢g, the field equations
of general relativity propagate and preserve the constraints going forward in time. In prac-
tice, though, the constraints can only be satisfied initially up to some numerical error, and,
in some cases, the error grows exponentially. Then, even a well-posed formulation can result
in a numerical blow-up if these constraint violations are not addressed. For this reason, in
some numerical setups it is often prudent to add terms to the evolution equations that damp
the growth of constraint violating numerical errors, while leaving the underlying solution un-
affected in the continuum limit [24, 25]. As it turns out, in the numerical scheme described
in this paper, constraint damping is not required for stability of the numerical evolution.

In the cases considered in this paper, we need a ‘suitable’ formulation of the equations
that address issues specifically related to slowly contracting spacetimes: a stiffness problem
and accurately tracking contraction over many e-folds before reaching a big crunch. The
stiffness problem arises because the equation of state parameter ¢ is greater than three (with
typical models having € > 3) which means that © o af is very rapidly decreasing compared
to a(t). For example, in models discussed in the literature [18], during a period when the
averaged scale factor decreases a factor of two or three, the Hubble radius shrinks by a factor
of e!? or more. To handle this stiffness problem, we choose a Hubble-normalized formulation
in which the Hubble radius © does not enter explicitly.

To handle the crunch problem, we choose a time coordinate such that it follows the
mean curvature growth, i.e. a time slicing where e! = 30. This way, reaching the curvature



singularity (or vanishing of the Hubble radius ©) takes an infinite (coordinate) time. We find
that our Hubble-normalized formulation using this time slicing is sufficiently suitable (our
third criterion above) for analyzing slow-contraction.

We find that an effective way of incorporating these methods of handling the stiffness
and crunch problems within a well-posed initial value formulation is to adapt the orthonormal
tetrad formulation of the Einstein-scalar field equations in our numerical scheme. Originally,
the formulation was used by Schiicking to find all exact vacuum solutions describing spatially
homogeneous spacetimes [11, 21]. Later, it was successfully implemented to numerically
studying contracting vacuum spacetimes [4, 7, 12] as well as spacetimes with a canonical
scalar field [13]. In section 2.1, we first introduce the basic tetrad variables. Then, we derive
the Einstein scalar field equations in tetrad form in section 2.2. Finally, in section 2.3, we
convert the tetrad equations to partial differential equations using local coordinates, making
the system readily usable as a numerical evolution scheme.

2.1 Variables

Tetrad formulations of the Einstein-scalar field equations assign each spacetime point a family
of unit basis 4-vectors (or vierbeins) {ep, e1, e2, e3} (as opposed to coordinates {xzg, x1, x2, r3})
that describe local Lorentz frames with the spacetime metric being given by the dot product
of the basis vectors. The starting point is a timelike vector field ey that defines a future-
directed timelike reference congruence, to which it is tangent. It is supplemented by a triad
of spacelike unit 4-vectors {e1, es, es} that lie in the rest 3-spaces of eg.

In an orthonormal tetrad formulation that we shall employ, the spacetime metric is
everywhere given by

€a " €8 = Nag, (2.1)

[

where 7,3 = diag(—1,1,1,1) the Minkowski metric and “” is the spacetime inner product.
Throughout, spacetime indices (0 — 3) are Greek and spatial indices (1-3) are Latin. The
beginning of the alphabet (a, 8,7 or a,b,c) is used for tetrad indices and the middle of the
alphabet (u, v, p or i, j, k) is used for coordinate indices. Tetrad frame indices are raised and
lowered with 7,4.

The geometric variables of the formulation are the sixteen tetrad vector components
and the twenty-four Ricci rotation coefficients

Yapy = €a V€8 = —Vpary, (2.2)

which define the deformation of the tetrad when moving from point to point. Here, V, is
the spacetime covariant derivative projected onto a tetrad 67)‘ V. Note that the .3, are
the ‘tetrad components’ of the Christoffel symbols I';,, .

Similar to coordinate-based formulations of the field equations, the tetrad formulation
greatly simplifies when making a space-time split. Unlike in the 3+1 (coordinate based)
ADM formulation, where the split is defined by the constant-time spacelike hypersurface,
here the split is relative to the timelike congruence defined by eg. Note, though, that the
timelike congruence does not uniquely define the auxiliary spatial congruence. Rather, the
spatial triad vectors are fixed by imposing gauge conditions.

To perform the spacetime split, we first write the fifteen connection coefficients that have
at least one timelike index in terms of 3-dimensional quantities b, 2., and Ky, reflecting



the antisymmetry of v,4+ in its first two indices:

Ya00 = —Y0a0 = bay (23)
Yab0 = —Vba0 = 6achC> (24
Yoab = —Ya0b = —Kpa; (2.5

where €44 is the Levi-Civita symbol. As shown by Ehlers et al. [9, 19], the fifteen quantities
describe kinematic fields associated with the timelike congruence tangent to eg: the 3-vector
b, is the local proper acceleration; the 3-vector €2, is the local angular velocity of the space-
like triads {ei, eq,e3} relative to Fermi-propagated axes; and Kp, is the local rate-of-strain
(or shear) tensor. (A spatial triad is ‘Fermi-propagated’ if Q, = 0, i.e., it is a local, inertially
non-rotating reference frame.)

Similarly, we express the remaining nine purely spatial connection coefficients 45, that
describe the induced curvature of the auxiliary 3-congruence using a 3-tensor,

1
Ngp = ibed’cha- (2-6)

The spatial connection coefficients N, and the components of the shear tensor K, are the
eighteen dynamical variables. The acceleration and angular velocity vectors, by, {14, are the
six (tetrad) gauge source functions.

For completeness, we note that some authors use as basic variables the commutation
(or structure) coefficients Cnp rather than the Ricci rotation coefficients yqg+ [10, 28, 29].
Here, the C,3- are given through

lea,ep] = Vaeg — Vgeq = Copye’. (2.7)

It is straightforward to relate the two conventions: with the definitions in egs. (2.2) and (2.7),

1
Tapy = 5 (C'yﬁa +Coyp — Cﬁav)a (2.8)

or, alternatively,
Ca,B'y = VvBa — VyapBs (29)

i.e., expressed in terms of the twenty-four 3D quantities, the full set of commutation coeffi-
cients takes the following form,

Ca00 = —Coa0 = ba, (2.10)
Cabo = —Chao = 2€apew”, (2.11)
Coab = —Caob = —K(ap) + €abe (W — Q) (2.12)
Cabe = —Crac = € Nag. (2.13)

Here, the 3-vector w, is the antisymmetric part of K,

1
We = ieabCKbc; (2.14)
it measures the vorticity (or twist) vector of the ep-congruence.
Finally, the geometric variables have to be supplemented by the dynamical quantities
that describe the matter source. In our case, this is the canonical scalar field ¢ which is
specified in the Einstein-scalar field equations through its potential energy density V().



2.2 Tetrad equations

Next we present the tetrad evolution and constraint equations for the (eighteen) dynamical
variables Kp, Ngp. The remaining (six) gauge variables are fixed by our tetrad frame gauge
choice.

A natural gauge choice is a frame with

i. Fermi-propagated axes (2, = 0); and
ii. hypersurface orthogonal timelike congruence (w, = 0 or, equivalently, Ku, = K(qp))-

Here and throughout, parentheses denote symmetrization, i.e., K4 = %(Kab + Kpg). In this
(frame) gauge, the time-like vierbein eg is the future-directed unit normal to the spacelike
hypersurfaces ¥ of constant time, and the spatial tetrad vectors are tangent to {¥;}. Fur-
thermore, K, is the extrinsic curvature of ¥y and the N, are the nine (intrinsic) spatial
curvature variables. All Ricci rotation coefficients, K, N, act as scalars on X;.

Employing these gauge conditions, the tetrad evolution and constraint equations take
the following form:

DoKap = €“"DeNgy + Dabp + baby — €, Nyebg + NeSNop — KKy — Neg NG, (2.15)
1 1
+§6adf6bce (chKfe - Nchfe) + Sab — *5ab(g + 3]7),

2
DoNuy = —€a“"DeKgp + €, Kacbg — NeKap + 2Noo Kiy© + €a¥ e, Nyc K g (2.16)
—€qp” Jes
b ab 1 ab ab a\2 a\2

2D,A" = NN + 5 (KabK ~ NN — (K,%)? — (Na%) ) +o, (2.17)
DyKo" — DK = €a" Ky Nae + 2K0“Ac — ja, (2.18)
DyN,® — DyN,¢ = —€,"* Ny Ny, (2.19)

where )
Ay = §ebchCd. (2.20)

is the antisymmetric part of Ngp; Dy is the Lie derivative along the timelike vierbein eg; and
D, denotes the directional derivative along the spatial vierbein e,. The matter variables
associated with the stress-energy 7,3, such as the energy density o, pressure p, 3-momentum
flux j,, and (spatial) stress tensor su,, are defined as follows:

0 = eo®eo’ T, (2.21)
jo = —e®ea’ Thp, (2.22)
Sap = €aa€b’8Tag, (2.23)

1
p= gscc. (2.24)

Notably, there is no evolution equation for the acceleration 3-vector b,, which reflects the
fact that it is a (frame) gauge source function.

The tetrad evolution and constraint equations (2.15)—(2.19) were first obtained in ref. [7].
Their derivation is straightforward when using the tetrad form of the Riemann tensor,

Raﬁ'yé - D'y’YaBJ - Dé’)’aﬁ'y + ’Yae'y’YEﬁJ - 7&6576,87 + YoBe (7676 - 7657) . (225)



More exactly, substituting eq. (2.25) into the (trace-reversed) Einstein-scalar field equations,

1
Raﬁ = Taﬁ - 577046"7751—‘767 (2'26)

where R,g = R7,,p is the Ricci tensor, yields the evolution equation (2.15) for K, as well
as the Hamiltonian and momentum constraints, eqs. (2.17) and (2.18), respectively. The
evolution and constraint equations for the spatial curvature variables Ny, egs. (2.16), (2.19),
follow from the Riemann identities,

Rapys = Rysap, (2.27)
Rapys + Raspy + Raysp = 0. (2.28)

For a single scalar field with canonical kinetic energy density and (non-zero) potential
V(¢), the hydrodynamical (macroscopic) matter variables g, p, j, and sq, are given by

0 = 3 DodDod + 3 D" 6Dat + V(8), (229)
Sap = Da® Dy + <;DO¢DO¢ - DC¢DC¢ - V(¢)> 5ab7 (2'30)
p = 5D06D06 — (D"6Dt ~ V(9), (231)
Ja = —Do¢Dq9. (2.32)

Note that, in general, j, is non-zero and s, is non-diagonal, which reflects the fact that
choosing a hypersurface-orthogonal tetrad frame gauge generally does not coincide with the
co-moving frame of the (scalar field) matter source. In fact, a hypersurface-orthogonal frame-
gauge is co-moving only in the homogeneous (ultra-local) limit.

The system (2.15)—(2.19) is completed by adding the scalar-field evolution and constraint
equations:

Do = W, (2.33)
Dq¢ = Sa, (2.34)
DoW = 6Ky W + DyS® + (by — 24,4) S — Vg, (2.35)
DySq = DaW + bW — K (o) S". (2.36)

Here, egs. (2.33) and (2.34) are the defining relations for the auxiliary variables W and
Sa, which denote the velocity and gradient of the scalar field ¢, respectively. Eq. (2.35) is
obtained by expanding the Laplacian of the Klein-Gordon equation (H¢ = V,4) using the
Ricci rotation coefficients; and eq. (2.36) is obtained by evaluating the commutation relation
[0, €a)® = —CoaoW + CoapS® using egs. (2.10)(2.13).

2.3 Numerical evolution scheme

In order to evolve the tetrad equations (2.15)—(2.19), (2.33)—(2.36) numerically, we must write
them as a system of partial differential equations. That means, we must give a representation
of the tetrad vector components {e,} using a particular set of local coordinates {z*#} and
then convert the directional derivatives D, in the tetrad equations to partial derivatives along
these coordinates.



To this end, we introduce the transformation matrix {4 } between coordinate and tetrad
basis vectors defined thru
ea = Nyey,. (2.37)

The coordinate metric components are then given by
g’ = naﬂ)\’;)\”; (2.38)

and directional derivatives along tetrads can now be written as partial derivatives along
coordinate directions,

Dy=N"1(9,— N'9;), D,=E, 0, (2.39)

where N is the tetrad lapse function and the N? are the three coordinate components of the
tetrad shift vector. Both the tetrad lapse function and the tetrad shift vector describe the evo-
lution of the coordinates relative to the tetrad congruence (as opposed to the ADM lapse and
shift that describe the evolution of the proper time and co-moving spatial coordinates relative
to the coordinates of a particular foliation). The nine coordinate components FE,* describe
projections of the spatial tetrads tangent to the constant-time hypersurface ;. Note that the
spatial triad vectors have zero time component, since we have chosen our tetrad frame gauge
to be hypersurface-orthogonal. (For arbitrary tetrad frame gauge choices, this is not the case.)

The E,' are dynamical variables determined by the evolution and constraint equations

N7'9,E,' = —K,°E.}, (2.40)
e"E, 0,E = NY{.E/ — NYEJ, (2.41)

which are derived from applying the commutators of the basis vectors to the spatial coordi-
nates {z'}.

The lapse function N and the shift vector N? are gauge variables that we can freely spec-
ify. A natural coordinate gauge choice when studying the evolution of cosmological spacetimes
is to have co-moving coordinates, such that the z2° are constant along the congruence and

Ni=o0. (2.42)

For the lapse function, we will impose the condition that hypersurfaces ¥; of constant
time be constant mean curvature (CMC) hypersurfaces, i.e., the trace of the extrinsic curva-
ture Kp is spatially uniform for each ¥,

1
O l=_K,

3 |y, = const > 0. (2.43)

Imposing CMC slicing, the trace of eq. (2.15) reduces to a linear, elliptic equation for
the lapse NV,

( — (D — 244) D" + £5% 1+ 3072 4 W2 — V(¢)>N —0, (2.44)

where )
Eab = Kab - chcéab (245)

is the trace-free part of the extrinsic curvature. Few works that rigorously prove well-
posedness treat elliptic gauge conditions, and we are not aware of any for the particular
tetrad formulation we use; however, see [1] for a proof in a closely related coordinate based

,10,



formulation. We note, though, that if a system of partial differential equations is not well
posed it would be challenging, if not impossible, to obtain stable, convergent numerical so-
lutions with any discretization scheme. That our code is stable and convergent can thus be
viewed as ‘empirical evidence’ the underlying equations are well posed.

Note that the (elliptic) equation for the (tetrad) lapse also determines the tetrad gauge
source function b,, which denotes the acceleration of the tetrad congruence worldlines. This
can be seen, e.g., by computing the commutator [eg, e,] as applied to the time coordinate x°,

be = N"1E,9;N. (2.46)
For the time coordinate ¢, we choose a particular (re-)scaling,
el = 30, (2.47)

that is consistent with the CMC slicing condition. If eq. (2.43) is satisfied, the inverse trace
of the extrinsic curvature (here and throughout denoted by ©) is the well-known Hubble
radius (as measured by the proper time coordinate 7), i.e.,

1 _, dlna(r)
3¢ =g (2.48)

During contraction, the Hubble radius decreases. Accordingly, the time coordinate
t < 0, running from small negative to large negative values. Yet, due to CMC slicing, all
curvature variables remain finite and non-zero for any evolution of finite duration. This is a
necessary condition to stably evolve contracting phases that last several hundreds of e-folds,
which is required to study the robustness of slow contraction.

In addition, for a sufficiently long evolution, we must ensure that no two dynamical
variables grow (or shrink) at significantly different rates to avoid a stiffness problem. Since in
the case of slow contraction, some spatial metric variables, such as the spatially averaged scale
factor, decrease at a significantly lower rate than some curvature variables, such as the Hubble
radius, we eliminate the latter by introducing dimensionless Hubble-normalized variables,

N = N = N/©, (2.49)
{Eai,zab,Aa,nab,W,sa,V} N {Eai,iab,fla,ﬁab,W,Sa,V}, (2.50)

where N is the Hubble-normalized lapse function; bar denotes multiplication by the Hubble
radius ©; and

Nab = Nap) (2.51)

is the symmetric part of Ngp. Substituting into eq. (2.44), yields an elliptic equation for the
Hubble-normalized lapse N

— E%0" (EJO;N) +2A"E'ON + N (3 + EpZ? + W2 — f/) =3. (2.52)

Imposing CMC slicing as defined in egs. (2.43), (2.47) and using Hubble-normalized vari-
ables in egs. (2.15)(2.16), (2.33)(2.36), and (2.40), the gravitational quantities Eyt, b, iap,
and A, as well as the scalar field matter variables ¢, W, S, satisfy the hyperbolic evolution
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equations

OB, = —(N . 1) EJi — N SLEy, (2.53)

OSap = = (3N = 1) S = N (200, Finye — el — Sy ) + B0 (B0 (2.54)

-N (Emiai;lb) — e, (Eciaiﬁb)d - 2Acﬁb)d)) + e Rpya Bl ON + A By 0N,

Byfigy = — (/v - 1)% + N(Qﬁ(acib)c - eCd(anaiib)d) — e Sy Bl ON, (2.55)
04 = —(N ~1) Ay~ N (S04, - %Ebiaiiab) _BION + %iabEbiaiN, (2.56)

O = NW, (2.57)
W = = (8N = 1)W = N (Vg +24°5, - E,/0,5°) + S" B, DN, (2.58)
N (N - 1)§a - N(iabS’b - an) FWESON. (2.59)

(Here angle brackets denote traceless symmetrization defined as Xiaby = X(ap) — %chéab.)
The system of egs. (2.52)—(2.59) will serve as our numerical scheme. Notably, this system
is well-posed, as was shown, e.g., in [4], and, by construction, it admits stable numerical
evolution that involves several hundreds of e-folds of contraction.
In addition, the same variables satisfy the constraint equations
1 1

_ o 1 o
Cq = 3+2E,'0,A% —34%A, — §ﬁabﬁab + Z(ﬁcc)2 — §zabzab (2.60)

1 lewa o
—5W? =555, ~V =0,

(Co)a = Ey'0i2," — 35,04 — €."p 9% g — WS, =0, (2.61)
(Cy)a = By O’y + By 0; A, — 2440°, = 0, (2.62)
(CS)a = 5’a - Eai z¢ = 07 (263)
(Cr), = ¢, (EbjajEC" - AbEJ> — By = 0. (2.64)

The constraints are the Hubble-normalized version of eqs. (2.17)—(2.19), (2.34), (2.41), again
imposing CMC slicing conditions as in eqs. (2.43), (2.47). (The subscripts G,C and J stand
for Gauss, Codazzi, and Jacobi, respectively, referring to the commonly used terminology.)
As detailed in the following two sections, we shall use the constraint equations to specify the
initial conditions and to ensure constraint damping and numerical convergence.

3 Initial conditions

In testing the robustness of slow contraction, the set of initial conditions under study plays a
key role. Analytic-perturbative analyses of smoothing mechanisms can only establish ‘clas-
sical smoothing,’ i.e. stability of the attractor FRW solution to small inhomogeneities and
anisotropies [8]. To establish ‘robustness,” the evolution must be studied under a wide set
of initial conditions including those that are far outside the perturbative regime of the FRW
attractor solution. As we shall describe in this section, our scheme enables the variation of
all freely specifiable variables, such as the initial shear and spatial curvature contributions,
{Sap, Ag}, as well as the initial field and velocity distributions of the scalar, {¢, W}.
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3.1 Geometric variables

To specify the initial conditions, we first choose a particular time tg. With the tetrad and
coordinate gauge conditions remaining the same as specified above for the evolution scheme,
the to-hypersurface has constant mean curvature ! the value of which we can freely choose,
and zero shift. We note that, using Hubble-normalized variables in our evolution scheme, the
natural units are set by this initial Hubble radius ©¢ rather than the Planck scale.

Next, we must fix the variables

{Eaivﬁaba"zlaaiab} (31)

that describe the geometry of the tg-hypersurface. Not all of these variables are freely speci-
fiable, though, as they must satisfy the constraint equations (2.60)—(2.64). (Notably, the
evolution equations (2.53)—-(2.59) propagate the constraints, i.e. ensure that the constraints
are satisfied at later times provided they are satisfied on the initial time slice.)

Adapting the York method [31] commonly used in numerical relativity computations,
we choose the initial metric to be conformally flat,

g9ij = ' (x,t0)0i5, (3.2)

where 1) is the conformal factor. The conformal factor is not a free function but fixed by the
Hamiltonian (or Gauss) constraint (2.60), as we will detail below.
With eq. (2.38), this choice for g;; simultaneously fixes the coordinate components of
the spatial triad:
E.t =201, (3.3)
Substituting into the spatial commutator,

[ém éb] = Cabcéc = (2121[@(51)]0 + 6abdﬁdc> éc’ (3'4)
as defined in eq. (2.7), we find the components of the intrinsic curvature tensor,

gy = 0, (3.5)
Ay = =27 B, 0p; (3.6)

and the constraint equations (2.62) and (2.64) are trivially satisfied by this combination of
B Ry, Ag.

We stress that, in general, A, is non-zero, reflecting the fact that the anti-symmetric
part of the intrinsic curvature tensor does not transform trivially under conformal rescaling,
as pointed out in ref. [4]. That means, most especially, assuming the initial metric to be
conformally flat does not imply uniform spatial curvature on the initial slice and, hence, does
not impose a real restriction on the initial data set.

Having set the geometric variables {E,*, N, A, } through specifying the spatial metric
for the initial slice, it remains to determine the components of the Hubble-normalized shear
tensor Y4, as defined in eq. (2.45), to close the set of variables describing the geometry of
the initial ¢g-hypersurface.

It is a particular advantage of the conformal rescaling as suggested by the York method
that the constraint equations significantly simplify. For this reason, we will determine the
initial shear contribution Yq,(z,t9) by first specifying its conformally rescaled counterpart

Zab(flf,to) = wﬁiab(a},to), (37)

,13,



using the momentum constraint (2.61) as evaluated for Z;(z, to),
E%(x,t0) 8" Zap(z,t0) = Q(, t0) Ey' (2, 0)0i(, to). (3.8)
Here, Q(z,t0) is the conformally rescaled scalar field kinetic energy defined by

Q((L‘,to) = ¢6($,t0)W(l‘,t0). (39)

Then, solving the Hamiltonian constraint (2.60) for the conformal factor ¢ (x,tp) yields

Zab(x, t()) .

It is immediately obvious that we can follow two strategies in specifying Zg;(x,tp):
either we freely specify the initial shear contribution Z(x,to) that then fixes parts of the
initial field and velocity distribution {¢(x, o), Q(z,t9)}, or we freely specify only parts of the
initial shear contribution Zg(x,to) so we can freely choose {¢(x,to), Q(z,t9)} that together
fix the rest of Zg,(x,tg) using the momentum constraint. In this analysis, we have chosen
the latter option.

By definition, the vacuum contribution Z9 (z,to) of the conformally rescaled shear ten-
sor, i.e., the divergence-free part of Zu;(x, ), is independent of any matter source. Accord-
ingly, we will freely specify only ZY (z,t) and constrain the rest of Zu(z,to) by the choice
of the initial scalar field and velocity distribution {¢(z,t), Q(x,to)}.

For the numerical simulations, we use periodic boundary conditions 0 < z < 27 with 0
and 27 identified. In addition, we restrict ourselves to deviations from homogeneity along a
single spatial direction x so that the spacetimes have two Killing fields. Since the variables
depend only on z and since z is periodically identified, we specify their spatial variation as
a sum of Fourier modes with period 2.

A simple yet generic divergence-free and trace-free choice for Z9 (z,to) is given by

ba £ 0
Zgb(x, to) = | € ajcosx + by a9 COS T , (3.10)
0 agcosx —by —by—ajcosx

where £, aq, az, by and by are constants. Note that since ¥,; must be trace-free, so must Zgb.
The rest of the initial shear distribution, Z,, — Zgb is obtained by solving the momentum
constraint (3.8), which turns into an algebraic relation for the Fourier coefficients of this
non-zero divergence piece of Z,;, upon specifying the initial scalar field matter variables.
3.2 Scalar-field matter variables
In setting the initial velocity and field distribution, we freely specify the Fourier coefficients
of Q(x,tg) and ¢(x,tp) via
o(x,to) = focos (mom + do), (3.11)
Qx,tg) = @(f1 cos (mlx + dl) + Q0>. (3.12)
where fo, mo, do, f1, m1,d1, and Qg are constants.

To compute the initial value of the (Hubble-normalized) scalar field gradient S (z,t),
we substitute ¢(z, ) into the constraint equation (2.63).
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3.3 Conformal factor

Finally, imposing the Hamiltonian constraint (2.60), our ansatz for the initial set of geometric
and matter variables yields an elliptic equation for the conformal factor :

(3677 V)7 — £ (0'60:0) v — § (@2 + 77 2u) 0%, (313)

N

o =
We numerically solve these equations in the following section.

4 Numerical tests of robustness

Using the numerical general relativity scheme described in sections 2 and 3, we have con-
ducted extensive series of studies to gauge the robustness of slow contraction in smoothing
and flattening the universe beginning from a broad spectrum of highly non-perturbative,
inhomogeneous initial matter, spatial curvature and shear distributions. To date, there has
been no analogous test of robustness for an expanding cosmology, including inflation; see
discussion in ref. [8].

As described in section 3, we solve the full 3 + 1-dimensional Einstein-scalar field equa-
tions beginning from arbitrary combinations of shear (£2,), spatial curvature (€;) and matter
(i.e., scalar field) density (£2,,), where

1

Qs = giabiab, (41)
1 1., % 1_
O, = ~W2+ -595, + -V, 4.2
W2 285, 4 2V (4.2)
— 2= 19, Aa Aa A lfabf _i —c \2
O = —SESOA" + A" Ay + gy — 7 (R%)°, (4.3)

and ) . €; = 1. For simplicity, all deviations from homogeneity are along a single spatial
direction z, as in ref. [8].
The scalar field potential energy takes the form

V(¢) = Voexp(— vV2e ¢) (4.4)

where Vy < 0 and € > 3. The dynamical 2,, = 1 FRW attractor solution corresponds to
the effective equation-of-state e.g — €. The initial spatial inhomogeneities in the matter
density are set by f; in the expression for Q(z,t) in eq. (3.12). More precisely, Q(z,0)
is the initial velocity distribution, and f; is the magnitude of a velocity fluctuation mode
with wavenumber m; about the mean initial scalar field velocity Qg at t = 0. The sign
convention is that positive Q(xz,t) corresponds to rolling down the potential (towards more
negative values of V(¢)). Spatial variations in the initial shear Z°, are set by the parameters
a; and ag in eq. (3.10). Once these parameters are set, the initial conditions for the spatial
curvature, shear and matter density are completed by computing the conformal factor ¢ in
eq. (3.13) and using eqgs. (3.7) and (3.9), as described in section 3. The studies consisted of
a series of simulations in which each of these parameters that set the initial conditions was
varied independently from zero to O(1).

Parameters that were found not to affect significantly the robustness tests were held
fixed. For the purposes of the simulations, the coefficient of the potential in eq. (4.4) was
set to Vp = —0.1 (in units of the initial ©); the initial scalar field was set to ¢(z,t) = 0; the
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Figure 1. Phase Diagram I shows the two possible final states (2, = 1 FRW and KL) reached for
the case of homogeneous initial conditions as a function of the mean initial scalar field velocity Qo
and the scalar field potential parameter €. The curve divides the diagram into two regimes.

period and shift of the sinusoidal spatial variation of scalar field velocity Q(z,t) in eq. (3.12)
were set to my = 1; dy = 0; and the remaining constant coefficients in Z% in eq. (3.10) were
set to £ = 0.01, by = —0.15 and b, = —1.8.

The result of the numerical studies can be summarized in a series of ‘phase diagrams’
indicating the final state as a function of the initial mean scalar field velocity Qg and potential
energy density parameter €. The different phase diagrams correspond to different types of
initial conditions as described in the text below. The phase diagrams were made by first
making runs for a coarse sampling of )y and € and characterizing the final states at the end
of a representative run lasting 9ty = 200 e-folds, where 9 is equal to the number of e-folds of
contraction of the Hubble radius or, equivalently, ©® = |H|~!. Then further runs were made,
holding ¢ fixed and performing a bisection search in g to identify the boundaries between
different end states to 1 decimal place precision. By comparing results at different resolutions,
we conclude that the dominant numerical error in our results arises from the precision used
in the bisection search. We note also that smoothing occurs very slowly for the lowest value
of ¢ considered, ¢ = 4.5, and longer lasting runs suggest that the simulations that have
not smoothed, or only partially smoothed by 91y = 200, will continue to smooth further.
Nevertheless, the diagrams below are based on the end state at 91y = 200 for consistency.
For € ~ 4.5, our results should be viewed as conservative upper bounds for smoothing.

Phase Diagram I. We first consider the case of fully homogeneous initial conditions:
f1 = a1 = az = 0. In this case, the simulations converge to one of two homogeneous fixed-
point outcomes:

e an (), = 1 FRW universe with 0 = 0y = 0, in which the matter density consists of a
uniform combination of scalar field kinetic and potential energy (no scalar field gradient
energy density) that has converged to the dynamical attractor solution for all z: namely,
Eoff — %¢2/(%¢2 +V)—=e>3;or,

o a “Kasner-like” (KL) universe that is homogeneous, spatially flat (€, = 0) and comprised

of some uniform mixture of €2, and ), such that ,, + Qs = 1; the matter density consists
purely of scalar field kinetic energy density (with zero gradient or potential energy density)
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Figure 2. Plots of the final states corresponding to the two phases shown in Phase Diagram I: (a)
the dynamical attractor €, = 1 FRW state; and (b) the homogeneous Kasner-like (KL) state with
non-zero {2; and 2,,. both final states have Q; = 0. Each plot shows normalized energy density in
matter Q,, (blue), curvature Qj, (red) and shear Q; (green) as a function of 0 < z < 2. 9y is equal
to the number of e-folds of contraction of © = |H |1,

corresponding to e.g — 3; the ratio of €2, to s at the fixed point depends on the initial
values of the ;.

The phase diagram in figure 1 shows a curve that divides the plot into two regions.
(The curve is identical to the one marked Af; = 0 curve in figure 3 of ref. [8].). All initial
conditions above the curve converge to the €2, = 1 FRW fixed point and all initial conditions
below converge to the KL fixed point. Snapshots of the final distributions of the Q;’s for the
two types of fixed points are shown in figure 2.

Note that the curve falls below Qo = 0 for € 2> 13. As discussed in ref. [8], in cyclic and
most bouncing cosmological models, the natural initial condition at the onset of a contracting
phase is that the scalar field is either at rest or evolving down the potential, though with
speeds that can vary with . This corresponds to mean initial scalar field velocity Qg > 0 or
‘down the potential.” Also, as shown in ref. [8], practical bouncing models require £ 2 13 in
order that the smoothing and flattening (beginning from non-perturbative initial conditions)
is completed rapidly enough that a nearly scale-invariant spectrum of density perturbations
consistent with observations can be generated from quantum fluctuations before the bounce.
Consequently, the remainder of the discussion will be confined to Q¢ > 0 and, while we will
comment on some interesting behaviors with € < 13, the focus, as far as realistic applications
to cyclic and bouncing cosmology are concerned, should be on the results when ¢ 2 13. In
Phase Diagram I, the fixed point in this entire region converges to the desired €2,, = 1 FRW
dynamical attractor.

Phase Diagram II. The second phase diagram (figure 3) corresponds to initial conditions
in which Z?, is homogeneous (a; = az = 0) but the initial scalar field velocity distribution
is not (fi # 0). Here the division between phases depends on Ay = f1/Qasr, where Quitr
is the value of Q(x,t) for the dynamical attractor solution. Ay = O(1) corresponds to large
initial velocity fluctuations in which the initial velocity deviates far from the attractor as a
function of z. We show two bounding curves in the plot (which correspond to two of the
examples shown in figure 3 of ref. [8]). For the practical reasons described above, we restrict
the plot to the regime relevant for cyclic and bouncing cosmology, Qg > 0.
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Figure 3. Phase Diagram II shows the final states reached for the cases in which the initial scalar
field velocity is highly inhomogeneous (A = 0.1) but the Z? is homogeneous. Over most of the phase
diagram, spacetime is completely smoothed (£2,,, = 1 FRW) or in a mixed state that is smoothed to
an exponential degree (as measured by proper volume).

I
Qo A | 4P

X X X X

Figure 4. Series of snapshots showing the evolution of the normalized energy density in matter
Q,, (blue), curvature Q, (red) and shear Q; (green) for two cases with Ay = 0.1 drawn from Phase
Diagram II: (a) for Qo = 0.8, convergence to the 2, = 1 FRW dynamical attractor with e, — € = 8;
and (b) for Qo = 0.7, convergence to a mixed state in which space is divided into segments that are
Q,, = 1 FRW separated by segments that are KL but spatially varying. 9y is equal to the number
of e-folds of contraction of © = |H |71,

In this case, initial conditions corresponding to points above the curve converge to the
Q. = 1 FRW dynamical attractor. Initial conditions below the curve evolve into “mixed
states” in which the volume appears to be divided into segments that converge to the dynam-
ical attractor with e.g = € > 3 separated by segments that are ‘KL but spatially varying,’
as shown in figure 4. The latter refers to segments in which Q; = 0 and c.g = 3 (as in
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Figure 5. Sketch of the final (mixed) state shown in figure 4(b) in physical distance coordinate D
compared to the Hubble radius |H|~! showing that the spatially varying KL segment is exponentially
small compared to the homogeneous 2,,, = 1 FRW region that occupies most of the spacetime volume.

case of homogeneous KL), but the ratio of Q,, to Qs varies continuously across the CMC
hypersurfaces. Because the physical volumes corresponding to each segment of length Ax
contract as

a®(1) Az = |7]3/% A, (4.5)

where 7 is the proper FRW time coordinate, the slowly contracting £2,, = 1 FRW segments
with eq¢ > 3 become exponentially larger than the KL segments with e.¢ = 3 as contrac-
tion proceeds. The situation is illustrated in figure 5 where the main plot is the physical
distance divided by the Hubble radius; the spatially varying KL segment shown in the inset
is exponentially small by comparison. Similar remarks apply to all the examples of mixed
states below. (n.b. This more intuitive argument agrees with the more formal proper volume
analysis in ref. [13].)

In other words, except for the sliver of small ¢ and )y marked ‘unsmooth,’ all initial
conditions in the phase diagram either converge to the dynamical attractor solution for all x
or into mixed states in which an exponentially large fraction of space time converges to the
dynamical attractor but there are also (cosmologically irrelevant) infinitesimal regions with
spatially varying KL behavior.

Figure 6 shows state space orbit plots associated with two examples in figure 4. The
orbit plots enable the visualization of the evolution of the shear at a chosen point x in the
(X4,%_) plane, where

Yo = %(En + EQQ), .= 2\1/5 (ZH — 222). (4.6)
The ¥ are normalized so that the unit circle (2 + %2 = 1) corresponds to the vacuum
Kasner solution; trajectories that approach Q,, = 1 FRW converge to the center. See refs. [8,
13] for other examples. In the case of figure 6, the orbit converges to the center (€, =1
FRW) for the case in figure 4a for all x; for the mixed state case in figure 4b, the point z = =
lies in the spatially varying KL region between the Kasner circle and the origin.
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(a)

Figure 6. The state space orbits comparing worldlines at = 7 for the two models in figure 4: (a)
converges to the €2, = 1 FRW dynamical attractor, and (b) evolves into a mixed state that includes
a segment corresponding to spatially varying KL. The point & = 7 lies in the spatially varying KL
region in the second example; the corresponding orbit never reaches the center corresponding to the
Q,, =1 FRW dynamical attractor.
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Figure 7. Phase Diagram III (left) shows the final states reached for the cases in which the initial
scalar field velocity is homogeneous f; = 0 but the off-diagonal components of Zgb are inhomogeneous
(ag = 0.8 but a; = 0). For Phase Diagram IV (right), only the on-diagonal components are highly
inhomogeneous (a; = 0.8 but as = 0).

Phase Diagrams III and IV. The third phase diagram (figure 7, left) corresponds to
initial conditions in which the only initial inhomogeneity is due to the spatially-varying
off-diagonal components of Z2, in eq. (3.10) (the terms proportional to as). The initial
scalar field velocity distribution is homogeneous (f; = 0) and the diagonal components of
Zgb proportional to a; are also zero. Here we find that, as in Phase Diagram I (figure 1),
the entire range of Q9 > 0 and & 2 13 converges directly to the €2,,, = 1 FRW dynamical
attractor. That is, unlike the previous example, introducing inhomogeneity by making ao
non-zero does not reduce the robust smoothing and flattening behavior over the range of
parameters relevant for cyclic and bouncing models.
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Figure 8. Series of snapshots showing the evolution of the normalized energy density in matter €2,,
(blue), curvature € (red) and shear Q5 (green) for 0 < x < 2 for two cases with e = 13 and Qo =0
in which the inhomogeneity is solely an off-diagonal inhomogeneous contribution to Zgb: (a) ag = 0.01
and fi = a; = 0; and (b) az = 1.0 and f; = a3 = 0. The first evolves through a series of nearly
homogeneous KL stages, then a series of inhomogeneous and mixed stages before converging to a final
homogenous §2,, = 1 FRW dynamical attractor; the second case begins significantly inhomogeneous
(large a2) and passes through a long sequence of different mixed states that include spikes (such as the
one visible near the center of the lower panel labeled 91y = 55) before reaching the final homogenous
Q,, =1 FRW dynamical attractor.

Figure 9. The state space orbits comparing worldlines at = 7 for the two models in figure 8: (a)
one that passes through a series of nearly homogeneous KL stages but keeps veering away until finally
converging to the Q,, = 1 FRW dynamical attractor; and (b) one that evolves through a different
sequences of mixed states before converging to the attractor. The point z = 7 lies in a region that
goes through multiple stages in both cases.
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Figure 10. Phase Diagram V shows the final states reached when a combination of inhomogeneities is
considered (that is, is f1, a; and ag are all non-zero). The entire region relevant to cyclic and bouncing
cosmology models —e 2 13 and Qg > 0 converges completely or to an exponential degree (as measured
by proper volume) to the desired smooth, anisotropic and flat dynamical attractor solution.

In fact, a curious feature occurs for examples in the slivers of the phase diagram where
e < 13 and Qg is near zero. This is the range that leads to homogeneous KL behavior in Phase
Diagram I. When asg is non-zero and < O(0.1), we find instead that, beginning from a nearly
homogeneous state, the evolution first approaches a nearly homogeneous KL fixed point but
then veers away and goes through a series of further nearly KL stages before converging on
a ,, = 1 FRW dynamical attractor solution. This is illustrated in the upper panels shown
in figure 8 and by the state space orbit diagram in figure 9 (left). Effectively, this means
that non-zero as actually enlarges the phase space region that converges to the attractor
solution. As as is increased by another order of magnitude, the initial state is significantly
inhomogeneous compared to the small a9 case; nevertheless, after evolving through a different
sequence of stages, it also converges to the homogeneous §2,,, = 1 FRW dynamical attractor,
as illustrated in the lower panels shown in figure 8 space orbit diagram in figure 9 (left).
(In the slivers of the phase diagram labeled as undergoing a series of nearly KL stages or as
ending with mixed regions, the numerical evolution includes some spikes of negligible extent
in x, as described in ref. [13]. An example is visible in the middle of the snapshot labeled
Ny = 55 in the lower row of figure 8; although not apparent in the subsequent snaphots, its
presence can be identified in higher resolution runs.)

The fourth phase diagram (figure 7, right) is the complementary case where the non-
zero inhomogeneous components of Zgb are on the diagonal (a1 # 0) and the off-diagonal
components are zero (az = 0). As in Phase Diagram II, the entire range of Q9 > 0 and
€ 2 13 converges directly to the Q,, = 1 FRW dynamical attractor. For the corner of the
phase diagram where a; = O(1), as in figure 7 (right) and ¢ < 13, the result is a mixed
state in which an exponentially large fraction of space time converges to the FRW dynamical
attractor but there are also (cosmologically irrelevant) infinitesimal regions with spatially
varying KL behavior. For yet smaller ¢, the spacetime is not smoothed.

Phase Diagrams V. Finally, we present a simplified phase diagram corresponding to
cases in which any combination of inhomogeneities (non-zero fi, a; and az up to O(1))
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Figure 11. Two types of potentials V' (¢) (solid curves) used to test the robustness of slow contraction
in smoothing and flattening spacetime. The scalar field evolves from right to left in each case (see
arrow), first encountering a finite range of V' (¢) that closely matches the negative exponential potential
(dotted lines) considered in the phase diagrams above with ¢ = 50. From that point onward (after just
a few e-folds of contraction), the potentials deviate significantly: (a) the negative potential reaches a
minimum and then approaches zero from below; and (b) the negative potential reaches a minimum and
rises rapidly above zero with a shape that is super-exponential (e.g., ¢* exp (a¢) for some constant ).

is considered (figure 10). This diagram encapsulates the take-away lesson regarding the
remarkable robustness of slow contraction: The entire regime of practical relevance to cyclic
and bouncing cosmology models — that is, having € = 13 (the condition for sufficiently
rapid smoothing) and initial mean scalar field velocity at rest or evolving down the potential
V(@) for all x) — converges completely or to an exponential degree (as measured by proper
volume) to the desired smooth and flat FRW dynamical attractor solution with Q, = 1
and Qs = Q = 0. (In the appendix A, we describe our tests for numerical convergence
and demonstrate that the tests are well-satisfied in those regions of the phase diagram that
completely smooth. The same is found to be true in the regions of spacetime that directly
smooth without spikes in the case of mixed final states. More complex results are found in
regions with spikey behavior.) In this and in all the diagrams above, we allow highly non-
perturbative initial conditions, but we restrict them to be less than or O(1), which is at a
level at or beyond what would be naturally expected as plausible initial conditions. Pushing
parameters beyond the values considered here will move boundaries to slightly higher values
of €, say; but there always remains a substantial range of the phase diagram that converges to
the desired smooth and flat FRW dynamical attractor solution with 2,,, = 1 and 2, = Q; = 0.
In particular, models with ¢ > 50 (or M < mp;/50 in eq. (1.3) where mp; is the reduced
Planck mass) are plausible in microphysical models, and they are exponentially more powerful
and rapid in drawing much broader ranges of initial conditions to the dynamical attractor
solution compared to the already-robust cases considered here.

As a further test of robustness, a series of simulations were performed in which the scalar
field potential V' (¢) significantly deviates away from the simple negative potential (eq. (4.4)
that was assumed in the phase diagrams above. The plots of V(¢) in figure 11 illustrate
two variations that were explored. In each case the scalar field evolves from right to left
beginning with a segment that closely matches the negative exponential potential eq. (4.4).
During this first stage, there is a short period of slow contraction with effective equation-
of-state eog — €, during which the large initial inhomogeneities are substantially smoothed
and flattened as above. However, as ¢ — —oo (that is, evolving to the left), the potentials
diverge and eog decreases rapidly and significantly.
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Figure 12. Series of snapshots showing the evolution of the normalized energy density in matter
O, (blue), curvature Qi (red) and shear 2 (green) for 0 < x < 27 for the two types of potentials
described in figure 11. In the top example, c.g — 0 as ¢ — —oo; in the bottom example, e.g falls
below three as the ¢ climbs the steeply rising positive part of the potential. In either case, the
smoothing and flattening created by the initial slow contraction phase is maintained.

>

Figure 13. The state space orbits comparing worldlines at = 37/2 for the two models in figure 12:
(a) as ¢ — —o0, V(¢) approaches zero from below (red, solid); and (b) as ¢ — —oo, V(¢) rises above
zero and increases super-exponentially (blue, dotted). In both cases, the orbits converge rapidly to the
center during the early slow contraction phase and remain there when the potential sharply deviates
from negative exponential and the slow contraction phase ends.

In the first case, the negative potential reaches a minimum and then rises to approach
zero as ¢ — —oo. The equation-of-state e.g — 3. Despite this significant change, the early
stage of slow contraction is rapid and powerful enough that the spacetime remains smooth
and flat, as shown in the top panel of figure 12 and by the red solid trajectory in the state
space orbit plot shown in figure 13.
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Figure 14. A plot showing the effective equation-of-state eog(2) at a sequence of times for the case
shown in figure 11b in which V(¢) rises above zero and increases super-exponentially. For early times
when V' < 0 and exponentially decreasing e.g rises to a large positive value (red dashed curves for
which the number of e-folds of contraction are ng = 3.0 and 3.9). At later times when V > 0 and
super-exponentially decreasing, the spacetime and £ become nearly uniform and e.g decreases and
falls below ¢ = 3 (sequence of green thin solid curves with progressively increasing values of ny).
After reaching a minimum at nyg = 7.1, €. increases and approaches the homogeneous FRW fixed
point with € = 3 (blue solid thick curve).

In the second case, the negative potential reaches a minimum and then rises super-
exponentially rapidly above zero; e.g., V(¢) o« ¢*exp(a¢) as ¢ — —oo. The super-
exponential behavior is artificially introduced to force the equation-of-state to reach e.g < 3,
as shown in figure 14. Note that the potential is not well-motivated physically and does
not correspond to any bouncing or cyclic picture; rather, it is specifically introduced as an
extreme test of robustness. Even in this case, the early stage of slow contraction is rapid and
powerful enough that the spacetime remains smooth and flat, as shown in the bottom panel
of figure 12 and by the blue dotted trajectory in the state space orbit plot shown in figure 13.

We have constructed examples of even more steeply rising, super-exponential potentials
in which .4 not only falls below three, but also well below zero. In this case, some small
deviations from perfect homogeneity appear for some ranges of x (a kind of mixed state)
as the field climbs up the steep positive wall, though even then smoothness and flatness is
retained for most of the range of z.

5 Analytic approximation

The key result of our numerical analysis is that slow contraction is an astonishingly robust
smoothing mechanism: for most initial conditions, the scalar field energy density rapidly
homogenizes and quickly becomes the dominant component (€2, = 1), driving the geometry
to a spatially-flat, homogeneous, and isotropic (FRW) spacetime everywhere and leading to
complete smoothing for all x. For extreme initial conditions that do not result in a completely
smoothed FRW spacetime, the end state is either a mixed that is smooth almost everywhere,
as measured by co-moving volume, or a homogeneous but anisotropic spacetime described
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by a ‘Kasner-like’ (KL) metric. To conclude our study, we complement our numerical com-
putation with an analysis in which we demonstrate that the homogeneous end states found
numerically correspond to the only possible stable critical points for a contracting universe.

5.1 Ultra-local limit

Notably, in all the cases we studied, the evolution towards the homogeneous end states found
numerically approach the so-called wultra-local limit, in which all terms that involve gradients
become negligible in the evolution and constraint equations, i.e.,

E,t = 0,4, 0,5, —0, (5.1)

as the universe contracts (t — —o0). Most remarkably, ultra-locality is generically reached
rapidly even in those cases where the initial conditions include large gradients, as is apparent
from the plot of Q in the My = 0 panels shown in figures 4, 8 (lower panel) and 12. Note
that, by choosing the spatial metric on the initial typ-hypersurface to be conformally flat, €2
is a direct measure of spacetime gradients.

In the ultra-local limit, the evolution and constraint equations (2.53), (2.56), (2.59)
and (2.62)-(2.64) for E,*, A, and S,, respectively, are automatically satisfied, while the
remaining system of non-trivial evolution and constraint equations dramatically simplifies,
leaving a system of first-order ordinary differential equations (ODEs) for twelve metric and
two matter variables constrained by three algebraic relations, as opposed to the original set
of coupled partial differential equations with twenty-four metric and five matter variables.

Most importantly, in the ultra-local limit the momentum constraint (2.61),

€a"Mp?%q = 0, (5.2)

is equivalent to demanding that the shear tensor ¥, and (the symmetric part of ) the intrinsic
curvature tensor fg, commute, which means that ¥, and 7., share the same eigenvectors.
Furthermore, as shown in the appendix B, the eigenvectors at time ¢y remain eigenvectors
at later times. The dynamics in the ultra-local limit, therefore, is completely determined by
the evolution of the eigenvalues of Xy and figp.

As a consequence, the twelve coupled ODEs for the metric variables X5 and fig,

Yup = — (3/\/ — 1>iab — N(2ﬁ0<aﬁb>c — ﬁccﬁ<ab>>, (5.3)
Nap = —(/\/ — 1) Mgy + 2N 1€ (D)., (5.4)

can be replaced by six ODEs for the corresponding eigenvalues oy, v; (i = 1,2,3), such that
the dynamical system is fully described by the following set of six evolution equations

o= (1-3\)or - é/\/ (@01 = v = v)in — (v — )", (5.5)
by = (1= )2 — 3 (22— 01— v) — (10— 1)), (5.6)
i = (14N (201 = 1) ), (5.7)
Dy = (1 + N (200 — 1))1/2, (5.8)
v = (1= N (201 +205+ 1) s, (5.9)
V= (V=)W +v2eN (5.10)
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N a1 o2 V1 vo | V3 W2 1%
1 0 0 0 0| 0 e>0 3—¢
3 £0 | #0 0 0| 0 |3~ (0}+0100+03) 0
3 -1 | -1 #0 vi| 0 0 0
1 0 0 £20/1 -1 || n 1>1 w2
1 0 0 #0 0| un je=13 w2
et a2 | gV UIE o | 0 | 1< dly | 2D
<1 5 | 5 +3Y 0] -n Ty EE

Table 1. Critical point solutions corresponding to the autonomous system of ordinary differential
equations (5.5)—(5.10) describing the evolution in the ultra-local limit.

subject to the Hamiltonian constraint

1 1 2 1 -
N7 - 6(uf+u22+u§) + E(ul +u2+u3) - <a§+ala2+a§> - 5W2 =0, (5.11)

and the ultra-local limit of the Hubble-normalized lapse equation (2.52),

2 1/.- _
N1 = l—i—g(a%—l—alag—l—ag) —|—§(W2 —V(qf))). (5.12)
As before, dot denotes differentiation with respect to (coordinate) time ¢, as defined in
eq. (2.47). The third shear eigenvalue o3 could be eliminated since the trace-freeness of the
shear tensor implies that the three eigenvalues must sum to zero. In addition, we substituted
in eq. (5.10) -
Vv
‘_’j = /2, (5.13)

to eliminate the term proportional to V in eq. (2.58) (and, hence, eliminate any explicit
¢-dependence from the equations above).

5.2 Critical point solutions

As detailed above, our goal is to show that the homogenous end states we identified numeri-
cally are the stable attractor solutions of the underlying system of evolution and constraint
equations above. Since any attractor is a (stationary) critical point, we begin with identify-
ing all critical points of the system as given by egs. (5.5)—(5.10). We list the complete set of
(seven) critical point solutions of egs. (5.5)—(5.10) in table 1.

If the potential energy density V' (¢) is negative, as needed to drive slow contraction (see
section 1 and refs. [17, 18, 20, 26]), there exists only the three distinct critical point solutions
listed in the first three lines of table 1:
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- flat, homogeneous, and isotropic (FRW) scaling solution:
- flat, homogeneous, and anisotropic (Kasner-like with €2, > 0) solution; and
- curved, homogeneous, and anisotropic (€2, = 0) solution.

Since the remaining four critical points listed in rows 4-7 of table 1 only exists for positive
potentials, they cannot trigger a phase of slow contraction and lie outside of the scope of this
paper. For this reason, we do not further consider them here.

5.3 Stability of critical point solutions

A critical point is an attractor solution if it is stable to small perturbations. Otherwise, it is
a repeller. Accordingly, to decide which of the three critical points are attractor solutions,
we linearize the system around each critical point and solve the resulting constant-coefficient
system for the complete set of perturbation variables. (Here, we only show the three sets of
equations corresponding to the critical points. For the perturbed evolution and constraint
equations around an arbitrary background, see appendix C.)

5.3.1 FRW (scaling) attractor solution with ¢ > 3

First, we linearize the system around the homogeneous and isotropic FRW critical point

1.
oi=v; =0 (foralli); ./\/'_1:§W2:€; V=3-—c¢ (5.14)

The perturbed shear, spatial curvature and scalar-field matter decouple and obey the
following evolution equations:

86 = (1 - i) Soi, i=1,2 (5.15)
1 .
ovj = <1 — 8) ovj, 3=1,2,3; (5.16)
. 3\
oW = ( - 5) ow. (5.17)

Solutions to the system admit a simple exponential scaling behavior,
§oi, OW e(lfg)t, dvj o e(lfg)t. (5.18)

It is immediately apparent that, for a contracting spacetime (¢ — —o0), the FRW scaling
solution is a stable attractor for € > 3 and a repeller otherwise.

Notably, the FRW critical point solution recovers the well-known scaling attractor so-
lution,

a= (/1) ¢ =/2/eln(r/70), (5.19)

(where 7 is the proper FRW time), as often cited in the cosmology literature. In particular,
the eigenvalues correspond to the so-called ‘Friedmann variables’ commonly used to identify
the scaling solution while assuming an FRW background. (For details, see the appendix D.)
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5.3.2 Kasner-like attractors and repellers

Linearizing egs. (5.5)—(5.10) for the homogeneous and anisotropic Kasner-like critical point
solution,

1 1 _
N = 3 OLOo2 #0, wvi,v9,v3=0, §W2 =3— (6l +o0100+03), V=0, (520

the system reduces to two simple decoupled constant-coefficient matrix equations: one for
the three spatial curvature eigenvalue variables,

1%t 5 or+1 0 0 ovy
%) = g 0 oo+ 1 0 ovy |, (5.21)
(51)3 0 0 1-— o1 — 02 (5V3

and one for the shear eigenvalue and scalar-field matter variables,

561 000 o1
6oy | =J 1000 ]| T d0p |, (5.22)
oW 00p W

where

pz?))<3—\/§-\/3—(a%+0102+03)>, (5.23)

and the matrix J is given by

_ W _0‘1+20’2 o1
201402 201+02 W —/2¢
— 02
J 0 1 725 | (5.24)
1 0 1

As before, solutions to the system admit a simple exponential scaling behavior:

)

51,2, 0W e%(?’*‘/g % 3*("%*”1"%”5))? (5.26)

dvy 9 e§(1+01’2)t, dvg eg(lfarag)t (5.25)

Intriguingly, though, the Kasner-like solution can behave both as an attractor or a repeller
in a contracting universe (t — —o0): if e =0 and 0; > —1 for: =1,2,3; orif e > 0, 0; > —1
and (0% + 03 + 03) > 3 — 9/¢, the Kasner-like solution is an attractor. Otherwise, it is a
repeller. Examples for both behaviors are shown in figure 15.

In Case (a) on the left, the system converges to a Kasner-like state, while in Case (b)
on the right, the system is driven to the FRW scaling attractor solution. This second case is
especially important since it makes apparent the difference to the well-known vacuum case
(that is, pure gravity with no scalar field). In the pure vacuum case, the Kasner solution is
the only stable attractor. In the presence of a scalar-field, though, reaching the Kasner-like
attractor is only possible under very special initial conditions, namely, when the initial scalar
field velocity is uphill (that is, in the direction that V(¢) increases). In this case, the scalar
field’s relative contribution to the total energy density (£2,,) becomes negligible and there is
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Figure 15. State orbit plots for two cases: (a) starting with initial conditions W = 0, {01, 02,03} =
{-1.5,-1.6,3.1} and {v1,v2,v3} = {0.2,0.3,0} and ¢ = 0 in eq. (5.10), spacetime undergoes a
series of bounces before converging to a homogeneous Kasner attractor solution with W = 0,
{o1,02,03} = {1.8,-2.5,—-1.6} and {v1,1e,v3} = {0,0,0}. and (b) starting with initial conditions
W =0, {01,02,03} = {~1.02,-0.98,2} and {vy, v, 3} = {0.2,0.3,0} and ¢ = 6, spacetime under-
goes a different sequence of bounces before converging to a homogeneous and isotropic (spatially-flat)
FRW attractor solution with W = /6, {01, 09,03} = {0,0,0} and {v1,v2,v3} = {0,0,0}.

the same dynamical behavior as in the vacuum case. But for cosmologically motivated initial
conditions, as discussed in ref. [8] and the previous section, the initial scalar field velocity is
at rest or downhill; then one finds that the scalar field energy density increases relative to
the other components and the FRW scaling solution becomes the only attractor.

An illustrative example for how large the set of initial data is that belongs to the basin
of attraction of the FRW solution was given above in figure 8. There the initial scalar field
matter energy density was chosen so small that the system first approached a Kasner-like
critical point, just as it would in the absence of matter. Then the system was dynamically
driven away by the growing homogeneous spatial curvature to another Kasner-like critical
points through a series of (mixmaster) bounces. Yet, as the scalar field’s energy density con-
tinued to grow relative to other contributions, all Kasner-like critical points became repellers
and the system eventually settled in the FRW attractor solution.

Finally, we note that this analysis also complements and generalizes our numerical study
in that it enables us to follow the evolution under homogeneous but spatially curved (v; # 0
for at least one j € {1,2,3}) initial data. This is the one type of initial data that is excluded
in our numerical study by assuming a conformally-flat spatial metric on the initial spacelike
to-hypersurface.

5.3.3 Curved, homogeneous and anisotropic repeller solutions

Thirdly and lastly, we linearize the system (5.5)—(5.10) around the curved homogeneous and
anisotropic critical point solution,

N==, o1=09=—-1, 1=w=v+#0, v3=0 W=0, V=0, (5.27)
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leading to a simple set of evolution equations:

561 1 1 —4viv 0 0 do1
8562 1 1 v —3v 0 0 o2
o _ —%V —v 0 0 —%1/2 0 . o (5.28)
%) —v f%y 0 0 7%1/2 0 %)
ov3 0 0 0 0 2 0 dvs
sW V2e V22 0 0 V2e40) \ oW

For some initial perturbations 50? , 51/?, SWY, the system admits the following solutions:

1
do; = B ((50(1) — b0y + ((50? + (508) €2t> , (5.29)
1
dog = B (503 — b0V + (50? + 508)€2t) , (5.30)
Svy = 0 + Y ((51/? - 51/3)75 +Z ((51/? + 608 + yél/g) (1—e*), (5.31)
3 3 6
Svg = OV — K(éy? — 51/3)15 +Z Sy 4+ ov9 + K(Sug (1—e*), (5.32)
3 3 6
Svg = o €%, (5.33)
SW = W — \/g(éu? + 0V + ;5V§> (1—e*). (5.34)

Unlike before, as contraction proceeds, the dominant scaling behavior is not the expo-
nential but the constant or power-law terms in the solutions. More exactly, as t — —oo, the
shear and scalar field fluctuations converge to constants

1 1
o Lot o), b L o and). (5:3)
ST = SO — \/g (6u? + 609 + ;aug), (5.36)

while two of the spatial curvature perturbations grow
Vico 0 Vic o 0
vy — §(5V1 - 51/2>t, dvg — —§(5V1 — 5V2)t, (5.37)

driving the system away from the critical point, which is therefore unstable.

6 Summary and discussion

The combination of numerical relativity simulations in section 4 and the critical-point analysis
in the ultra-local limit in section 5 provide complementary information about the power of
slow contraction to smooth and flatten spacetime.

The numerical studies show the robustness of slow contraction in transforming space-
times with wildly non-perturbative inhomogeneous initial conditions into homogeneous space-
times that approach the ultra-local limit. The analytic studies prove that the only possible
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ultra-local end states are either €2,, = 1 FRW or a Kasner-like universe with a combination
of anisotropy and matter energy density.

Which end point is reached depends on the initial conditions. In a series of phase dia-
grams exploring different combinations of shear and intrinsic curvature inhomogeneities, we
have shown that for negative exponential potentials with £(V4/V)? =& > 13 and physically
plausible initial scalar field velocity distributions (that is, at rest or downhill for all z), the
universe is driven to an {2, = 1 FRW spacetime with e.g = €, as required in bouncing and
cyclic models of the universe. Similar results were found for more complicated potentials for
which the condition on V4/V is only maintained for a short interval of time.

The phase diagrams also show that, in some cases, an initial inhomogeneity can favor
eventual convergence to the €2,, = 1 FRW spacetime. For example, there are regions of
Phase Diagram III that would converge to Kasner if there is no initial inhomogeneity (f; =
a; = az = 0), but that are instead driven, after a few bounces, to FRW when ay is set
to an even relatively small value, such as as = 0.01 in figure 8(a). This suggests that
the basin of attraction for the KL critical point is small. In other cases, the result is a
mixed state that is almost entirely FRW (as measured by proper volume) interspersed with
exponentially tiny Kasner-like regions over which the ratio of matter energy density and
shear vary. The ultimate fate of these comparatively infinitesimal Kasner-like regions is
an interesting academic question that is not yet resolved, but one that is not of practical
relevance to cosmology because of their insignificant volume weight.

The bottom-line of the complementary studies is that slow contraction is an even more
robust smoothing and flattening mechanism than imagined based on earlier heuristic argu-
ments or than has been shown for any other proposed cosmological smoothing and flattening
process.
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A Numerical methods and convergence tests

In this appendix, we describe our tests for numerical convergence. The key result is that
cases of interest to bouncing cosmology — those regions of the phase diagram that completely
smooth and converge to the ,, = 1 FRW dynamical attractor solution — strongly satisfy
all tests. The same is found to hold in cases ending with mixed states for those regions of
spacetime that smooth without encountering spikes; these regions occupy almost the entire
spacetime, as measured by proper volume. The effects on convergence are also shown for the
exponentially small non-smooth regions that undergo spikey behavior.

To numerically solve the system of equations detailed in egs. (2.52)—(2.59), we use
2nd order accurate spatial derivatives, and a 3 step method for time integration given by
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Figure 16. The Hamiltonian constraint integrated over the spatial domain as a function of time, for
3 resolutions, coarse Ax. = 27/512, medium Ax,, = 27/1024 and fine Az, = 27/2048. Left,
parameters of eq. (A.1): the evolution encounters no spikes while smoothing to FRW. We plot
the integrated Hamiltonian constraint rescaled by the appropriate factor for 3rd order convergence
(1H||e/64,||H||m /8, [|H||f). Right, parameters of eq. (A.2): the evolution does form spikes at this
point. We plot the integrated Hamiltonian constraint rescaled by the appropriate factor for 2nd order
convergence (||H||c/16, |[H|lm /4, |[H]||f)-

the Iterated Crank-Nicolson method. The evolution equations consist of a coupled elliptic-
hyperbolic system of equations, so at each sub-step of the time integration, we first solve
the elliptic equation for the Hubble-normalized lapse N through a relaxation method, and
then update the hyperbolic equations to the next Iterated Crank-Nicolson sub-step. In the
simulations demonstrated above we use a grid of 1024 points, with Az = 27/1024, with a
Courant factor of 0.5.

To demonstrate the convergence of our code, the error and convergence was analyzed
for a broad range of examples drawn from Phase Diagram V (figure 10). Here we present
the results for two representative cases:

c=5, a1 =0.5, ap =0.5, fo/c=0.5, Qo =24 (A.1)

corresponding to a simulation that smooths everywhere to FRW without encountering spikes,
and
Cc = 5, a] = 0.5, as = 0.5, fQ/C = 0.5, QQ =19 (AQ)

corresponding to a simulation that ends in a mixed state with spikes.

Figure 16 shows the L2 norm of the Hamiltonian constraint (eq. (2.60)) integrated over
the spatial domain as a function of time. We see that, in the case of a spacetime that
smooths directly to FRW everywhere, after an initial period of second order convergence, the
constraint converges faster than expected, at third order (figure 16 left). In the case where a
region of the spacetime does not smooth, we see a reduction in convergence at these points,
dropping to second order or worse when spikes form. Between the times of spike formation
we retain 3rd order convergence (figure 16 right).

For the second case, figure 17 shows the modulus of the Hamiltonian constraint as
a function of the spatial coordinate z at a fixed time (in this case, ng = 99). Where
spikes form, we see that the Hamiltonian constraint in the regions where the spikes form
(0.45 5 = < 0.55) do not converge at the required rate; but in the outer regions, where the

— 33 —



3rd order convergence test
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Figure 17. The Hamiltonian constraint as a function of space at fixed times for the same 3 resolutions
(with the same color coding) described in figure 16 (right), rescaled by factors to demonstrate 3rd
order convergence, for parameters of eq. (A.2) that lead to a mixed final state containing an ‘inner
region’ that does not smooth to FRW surrounded by a smooth region that does. Recall that the inner
region is exponentially small compared to the smoothed region when measured by proper volume. In
the regions that smooth to FRW, the third order convergence is unaffected by the presence of the
spikes in the inner region. By contrast, convergence is lost in the inner region.
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Figure 18. The difference between the Richardson extrapolation of the trajectory of ¥, and the
calculated value at resolution Az = 27w/1024 for spatial points x = 37/2 (left) and x = 7 (right), with
parameters of eq. (A.2). For a spatial point that smooths directly to FRW the error is consistently
small, ~ 10~7 (left). For a point that does not smooth and which remains in a Kasner-like region
with spikes, the error remains small until spikes form, at which point the error grows in magnitude
(right). The growth in error corresponds to a transition between Kasner states at = = 7.

spacetime has smoothed to FRW without encountering spikes, the convergence properties
remain unaffected.

For the same mixed state example, figure 18 tracks the evolution of ¥ in eq. (4.6) at
two fixed spatial points. The left panel focuses on a point that smooths to FRW, and the
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right focuses on a point that remains unsmoothed and encounters spikes. In the region that
smooths to FRW, we see second order convergence for this variable as expected. Assuming
second order convergence and using the data with the production resolution of 1024 grid
points (medium resolution subscript m) and data with double the resolution (fine resolution
subscript f), we perform a Richardson extrapolation, which is defined as

Sy~ Sem/d)

R - . (A.3)

We take the error as the difference between this extrapolation and the medium resolution
results. We estimate the absolute size of the error as approximately 107 in the trajectory
of ¥4 that smooths to FRW (figure 18 left). For the trajectory not smoothing to FRW we
see that the variable still converges at 2nd order until the formation of spikes, at which point
errors can grow as large as 10~! (figure 18 right).

B Evolution of the eigensystem in the ultra-local limit

Here, we show that, in the ultra-local limit (E," — 0, 4, — 0,5, — 0), the eigenvectors of
the shear and intrinsic curvature tensors, Y4, and fig, at some time ty remain eigenvectors
at later times. As a result, all the dynamics is incapsulated in the evolution of the shear and
spatial curvature eigenvalues o;,v; (i = 1,2,3). Of course, this is a trivial statement if the
shear and intrinsic curvature tensors are diagonal. Here, we generalize to the case that X
and 74, have non-zero off-diagonal components.

Since both ¥, and 74, are symmetric and real (i.e., Hermitian) and commute in the
ultra-local limit (see eq. (5.2)), the two tensors share a common orthogonal system of eigen-
vectors .

Let {t1,12,1%3} be an orthogonal eigensystem for Y. and g and let o; and v; be the
eigenvalue corresponding to the eigenvector 1, i.e.,

Sab Vi = 0ii,  Aap i =vithy, (i=1,2,3), (B.1)

where there is no summation over i. Then, from the evolution equations (5.3)-(5.4), it is
immediately apparent that all time derivatives can be eliminated and replaced by combina-
tions of the original tensors ¥, and 7i4. It follows that {v;} are also eigenvectors of the

time derivatives X, and i
iab Sy = — ((3N — 1)iab + N(2ﬁc(aﬁb>c — T_Lccﬁ<ab>)> S = A Y, (B.2)
Nap - Vi = —((./\[ — 1)T_Lab — 2./\/-771,0(@21))6) Sy = 0 ;. (B.3)

Using the orthogonality of the eigensystem, (z/fj . %‘) = 0 for i # j, and the expressions

above, one can compute v; - d; (f)ab . 7!%’) in two different ways that must necessarily be

equivalent:

0

Py dy (iab : ¢i) = diM‘F o; (%’ T/Jz) (B.4)

0

= Aiij-iab-m =0 (5 ¥),
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meaning that for ¢ # j and o; # 0, ¥; and 1); are orthogonal to one another,

such that @Z)Z is identical to v¥; up to stretching; if all eigenvectors are simply stretched over
time, then the subspace spanned by an individual eigenvector is unchanged or, equivalently,
every eigenvector at time ty remains an eigenvector. Note that each eigenvector 1; keeps
its own direction and the triad {1, 12,13} does not undergo an overall rotation. The same
argument can be repeated for ny, and its eigenvalues v;.

It remains to discuss the degenerate case. We note that the shear tensor is defined to
be trace-free (01 + 02 + 03 = 0) and must therefore have at least two different eigenvalues,
unless all o; (i = 1,2,3) are zero. So the only non-trivial degenerate case is one in which
two eigenvalues are the same and one is different. Without loss of generality, let us assume
that 01 = 09 and 03 # 012 and that 1 and 12 are two linearly independent eigenvectors
with eigenvalue o1 at time ty. Together, 1 and 1o span the two-dimensional subspace of
eigenvectors with eigenvalue o1. In this case, the same sort of argument as above shows that
the time-evolution of 11 and 12 maps them into the same two-dimensional subspace, although
in general they could be stretched and rotated. Furthermore, the time-evolved 11 and 12 and
every linear combination thereof have the same eigenvalue. This can be seen from egs. (B.2)-
(B.3) by Taylor-expanding the shear and intrinsic curvature tensors around the initial time
tp and operating on an arbitrary linear combination of the ¢ = ¢y eigenvectors 1 and )s:

Sap(to + At) - (an + biba) = Sap(to) - (ats +bba) + Zap(to) At - (ar +bifa)  (B.6)
= (0'1 + AlAt) . (awl + bw2)7

where we have used the fact that egs. (B.2) imply A; must equal \y. As in the non-degenerate
case, every eigenvector at time tg remains an eigenvector. A similar analysis applies to 7i4p.

Accordingly, the dynamics in the ultra-local limit is completely determined by the time-
evolution of the eigenvalues.

C Linearized evolution equations in the ultra-local limit

In section 5, we identified the end states that we found numerically as the only dynami-
cal attractors, i.e. critical points of the evolution scheme in the ultra-local limit, given by
egs. (5.5)—(5.10). There, we only listed the equations as linearized around the three critical
points that we previously identified and listed in table 1. Here, we present the perturbed
system as linearized for an arbitrary background solution, which underlied our calculations.
(We shall denote perturbed quantities by d, e.g., the ith linearized shear eigenvalue is given
by do;. All other variables are background quantities.)

The linearly perturbed system of ordinary differential equations describing the dynamics
in the ultra-local limit around an arbitrary background solution takes the following form:

001 = (1 — 3./\/)(501 — <30’1 + é(?Vl — UV — V3)V1 — %(VQ — V3)2) SN (Cl)
1 1 1
—g/\/‘(llyl — Uy — V3)5V1 + §N<V1 + Q(Vg — V3)>(5V2 + §N<V1 — 2(1/2 — V3)>5V3,
009 = (1 — 3/\/)502 — <302 + %(21/2 - — 1/3)1/2 — %(ul - 1/3)2> SN (C.2)

—%/\/'(41/2 —v — 1/3)51/2 + éN(Ug + 2(V1 — 1/3))51/1 + %N(VQ — 2(1/1 — U3))51/3,
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§in = (1 + N (201 — 1))5V1 + (201 — 1)i6N + 2N 160y, (C.3)
o = (14N (202 =1) ) oz + (202 = 1)v20N + 2N 200, (C.4)
o5 = (1= N (201 + 203 + 1) ) vy - 2<0—1 + o9+ ;>u35/\/ — 2Ny (01 +005),  (C5)
SW = — (3/\/ . 1)5W _ (3W -~ \/%V) SN + V2 NSV, (C.6)
where SN = ~A25(N 1) and 6V are given by
SN = %(ul AL %(VQ )t é(yg v m)ovs (C)
+(201 + 02>501 + (202 + 01)502 +WW,
5V = —36(NY) + 2(201 + 02) So + 2(2@ + 01)502 + 2. (C.8)

D Conventional critical-point analysis using Friedmann variables

In section 5, we identified the FRW scaling attractor solution as the stable end state for all
physically plausible initial conditions (assuming Vi4/V = —1/2¢ = constant). This solution is
widely known in cosmology as the exact solution of the Einstein-scalar field equations when
assuming an exponential potential. Here, we present the conventional derivation from the
cosmology literature and relate the commonly used quantities from there with our variables.

The starting point is a gravitational action involving a single scalar field ¢ with canonical
kinetic energy and an exponential potential that is minimally coupled to gravity:

1 1
S = /d“x\f—g (23 — 5 VadVh - V(¢)> . (D.1)
Evaluating the action for the flat homogeneous but anisotropic Kasner-like metric
ds* = —dr* 4 a*(7) Z 2Bi(7) (D.2a)
where S1(7) + Ba2(7) + B3(1) =0 (D.2b)

and 7 is the proper FRW time coordinate, we find the following system of evolution and
constraint equations

1 1
BH? — 3 (81 + 05 + 54%) = 50 + V(). (D.3a)
1 1
H' 4 5 (81 + 8 + B57) = =507, (D-3b)
B! +3HB. =0, (1=1,2,3), (D.3¢)
¢ +3H¢ = —V,. (D.3d)

As before, prime denotes differentiation with respect to proper FRW time 7. In the following,
we shall eliminate 53 using the identity (D.2b).

Next, we define the dimensionless variables that are often quoted as ‘Friedmann vari-
ables,’

¢ Vv 8 B (D.4)

=== Y= —"F - 7 - 7

H H
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and the dimensionless time variable
Mo = In (a/ao), (D.5)

measuring the number of e-folds of contraction starting from a = ag. (By definition, 0
is negative if the universe contracts and positive if it expands.) Note that, in the ultra-
local limit, the Friedmann variables u, v are identical to the shear eigenvalues o1, 02 and the
remaining Friedmann variables 2 and 3 can be identified with W and V, respectively.
Using the dimensionless Friedmann variables, the Hamiltonian constraint (D.3a) reduces

to
1
= -3+ 5502 + 2<u2 +v? + uv), (D.6)
and the homogeneous system of evolution equations (D.3b)—(D.3d) takes the simple form
\%4
T, = <33 + ’d)> v, (D.7a)
’ %

_(1Ve D.
y,ma <2 Vx+y +3> y? ( 7b)
ug, = uy? (D.7¢)
v, = vy (D.7d)

The system admits the following critical point solutions for V4/V = —/2¢ < 0:
(v/6,0,0,0); (e = 3, FRW) (D.8a)

(—V,¢>/V, %(V,MV)2 -3,0, 0) ; (¢ > 3, FRW) (D.8b)

(\/6 — 4(u2 + 02+ uv),O, U, v) ; (KL). (D.8c)

Obviously, these are the same critical points we found and listed in the first two rows of
table 1. However, since no (homogeneous) spatial curvature is included, the third critical
point as listed in the third row of table 1 cannot be recovered by means of this analysis

It is straightforward to linearize this simple autonomous system around each of the
critical points and conclude that the FRW scaling solution is a dynamical attractor if |V, /V|
is sufficiently large, in agreement with our analysis in section 5. Yet, again, this stability
analysis is limited by assuming a flat Kasner-like metric as given in eq. (D.2a). For example,
it is not possible to recover the role of the (homogeneous) spatial curvature in driving the
system away from a Kasner-like and towards the FRW solution.

Notably, for an exponential potential as given in eq. (4.4), finding the stable critical
point, 22 = 26,V (7) = (3 — e)H(7)?,u = v = 0, immediately yields the well-known FRW
scaling attractor solution given in eq. (5.19) after a series of simple integrations, using 2 /2 =
d(H~1Y.
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