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Abstract

We study the problem of testing whether a matrix A € R"”*" with bounded entries (||Al|c < 1)
is positive semi-definite (PSD), or e-far in Euclidean distance from the PSD cone, meaning that
mings( ||A—BJ||z > en?, where B > 0 denotes that B is PSD. Our main algorithmic contribution is
a non-adaptive tester which distinguishes between these cases using only O(1/e*) queries to the
entries of A.! If instead of the Euclidean norm we considered the distance in spectral norm, we
obtain the “{.-gap problem”, where A is either PSD or satisfies mings¢ ||A — B|| > en. For this
related problem, we give a O(1/€?) query tester, which we show is optimal up to log(1/€) factors.
Both our testers randomly sample a collection of principal submatrices and check whether these
submatrices are PSD. Consequentially, our algorithms achieve one-sided error: whenever they
output that A is not PSD, they return a certificate that A has negative eigenvalues.

We complement our upper bound for PSD testing with Euclidean norm distance by giving a
Q(1/€?) lower bound for any non-adaptive algorithm. Our lower bound construction is general,
and can be used to derive lower bounds for a number of spectral testing problems. As an
example of the applicability of our construction, we obtain a new Q(1/€%) sampling lower bound
for testing the Schatten-1 norm with a en!?® gap, extending a result of Balcan, Li, Woodruff, and
Zhang [BLWZ19]. In addition, our hard instance results in new sampling lower bounds for
estimating the Ky-Fan Norm, and the cost of rank-k approximations, i.e. |A - Ag||2 = Y. 07(A).

*Ainesh Bakshi and Rajesh Jayaram would like to thank the partial support from the Office of Naval Research (ONR)
grant N00014-18-1-2562, and the National Science Foundation (NSF) under Grant No. CCF-1815840.
'Throughout the paper, O(-) hides log(1/e) factors.
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1 Introduction

Positive Semi-Definite (PSD) matrices are central objects of interest in algorithm design, and
continue to be studied extensively in optimization, spectral graph theory, numerical linear algebra,
statistics, and dynamical systems, among many others [VB96, WSV12, GW95, ARV09, AHKO5,
Stel0, ST04, DL09, Wail9, DK19, SL*91]. Specifically, a real-valued matrix A € R"" is said to
be PSD if it defines a non-negative quadratic form: namely if xTAx > 0 for all x € R". If A is
symmetric, this is equivalent to the eigenvalues of A being non-negative. Certifying whether a
matrix is PSD often provides crucial insights into the structure of metric spaces [Sch35], arises as a
separation oracles in Semi-Definite Programming (SDP) [VB96], leads to faster algorithms for solving
linear systems and linear algebra problems [ST04, KOSZ13, MW17, BCW19] detects existence of
community structure in random graphs [SKZ14], and is used to ascertain local convexity of functions.
Furthermore, testing if a matrix is PSD is also used when studying the rate of dissipation in the
heat equation [AzO093] and the behavior of non-oscillatory, exponentially stable modes of linear
differential equations [Gle94]. For these applications, in addition to testing the existence of negative
eigenvalues, it is often important to provide a certificate that the matrix is not PSD, by exhibiting a
direction in which the quadratic form is negative.

While efficient, numerically stable algorithms for computing the spectrum of a matrix have
been known since Turing [Tur48], such algorithms require reading the entire matrix and incur
a cubic running time in practice. Computing the eigenvalues of a matrix is often the bottleneck
in applications, especially when just determining the existence of negative eigenvalues suffices.
For instance, checking embeddability of a finite metric into Euclidean space, feasibility of a SDP,
convexity of a function, and if specialized solvers are applicable for linear algebraic problems, all
only require knowledge of whether a given matrix is PSD. The focus of this work is to study when
the property of being PSD can be tested sublinear time and queries, without reading the entire
matrix.

We approach the problem from the perspective of property testing [GGR98, Gol17], where the
input matrix A is promised to be either a PSD matrix, or “e-far” from PSD under an appropriate
notion of distance (discussed below). Specifically, we work in the bounded-entry model, proposed by
Balcan, Li, Woodruff, and Zhang [BLWZ19], where the input matrix has bounded entries: ||Allc < 1.
Boundedness is often a natural assumption in practice, and has numerous real world applications,
such as recommender systems as in the Netflix Challenge [KBV09], unweighted or bounded weight
graphs [Gol10, GGR98], correlation matrices, distance matrices with bounded radius, and others
[LWW14, KIDP16, BLWZ19]. Further, the boundedness of entries avoids degenerate instances
where an arbitrarily large entry is hidden in A, thereby drastically changing the spectrum of A,
while being impossible to test without reading the entire matrix.

Our starting point is a simple fact: a matrix A is PSD if and only if all principal?> submatrices of A
are PSD. However, a much more interesting direction is: if A is not PSD, what can be said about the
eigenvalues of the submatrices of A? Specifically, if A is far from PSD, how large of a submatrix
must one sample in order to find a negative eigenvalue? Note that given a principal submatrix
A7yt with xTArxrx < 0 for some x € RIT! this direction x can be used as a certificate that the input
matrix is not PSD, since y "Ay = x T Arxrx < 0, where y is the result of padding x with 0’s. Further,

2Recall that a principal submatrix Aryxr for T C [n] is the restriction of A to the rows and columns indexed by T.



it leads us to a natural algorithm to test definiteness: sample multiple principal submatrices and
compute their eigenvalues. If any are negative, then A must not be PSD. Determining the query
complexity of this task is the principal focus of this paper. Specifically, we ask:

Can the positive semi-definiteness of a bounded matrix be tested via the semi-definiteness of a
small random submatrix?

The Testing Models. The distance from A to the PSD cone is given by mings¢ ||A — B||, where
|| - || is a norm, and B > 0 denotes that B is PSD. To instantiate || - ||, we consider two natural norms
over n X n matrices: the spectral norm (|| - [|2) and the Euclidean norm (|| - [|r). Perhaps surprisingly,
the distance of a symmetric matrix A to the PSD cone under these norms can be characterized in
terms of the eigenvalues of A. In particular, let A € R" be the vector of eigenvalues of A. Then, the
spectral norm distance corresponds to the £, distance between A and the positive orthant. Similarly,
the squared Frobenius distance corresponds to the ¢3 distance between A and the positive orthant.

Therefore, we will refer to the two resulting gap problems as the {w-gap and the (3-gap,
respectively. This connection between matrix norms of A and vector norms of eigenvalues A will
be highly useful for the analysis of random submatrices. Next, we formally define the testing
problems:

Problem 1.1 (PSD Testing with Spectral norm/{«-gap). Given € € (0, 1] and a symmetric matrix
A € R such that ||Al|e <1, distinguish whether A satisfies:

(1) AisPSD.

(2) Ais e-far from the PSD cone in Spectral norm: mings [|A — B|l2 = max;.1,<o0 [1i(A)| > en.

The fact that the spectral norm distance from A to the PSD cone (mingxo ||A — B||2) is equivalent
to the magnitude of the smallest negative eigenvalue of A is a consequence of the variational
principle for eigenvalues. For general non-symmetric matrices A, one can replace (2) above with
the condition xTAx < —en for some unit vector x € R”, which is equivalent to (2) if A is symmetric
(again by the variational principle). We note that our results for the {w-gap hold in this more
general setting.?

Next, if we instantiate || - || with the (squared) Euclidean norm, we obtain the ¢ % gap problem.

Problem 1.2 (PSD Testing with f%—gap). Given € € (0,1] and a symmetric matrix A € R"*" such
that ||A]lw < 1, distinguish whether A satisfies:

(1) AisPSD.
(2) Ais e-far from the PSD cone in squared Euclidean norm:
. RI2 _ 2 2
min|A-BJf = ) AXA)zen M
i:A,‘(A)<O

Note that the identity mingy ||A — B||[2T = 2liA;(A)<0 /\?(A) in equation 1 also follows from the
variational principle for eigenvalues (see Appendix A). Similarly to the {..-gap, if A is not symmetric

3Also note that given query access to any A € R"™*", one can always run a tester on the symmetrization B = (A+AT)/2,
which satisfies x T Ax = x T Bx for all x, with at most a factor of 2 increase in query complexity.
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one can always run a tester on the symmetrization (A + A")/2. Also observe that ||A||§ < n?and
|A]l2 < n for bounded entries matrices, hence the respective scales of 7, n? in the two gap instances
above. Notice by definition, if a symmetric matrix A is e-far from PSD in ¢, then A is e2-far from
PSD in £5. However, the converse is clearly not true, and as we will see the complexity of PSD
testing with €2-£7 gap is strictly harder than testing with e-{o, gap.*

In fact, there are several important examples of matrices which are far from the PSD cone in ¢2,
but which are not far in £.. For instance, if A is a random matrix with bounded moments, such as a
matrix with i.i.d. Rademacher ({1, -1}) or Gaussian entries, then as a consequence of Wigner’s
Semicircle Law A will be Q(1)-far in t’g distance. However, ||A|» = O(y/n) with high probability, so
A will only be O(1/+/n)-far in £, distance. Intuitively, such random instances should be very “far”
from being PSD, and the ¢ % distance captures this fact.

Remark 1.3. A previous version of this work defined the gap in Problem 1.1 in full generality
(without symmetry assumed) as x"Ax < —en for a unit vector x. We have since changed the
presentation, as this more general definition does not clearly emphasize the connection between the
Problem 1.1 and the spectral norm. The authors would like to thank an anonymous reviewer for
this suggestion. We note that the results themselves remain unaffected.

1.1 Owur Contributions

We now introduce our main contributions. Our algorithms for PSD testing randomly sample
principal submatrices and check if they are PSD. Thus, all our algorithms have one-sided error;
when A is PSD, they always return PSD, and whenever our algorithms return Not PSD, they output
a certificate in the form of a principal submatrix which is not PSD. In what follows, @ < 2.373 is the
exponent of matrix multiplication, and O, Q notation only hide log(1/€) factors (and log(s) factors
for Ky-Fan-s and residual error bounds), thus our bounds have no direct dependency on the input
size n. We first state our result for the £, gap problem in its most general form, which is equivalent
to Problem 1.1 in the special case when A is symmetric.

Theorem 3.25 ({-gap Upper Bound) There is a non-adaptive sampling algorithm which, given A € R"*"
with ||Alle < 1and e € (0,1), returns PSD if x" Ax > 0 for all x € R", and with probability 2/3 returns

Not PSD if xT Ax < —en for some unit vector x € R". The algorithm make O(1/€?) queries to the entries of
A, and runs in time O(1/€®).

We demonstrate that the algorithm of Theorem 3.25 is optimal up to log(1/€) factors, even for
adaptive algorithms with two-sided error. Formally, we show:

Theorem 5.1 ({-gap Lower Bound) Any adaptive or non-adaptive algorithm which solves the PSD testing
problem with e-{. gap with probability at least 2 /3, even with two-sided error and if A is promised to be
symmetric, must query Q(1/€?) entries of A.

Next, we present our algorithm for the £3-gap problem. Our algorithm crucially relies on first
running our tester for the {.-gap problem, which allows us to demonstrate that if A is far from PSD

4The difference in scaling of € between the £« and f% gap definitions (e is squared in the latter) is chosen for the sake
of convenience, as it will become clear the two problems are naturally studied in these respective paramaterizations.



in¢ % but close in ¢+, then it must be far, under other notions of distance such as Schatten norms or
residual tail error, from any PSD matrix.

Theorem 4.12 ({3-gap Upper Bound) There is a non-adaptive sampling algorithm which, given a
symmetric matrix A € R™" with ||Alle < 1and € € (0,1), returns PSD if A is PSD, and with probability
2/3 returns Not PSD if mingsg ||A — Bllﬁ > en?. The algorithm make O(1/€%) queries to A, and runs in
time O(1/€2®).

We complement our upper bound by a 6(61—2) lower bound for PSD-testing with e-£5 gap, which
holds even for algorithms with two sided error. Our lower bound demonstrates a separation
between the complexity of PSD testing with ve-£o gap and PSD testing with e-£3-gap, showing
that the concentration of negative mass in large eigenvalues makes PSD testing a strictly easier
problem.

Theorem 5.12 ((3-gap Lower Bound) Any non-adaptive algorithm which solves the PSD testing problem
with e-£5 gap with probability at least 2/3, even with two-sided error, must query Q(1/€?) entries of A.

Our lower bound is built on discrete hard instances which are “locally indistinguishable”, in the
sense that the distribution of any small set of samples is completely identical between the PSD and
e-far cases. At the heart of the lower bound is a key combinatorial Lemma about arrangements of
paths on cycle graphs (see discussion in Section 1.4.3). Our construction is highly general, and we
believe will likely be useful for proving other lower bounds for matrix and graph property testing
problems. Exemplifying the applicability of our construction, we obtain as an immediate corollary
a new lower bound for testing the Schatten-1 norm of A. Recall, that the Schatten-1 norm is defined
via ||A|ls, = 2; 0i(A), where 61(A) > --- > 0,(A) are the singular values of A.

Theorem 5.19 (Schatten-1 Lower Bound) Fix any 1/y/n < € < 1. Then any non-adaptive algorithm in
the bounded entry model that distinguishes between

1. ||Alls, = enl?d,
2. ||Alls, < (1~ eo)en'?
with probability 2 /3, where €y = 1/ logo(l)(l /€), must make at least Q(1/€*) queries to A.

Note that one always has ||A||s, < n!? in the bounded entry model (||A[| < 1), which accounts
for the above scaling. Theorem 5.19 extends a lower bound of Balcan et. al. [BLWZ19], which is
Q(n) for the special case of €, €9 = O(1). Thus, for the range € = O(n~1%), our lower bound is an
improvement. To the best of our knowledge, Theorem 5.19 gives the first Q(n?) sampling lower
bound for testing Schatten-1 in a non-degenerate range (i.e., for [|A|ls, > n).

Remark 1.4. We note that the lower bound of [BLWZ19] is stated for a slightly different version of
gap (a “e-lo”-gap), where either ||A||s, > c1n'® for a constant ¢y, or at least en? of the entries of A
must be changed (while respecting ||A||lw < 1) so that the Schatten-1 is larger than c;1'°. However,
their lower bound construction itself satisfies the “Schatten-gap” version as stated in Theorem 5.19,
where either ||A|ls, > c1n', or ||Al|s, < con!® and ¢1 > ¢ are constants. From here, it is easy to
see that this gap actually implies the {p-gap (and this is used to obtain the £y-gap lower bound in
[BLWZ19]), since if [|A||s, < con'- then for any E with ||E||l» < 2 and ||E||p < en? for a small enough
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constant € < c%, we have ||A + E|s, < ||Alls, + ||Ells, < n'>(ca +2v€) < c1n'°. So Theorem 5.19
implies a lower bound of Q(1/€?) for distinguishing ||A|ls, > Ven!® from the case of needing to
change at least Q(en?) entries of A so that lAlls, = Ven!®. Thus, our lower bound also extends the

{o-gap version of the results of [BLWZ19] for the range € = O(1//n).

In addition to Schatten-1 testing, the same lower bound construction and techniques from
Theorem 5.12 also result in new lower bounds for testing the Ky-Fan s norm ||A|lkrs) = 2i-; 0i(A),
as well as the cost of the best rank-s approximation ||A — A, ||1% = Dliss OZ.Z(A), stated below. In the
following, s is any value 1 < s < n/(polylogn), and c is a fixed constant.

Theorem 5.20 (Ky-Fan Lower Bound) Any non-adaptive algorithm in the bounded entry model which
distinguishes between

L [|Allkrs) > wpgs?
2. [|Allkris) < (1 =€) - g
with probability 2/3, where €y = O(1/ logz(s)), must query at least Q)(s?) entries of A.
Theorem 5.21 (Residual Error Lower Bound) Any non-adaptive algorithm in the bounded entry model

which distinguishes between

1. ”A—AS”IZ: > @1’1

2. |A-AGllE < (1-e€0) - s5zsm

slogs
with probability 2/3, where ey = 1/10g%W(s), must query at least CX(s2) entries of A.

Our lower bound for the Ky-Fan norm complements a Ky-Fan testing lower bound of [LW16b],
which is Q(n?/s?) for distinguishing 1) |Allkrs) < 2.1svn from 1) ||Allgps) > 2.4svn when
s = O(y/n). Note their bound decreases with s, whereas ours increases, thus the two bounds are
incomparable (although they match up to log(s) factors at s = @(y/n)).5 We also point out that there
are (not quite matching) upper bounds for both the problems of Ky-Fan norm and s-residual error
testing in the bounded entry model, just based on a standard application of the Matrix Bernstein
Inequality.® We leave the exact query complexity of these and related testing problems for functions
of singular values in the bounded entry model as subject for future work.

A Remark on the (3-Gap. We note that there appear to be several key barriers to improving
the query complexity of PSD testing with ¢3-gap beyond O(1/e*), which we briefly discuss here.
2, such as
||A||% =), ol.z(A) or ||A||§ = a%(A), any algorithm which samples a submatrix must make Q(1/e%)

queries (see Lemma 5.22 for estimating ;. o7 for any k). In other words, detecting en?-sized

First, in general, to preserve functions of the squared singular values of A up to error en

5The bound from [LW16b] is stated in the sketching model, however the entries of the instance are bounded, thus it
also applies to the sampling model considered here.

6See Theorem 6.1.1 of [Tro15], applied to Sy = ag)(ak)) ", where ay) is the k-th row sampled in A; for the case of
residual error, one equivalently applies matrix Bernstein inequality to estimate the head ;¢ al.z(A). These bounds can
be tightened via the usage of interior Chernoff bounds [GT11].



perturbations in the spectrum of a matrix in general requires Q(1/€?) sized submatrices. This rules
out improving the query complexity by detecting the en? negative mass in A via, for instance,
testing if the sum of squares of top k = 1/¢ singular values has ©(en?) less mass than it should if A
were PSD (even this may require Q(k?/e*) queries, see the discussion in Section 1.4.2).

The key issue at play in the above barrier appears to be the requirement of sampling submatrices.
Indeed, notice for the simplest case of ||A||12:, we can easily estimate ||A||§ to additive en? via O(1/€?)
queries to random entries of A. On the other hand, if these queries must form a submatrix, then
it is easy to see that Q)(1/e*) queries are necessary, simply from the problem of estimating || A||2
whose rows (or columns) have values determined by a coin flip with bias either equal to 1/2 or
1/2 + €. On the other hand, for testing positive semi-definiteness, especially with one-sided error,
the requirement of sampling a principal submatrix seems unavoidable.

In addition, a typical approach when studying spectral properties of submatrices is to first pass
to a random row submatrix Agy[,], argue that it preserves the desired property (up to scaling), and
then iterate the process on a column submatrix Asxr. Unfortunately, these types of arguments
are not appropriate when dealing with eigenvalues of A, since after passing to the rectangular
matrix Agy[,], any notion of negativity of the eigenvalues has now been lost. This forces one to
argue indirectly about functions of the singular values of Asy[,), returning to the original difficulty
described above. We leave it as an open problem to determine the exact non-adaptive query
complexity of PSD testing with £3-gap. For a further discussion of these barriers and open problems,
see Section 6.

1.2 Connections to Optimization, Euclidean Metrics and Linear Algebra

We now describe some explicit instances where our algorithms may be useful for testing positive
semi-definiteness. We emphasize that in general, the distance between A and the PSD cone may be
too small to verify via our testers. However, when the input matrices satisfy a non-trivial gap from
the PSD cone, we can speed up some basic algorithmic primitives. The first is testing feasibility
of the PSD constraint in a Semi-Definite Program (SDP) with sublinear queries and time, so long
as the variable matrix has bounded entries. Importantly, our algorithms also output a separating
hyperplane to the PSD cone.

Corollary 1.5 (Feasibility and Separating Hyperplanes for SDPs). Given a SDP S, let X € R"™" be a
symmetric matrix that violates the PSD constraint for S. Further, suppose ||X||lw < 1 and X is en*far in
entry-wise 63 distance to the PSD cone. Then, there exists an algorithm that queries O(1/€*) entries in X
and runs in O(1/€2%) time, and with probability 9/10, outputs a vector ¢ such that 37 X < 0. Moreover, if
Amin(X) < —en, then there is an algorithm yielding the same guarantee, that queries O(1/€?) entries in X
and runs in 5(1/6“) time.

While in the worst case, our algorithm may need to read the whole matrix to exactly test if X is
PSD, there may be applications where relaxing the PSD constraint to the convex set of matrices
which are close to the PSD cone in Euclidean distance is acceptable. Moreover, our algorithm may
be run as a preliminary step at each iteration of an SDP solver to check if the PSD constraint is badly
violated, resulting in speed-ups by avoiding an expensive eigendecomposition of X whenever our
algorithm outputs a separating hyperplane [VB96].



Next, we consider the problem of testing whether an arbitrary finite metric d over n points,
x1,...x, € R is embeddable into Euclidean Space. Testing if a metric is Euclidean has a myriad of
applications, such as determining whether dimensionality reduction techniques such as Johnson-
Lindenstrauss can be used [PR03], checking if efficient Euclidean TSP solvers can be applied [Aro98],
and more recently, computing a low-rank approximation in sublinear time [BW18, IVWW19].
It is well known (Schoenberg’s criterion [Dat10]) that given a distance matrix D € R™" such
that D; ; = d(x;, x;), the points are isometrically embeddable into Euclidean space if and only If
G=1-Dy.+ DlT,* -1T = D = 0, where D, is the first row of D. Notice that embeddability is
scale invariant, allowing one to scale distances to ensure boundedness. Furthermore, since our
algorithms sample submatrices and check for non-positive semi-definiteness, the tester need not
know this scaling in advance, and gives guarantees for distinguishing definiteness if the necessary
gap is satisfied after hypothetically scaling the entries.

Corollary 1.6 (Euclidean Embeddability of Finite Metrics). Given a finite metric d on n points
{x1,...,x,}, let D € R"™" be the corresponding distance matrix, scaled so that |Dl||c < 1/3, and let
G=1D;.+ DI*].T — D. Then if mingx |G — Blllg > en?, there exists an algorithm that queries O(1/€e%
entries in A and with probability 9/10, determines the non-embeddability of {x1, ..., x,} into Euclidean
space. Further, the algorithm runs in time 0 (1/€2®).

Remark 1.7. An intriguing question is to characterized geometric properties of finite metrics based
on the £3-distance of the Schoenberg matrix G from the PSD cone. For instance, given a finite metric
with Schoenberg matrix G that is close to being PSD in ¢ %-distance, can we conclude that the metric
has a low worst or average case distortion embedding into Euclidean space?

Remark 1.8. Since rescaling entries to be bounded only affects the gap parameter ¢, in both of the
above cases, so long as the magnitude of the entries in X, D do not scale with 7, the running time of
our algorithms is still sublinear in the input.

Finally, several recent works have focused on obtaining sublinear time algorithms for low-rank
approximation when the input matrix is PSD [MW17, BCW19]. However, such algorithms only
succeed when the input is PSD or close to PSD (in £3), and it is unknown how to verify whether
these algorithm succeeded in sublinear time. Therefore, our tester can be used as a pre-processing
step to determine input instances where the aforementioned algorithms provably will (or will not)
succeed.

1.3 Related work

Property testing in the bounded entry model was first considered in [BLWZ19] to study the query
complexity of testing spectral properties of matrices, such as stable rank (the value ||A||12:/ ||A||§
and Schatten p norms. A related model, known as the bounded row model, where rows instead of
entries are required to be bounded, was studied by Li, Wang, and Woodruff [LWW14], who gave
tight bounds for testing stable rank in this model. In addition, the problem of testing the rank of
a matrix from a small number of queries has been well studied [PR03, KS03, LWW14, BBG18], as
well the problem of estimating the rank via a random submatrix [BH11, BZ16]. Notice that since
rank is not a smooth spectral property, hiding an unbounded value in a single entry of A cannot
drastically alter the rank. Thus, for testing rank, the condition of boundedness is not required.



More generally, the bounded entry model is the natural sampling analogue for the linear
sketching model, where the algorithm gets to choose a matrix S € R™"*, where ¢ is the number
of “queries”, and then observes the product S - vec(A), where vec(A) is the vectorization of
A [LW17, LW16b, BCK*18, LW16a, LWW14, LNW14, BKKS19, LNW19]. The model has important
applications to streaming and distributed algorithms. Understanding the query complexity of
sketching problems, such as estimating spectral norms and the top singular values [AN13, LNW14,
LW16b], estimating Schatten and Ky-Fan norms [LW16b, LW17, LW16a, BKKS19], estimating tp
norms [AMS96, Ind06, KNW10, JW19, BJWY20], and ¢, sampling [MW10, JST11, JW18, JSTW19],
has been a topic of intense study. For the problem of sketching eigenvalues (with their signs), perhaps
the most related result is [AN13], which gives point-wise estimates of the top eigenvalues. Notice
that linear sketching can simulate sampling by setting the rows of S to be standard basis vectors,
however sketching is in general a much stronger query model. Note that to apply a linear sketch,
unlike in sampling, one must read all the entries of A, which does not yield sublinear algorithms.

A special case of the sketching model is the matrix-vector product model, which has been
studied extensively in the context of compressed sensing [CRT06, EK12] and sparse recovery [GI10].
Here, one chooses vectors vy, ..., vx and observes the products Avy, ..., Avi. Like sketching,
matrix-vector product queries are a much stronger access model than sampling. Recently, in
the matrix-vector product model, Sun et. al. considered testing various graph and matrix
properties [SWYZ19], and Han et. al. considered approximating spectral sums and testing positive
semi-definiteness [HMAS17].

Lastly, while there has been considerable work on understanding concentration of norms and
singular values of random matrices, not as much is known about their eigenvalues. Progress in
understanding the behavior of singular values of random matrices includes concentration bounds
for spectral norms of submatrices [RV07, Tro08], concentration bounds for extreme singular values
[GT11, Trol5, Ver10, GLSS518, KS18], non-commutative Khintchine inequalities for Schatten-p norms
[LPP91, Pis09, PR17], as well as Kadison-Singer type discrepancy bounds [MSS15, KLS20, SZ20].
These random matrix concentration bounds have resulted in improved algorithms for many
fundamental problems, such as low-rank approximation and regression [CW17, MW17, BW18,
IVWW19, DJS*19] and spectral sparsification [ST11, BSST13, ACK"16]. However, in general,
understanding behavior of negative eigenvalues of random matrices and submatrices remains
largely an open problem.

1.4 Technical Overview

In this section, we describe the techniques used in our non-adaptive testing algorithms for the
s and more general ¢5 gap problem, as well as the techniques involved in our lower bound
construction for the £3-gap.

1.4.1 PSD Testing with ¢, Gap

Recall in the general statement of the {«-gap problem, our task is to distinguish between A € R"*"
satisfying xTAx > 0 for all x € R", or x " Ax < —en for some unit vector x € R". Since if xTAx > 0
for all x € R" the same holds true for all principal submatrices of A, it suffices to show that in the



e-far case we can find a k x k principal submatrix Arxr such that y T Aryry < 0 for some y € RF.”7

Warmup: A O(1/€%) query algorithm. Since we know xT Ax < —en for some fixed x, one natural
approach would be to show that the quadratic form with the same vector x, projected onto to a
random subset T C [n] of its coordinates, is still negative. Specifically, we would like to show that
the quadratic form Qr(x) = x} ArxrxT, of x with a random principal submatrix Arxr for T C [n]
will continue to be negative. If Qr(x) < 0, then clearly Arxr is not PSD. Now while our algorithm
does not know the target vector x, we can still analyze the concentration of the scalar random
variable Qr(x) over the choice of T, and show that it is negative with good probability.

Proposition 3.7 and Lemma 3.8 (informal) Suppose A € R™" satisfies ||All < 1 and xTAx < —en
where ||x|l2 < 1. Then if k > 6/¢, and if T C [n] is a random sample of expected size k, we have
E[Qr(x)] < -5 and Var(Qr(x)) < O(%).

By the above Proposition, after setting k = ©(1/€2), we have that |[E[Qr(x)]|* = Q(Var(Qr(x)),
and so by Chebyshev’s inequality, with constant probability we will have Qr(x) < 0. This results
in a k? = O(1/€*) query tester. To improve the complexity, we could instead set k = ©(1/¢) and
re-sample T for k times independently to reduce the variance. Namely, one can sample submatrices
T1,To, ..., Tk, and analyze % Zle Qr,(x). The variance of this sum goes down to O(f;—i), S0, again
by Chebyshev’s inequality, the average of these quadratic forms will be negative with constant
probability. If this occurs, then at least one of the quadratic forms must be negative, from which we
can conclude that at least one of Ar,r, will fail to be PSD, now using only O(1/€3) queries.

A Family of Hard Instances One could now hope for an even tighter analysis of the concentration
of Qr(x), so that O(1/¢€?) total queries would be sufficient. Unfortunately, the situation is not so
simple, and in fact the two aforementioned testers are tight in the query complexity for the matrix
dimensions they sample. Consider the hard instance A in the left of Figure 1, which is equal to the
identity on the diagonal, and is zero elsewhere except for a small subset S C [1] of |S| = €21 rows
and columns, where we have Ags=Ag =1, where § is the complement of S. Notice that if
we set x? =1/(2n) fori ¢ S and xlz =1/(2€?n) fori € S, then xT Ax < —en /4. However, in order to
even see a single entry from S, one must sample from at least Q(1/€?) rows or columns. In fact,
this instance itself gives rise to a Q(1/€?) lower bound for any testing algorithm, even for adaptive
algorithms (Theorem 5.1).

The difficulty of the above instance is that the negative mass of x" Ax is hidden in only a
e2-fraction of A. On the other hand, since the negative entries are so large and concentrated, one
need only sample O(1) entries from a single row i € S in order for Arxr to be non-PSD in the prior
example. Thus, an algorithm for such instances would be to sample O(1/€?) principal submatrices,
each of constant size. On the other hand, the set S could also be more spread out; namely, we could
have |S| = an for any €% < a < ¢, but where each entry in A, s issetto—e€/ va (see the matrix in
the right side of Figure 1). If instead, we define x? =1/(2an) fori € S, we still have x"Ax < —en /4.
However, now any submatrix Arxr with [T NS| = 1 must have at least |T| > a/e? rows and columns,
otherwise Aty would be PSD due to the identity on the diagonal.

"This can be efficiently checked by computing the eigenvalues of Arxr + Af, ;-
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Figure 1: Hard instances for ¢, testing. On the left, the negative mass is highly concentrated in
|S| = €2n rows and columns, and on the right it more spread out over |S| = an, where € < a < e.

The aforementioned instances suggest the following approach: query matrices at O(log 1)
different scales of subsampling. Specifically, for each €? < @ =2/ < €, we sample O(Z—i) independent
k x k submatrices, each of size k = O(a/€?), giving a total complexity of O(el—z). The analysis now
proceeds by a complete characterization of the ways in which x " Ax can be negative. Specifically,
we prove the following: either a substantial fraction of the negative mass is hidden inside of a small
set of rows and columns S with |S| < en, or it is the case that Var(Qr(x)) is small enough so that a
single k x k submatrix will already be non-PSD with good probability when k > 1/e. Given this
classification, it suffices to demonstrate a level of subsampling which will find a non-PSD submatrix
when the negative mass is concentrated inside inside a small set S.

Eigenvector Switching. To analyze this case, ideally, one would like to demonstrate that con-
ditioned on T intersecting S at some level of subsampling, we will have Qr(x) < 0 with good
probability. Unfortunately, the approach of analyzing the quadratic form with respects to x will
no longer be possible; in fact, Qr(x) may never be negative conditioned on [T N S| = 1 (unless
|T| > 1/e, which we cannot afford in this case). The complication arises from the fact that the
coordinates of x; in the small set S can be extremely large, and thus the diagonal contribution of
xl.zAi,i will dominate the quadratic form of a small submatrix. For instance, if Arx7 is a sample with
k = |T| = O(1) which intersects the set S in the leftmost matrix in Figure 1, where x; = 1/(e/n) for
i € S and x; = 1/+/n otherwise, then Qr(x) ~ k/n — (k/\n)x; + Ai,ix?, which is dominated by the
diagonal term Ai,ixl.z = 1/(e’n). Thus, while Aty itself is not PSD, we have that Qr(x) > 0.

To handle this, we must and analyze the quadratic form Qr(-) with respect to another direction
y. The vector y may not even satisfy y " Ay < 0, however conditioned on [T N S| > 1, we will have
Qr(y) < 0 with good probability. Clearly, we must scale down the large coordinates x; for i € S.
However, one cannot scale too low, otherwise the negative contribution of the rows i € S would
become too small. The correct scaling is then a careful balancing act between the contributions of
the different portions of Arxr. Informally, since the x;’s for i € S make up a |S|/n fraction of all
coordinates, they can be as large as xl.2 > (n/|S]) - (1/n). However, inside of the smaller submatrix
Aryr, then conditioned on i € T, since |T| is small x; now makes up a larger 1/|T| fraction of the
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submatrix, thus we should scale down x; to only be x? ~ |T|/n. With this scaling in mind, we (very
roughly) set yl.z = (|S|/n)-(|T|/n)if i € S, and set y; = x; otherwise. The remaining argument then
requires a careful analysis of the contribution of entries of A outside of S to show that the target
vector y indeed satisfies Qr(y) < 0 with good probability conditioned on T intersecting S.

1.4.2 PSD Testing with ¢, Gap

Recall in the ¢, gap problem, our task is to distinguish between A being PSD, and A being e-far in
18 % distance from any PSD matrix, namely that >};.1,(a)<0 A?(A) > en?. In what follows, we refer to
the quantity 2.;.1,(a)<0 /\?(A) as the negative mass of A. First observe that in the special case that we
had a “large” negative eigenvalue, say Amin(A) = —Ven, then by applying our testing algorithm for
{w-gap, we could find a non-PSD submatrix with only O(1/€) queries. However, in general the
negative mass of A may be spread out over many smaller eigenvalues. Thus, we cannot hope to
apply our earlier approach for the {w-gap, which preserved the quadratic form Qr(x) = x{ ArxrxT
with respects to a fixed direction x. Instead, our approach will be to show that if A is e-far from
PSDin ¢ %, then the singular values of A must be “far” from PSD, in some other notion of distance,
allowing us to indirectly infer the existence of negative eigenvalues in submatrices.

PSD matrices are top-heavy, and a reduction to estimating the tail. Our first step is to show that
if A € R™" is PSD, then the t-“tail” of A, defined as };., a?(A), cannot be too large. This can
be derived from the following fact: if A is PSD then we can bound the Schatten-1 norm of A by
|Alls, = 2; 0i(A) = Tr(A), which is at most # if [|Al| < 1. This simple fact will prove highly useful,

since whenever we can demonstrate that the Schatten-1 norm of a submatrix Arxr is larger than |T|,
we may immediately conclude the that Aty is not PSD. In addition, it implies:

Proposition 4.2 (PSD matrices are top-heavy) Fixanyn € N,1 <t < n,and D € R™". Then if D is
PSD, we have .
2, 0i(D) < 1 (THD))’

i>t
In particular, if D has bounded entries ||Dle < 1, we have 3., 0;(D)? < 1nZ

On the other hand, suppose that A is e-far from PSD, and let t > 10/¢. Then if no eigenvalue
is smaller than —e#/100, a condition which can be checked with O(1/€2) queries by first running
our {«-gap tester, then the negative mass must be spread out, and it must be the case that a
substantial fraction of the negative mass of A is contained in the bottom n — t singular values.
Specifically, we must have Y., 0i/(A)* > (e/2)n?, whereas any PSD matrix D would have to satisfy
Dist of(D) < (¢/10)n? by the above Proposition. Thus, after first running our ¢« tester, it will
suffices to estimate the tail ;. al.z(A). Equivelantly, since ||A||I% =) az.z(A) can be efficiently
estimated, it also suffices to estimate the “head” }};; af(A) to additive O(en?).

In order to accomplish this, one could utilize the tools from random matrix concentration, such
as Matrix Bernstein’s inequality [Tro15], which allows one to estimate each (71.2 to error nn? by taking
arandom rectangular O(1/n?) X O(1/1?) sized submatrix. The error in estimating 3", ; G?(A) is then
tnn?, thus one needs to set 1 = O(e/t), giving a O(1/€®) tester with two-sided error. Using a careful
bucketing analysis on the error, along with the more powerful Interior Matrix Chernoff bounds
of Gittens and Tropp [GT11], one can improve this to O(t?/e*) = O(1/€°). However, substantial
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improvements on unconditional estimation of };; a?(A) seem unlikely. In fact, we demonstrate
that event for ¢ = 1 (spectral norm estimation), tools such as matrix concentration inequalities which
sample submatrices of A, must make ((1/ e queries (Lemma 5.22), which rules out, for instance, a
o(t?/e*) upper bound for general t. Thus, instead of unconditional estimation, our main insight
is to demonstrate conditions under which }};, ol.z(A) can be efficiently estimated. When these
conditions do not hold, we show that it is because the Schatten-1 norm of our sampled submatrix
must be too large, from which we can deduce the existence of negative eigenvalues in our query.

In the first case, if the ¢-th singular value is not too large, say 0;+1(A) < 10n/t, we show that
the (re-scaled) tail Z—; Dist 01.2(A5><T) of a random rectangular matrix, where |S| = |T| = k = O(1/€?),
approximates the tail of A to error O(en?). Our argument relies on splitting A into head and tail
pieces A = A; + A_;, where A; is A projected onto the top-t eigenvectors of A. We demonstrate that
the spectral mass of each is preserved after passing to a random row submatrix, and additionally
demonstrate that 0max(A—¢) = 0¢+1(A) does not grow too much using spectral decay inequalities for
random submatrices [RV07]. This forces the spectrum of (A_;)sx[x] to be well spread out, allowing
us to apply interlacing inequalities to demonstrate that after adding (A¢)sx[,] back in, the resulting
tail is still sufficiently large, and then iterate the argument when sampling columns to obtain Agxr.

On the other hand, if 0;4+1(A) is too large, then after moving to a random row submatrix the
spectral norm of A_; can concentrate highly in its top eigenvalues, which can then be absorbed by the
top t eigenvalues of A;, stealing too much mass from the tail. Instead, note that if o¢+1(A) > 10n/t,
then the Schatten norm of A must be large, namely }}; 0;(A) > 101, which cannot occur if A is PSD.
We show that by applying Interior Eigenvalue Matrix Chernoff bounds (mentioned above), we can
preserve this fact, obtaining 7 0+1(Asxr) > 101/t with good probability when k = Q(1/ €?). If this
is the case, then the Schatten norm of the submatrix will be too large: ||Asxrlls, > t(10k/t) > 10k.
To obtain a certificate from this fact, we move to the larger principal submatrix Asur)x(sur), Which
we show must still have large Schatten norm, from which we can infer the existence of negative
eigenvalues. Similarly, in the earlier case, we show that the large tail of Asxr implies that the
principal submatrix A(sur)x(sur) also has too large of a tail, meaning it must not be PSD.

1.4.3 Lower Bounds

As seen above, the distribution of negative mass in the matrix A plays an important role in the
complexity of testing if A is PSD. Specifically, the problem becomes easier the more concentrated
the negative mass is within a few eigenvalues. So in order to avoid a o(1/€?) upper bound from the
{oo-testing algorithm, our hard instance must have |Amin(A)| = O(en) in the e-far case. On the other
hand, we cannot allow the negative mass to be extremely spread out, otherwise we would have to
add many more positive eigenvalues to avoid violating the trace constraint [Tr(A)| = | X}; Ai(A)| < n
implied by the boundedness, creating further spectral differences between the instances. With
this in mind, our hard distribution will have 1/e negative eigenvalues, each roughly equal to
Ai(A) = —en.

The Hard Instance. Our first insight is to construct a discrete instance, with the property that the
distribution induced by observing a small sample of the “meaningful” entries of A is identical in
both cases. Specifically, we construct two distribtuions: Dygs and Dno over n X n matrices. In both
cases, A will be block diagonal, with k disjoint blocks By, By, ..., By C [n], each of size |B;| = n/k,
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for some parameter k; we will later set k = ©(1/¢), so our target lower bound is Q(k?). In Dygs,
each block Ag,«p, will be PSD, whereas in Dno we will have Amin(Ap,xB;) = —O(n/k) ~ —en. The
partition By U B U - - - U By = [n] is chosen randomly, so that for any fixed set of samples, only a
small fraction them will be contained inside any block Ap,xs;. The diagonal entries will always be
fixed to 1, and all off-diagonal entries are either {0, 1, —1}. The samples ay, ay, ..., as € [n] X [n] of
any algorithm can then be interpreted as a graph H (possibly with self-loops), where for each edge
a, = (i, j) € E(H), the algorithm learns the value A; ; € {0,1,-1}.

Now consider the algorithm which just samples a t X t principal submatrix T C [n], so that H is
a t-clique. Now in expectation E[|T N B;|] = L for each i, however, by a balls and bins argument, as
t approaches k we will obtain some blocks i with [T N B;| = Q(log k /loglog k). Thus, to fool this
query, we must be able to “fool” cliques of size roughly log k within a block B;. On the other hand,
an algorithm could find many more entries in a block by lop-sided sampling: for instance, it could
sample k? entries in a single column of A (H is a k2-star), getting k entries inside a column of a block
Ag,;xp;- Thus we must also fool large star queries. It turns out that the right property to consider is
the matching number v(H) of the query graph H, i.e. the size of a maximum matching. Notice for a
star H, we have v(H) = 1. We prove (roughly) that if within each block B;, one can “fool” every
query graph H inside Ap,xp; with matching number v(H) < ¢, one would obtain a lower bound of
Q(k 1 ). Thus, it will suffice to fool all query graphs H within a block B; with v(H) < logk.

For a first step towards this, suppose that in Dygs, we set each block independently to
.

Ap,xp, = vv', where v € {1, —1}/Bil is a random sign vector, and in Ono, we set Ap,;xp; = —vv
(except we fix the diagonal to be 1 in both cases). Now notice that the distribution of any individual
entry (Ap,xB,)a » is symmetric, and identical in both Dygs and Dno. Furthermore, it is not difficult
to check that the distribution of a path or star query H inside of Ap,xp, is also identical in both
cases. On the other hand, if H contained a triangle, then this would not be the case, since in Dygs
one could never have a negative cycle (x, y, z) where v,v, = v,v; = v,0, = —1, whereas this could
occur in Do, since we could have that —v,v, = —v,v, = —v,v, = —1. Thus, roughly, to distinguish
between these distributions Dygs from Do, an algorithm must sample a triangle within one of the
blocks Ap,xp,;, which one can show requires Q(k*/3) queries, yielding a first lower bound.?

Boosting to Q(k?). Given the above example, we would now like to construct instances which
fool H with larger and larger v(H). In fact, our next insight is to have an even simpler structure on
Dygs and Dno: each of them will be a random permutation of one of two fixed matrices D1, D;
respectively. We now formalize the “fooling” condition we need. For a matrix B and a query
graph H, let (B)y denote the result of setting all entries of B not in H equal to zero. Then the
matrices D1, D, must have the property that for any graph H with v(H) < logk, if 0 : [m] — [m] is
a random permutation and P, € R"™*" is the row permutation matrix corresponding to o, then
the distribution of (P,D;P])y is identical to the distribution (P;DyP)y. We call this property
H-subgraph equivalence. This implies that any algorithm which queries the edges in H inside of
P,D;P! or P,D,P! will be unable to distinguish between them with any advantage. To obtain a
lower bound, we must also have a gap between Amin(D1) and Amin(D2), so that their spectrum can
be shifted to make one PSD and the other far. Furthermore, neither Apin(D1) or Apin(D2) can be
too negative, otherwise by shifting we would lose boundedness of the entries.

8Note that v(H) = 1 for a triangle H, so the Q(k2(=D/ty lower bound when v(H) < ¢ is actually loose here.
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A priori, it is not even clear that such matrices D1, D exist, even for fixed values of v(H), such
as v(H) = 5. Our main contribution now is to demonstrate their existence for every v(H). Our
construction is simple, but perhaps surprisingly so. Both D1, D, will be adjacency matrices; in the
PSD case, we set D1 to be the cycle graph Cy,,41 on 2m + 1 = ©O(log k) vertices, and in the e-far case
we set D> to be the disjoint union of two cycles Cy;,41 ® C,,. Since one of m and m + 1 is even, while
2m + 1 is odd, we will have that Amin(Crs1 ® Cr) = =2, but Amin(Cop+1) > —2.° To show subgraph
equivalence, it suffices to show a slightly more general version of the following: for any graph H
with v(H) < m /4, the number of subgraphs of Cy,+1 isomorphic to H is the same as the number
of subgraphs of C,,+1 ® C,, isomorphic to H.'° Note that if v(H) < m /4, then H is just a disjoint
collection of paths.

Our proof of this fact is by a construction of a bijection from arrangements of H in Cy,41 to H
in Cjy41 ® Cy. While a seemingly simple property, some care must be taken when designing a
bijection. Our mapping involves first “swapping” two paths (whose length depends on H) in Cp;;141,
before “splitting” C»;,+1 into two cycles of length m and m + 1. We direct the reader to Section 5.2.1
for further details.

Amplifying the Gap. The subgraph equivalence between Cj;,11 and C,,4+1 ® C;, prevents any
algorithm from distinguishing between them with a small number of samples, however the gap
in the minimum eigenvalue shrinks at the rate of ©(1/ m?). Meaning, if we set y = Amin(Com+1) =
2 — ©(1/m?), while the matrix I+ Cop41 is PSD and has constant sized entries, we only have
Amin(YI + Cps1 & Cpy) = —O(1/ m?), which is not far enough from PSD. Instead, recall that we only
need m = ((log k) to fool all H with v(H) < log k, but the block size which we must fill is much
larger: Ap,xp, has size |B;| = n/k. Thus, instead of setting m = @(n/k) and filling all of Ap,xp, with
the cycles, we set m = O(log k), and we amplify the spectral gap by taking the tensor product of
the small graphs C,+1 and Cy,41 ® C,, with a large, fixed matrix M, so that (yI + C2,41) ® M has
|Bi| rows and columns. We prove that taking the tensor product with any fixed M preserves the
subgraph equivalence properties of the original matrices. From here, our lower bounds for testing
PSD with ¢, gap, Schatten norms, Ky fan, and the cost of the best rank-k approximation, all follow
by a proper choice of M. For PSD testing, we can choose M = 1 to be the all 1’s matrix, and to
amplify the gap in Schatten 1 norm, we can choose M to be a random Rademacher matrix. Since
M = 1is PSD and |[M||; = Q(n/k), the gap is amplified to the desired —Q(n/k). Finally, we remark
that to obtain a lower bound for another norm, any matrix M which is large in that norm may
be suitable, so long as the original sub-graph equivalent matrices also have a gap in that norm.
We pose it as an interesting open problem to design other pairs of matrices D, D, with different
spectral gaps which have good sub-graph equivalence properties.

2 Preliminaries

We now introduce the notation and definitions that will be used consistently throughout the
paper. Additional, specialized notation will be introduced as needed in their respective sections.

°To intuitively see why this is true, note that if m is even and v € {-1,1}" is the vector that assigns opposite signs to
adjacent vertices of Cy;, then we have C,,;v = —2v. However, if m is odd, this assignment v is no longer possible.
1A more general statement is needed since H can also query for edges which do not exist in Cpy;41.
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Specifically, our lower bound construction in Section 5 utilizes several additional pieces of notation,
such as those concerning signed graphs, which are introduced at the beginning of that section.

Singular Values and Eigenvalues. We use boldface A notation to denote matrices. For a n x d
matrix A, let 0max(A) = 01(A) > 02(A) > -+ > Omin{n,d}(A) = Omin(A) denote the singular values of
A. If Aisrank 7, let A = UXVT be its singular value decomposition, where U € R"™",V € RY*" have
orthonormal columns, and 3, € R™" is a diagonal matrix with the (non-zero) singular values o; on
the diagonal. We use 3 to denote the matrix 3 but with all entries but the k largest singular values
removed and use 2_; to denote the matrix 2 but with all entries but the n —k smallest singular values
removed. Let Ay = UL VT and A_; = UX_;VT. The matirx Ay is referred to as the truncated SVD of
A, and is the best rank-k approximation to A: [[A—Aj ||§ = Yok 0%(A) = ming ranik |A-B ||1%. For the
special case when A € R™" is symmetric, we use UAUT to denote the Eigenvalue Decomposition
of A, where Amax(A) = A1(A) > A2(A) > -+ > A, (A) = Anin(A) denote the eigenvalues of A. A
real-symmetric matrix A is said to be Positive Semi-Definite (PSD) if Amin > 0, which is equivalent to
having x"Ax > 0 for all x € R". We will utilize the Loewner ordering on symmetric matrices.

Definition 2.1 (Loewner Ordering). For symmetric matrices B, D, we write B > D if B — D is PSD.

Notice that if B > D, then by definition x"Bx > x"Dx for all x € R". Then by an application of the
Courant-Fischer variational principle for eigenvalues, we have that A;(B) > A;(D) for all i € [n].

Matrix Norms and Submatrices. We use the notation [|All, = omax(A) to denote the spectral
norm of A, [|Allr = (%; ; A%’j)l/2 =L, 01_2(A))1/2 to denote the Frobenius norm of A. For p > 1, we

write [[Alls, = X of(A))l/” to denote the Schatten p-norm of A, and ||Allkr(p k) = (Zi‘:1 of(A))l/V
to denote the (p, k)-Ky-Fan norm of A. If p is not specified for a Ky-Fan norm, it is assumed to be
1, namely ||A|lkrk) = ||Allkr(1,k). For subsets S, T C [n], we denote the matrix Agsxr € RISXITI a5
the matrix A restricted to the submatrix of the rows in S and the columns in T. If S = T, then the
square submatrix Asxt = Agsxs is called a principal submatrix of A. For a vector x € R" and subset
S c [n], we write xg € R” to denote the vector obtained after setting equal to zero all coordinates x;
with i ¢ S. Finally, we use the notation A, . to denote the i-th row of A, and A.; to denote the i-th
column of A.

3 PSD Testing with (., Gap

In this section, we introduce our algorithm for the PSD testing problem with £.-gap. As discussed
earlier, we consider a more general version of the £ gap than the definition presented in Problem
1.1, which allows one to test a notion of positive semi-definitness which applies to non-symmetric
matrices as well. Specifically, we define the PSD case as when x"Ax > 0 for all x € R", and the
far case as when x " Ax < —en for a unit vector x. We note that if A is symmetric, this definition is
equivalent to Problem 1.1. In fact, as we will see shortly, one can always reduce the non-symmetric
case to the symmetric case, so this distinction will not matter algorithmically. Formally, we solve
the following problem:

Definition 3.1 (General PSD Testing with {-Gap.). Fix, € € (0,1] and let A € R"™" be any matrix
satisfying ||A||lo < 1. The goal is to distinguish between the following two cases:

15



¢ YES Instance: A satisfies xTAx > 0, for all x € R".
¢ NO Instance: There exists a unit vector x € R” such that x " Ax < —en.

with probability at least 2/3.

Reducing to the symmetric case In the case where A is symmetric, as in Problem 1.1, the above
gap instance can be restated in terms of the minimum eigenvalue of A. Specifically, we are promised
that either Apin(A) > 0 or Apmin(A) < —en. However, we now observe that one can reduce to
the symmetric case with only a factor of 2 loss in the query complexity, by simply querying the
symmetrization (A + AT)/2. First note, that for any x € R"” and any matrix A € R"", we have
xTAx = xTATx, thus for any x we have xTAx = xTA*ALx. Thus xTAx > 0 for all x if and only
TAAL A+AT i PSD. Similarlly, we have

< x < —en for some unit vector x,
which occurs if and only if )\mm(AJ“AT) < —en. Note also that the matrix A+2A has bounded entries
|| 22— A+AT llo < 1if [|Allcc < 1. Moreover, query access to A+2AT can be simulated via query access to

if x x > 0 for all x, which occurs if and only if the matrix

TA+AT
2

that x"Ax < —en for some unit vector x if and only if x

A+2A with a loss of at most a factor of 2 in the query complexity, by symmetrizing the queries. In

fact, our algorithms will not even incur this factor of 2 loss, since all queries our algorithms make
will belong to principal submatrices of A. Thus, in what follows, we can restrict ourselves to the
original formulation as specified in Problem 1.1, and assume our input A is symmetric.

The goal of this section is now to prove the following theorem, which demonstrate the existence
of a O(1/€?) query one-sided error tester for the above problem. In Section 5, we demonstrate that
this complexity is optimal (up to log(1/e€) factors), even for testers with two sided error (Theorem
5.1).

Theorem 3.2 (Query Optimal One-Sided Tester for {., Gap (see Theorem 3.25)). There is an algorithm
which, given A with ||Alle < 1 such that either x" Ax > 0 for all x (YES case), or such that x" Ax < —en for
some x € R" with ||x||2 < 1 (NO case), distinguishes the two cases with probability at least 3 /4, while making
at most O(el—z) queries to the entries of A, and runs in time O(1/€®), where w < 2.373 is the exponent of
matrix multiplication. Moreover, in the first case when x T Ax > 0 for all x, is PSD, the algorithm always
correctly outputs YES.

Algorithmic Setup First recall that if A is PSD, then then every principal submatrix Arxr of
A for T C [n] is also PSD. Thus, it will suffice to query a collection of principal submatrices
AT, xT,, ATyxTy, - - - » AT,x1, Of A, and return Not PSD if any one of them fails to be PSD. Such a
algorithm then naturally has one-sided error, since if A is PSD it will always return PSD. Thus, in
the remainder of the section, it suffices to consider only the NO case, and demonstrate that, if A
satisfies x T Ax < —en for some unit vector x € R", then with good probability at least one of the
sampled principal submatrices will fail to be PSD.

Moreover, as shown above, it suffices to consider the case where A is symmetric. In this case,
we will fix x to be the eigenvector associated with the smallest eigenvalue of A. Thus, in what
follows, we can fix x so that min,egn.|z|,=1 2T Az = ¥ T Ax = Amin(A) = —en. Notice here we define e
to satisfy the equality Amin(A) = —en, however our algorithm need only know a lower bound € < €
on €. The reason for this is that the input parameter €y will only effect the sizes of the random
submatrices being sampled (smaller € increases the size). Thus, an algorithm run with parameter
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€o can be simulated by first running the algorithm with parameter € > €, and then randomly
adding rows and columns to the sampled submatrices from the correct marginal distribution. Thus,
there is a coupling such that the submatrices chosen by an algorithm with any input €y < € will
always contain the submatrices sampled by an algorithm given the input exactly ¢, so if the latter
algorithm sampled a non-PSD submatrix, so would the former. Thus, for the sake of analysis, we
can assume that the value € is known.

Throughout the following section, we will assume 1/e < c - n for some sufficiently small constant
c. Notice that if this was not the case, we would have 1/€2 = Q(n2), and we would be permitted to
read the entire matrix A, as this is within our target budget of O(1/€?).

3.1 Warm-up: a O(1/€?) algorithm

We first describe a O(1/€®) query algorithm for the problem of PSD testing with £-gap. The
general approach and results of this algorithm will be needed for the more involved O(1/€2) query
algorithm which we shall develop in the sequel. As noted above, it suffices to analyze the NO case,
where we have xTAx = Anin(A) = —en for a unit vector x € R". Our goal will be to analyze the
random variable Z = x; Arxrxt, where T C [n] is a random subset, where each i € [n] is selected
independently with some probability 0. Notice that if 6; € {0, 1} is an indicator variable indicating
that we sample i € T, then we have Z = x;ATxTxT = Zl-,j XiAjjxj0ib;.

Now, algorithmically, we do not know the vector x. However, if we can demonstrate concentration
of Z, and show that Z < 0 for our sampled set S, then we can immediately conclude that Arxr is not
PSD, a fact which can be tested. Thus, the analysis will proceed by pretending that we did know x,
and analyzing the concentration of x} Aryrx7. In the following section, however, we will ultimately
analyze the concentration of this random variable with respects a slightly different vector than x.

We first remark that we can assume, up to a loss in a constant factor in the value of ¢, that the
diagonal of A is equal to the identity.

Proposition 3.3. We can assume A;; =1, for all i € [n]. Specifically, by modifying A so that A; ; = 1, for
all i € [n], the completeness (PSD) case is preserved and the soundness (not PSD) case is preserved up to a
factor of 1/2 in the parameter €.

Proof. Every time we observe an entry A; ; we set it equal to 1. In this new matrix, if A was PSD to
begin with, then A will still be PSD, since this modification corresponds to adding a non-negative
diagonal matrix to A. If xAx < —en originally for some x € R", then x"Ax < —en + 1 after this
change, since the diagonal contributes at most }; Ai,z-xi2 < |lx ||§ < 1 to the overall quadratic form.
Note this additive term of 1 is at most (e7n)/2 since we can assume € = Q(1/n). [

We now notice that if x is the eigenvector associated with a a large enough eigenvalue, the £
mass of x cannot be too concentrated.

Proposition 3.4. Let A € R"™" be a symmetric matrix with Amin(A) = —€n, and let x € R" be the (unit)

eigenvector associated with Amin(A). Then we have that || x| < j

Proof. By Cauchy-Schwartz, for any i € [n]:
| Amin| - xi] = (A, 0) < |Aill2 < Vi

from which the proposition follows using Amin(A) = —en. [ |
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Recall that our goal is to analyze the random variable Z = x}' Arxrxr = Zi,]- xiAi,jxj0;i0j. To
proceed, we bound the moments of Z. Our bound on these moments can be tightened as a function
of the row and column contributions of the target vector x, which we now define.

Definition 3.5. Fix any y € R". Then for any i € [n], define the total row and column contributions
of i as Ri(y) = Xjen)\i YiAi,jyj and Ci(y) = Xiepani ¥jAj,iyi respectively.

Notice from the above definition, we have }}; Ri(y) + Ci(y) = 2 (yTAy - Ai,iyl.z).

Fact 3.6. Let x € R" be the eigenvector associated with Amin(A). Then we have Ri(x) + Ci(x) < 0 for all
i€[n].

Proof. Suppose there was an i with R;(x) + Ci(x) > 0. Then setting z = x[,),; we have z"TAz =
(x, Ax) — (Ri(x) + Ci(x)) — A; i(x;)?. Recall from Proposition 3.3 that we can assume A;; = 1 for all
i, thus it follows that z" Az < (x, Ax), which contradicts the optimality of x. ]

We now bound the expectation of the random quadratic form.

Proposition 3.7 (Expectation Bound). Let A € R™" be a matrix with ||A|lc < 1, and let y € R" be
any vector with ||yl < 1and yTAy < —en. Let Z = 3, i yiA; jyj6;0j, where 61, ..., by ~ Bernoulli(%).
Then if k > 8/€e, we have E[Z] < _ek?

An

Proof. Letc;, j = A jyiy;. First note, for any i € [n], the term ¢;, jis included in T with probability
k/nif i = j, and with probability k?/n? if i # j. So

]E[Z] => :—zCi,j + > %Ci,i

i#] ieln]

k> k
= 2|V Ay) - Z Aiiy? |+ m Z Aiiy?
i€[n] i€[n] (2)

ek? [k k2 )
=T " (57);[”]%

ek? 2k ek?
<= 42 <

- 2n n = 4n

Where in the last inequality, we assume k > 8/¢. [ ]
Next, we bound the variance of Z. We defer the proof of the following Lemma to Section 3.2.

Lemma 3.8 (Variance Bound). Let 61,...,0, ~ Bernoulli(%). Let y € R" be any vector such that
Iyl <1, lyllo < ﬁ, and yT Ay = —en, where A € R™" satisfies ||Allc < 1. Further suppose that
Ri(y) + Ci(y) < 0 for each i € [n]. Then, assuming k > 6/e€, we have

k3
Var ZyiAi,j]/jéiéj < O( )

— n2
i
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. . a
Moreover, if the tighter bound ||yllec < —3= holds for some a <1, we have

\/_

k*  ak’
Var Z yiAi,j]/j(Si(Sj <0 (ﬁ + ?)
ij

We note that the variance of the random quadratic form can be improved if we have tighter
bounds on certain properties of the target vector y. We demonstrate this fact in the following
Corollary, which we will use in Section 3.3. Note that the assumptions of Corollary 3.9 differ in
several minor ways from those of Lemma 3.8. For instance, we do not require k > 6/¢ (we note that
this assumption was required only to simply the expression in Lemma 3.8). Also notice that we do
not bound the diagonal terms in Corollary 3.9. We defer the proof of Corollary 3.9 to Section 3.2.

Corollary 3.9 (Tighter Variance Bound). Let 01,...,0, ~ Bernoulli(%). Let A € R™" with ||Alje < 1
be any matrix and y a vector such that |y" Ay| < cien for some value c1 > 0, and such that || y||e < ﬁfor

some o > 0. Let Z € R" be defined by Z; = Ri(y) + Ci(y) for i € [n], and suppose we have ||Z||§ < cpen.
Then we have

k2 C2k4€2 + K3 23
Var E ylAl,]]/Jél(S] <0 ﬁ-i_ 1 n (Cl C2)€ N a
i#j

n2 n2 n2

We now observe that the variance computations from Lemma 3.8 immediately gives rise to a
O(1/€%) algorithm.

Theorem 3.10. There is a non-adaptive sampling algorithm which queries O(e™) entries of A, and
distinguishes the case that A is PSD from the case that Amin(A) < —en with probability 2/3.

Proof. Let x € R" be the eigenvector associated with Apmin(A) = —en (recall that we can assume
equality), and let Z1, ..., Z; be independent repetitions of the above process, with k = 10/e and
d =3840/¢. Let Z = % Z?:l Z;. Then Var(Z) < %ﬁ—z by Lemma 3.8, where we used the bounds on
||x||o from Proposition 3.4 and the property that R;(x) + Ci(x) < 0 for all i from Fact 3.6 to satisfies
the assumptions of Lemma 3.8. By Chebysev’s inequality:

PI‘[Z > _€_k2 + e_kz] < 641’12 6_k3
T 4n  8nl T \ €2kt ) \dn?
<L 3)
~ 10ek
1
<
~ 100

It follows that with probability 99/100, the average of the Z;’s will be negative. Thus at least one of
the Z;’s must be negative, thus the submatrix corresponding to this Z; will not be PSD. The total
query complexity is O(k?d) = O(e™3).

|

3.2 Variance Bounds

In this section, we provide the proofs of the variance bounds in Lemma 3.8 and Corollary 3.9. For
convenience, we restate the Lemma and Corollary here before the proofs.
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Lemma 3.8 Let 61,...,0, ~ Bernoulli(X). Let y € R" be any vector such that ||yll2 < 1, ||ylle < \/—,

and yT Ay = —en, where A € R"™" satisfies ||All < 1. Further suppose that Ri(y) + Ci(y) < 0 for each
i € [n]. Then, assuming k > 6/€, we have

3
Var Zyl i Yj0ib; <o(k )

ij

a

Moreover, if the tighter bound |||l < o holds for some o < 1, we have

2 3
Var ZyZAIJy](Sé <O(k O;kz)
]

PT’OOf. Let Ci,j = Ai,jyiyj- We have

Var Z%Az,]%élé] < " § ”+ E Cijt E CijCji+ 3 E Ci,iCjj + E Ci,iCij

i,j i i#j i#:j iij i#]
k>
o D1 s 2 Gt s 2 Ctiat o D ot t s 3 e @
i#] i#j#u JEIFU i#j#u ]iz;&u
2k % ,
t 5 Z Ci,iCjut 3 Z CijCup — Z ViAijyj — ZAi,iyi
i#j£u i#j#v#U i#] i

. . 4
We first consider the last term % Dizjzoru CijCup = Dizj YilAijVj Duzorizj YuBu,oYo. Here
i # j # v # u means all 4 indices are distinct. Note that this term is canceled by a subset of the

2
2 2
terms within (% Dizj Yilijyj — % i Ai,iyz.z) . Similarly, the term % 2i=j Ci,iCj,j cancels. Moreover,
2
2
after expanding (% Dizj Yilijyj — % i Ailiyl.z) , every remaining term which does not cancel with
another term exactly is equal to another term in the variance above, but with an additional one (or

two) factors of £ attached. Thus, if we can bound the remaining terms in Equation 4 by some value
B, then an overall variance bound of 2 - B will follow.

We now consider 7 = (Z]-#iu Ci,jCi,u + Z#J-iu Ci,jCu,j + Z##u Ci,jCu,i + Z##u ci,]-cj,u). We

have
Z Ci,jCiu = ZZ ViAijyj Z YiAi uYu

i#j#u i j#i u#i#j
2 vt = 2 ) YiMijyy ) Yuhst
i£j#uU ji#j u#i£j
Z Ci jCu,i = ZZyiAi,jyj Z YuAu,iyi
JESEST i j#i UFI#]
2 vy = 0, D YAy ), Yijuye
i#j#U jooi#j u#i#j
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Now for simplicity, we write R; = R;(y) and C; = Ci(y) for i € [n]. Then by assumption,
we have R; + C; < 0 for each i, thus | };(Ri + Ci)| = 2; |(Ri + Ci)|. Also note that we have
[ 2i(Ri+C)l=12yTAy —2%; Ai,iyl.zl < 4en. Now observe

(Z D VALY D J/iAi,uyu) S RH=), D, viAbwis ) yis]

i j# UFi#] i ue[n]\i
And similarly
ZZ%A”% Z Yuhu,jYj Zci :Z Z ALY; < ny =1
i i#] u#i#j ' Joueln]\j

(Z Z YiAijyj Z ]/uAu,i]/z’) - ZRiCi = Z Z yZ.ZAi,uAu,iyﬁ < Z yl? <1

i U#i#] i ueln)\i

(Z Z Vil jyj Z YA uyu) ZR]C] = Z Z yl%Au,]-Aj,uy]2 < Z y]z <1
- i j

i#] U#itj j o ue[n]\j

Taking these four equations together, we obtain |T 2i(Ri + C’,)2| < 4, so it will suffice to upper
bound the value };(R; + C;)? instead. First note that since |y;| < —= \/_ for all i, so for any i € [n] we
have

(Ri +Cl < 1D yiijyil +1 )" il ivil < —(Zzlj]) < 7||y||1 =
j#i j#i

Combining this bound with the fact that }}; |(R; + C;)| < 4en from earlier, it follows that the sum
Yi(R; +Ci)? is maximized by setting 2€2n of the terms (R; + C;) equal to the largest poss1b1e value of
(2/€), so that 3;(R; + C;)? < 2e?n(2/e)? = O(n) This yields an upper bound of . K 5T = O( ) Note,
that in general, given the bound ||yl < . \/ﬁ for some value a < 1, then each term [(R; + Cl)l < zé".
On the other hand, }; |(R; + C;)| < 4en. Thus, once again, Y ; [(R; + C;)|? is maximized by setting
O(e?n/a) inner terms equal to ©((2)?), giving 7~ < an for general a < 1. Thus, for general a < 1,
we have 3‘T O("‘ )

Next, we bound £ o Z#j Ci,iCij + ﬁ—i 2% Ci,iCj,i by fl—i i yl.z(Ri + C;). As shown above, |R; + C;| <
2y; \/n, thus altogether we have

i (Zcuczﬁzc”cﬂ)S—Zy?\f (5)

1#] 1#]

Using that [|y|lc < ﬁ for a < 1, and the fact that ||y||§ < 1, it follows that ||y||§ is maximized

by having ’2—622 terms equal to [[y]|e < which gives an upper bound of || ]/||3 < Thus, we

i B
can bound the right hand side of Equation 5 by %;, which is O(k®/n?) when a = 1 using that
k=Q(@1/e).

3
Now, we bound % Dii#j#u CiiCju Dy
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K3 K
3 CiiCju < _Zyz Aiji Z YiAjuYu

L nd
i#j#u jEUE
k3
Sﬁzyl ii Z y] ]uyu
]¢u¢z
k3 6
< 3 Z yl.zAi,i (en + O(1)) (©)
i
ek3
<
<3
k2
=0(
Also observe that 2ic i S A y] lyl; < 1, s0 Xiyj Ciz,j < 2 cf’j < 1, and also

Di%j Ci,jCji < 2ij yl ; 2 < 1, which bounds their corresponding terms in the variance by O(k?/n?).
Finally, we must bound the last term % i ci ; =k w 2i Y 4A 2 < kw. y?. Note that |y;| < 1/(eVn) for

each 7, and ||y|l < 1. Thus }; y4 is maximized When one has €?n terms equal to 1/ (e\/_ ), and the
2

restsetto 0. So }; y <e n( L )4 = Ingeneral, if || y || < v_,wehavez y < &g e\/_)4 £
Thus we can bound £ ZZ i by O(k112 )
Altogether, this gives
k> ak®  ak?  a?k®
Var Z ylAl,]y](Sz(S] < O(ﬁ + ? + @ + 7
i,j @)
k> ak®  a%kd
=OCa Tt e
which is O(k®/n?) in general (where a < 1), where we assume k > 6/¢ throughout. [

Corollary 3.9 Let 6; € {0,1} be an indicator random variable with E[6;] = k/n. Let A € R™" with
|Alleo < 1 be any matrix and y a vector such that |y"Ay| < c1en for some value ¢1 > 0, and such that
V]l < ﬁfor some a > 0. Let Z € R" be defined by Z; = Ri(y) + Ci(y) for i € [n], and suppose we

have ||Z||§ < cpen. Then we have

kb2
k2 cik%e . (c1 + cp)ek® N a?k3

Var Z YiAi,jyj06i6;| < O o o o

i#]
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Proof. We proceed as in Lemma 3.8, except that we may remove the terms with ¢; ; for i = j, yielding

k? , k?
Var ZyiAi,jyjéi(Sj < EZCM + EZCW'C]’, 3 Z Ci,jCu,j

i#] i#] i#] i£j#u
k3 K3 K3
+ ﬁ Z Ci,jCi,u + m Z Ci,jiCju + m Z Ci,jCu,i (8)
JEIFU i#j#u jFiIFU
k3 k4
+ ﬁ Z Ci,iCj,u + ﬁ Z Ci,jcu,v - Z yz ,]]/]
i#Fj#uU i#j#vEU i%j

2
4 2
As in Lemma 3.8, we can cancel the term % 2i#j#ozu Ci,jCu,p With a subterm of — (% iz yiAi,]-y]-) ,

2
and bound the remaining contribution of — (ﬁ—i izj ViAijy j) by individually bounding the other
terms in the sum.
First, we can similarly bound the last term by cZe?k*/n? as needed. Now when bounding

T = Z Ci,jCiu + Z Ci,jCu,j + Z Ci,jCu,i + Z Ci,jCju

jFIFU i#j#u jEIFU i#j#u

we first observe that in the proof of Lemma 3.8, we only needed a bound on ||Z||§ to give the bound

3
on 7. So by assumption, ||Z||? < czen, which gives a total bound of ake on Eq,
y 2 n2 n3
3
Also, we bound we bound % Z##u Ci,iCj,u by

:—z Z Ci,iCju < 3ZyZA” Z ViAjuYu

[ESEST] jFEUFI
S Az i Z ]/] julu
JEUFL (9)
k3 »
<= Z y7A;;(cien + O(1))
i
3
< ek
le

which is within our desired upper bound. Finally observe that };; : ¢ i G ] < j yl y] = ||y|2 <1,s0
Z#] i S le] i S <1, and also X4 cijcji < 2j yl y] 1, which bounds their corresponding
terms in the variance by O(k?/n?), which completes the proof.

|

3.3 Improving the complexity to O(1/€?)

We now demonstrate how to obtain an improved sample complexity of O(1/€?) using different
scales of sub-sampling, as well as a careful “eigenvector switching” argument. As before, we can
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assume that A is symmetric, and x = arg min,cge ||jo|,<1 ¥ ' Av is the smallest eigenvector of A, so
that that (x, Ax) = Anin(A) = —en. Also recall that our algorithms will not need to explicitly know
the value € = minger |jo|,<1 ¥ Av/n, only a lower bound on it, since when run on smaller € our
algorithm only samplers larger submatrices. By Proposition 3.4, we have ||x||e < ﬁ We now
partition the coordinates of x into level-sets, such that all the coordinates x? within a level set have
magnitudes that are close to each other.

Definition 3.11. Given (A, x), where x is as defined above, define the base level set Sas S = {i €

[n] : |xi]? < 1%}, andletT, = {i € [n] : 1006-_%”*1 < |xil? < 1060—1?7} for an integer a > 1.

We now break the analysis into two possible cases. In the first case, the coordinates in one of
the sets T, contributed a substantial fraction of the “negativeness” of the quadratic form x] Ax, for
some a sufficiently large. Since the sets T, can become smaller as a increases while still contributing
a large fraction of the negative mass, this case can be understood as the negativeness of x " Ax being
highly concentrated in a small fraction of the matrix, which we must then find to determine that A
is not PSD. In the second case, no such contributing T, exists, and the negative mass is spread out
more evenly across the terms in the quadratic form x " Ax. If this is the case, we will show that our
variance bounds from the prior section can be made to obtain a proof that a single, large sampled
principal submatrix T C [n] will satisfies x] Arxrxr will be negative with non-negigible probability.

Formally, we define the two cases as follows:

Case 1: We have xsAxt, + x1,Axs < for some a such that 2 > 10°C3, for some

= _1010%1/(11/6)
C= @(log2(1 /€)) with a large enough constant.

Case 2: The above does not hold; namely, we have xsAxt, + x7,Axs > —m for every
2% > 100C3.

3.3.1 Case 1: Varied Subsampling and Eigenvector Switching

In this section, we analyze the Case 1, which specifies that xsAxt, + x7,Axs < —W for some

T, such that 2% > 10°C3, where C = @(logZ(l /€)) is chosen with a sufficiently large constant. Recall
here that x € R" is the (unit) eigenvector associated with Amin(A) = —en. We now fix this value a
associated with T,. In order to find a principal submatrix Arxr that is not PSD for some sampled
subset T C [n], we will need to show that T N T, intersects in at least one coordinate.

As discussed in Section 1.4.1, we will need to switch our analysis from x to a different vector y,
in order to have y; Arxryr < 0 with non-negligible probability conditioned on [T N T,| > 1. To
construct the appropriate vector y, we will first proceed by proving several propositions which
bound how the quadratic form x T Ax changes as we modify or remove some of the coordinates of x.
For the following propositions, notice that by definition of Tj, using the fact that ||x||3 < 1, we have
that |Ty| < 5555 for any b > 1, which in particular holds for b = a.

Proposition 3.12. Let A € R"™" satisfy ||A|lc < 1. Let S, T C [n], and let v € R" be any vector such that
lolla < 1. Then |v{ Avr| < +/IS| - |T]|
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Proof. We have [vgAvr| = | Eies Zjer vii,j0j] < Bies [0il Xjer [0j] < Zies villlorlh < lloslhllor|h

< +/|S||T| as needed. [ ]

Proposition 3.13. Let A € R™ satisfy |[Alle < 1 for any n,m. and let v € R",u € R™ satisfy
lull3, [[0ll3 < 1. Then
m

j=1

n 2

Z Z)iAl',]'u]'

i=1

<n

2 2
Proof. We have (XL, viA;ju;j)” < u]z (Xh loil)” < u?llvllf, so the sum can be bounded by
S w2lol2 = lfolllul2 < [[o]]2 < n as needed.

[ ]
Proposition 3.14. Let x be as defined above. Then we have |(xs, Axs)| < 10en.

Proof. Suppose (xs, Axs) = Cen for a value C with |C| > 10. Note that [(x)\s, Ax[ps)| < 155

by Proposition 3.12, using that |[#] \ S| = | Up>1 Tp| < {5 (here we use the fact that at most 155
coordinates of a unit vector can have squared value larger than %). If C > 0, then we must have
that ((xs, Ax[u\s) + (X[a)\s, Axs)) < —(C +99/100)en for us to have that (x, Ax) = —en exactly.
Thus if C is positive and larger than 10, it would follow that by setting v = x5/2 + x[,,)\s, we would
obtain a vector v with ||v]| < 1 such that v has smaller quadratic form with A than x, namely with
vTAv < —(C +99/100)en /2 + eCn/4 + ne/100 < —en using that C > 10, which contradicts the
optimality of x as the eigenvector for Amin(A). Furthermore, if C < —10, then xSTAx s < —10¢, which
again contradicts the optimality of x.

Now recall that the total row and column contributions of i are defined as Ri(x) = X e i XiAi jX;
and Ci(x) = Xje[n)\i XjAj,iXi respectively. In the remainder of the section, we simply write R; = R;(x)
and C; = Ci(x). We now define the contribution of i within the set S C [n].

Definition 3.15. Let S C [n] be as defined above. Then for any i € [n], define the row and column
contributions of i within S as RZ.S = jes\i XiAi jxj and leg = Yljes\i XjAj,ix; respectively.

Observe from the above definition, we have ;1. (Ris + CZ.S ) = (xsAxt, + x1,Axg) <
where the inequality holds by definition of Case 1.

_ en
101og(1/e)”

Proposition 3.16. We have 3;c5(R? + C°)* < 1601en.

Proof. Let 25,2,z~ € RISI be vectors defined fori € S as zz.s = Rf + Cl.s, zi=Ri+Ci,and z~ =z — z°.
Notice that our goal is to bound ||z° ||§, which by triangle inequality satisfies ||z° ||§ <2 (||z||§ + ||z‘||§).
First note that

2

||Z_||§ = Z Z xl'Ai,]‘x]‘ + Z x]‘A]',l'x,‘

ieS \ jes jeS

2
SZZ inAi,]'x]‘ +ZZ Zx]-A]-,ixi

ies \ jgs ieS \ jes

) (10)
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Using that [1] \ S < €n/100, we have by Proposition 3.13 that ;s (Z]-¢5 xiAi,]-xj)z < en/100, so
||z‘||§ < en/25.

We now bound ||z||1 = X;cs |Ri +Ci|. By Fact 3.6, we have R; +C; < 0foralli € [n], which means
that ||z]l1 < 2iepn) [Ri + Cil = [2(x, Ax) =2 Xicpn] A; i(x;)?| < 2en. Next, we bound ||z||.. Notice
that |R; + Ci| = 2|xi(A;., x) — A; i(x)?] < 2en(x;)? +2A; i(xi)* < 4en(x;)?, using that Ax = —enx,
since x is an eigenvector of A. Since for i € S, it also follows that (x;)* < %, thus ||z]|l < 400 as
needed. It follows that ||z|[3 is maximized by having 2en/400 coordinates equal to 400, giving
|Iz]I2 < 2€n/400(400)* = 800€n. It follows then that ||z°||3 < 1601en as needed. n

Eigenvector Setup: We now define the “target” direction y € R" which we will use in our
analysis for Case 1. First, we will need the following definitions. Let

<RV +CP <

2p+12a opoa
D! = {t €T, : }

_log(l/e) _log(l/e)

Define the fill  of T, as the value such that § = 277 where p > 1 is the smallest value of p such

p 2°r21
that —|D, |(]og(l/€)) < _4010;1(1/6)'

T, = DE where f = 277. Observe that xsAxr: + x7:Axg <

“eigenvector” y as

Note that at least one such p for 1 < p < log(1/e) must exist. let

_ en . .
W10 Finally, we define our target

y=xs+CB (27" xT,) (11)

where ( = @(logz(l /€)) is as above, and we also define our target submatrix subsampling size as
272

A= %ﬁog(l/e). First, we prove that for a random submatrix Arxr, where i € [n] is sampled and

added to T with probability A/n, we have that y T Arxry is negative in expectation conditioned on

ITNT:| > 1.

Lemma 3.17. Suppose we are in case 1 with T, contributing such that 2° > 10°C3. Let &; be an indicator

2000822 log(1/€)

variable that we sample coordinate i, with E[;] = % and A = i . Thenif y = xs + C(27"xT,)

where C > 100 logz(l/e), and if t € T}, then

50CA
n

E Z yiAi,jyj(Siéj | or=1| < -
i,jesu{t}

Proof. First observe E[};cs yfAi,iéi] < Allxll% < % since x is a unit vector. Note that ys = x5 by
construction, so we can use Proposition 3.14 to bound [(ys, Ays)| by 10en, which gives

A A
ot Z(At,i + A )Yy + v
ieS

(ys, Ays) — Z y?A,; ;0

i€S

20/\2€ A Cﬁ S S Cﬁ 2 1002°
< " +E(1+2_a(7€t+ct))+(2_”)(€n )

2 1002 B2
S20A€+%(1+§—5(Rf+q§))+ P

)\2
E ‘ Z YiAijyjdib; | or=1[ < P
i,jeSU{t}

n 2%n
(12)
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Now by definition of i € T;, we have (R? + C’) < _WZUE)' Thus

2002 A C 100>
E A iyidi0i |6 =1] < —{1- 1
Z Yifdi,jYjoi ]| ! T on +n( log(l/e)) 2%en 13
i,jeSU{t}
Setting C > 100 log2(1 /€), we first note that % (1 - log(cl 7 6)) < —100119193;(1 Gk Since
272 2
. 20008°C*log(1/e) < 2000 < 1
20¢ 26Ce Ce
; 20A? 201 20A AC 1042 99AC 3AC
it follows that =2 < e S 50 < sgwem- Thus = - T00n Tog(iJe) = ~ Trlogi/e)" So we can
simply and write
E| Y viliyioi|o=1< BAC__ 1008767
iAijyjoi0j |0 =1 < =
Lo 4nlog(1/e) 2%en
B 15008%C%  100C2p2
B 2%n 2%n (14)
1400823
S . S —
2%en
< _50CA
n

as desired. [ |

Lemma 3.18. Let &; be an indicator variable with IE[6;] = A/n. Then

A
Pr i]ZGS yiAi,jyjéi(Sj_]E[i%yiAi,j]/jéiéj] > Cg < %

Where C > 0 is some constant.

Proof. We can apply Corollary 3.9, where we can set the values of c1, ¢ to be bounded by constants
by the results of Proposition 3.14 and 3.16, and by definition of the set S we can set @ < v/e for the
in Corollary 3.9, and using that A < O(1/€), we obtain:

CAZ?
Var Z yiAi,jyj(Siéj < 7
i#j€S

for some constant C. Now note that ]E[Z#jes Vil jyi0i0;] < B’Onﬂ < O(%), thus by Chebyshev’s,
with probability 99/100, we have | Zi¢j65 Vil jyi0i0j] < O(%). Moreover, note that }; Ai,iyl.zéi can
be assumed to be a positive random variable using that A; ; = 1, and note the expectation of this
variable is %, and is at most 1001 /n with probability 99/100. Thus | 3’;cs y?Ai,iéi —E[Xies yl.zAi,i]l <

100A /n. By a union bound, we have:

A 49
Pr i;SyiAi’jyjéiéj ZCZ < 50

Where C = 150. ]
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Lemma 3.19. Fixany t € T,. Then

104 1
Pr Z Ye(yifip + Aiyi)i - ]E[Z vi(yilAiy + Ay iyi)oi]| > — | < 105
ieS ieS
Proof. By independence of the 0;’s
A
Vaf( Z;(%Ai,tyt + ytAt,iyz')(Si) < Z(yiAi,tyt + v AL i)
1€ i
A
s Z 2y} y;
1
2A 10027
< L (gpa—— (15)
Ton (€p2™) en
_ 24 (100222
T on 2%en
272
S R
5n2

Now since E[;cs(yiAiye + YeAs,iyi)oi] < —%logé/e) < —%, the desired result follows by
Chebyshev’s inequality. [
Lemma 3.20. Fixany t € T,. Then

—25CA
n

Pf[ Z YiAijyj0idj < | ¢ = 1] > 24/25

i,jeSU{t}

Proof. Conditioned on 6; = 1, we have

D, Viki i) —E[ D yiAi,jyf5i51|5t=1|]

i,jeSU{t} i,jeSuf{t}
< Z yi(yiAi + Ayiyi)oi — ]E[Z yi(yiAir + Ayiyi)oil
i€S i€S (16)
[ Vil ;010 —E[ 2 yiAi,jy15i5j]
i,jes i7es
<ct
n

for some constant C < 200, where the last fact follows from Lemmas 3.18 and 3.19 with probability
24/25. Since ]E[Zi,jesu{t} YiAi,jyi0i0; | o = 1|] < —@ by Lemma 3.17, by scaling C by a
sufficiently large constant, the result follows. [

Theorem 3.21. Suppose we are in case 1 with T, contributing such that 2° > 10°C3. Then there is an

7
algorithm that queries at most O(bgeﬁ) entries of A, and finds a principal submatrix of A which is not
PSD with probability at least 9/10 in the NO case. The algorithm always returns YES on a YES instance.
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Proof. By the above, we just need to sample a expected size O(A?) submatrix from the conditional
distribution of having sampled at least one entry from T;. Since |T;| > B/1055, 775, and since
1= @(ﬁ2C2 log(1/e)

sio——), we see that this requires a total of k samples of expected size O(A?) , where
2710 log(l/e))( 2%¢
pe p>C*log(1/e)

k=m/ITzN)/A < ( )

0 (17)
< 10ﬁ3C2
Thus the total complexity is O(kA?), and we have
2a 4 41 2 1
o < 02 B log1/e)
ﬁscz 22a¢2
21n02
< 10%(1/6) (18)
)
Clog’(1/e)
= 0(-—57-=)
€

we use the fact that we can set ( = O(log2(1 /€)). Finally, note that we do not know f or 2%, but we
can guess the value of A in powers of 2, which is at most O(g—;), and then set k to be the value such
that kA? is within the above allowance. This blows up the complexity by a log(1/¢) factor to do the
guessing.

[ |

3.3.2 Case 2: Spread Negative Mass and Main Theorem

In the prior section, we saw that if the quadratic form xT Ax satisfies the condition for being
in Case 1, we could obtain a O(1/€?) query algorithm for finding a principal submatrix Arxr
such that yTArxry < 0 for some vector y. Now recall that S = {i € [n] : |x;]* < é}, and let
T, ={i € [n] : % < |xi? < %} for a > 1. Recall that the definition of Case 1 was that
ngxT” + x}u Axs < —en/(101log(1/€)) for some 2% > 10°C3. In this section, we demonstrate that if
this condition does not hold, then we will also obtain a O(1/€?) query algorithm for the problem.

Thus, suppose now that we are in Case 2; namely that xsAxt, + x1,Axs > —en/(101log(1/¢)) for
all 27 > 10°C3. Now let T* = Unasq06c3 T, and let T~ = Uga g6 T, Let S* = SUT™. We now observe
an important fact, which sates that if we are not in Case 1, then xs:-Axs: contributes a substantial

fraction of the negativeness in the quadratic form.

Fact 3.22. Suppose we are in Case 2: meaning that x{ Axt, + x1,Axs > —en/(10log(1/¢)) for all
2% > 10°C°. Then we have x.. Axs: < —en /2.

Proof. Notice that this implies that xSTAxT+ + x7+Axs > —en/10, since there are at most log(1/¢)
level sets included in T* by Proposition 3.4. Note since the contribution of |x[, Axr+| < —en107¢/C?
and |x7-Axt+ + x7+AxT-| < /|T~||T*| < €n/100 by Proposition 3.12. Thus if x "Ax < —en to begin
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with, it follows that we must have

x&Axg < xTAx — ((xJ Axr+ + x7+Axs) — (x7 Axy+) — (x7-AxT+ + X7+ AXT-))
< —en+en/10 + +enl107%/en /100 (19)
< —en/2

We now proceed by analyzing the result of sampling a principal submatrix from the quadratic
form x . Axs:, which by the prior fact is already sufficently negative. Specifically, we will demonstrate
that the variance of the standard estimator from Lemma 3.8, and specifically Corollary 3.9, is already
sufficiently small to allow for a single randomly chosen O(1/€) x O(1/e) principal submatrix of
A to have negative quadratic form with xs- with good probability. In order to place a bound on
the variance of this estimator and apply Corollary 3.9, we will need to bound the row and column
contributions of the quadratic form xST*As*X s+Xxs+, which we now formally define.

Definition 3.23. For i € [n], define the row and column contributions of i within S* as R} =
Djes\i XiAijxjand Cf = X jcg; XjAjix; respectively.

Recall that the fofal row and column contributions of i are defined via R; = X ;c(,)\; XiAi,jxj and
Ci = 2jen)\i XjAj,ixi respectively, and recall that we have R; + C; < 0 for all i € [n] by Fact 3.6

Proposition 3.24. We have }';c5.(R; + C)* < 107 - CPen.

Proof. The proof proceeds similarly to Proposition 3.16. Let z*, z, z~ € RI¥| be defined for i € S* via
z; =R+ C;,zi =Ri+Ri,and z~ = z — z. Notice that our goal is to bound ||z*||§, which by triangle
inequality satisfies ||z*||§ <2 (||z||§ + ||z‘||§). First note that

||Z_||§ = Z Z xl'Ai,]‘x]‘ + Z x]'A]‘,l‘xl'

ies \ jes* jest

2
SZZ inAi,]'x]‘ +2Z ijAj,ixi

ies* \jes ies* \ jgs*

) (20)

Using that |[n] \ S*| < en/100, we have by Proposition 3.13 that }};cs- (ngs xiAi/]-xj)z < en /100, so
||z‘||§ <en/25.

We now bound ||z|l1 = Yjes |Ri + Ri|]. Recall that we have R; + R; < 0 for all i € [n], which
means that ||z[li < i) IR + Ril = 12(x, Ax) = 2 3c() Ai,i(xi)?] < 2en. Next, we bound ||z ]|e.
Notice that |R; + R;| = 2|x;A,; .x| = 2en(x;)* — 2A,; i(x;)* < 4en(x;)?, using that Ax = —enx, since x
is an eigenvectror of A. Since i € S*, by definition we have (x;)? < %, thus ||zl < 100-10°- C3.
It follows that ||z||§ is maximized by having 2en/(10% - () coordinates equal to 10® - (3, giving
||z||§ <2en /(108 - 3)(108 - (3)? = 2-10% - (3en. It follows then that ||z||§ <-10°- Pen asneeded. m

Theorem 3.25. There is an algorithm which, given A with ||Alle < 1 such that either xT Ax > 0 for all
x € R" (YES Case), or x" Ax < —en for some x € R" with ||x|]2 < 1 (NO Case), distinguishes the two cases
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with probability 3 /4 using at most 5(61—2) queries, and running in time O(1/€®), where w < 2.373 is the
exponent of fast matrix multiplication. Moreover, in the YES case the, the algorithm always outputs YES (with
probability 1), and in the NO case, the algorithm returns a certificate in the form of a principal submatrix
which is not PSD.

Proof. By Theorem 3.21 which handles Case 1, we can restrict ourselves to Case 2. Using Fact 3.22
as well as Proposition 3.24, can apply Corollary 3.9 with the vector y = xs, setting c; = ©(1) and
c =0(%),and a = O(Wel®) = O(\/Elog6(1/e)), to obtain that

Var| Z Vil jy;6;0;] < O(loglz(l/e)—)
i#j
where k = ©(1/¢). Since by Proposition 3.7 and Fact 3.22 , we have ]E[Z#]' Vil jyj6;0;] <
%(xs*,Axs*) —6—7;2, it follows that by repeating the sampling procedure O(logu(l /€)), by
Chebyshev’s we will have that at least one sample satisfies ’;.; yiAi,jy;j6i6j < — w1th probability
99/100.

Now note that this random variable does not take into account the diagonal. Thus, it will
suffice to bound the contribution of the random variable ;e[ oiA; i(yi)? O((1/€e)/n). First
observe that E[Y;c[,] 0iA;,i(yi)*] = K. The proof proceeds by a simple bucketing argument; let
Ai={ieS"| % < (yi)? < 2;—“}, and for a single k X k sampled submatrix, let T C [n] be the rows
and columns that are sample. Note that E[|T N A;|] < k277, since |A;| < 27". Note also that |A;| =0
for every i such that 2’ > 102& by definition of S* and the fact that y is zero outisde of S*. Then by
Chernoff bounds we have that with probability Pr[|T N A;| > log(1/€) max{k2~%,1}] <1 - ecﬁ for
some constant C for our choosing. We can then union bound over all O(log(1/¢)) sets A;, to obtain

i+l 2 .
D ALy’ < )L TITaAls ) log(l/e)max{k,2'}

. 83 . 83
i€[n] 2,§100€<, lzz,ﬁloogc

with probability at least 1 — e_c9 Setting k = @(log6(1 /€)/€), we have that ;e 0iA; i(yi)?
Zi‘zkm(Z/n)log(l/e)k = O(10g2(1/e)k/n) . Thus we can condition on e, 0iA; i(yi)?

IIA

O(logz(l /€)k/n) for all O(1) repetitions of sampling a submatrix. Since at least one sampled
submatrix satisfied };;. j ViAijyj0idj < —i—’;z, and since k = @(10g6(1/ €)/€), this demonstrates that

at least one sampled submatrix will satisfy 3}; ; yiA jy;0i6; < —%ﬁ as needed in the NO instance.

The resulting query complexity is then O(log2(1 /e)k?) = (10g “a/ e)) = 5(51_2) as desired. Finally,
for runtime, notice that the main computation is computing the eigenvalues of a k X k principal
submatirx, for k = O(1/€), which can be carried out in time O(1/e®) [DDHK07, BVKS19]. [

4 PSD Testing with {5 Gap

Let A € R™" be a symmetric matrix with eigenvalues Amax = A1 > Ay > -+ > A, = Apin. In this
section, we consider the problem of testing positive semi-definiteness with an ¢3 gap. Formally, the
problem statement is as follows.
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Definition 4.1 (PSD Testing with f%—Gap.). Fix, € € (0,1] and let A € R"™" be a symmetric matrix
satisfying ||Al|« < 1, with the promise that either

¢ YES Instance: A is PSD.
¢ NO Instance: A is e-far from PSD in f%, meaning that mingsg ||A — B||% = 2iiA;<0 A? = en?.

The PSD Testing problem with £3-gap is to design an algorithm which distinguish these two cases
with probability at least 2/3, using the minimum number of queries possible to the entires of A.

Our algorithm for this problem will query a principal submatrix Asxs and return PSD if Agxs is
PSD, otherwise it will return not PSD. Since all principal submatrices of PSD matrices are PSD,
we only need show that if A is e-far from PSD, then we can find a non-PSD principal submatrix
with small size. Note again that this implies that our algorithm will be one-sided. Thus, in the
following, we can focus on the case where A is e-far from PSD. We begin by stating two fundamental
observations, which, along with an application of our algorithm from Section 3, will allow us to
reduce the problem of PSD testing with ¢, gap to the problem of testing certain functions of the
singular values of A.

Proposition 4.2 (PSD matrices are top heavy). Fixanyn € N,1 < k < n,and D € R"™". Then if D is
PSD, we have .

2, 0i(D) < 7 (T(D))?

i>k
In particular, if D has bounded entries ||D||w < 1, we have ¥;.; 0;(D)? < %nz.

Proof. We first show that ox(D) < k~'Tr(D). To see this, suppose ox(D) > k~'Tr(D). Then
because D is PSD, we would have 3,0, = 3; A; = Tr(A) > k - k"!Tr(D), a contradiction. Thus,
0i(D) < k7'Tr(D) for all i > k. Using this and the bound Y ;. 0;(D) < Tr(D), it follows that
the quantity ;. 0;(D)? is maximimized by having k singular values equal to Tr(D)/k, yielding
Yot 0i(D)? < k- (Tr(D)/k)? = k~1(Tr(D))? as needed. [

Proposition 4.3. Let D € R™*" be a symmetric matrix such that |Dl||e < 1, and let 61 > 02 > -+ > 0y
be its singular values. Suppose D is at least e-far in Ly from PSD, so that 3., ipy<o A7(D) > en?, and
suppose further that min; A;(D) > — %1 for any k > 2. Then we have

Z af(D) > gnz

i>k
Proof. Let W C [n] be the set of values i € [n] such that A; < 0. Let W C [n] be the set of
values i € [n] such that 0; < 21—kn. By assumption: };cpy af > Dliew Af > en?. Now Yiepr 01.2 =
DlieW’ i<k 01.2+Ziew,,i>k 01.2, so the fact that |o;| < (1/2k)n foreveryi € W', wehave that };cpy ;<k af <
k(n/(2k))* = n*/4k < en?/2. Thus we must have ¥ ey ;5 02 > €n?/2, giving

2 2
Ses 3 o

i~k €W i>k (21)
> en?/2

as required. ™
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4.1 Analysis of the Algorithm
Our analysis will require several tools, beginning with the following interlacing lemma.

Lemma 4.4 (Dual Lidskii Inequality, [Tao11] Chapter 1.3). Let My, M; be t X t symmetric Matrices,
and fix 1 < iy <ip < --- < iy < n. Then we have

k k k
Z Ai;(M1 + Mp) > Z Ai;(My) + Z An-j+1(M2)

=1 j=1 j=1

We will also need the following result of Rudelson and Vershynin [RV07] on the decay of spectral
norms of random submatrices.

Proposition 4.5 ([RV07]). Let A € R™™ be a rank r matrix with maximum Euclidean row norm bounded
by M, in other words max; |[(AAT); | < M. Let Q C [n] be a random subset of rows of A with expected
cardinality q. Then there is a fixed constant k > 1 such that

E[||Agxmll] < «(V5||A|l2 + +log gM)

Finally, we will need a generalized Matrix Chernoff bound for the interior eigenvalues of sums of
random matrices, which was derived by Gittens and Tropp [GT11].

Theorem 4.6 (Interior Eigenvalue Matrix Chernoff, Theorem 4.1 of [GT11]). Consider a finite sequence
{X;} of independent, random, positive-semidefinite matrices with dimension m, and assume that ||X;|l» < L
for some value L almost surely. Given an integer k < n, define

e = A D EIX]
j

then we have the tail inequalities

) #k/L
Pr[)\k(zjxj)z (1+6)yk] <(—-k+1)- [uﬁ)ﬁ] fors>0
(22)

/L
i ] ‘ for 5 €[0,1)

Pr[)\k(zj X)) < (1- 6)yk] <k- [(1_&’6ﬁ

The Algorithm. Our first step is to run the {«-gap algorithm of Section 3 with €y = %, where

A2 h
we set k = 2400

, where k¥ > 1 is the constant in Proposition 4.5. This allows us to assume that
Ai > —eon /1000 > —ﬁn for all i, otherwise we have a 5(1/ €2)-query algorithm from the Section
3, and since our target complexity is O(1/€*), we can safely disregard the cost of running this
algorithm in parallel. We begin by demonstrating that the Frobenius norm of SA is preserved (up

to scaling), where S is a random row sampling matrix with sufficiently many rows.

33



Proposition 4.7. Let M € R™*™. Fix t > 1 and let S be a row sampling matrix which samples each row of
M with probability p = £, and let S € R"*™ be a row sampling matrix drawn from this distribution, where
E[tg] = t. Then we have

]E[%Tr(SMST)] = Z A:/(M) = Tr(M)

and

1 m
Var [ =Tr(SMS") | < — M2,
ar(p r( )) <3 Z i

Proof. For i € [m], let 6; € {0,1} indicate that we sample row i. We have E[Tr(SMST)] =
%]E[Z?zl 6iM; ;| = Tr(M). Moreover,

1 )1
Var (;Tr(SMS )) <3 Z 6iM;; = (Tr(M))*

<D IMLM, ZM — (Tr(M))? (23)

i#]
R
as stated. [ ]

We now fix t = O(log(1/€)/€?), and draw row independent sampling matrices S, T with an
expected t rows. Let S, T C [n] be the rows and columns sampled by S, TT respectively. We then
compute Z = SATT with an expected O(t?) queries. Finally, we query the principal submatrix
Asut)x(sur), and test whether A sur)x(sur) is PSD. Clearly if A is PSD, so is A(sur)x(sut), s0 it suffices
to anaylzie the NO case, which we do in the remainder.

Lemma 4.8. Let A € R"™" be e-far from PSD with ||Al|c < 1. Then let Z = SATT be samples as described
above, so that Z has an expected t = O(log(1/€)/€?) rows and columns, where t is scaled by a larger
enough constant, and let k = % 400 < where x> 1is the constant in Proposition 4.5. Suppose further that
0k+1(A) < 10n/k. Then with probabzlzty 19/20, we have

n’ 2 2

= 2.0 (Z) > en</16

i>k
Proof. Now write A = UAVT, Ay = UA(VT, Ay = UA_; V. Then A = Ay + A_, and the rows of
A are orthogonal to the rows of A_. Note that this implies that [|A;.|12 = [|(Ak)i |17 + [(A—k)ilI3
for each i € [n] by the Pythagorean theorem, and since ||Al|c < 1 we have ||(A_k)i,*||§ <n
Now set M = SAkA;ST, and M, = SA_kAijT. Notice that M1 +M, = S(AkA;+A_kAfk)ST =

SAATST, using the fact that the rows and columns of Ay are orthogonal to the rows and columns
(respectively) of A_x. Letp = L be the row sampling probability. Now suppose ||(A—)||? = an?. Note
that we have shown that @ > €/2. By Proposition 4.7, we have E[Tr(My)/p] = X;ox = an? > en?/2
for some a > €/2, where the last inequality follows from Proposition 4.3. Moreover, we have
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Var (%Tr(Mg) < % >,

1
=3 DAl

It follows that since each row satisfies [[(A_x)i.ll; < n and [[((A_y)l} = an?, the quantity

2 I(AZk)i « ||;L is maximized having an rows with squared norm equal to n. This yields

(24)

1 1
Var | =Tr(M )) < =) 2an-n?
(P Yl Z

4

<25 (25)
t
2
< a—n4
1002
Where in the last line, we used that t > % > #. Then by Chebyshev’s inequality, with

probability 99/100, we have %Tr(Mz) > an® — (a/10)n? = (9/10)an? > (9/20)en?. Call this
event &1, and condition on it now. Next, by Proposition 4.5, since ox;+1(A) < 10n/k we have

E[||SA_¢|l2] < x(10Vtn/k + 2log(1/e)Vn) < 20xVtn/k. Then by Markovs, we have ||SA_k||§ =
IM2]l2 < 200%%2tn /k* with probability 99/100, which we condition on now, and call this event &,.
Then by the Dual Lidskii inequality 4.4, we have

Z Aj(M1 +My) > % Z Aj(My)

1
P >k >k

> %(Tr(M» kM) (26)

> (9/20)en? — 200°x*n?/k
> en?/4

using that k > %. Now let W = LP(SA)T, and note that we took the transpose, so W has n rows
and t1 columns, where E[t;] = t. Now by Chernoff bounds, with probability 99/100 we have ¢, < 2t;
call this event E; and condition on it now. The above demonstrates that % > sk A M1+ Mp) =
2ok /\?(W) < en?/4. Now note that o3.1(W) = #(okH(SAk +SA_j) < % ISA_k|l. < 200xn/k,
where we used the Weyl inequality for singular values: namely that for any two matrices A, B and
value i, |0;(A + B) — 0;(A)| < ||Bl]2, and using that SAy is rank at most k, s0 0x+1(SAx) = 0.

Now draw a random row sampling matrix T with an expected t rows, and write N; = TW;W/T
and N, = TW_kWIkT, and note again that N + N, = TWW'T. Moreover, the rows of W live in a
subspace orthogonal to the rows of W_, so again by the Pythagorean theorem and boundedness of
the entries in A, we have [[(W_g); .13 < rl—]t1 < 2n for all i € [n]. Then by Proposition 4.7, we have

35



E[Tr(N2)/p] = [[Wll? = an? > en?/4, and

—_

Var( Tr(Nz)) < - Z | (W_)i *||§L

IA

1
p (27)
E
t

1002"

Then by Chebyshev’s inequality, with probability 99/100, we have %Tr(Nz) > en?/4—(e/10)n? =
en?/8. Call this event &4, and condition on it now. Now as shown above, we have ||W_g||» < 200k /k,
thus by Proposition 4.5 we have E[[|[TW_|2] < x(200xVtn/k + 4+flog(1/€)vn) < 400x>Vtn, again
where we take t = @(10%#) with a large enough constant. Then by Markov’s inequality, with
probability 99/100 we have ||Naz|l2 < 400%x*n?/k?, and again by the Dual Lidskii inequality 4.4, we
have

—ZA (N1 +Ny) > —(ZA (Nz))
]>k P j>k
> %(Tf(Nz) ~ KINalh) (28)
> en?/8 — 400%x*n?/k
> en?/16

Using that k > %. Note moreover that

1
_ 1 2 _ L 2(QATTT
—Z/\ (N1 +Np) = ; Zoj(TW) = Za].(SA T7)
]>k j>k j>k
Using that A = AT so that Z = SATTT we conclude that r% Yisk07(Z) = Z‘—ZZ Yisk 07(Z) > en?/16 as
desired. Note that we conditioned on &; fori = 1,2, 3, 4,5, each of which held with probability

99/100, thus the result holds with probability 19/20 by a union bound.
|

We will now address the case where o;(A) > 10n/k.

Lemma 4.9. Let A € R"™" be e-far from PSD with ||Al|c < 1. Then let Z = SATT be samples as described
above, so that Z has an expected t = O(log(1/€)/€?) rows and columns, where t is scaled by a larger
enough constant, and let k = %, where xk > 1 is the constant in Proposition 4.5. Suppose further that
ok(A) > 10n/k. Then with probability 49/50, we have

?ak(Z) > 8n /k
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Proof. The proof is by application of Theorem 4.6 twice. We first generate a random row sampling
matrix S with an expected t rows, and bound Ax((SA)"SA) = 2(SA) Let X; € R™" be a
random variable such that X; = A A(]), where A(j) is the j-th row of A that was sampled in
S. Then };X; = (SA)TSA, and ]E[ ]] =+ ]: A]TA LAAT, where A; is the j-th row of A.
Moreover, note that ||Xj|l2 < max;[|A;.|l3 < n for all j, by the boundedness of A. Thus note that
tk = Ag((t/n)ATA) > (t/n)100n2/k* = 10,{#. Thus by the Interior Matrix Chernoff Bound 4.6, we
have that for some constant c:

| Ax((SA)TSA) < Yy | < k - cH+/E
100tn

<k-c# (29)
<k- e—lOOlog(k)

< 1/1000

Where we use t = @(logg/ 6)) with a large enough constant. Also condition on the fact that S
has at most 2t rows, which holds with probability 999/1000. Call the union of the above two
event &;, which holds with probability 99/100, and condition on it now. Given this, we have

2(SA) > 9Ot” . Now again, let Y; = (SA)(j)(SA)(Tj), where (SA)j) is the j-th column of SA sampled
by the column sampling matrix T. Let M = (SA)T. Then again we have ||Y|||» < 2t, using that SA
has at most 2f rows, and each entry is bounded by 1. Moreover, 3};Y; = TMMTT' We also have
M(E[X;Y]) = A(AMMT) > 90t . Applying the Interior Matrix Chernoff Bound again, we have
that for some constant c:

Pr[Ak(T(SA)T(SA)TT) < .9yk] < k. chlL

#
<k-ck (30)
<k- e—lOOlog(k)

< 1/1000

bsiH

Call the above event &;. Conditioned on & U &;, which hold together with probability 49/50, we

have that 0, (SATT) < .9 90t2 > 8t /k. Since Z = SATT, we have %0((Z) > 8n/k as needed.
|

Theorem 4.10. Let A € R™" be e-far from PSD with ||Al|le < 1. Then if S,T C [n] are random
subsets with expected each size t = O(log(1/€)/€?), then with probability 9/10 the principal submatrixx
A(suT)x(sur) is not PSD.

Proof. First, by Chernoff bounds, with probability 99/100 we have |S U T| < |S| + |T| < 4¢, which
we call &; and condition on now. First, consider the case that ox(A) < 10n/k, where k = “%ﬂ.
Then by Lemma 4.8, with probability 19/20, we have that ;. G?(ASXT) > €t?/16. Now we first

prove the following claim:
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Claim 4.11. Let Z € R™" be any matrix, and let Z be a rectangular submatrix of Z. for any Let
Zi, Zi be the truncated SVD of Z,Z respectively, for any 1 < k < min{n, m}. Then we have

1Z = ZilF > I1Z - ZilI?

Proof. Note that ||Z — Zk||%_ > || Zk — Z;{||%, where Z; is the matrix Z restricted to the submatrix
containing Z. But Z; is the best rank-k approximation to Z,s0||Z - Zk||1% = MiNBrankk ||Z — B||1% <

| Zx — zZ ||§, using the fact that a submatrix of a rank-k matrix is at most rank k. [

It follows that [|Asur)xsur) = (Asurxsun)illF = Xk O?(A(SUT)X(SUT)) > sk 0?(A5><T) >
€t?/16 > €|SUT|?/256. But note that if A(sur)x(sur) was PSD, then we would have Zisk ajz,(ASXT) <<
%tz, which is a contradiction since k = 2-40€ﬂ > %02.

Now consider the case that 0x(A) > 10n/k. Then by Lemma 4.9, we have o, ((Asxr) > 8t/k with
probability at least 49/50. Then |[Asxrlls, > Zle 0i((Asxr) > 8t. Using the fact that the Schatten
norm of a matrix is always at least as large as the Schatten norm of any submatrix (this follows from
the fact that the singular values of the submatrix are point-wise dominated by the larger matrix,
see Theorem 1 [Tho72]), we have ||Asur)xsur)lls, = 8t. But note that if A(sur)x(sur) was PSD, then
we would have [|Aisurxsun)lls, = Tr(Asur)xsur)) < |S U T| < 4t, which is a contradiction. This
completes the proof of the theorem. [ ]

Theorem 4.12. Fix A € R with ||All < 1. There is a non-adaptive sampling algorithm that, with

probability 9/10, correctly distinguishes the case that A is PSD from the case that A is e-far from PSD in
2 2

o, namely that 3.5 .(a)<o A’g ) > €. The algorithm queries a total of O(bg‘g#) entries (Zf A, and always

correctly classifies A as PSD if A is indeed PSD. Moreover, the algorithm runs in time O(1/€%?), where

w < 2.373 is the exponent of fast matrix multiplication.

Proof. We first apply the algorithm of Section 3 with €y = %, whAif:h as discussed allows us to assume
that A; > —eon /1000 > _217” for all i. The cost of doing so is ©(1/€?) queries, and this algorithm
also yields one-sided error as desired. The remainder of the theorem follows directly from Theorem
4.10, using that all principal submatrices of PSD matrices are PSD. Finally, for runtime, notice that
the main computation is computing the eigenvalues of a k x k principal submatirx, for k = O(1/€?),
which can be carried out in time O(1/e2¢) [DDHK07, BVKS19]. [

5 Lower bounds

5.1 Lower Bound for PSD Testing with (., Gap

We begin by demonstrating a O(1/€2) lower bound for the problem of testing postive semi-
definiteness with an (s gap. Our lower bound holds even when the algorithm is allowed to
adaptively sample entryies of A.

Theorem 5.1. Any adaptive or non-adaptive algorithm which receives query access to A € R™" with
|Allo < 1, and distinguishes with probability at least 2 /3 whether

e AisPSD.
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o xTAx < —en for some unit vector x € R" and € € (0,1)
must make Q(1/€?) queries to A.

Proof. We construct two distributions D1, D, over matrices, and draw the input A from the mixture
(D1 + D»)/2. Dy is supported on one matrix: the zero matrix 0"*", which is PSD. Now set t = 2¢Zn
and let B € R be the matrix given by

0 _1n—t><t
B = |:_1t><n—t _qtxt ]

Where —1"*" is the n X m matrix consisting of a —1 in each entry. Now let x € R™" be defined
byx;=1fori=1,2,...,n—t and letxj = 1/e for j > n — t. Then note that xTBx < —1 - 2¢2n? <
—€n||x||§, thus B is e-far from PSD in ¢« gap. To sample A ~ Dy, we set A = PyBP!, where P,
is a randomly drawn permutation matrix, namely ¢ ~ S, uniformly at random. Notice that to
distinguish A ~ D1 from A ~ D, the algorithm must read a non-zero entry. By Yao’s min-max
principle, we can assume that there is a deterministic algorithm that solves the problem with
probability 2/3 over the randomness of the distribution. Fix any k < 1/ (100€2), and let s1, s, . . . Sk
be the adaptive sequence of entries it would sample if A;; = 0 foreachi =1,2,..., k. Then then the
probability that any of the the s;’s land in a row or a column of A = Py BPZ with non-zero entries is
at most 1/50. Thus with probability 49/50 under input from A ~ D5, the algorithm will output the
same value had A been the all zero matrix. Thus the algorithm succeeds with probability at most
51/100 when A is drawn from the mixture, demonstrating that Q(1/€?) samples are required for
probability 2/3 of success. u

5.2 Lower Bound for PSD Testing with ¢, Gap

We now present our main lower bound for PSD testing. Our result relies on the construction of
explicit graphs with gaps in their spectrum, which have the property that they are indistinguishable
given only a small number of queries to their adjacency matrices. Our lower bound is in fact a
general construction, which will also result in lower bounds for testing the Schatten 1 norm, Ky-Fan
norm, and cost of the best rank k approximation.

Roadmap In the following, we will first introduce the notation and theory required for the section,
beginning with the notion of subgraph equivalence of matrices. We then construct our hard
distributions D1, O,, and prove our main conditional results, Lemma 5.8, which demonstrates a
lower bound for these hard distributions conditioned on the existence of certain pairs of subgraph
equivalent matrices. Finally, we prove the existence of such matrices, which is carried out in the
following Section 5.2.1. Putting these pieces together, we obtain our main lower bound in Theorem
5.12.

Preliminaries and Notation In the following, it will be useful to consider signed graphs. A signed
graph X is a pair (|Z|,s), where |Z| = (V,E) is a simple graph, called the underlying graph, and
s : E — {1, -1} is the sign function. We will sometimes abbreviate the signs equivalently as {+, —}.
We will write E*, E~ to denote the set of positive and negative edges. If L is a signed graph, we will
often write X = (V(Z), E(X)), where E(X) is a set of signed edges, so E(X) C (|V(2>:)|) X {+, —} with the
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property that for each e € (lV(22)|)

, at most one of (e, +,), (e, —) is contained in E(X). For a signed
graph G on n vertices, let Ag € {1,0, —1}""" be its adjacency matrix, where (Ag);,; is the sign of the
edge e = (v;, v;) if e € E(G), and is 0 otherwise.

For a graph H, let || H|| denote the number of vertices in H. For any simple (unsigned) graph
G, let G be the signed graph obtained by having E*(G) = E(G),and E~(G) = ('g') \ E(G). In other
words, G is the complete signed graph obtained by adding all the edges in the complement of
G with a negative sign, and giving a positive sign the edges originally in G. We remark that the
negation of the adjacency matrix of G is known as the Seidel matrix of G. In what follows, we will
often not differentiate between a signed graph G and its signed adjacency matrix Ag. For graphs
G, H, let G ® H denote the disjoint union of two graphs G, H We will assume familiarity with basic
group theory. For groups G, H, we write H < G if H is a subgroup of G. For a set T, let 2T denote
the power set of T. Throughout, let S,, denote the symmetric group on n letters. For two signed
graphs =, H, let Fy(X) = {G = (V(X), E(G)) | E(G) € E(X), G = H} be the set of signed subgraphs
of X isomorphic to H. For a permutation ¢ € S,,, we write P, € R"" to denote the row permutation
matrix associated with 0. For k > 3, let Ci denote the cycle graph on k vertices.

For signed graphs G, H, a signed graph isomorphism (or just isomorphism) is a graph isomor-
phism that preserve the signs of the edges. For any set U C [n] x [n] and matrix A € R"™", we write
Ay to denote the matrix obtained by setting the entries (Ay);,; = A for (i,j) € U, and (Ay);,; =0
otherwise. A set U C [n] X [n] is called symmetricif (i, j) € U &= (j, i) € U. We call U simple if
it does not contain any elements of the form (i, /). We will sometimes refer to a simple symmetric U
by the underlying simple undirected graph induced U.

Subgraph Equivalence We now formalize the indistinguishably property which we will require.
For matrices A, B, when thought of as adjacency matrices of graphs, this property can be thought of
as a more general version of “locally indistinguishability”, in the sense that, for any small subgraph
H of A, there is a unique subgraph of B that is isomorphic to H. The following definition is more
general, in the sense that a subgraph can also have “zero valued edges”, corresponding to the fact
that an algorithm can learn of the non-existence of edges, as well as their existence.

Definition 5.2 (Sub-graph Equivalence). Fix any family U of symmetric subsets U = {U;}; € 2["X["],
and letI' < S, be a subgroup of the symmetric group on 1 letters. Let A,B € R"". Then we
say that A is (U, I')-subgraph isomorphic to B, and write A =q;r B, if for every U; € U there is a
bijection ¢; : I' — T such that

(PGAPUT) u = (Plpi(U)BPii(U)) u

forall o € T'. If G, H are two signed graphs on n vertices with adjacency matrices Ag, Ay, then we
say that G is (U, I')-subgraph equivalent to H, and write G =¢; 1 H, if Ag =q¢/r Ag.

Note we do not require the U;’s to be simple in the above definition. At times, if I' = S,,, then we
may omit I and just write G =¢; H or A =¢; B.

Example 5.3. Let G, H be arbitrary graphs on n vertices, and let each U = {U;} be a simple graph
consisting of a single edge. Then G =q¢;,5, H if and only if |[E(G)| = |[E(H)|.
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Example 5.4. Let G, H be arbitrary graphs on n vertices, and let U = {U;} be a single graph,
where U is a triangle on any three vertices. Then G =¢; s, H if and only if the number of induced
subgraphs on three vertices that are triangles, wedges, and single edges, are each the the same in G
asin H.

In what follows, we will consider graphs that are U subgraph isomorphic, for a certain family
of classes U, which we now define. In what follows, recall that the matching number v(G) of a
graph G is the size of a maximum matching in G, or equivalently the maximum size of any subset
of pairwise vertex disjoint edges in G.

Definition 5.5. For 1 < t < 1, let U, be the set of all undirected, possibly non-simple graphs U; on
n vertices, with the property that after removing all self-loops, U; does not contains any set of ¢
vertex disjoint edges. Equivalently, after removing all self-loops from U;, the matching number
v(Uj;) of U; is less than .

In other words, U} is the set of graphs with no set of ¢ pair-wise non-adjacent edges e, . . ., e
such that each e; is not a self loop. Notice by the above definition that U}, c U/*'. We will also
need the following definition.

Definition 5.6. Forany n,m <1,letl’, ,, < Sy, be the subgroup definedI';, ;, = {0 € Sy | 0(i, ) =
(e(i), j), m € Sy}, where the tuple (i, j) € [n] X [m] indexes into [nm] in the natural way.

Notice in particular, if A € R"" and D € R"™*", then we have
{P;(A® D)PZ | o€ rn,m} ={Pr®1,)(A®D)(P, ® ][m)T | Tt eS,}

Note also by elementary properties of Kronecker products, we have (P, ® I,,)(A ® D)(P, ® I,)T =
(PAPI)® D. Forsucha o € T, ,,;, we write 0 = 7 ® id, where € S,

Lemma 5.7. Fixany t,m > 1,and let A, B € R"™" be matrices with A =q;1 5 B, where U, is defined as
above, and let T € R™ ™ be any matrix. Then AQ T =q;1 B®T, where ' < Sy is as defined above. ™

Proof. Fix any U’ € U, ,,. Note that every edge of U’ corresponds to a unique edge of a graph on n
vertices. This can be seen as every edge of U is of the form ((i1, j1), (i2, j2)) where i1, 1> € [n], j1, ]2 €
[m], which corresponds to the edge (i1, i2) € [n] X [n]. Solet U; C [n] X [n] be the set of all such
edges induced by the edges of U;. Observe, of course, that many distinct edges of U’ could result in
the same edge of U;. We claim that U; € (Ll,i Suppose this was not the case, and let ey, ..., e; € U;
be vertex disjoint non-self loop edges, where ¢; = (i¢, j¢), i¢ # je. Then for each € € [t], there must
be at least one edge ¢, € U’ such that ¢, = ((ie,ae)(je, be)) € U;, and we can fix e} to be any such
edge. Then since each vertex iy € [n] occured in at most one edge of ey, ..., e; by assumption, it
follows that each vertex (i¢, j¢) € [1n] X [m] occurs at most once in ef, .. ., e;, which contradictts the
fact that the U’ € U,

Now that we have U; € Uy, since A =q;: 5 B we have a bijection function ¢; : S, — S,

such that (PnAPﬁ)UI_ = (P‘/”'(”)Bpii(n))ui' We now define the mapping 1,@1' :Twm — Twm by

lfzi(n ®id) = ¢;(nr) ® id, and show that it satisfies the conditions of Definition 5.2. Now note that
each o0 = mt®id € I, ,, satisfies P, = P ® I, and so P;(A ® T)Pg = PnAPﬁ QT.

Note that this fact extends naturally to tensoring with rectangular matrices T.
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We now claim that forany U/ € U,,,,,, if we construct U; € U, as above, we have that for any matrix
Z € R™" the non-zero entries of (Z)y, ®T contain the non-zero entries of (Z®T) . Asa consequence,
if (Z)y, ® T = (Y)u, ® T for some other matrix Y € R"", we also have (Z® T)u; =(Y® T)u;. But the

claim in question just follows from the construction of U, since for every entry ((i1, j1), (i, j2)) € U]
we added the entry (i1, i) € U;. Now since we have that(PnAPﬁ)ui = (P‘Pf(”)BPif(n))ui’ we also
obtain

. B T
(PnAPn)U,- ®T= (Pwi(n)BPlpf(n))ui ®T

which as just argued implies that
T T
(PrAP, ® T) w = (Plpi(ﬂ)BP vitn) © T)u{

Since (PrAPL ®T), =
that A® T =¢ r B®T asrequired.

(Po(A® T)Pg)u; and (Pwn)BPL(n) ®T)ur = (Plﬁ(a)(B®T)P£ <a>)U§' it follows

The Hard Instance. We now describe now distributions, D1, D,, supported on n X n matrices A
and paramterized by a value k > 1, such that distinguishing D1 from D, requires Q(k?) samples.
The distributions are parameterized by three matrices, (B, D, Z), which are promised to satisfy the
properties that B, D € R4 with B =qt,5, D for some t < d, and Z € R"™", where m = n/(dk).

Also defineB=B® Z, D = D ® Z. We now define the distribution. We first define D1. In Dy, we
select a random partition of [#] into Ly, ..., Ly, where each |L;| = n/k exactly. Then for each i € [k],
we select a uniformly random o; € I'y ,, and set Ay x;, = PgiEPZi, and the remaining elements of A
are set to 0. In D,, we perform the same procedure, but set Ay «r, = PgiﬁPgi. Soif A ~ %, then
A is block-diagonal, with each block having size n/k. We first demonstrate that for any matrices
(B, D, Z) satisfying the above properties, distinguishing these distributions requires Q(k?) samples.
We assume in the following that dk divides 1, which will be without loss of generality since we can
always embed a small instance of the lower bound with size n’ such that n/2 < n —dk <n’ < n,
and such that dk divides n.

Lemma 5.8. Fixany 1 < k,d < n. Let (B, D, Z) be any three matrices such that B, D € R™%, B =15, D
where t = logk, and Z € R™", where m = n/(dk). Then any non-adaptive sampling algorithm which
receives A ~ % where the distributions are defined by the tuple (B, D, Z) as above, and distinguishes

with probability at least 2/3 whether A was drawn from Dy or Dy must sample Q(k?) entries of A.

Proof. We show that any algorithm cannot distinguish Dy from 9, with probability greater than 2/3
unless it makes at least £ > C - k? queries, for some constant C > 0. So suppose the algorithm makes
at most C - k2/100 queries in expectation and is correct with probability 2/3. Then by Markov’s
there is a algorithm that always makes at most £ = Ck? queries which is correct with probability
3/5. By Yao’s min-max principle, there is a determinstic algorithm making this many queries which
is correct with probability 3/5 over the distribution %. So fix this algorithm, which consists of a
single subset U C [n] X [n] with [U| = ¢.

We now generate the randomness used to choose the partition Ly,..., L of [n]. Let U; =
UNL;xL;=A{(i,j)eU|i,jeL;}. Let & be the event that U; € ‘Ll};d. We first bound Pr[-&;],
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where the probability is over the choice of the partition {L;};c[x]. For =&;, there must be t pairwise
vertex disjoint non-self loop edges e1,...,e; € U such thate; = (a;,b;) and aj,b; € L;. In other
words, we must have 2t distinct vertices a1, by, ..., a;, by € L;. For a fixed vertex v € [n], this occurs
with probability 1/k, and the probability that another u € [n] N L; conditioned on v € [n] is strictly
less than 1/k as have have |L;| = n/k exactly. Thus, the probability that all 2¢ vertices are contained

in L; can then be bounded % Now there are ('ltll) < {! possible choices of vertex disjoint edges

e1, ..., e € U which could result in &; failing to hold, thus Pr[&;] > 1 - k% and by a union bound

ft
k
Pr[ﬂizl&] >1- m
Ctht
>1 - ——
k21 (31)
>1-Ck
99
> -
— 100

Where in the last line, we took C < 1/10 and used the fact that t = log(k). Then if & = ﬂle&, we
have Pr[E] > 99/100, which we condition on now, along with any fixing of the L;’s that satisfies &.
Conditioned on this, it follows that U; € U, for each i € [k]. Using that B E(ng,sn D, we can and
apply Lemma 5.7 to obtain B® Z =t Ti D ® Z. Thus, for each i € [k] we can obtain a bijection

function ¢; : I'y ,, — Ty, such that (PaiﬁPgi)ui = (PIPf(Ui)]SPi(ai))Ui for each 0; € I'y ;. Thus we
can create a coupling of draws from D1 with those from 9, conditioned on &, so for any possible
draw from the remaining randomness of 9, which consists only of drawing some (o1, ..., o) € SZ
generating a matrix A;, we have a unique corresponding draw (¢1(01), ..., ¥x(ox)) € SZ of the
randomness in O, which generates a matrix A, such that (A1)y = (Az)uy. Thus conditioned
on &, any algorithm is correct on % with probability exactly 1/2. Since & occured with
probability 99/100, it follows than the algorithm is correct with probability 51/100 < 3/5, which is a
contradiction. Thus we must have ¢ > Ck? = Q(k?) as needed.

We are now ready to introduce our construction of the matrices as required in the prior lemma.
Recall that k > 3, let Cy denote the cycle graph on k vertices.

Fact 5.9. Fix any n > 3. We have Amin(Cons1) = =2 + O(1/n?) and Amin(Cy @ Cpy1) = —2.

Proof. The eigenvalues of the cycle C; are given by 2 cos(Z2) [Chu96] for t = 0,...,¢ — 1, which
yields the result using the fact that cos(t(1 + €)) = 1 + ©(e?) for small € [

Proposition 5.10. Fix any n = ny + ny. Forany t < min{ny, n2}/4, we have C,, =¢;t g Cy, @ Cy,

Proof. We begin by fixing any set U; € U.. For any signed graph X~ and graph G on n vertices
such that the maximum set of vertex disjoint edges in X is t < min{ny, ny}/4, let Hx(G) = {0 €
Sy | P,AxPT = Ay, H C G} and let ?{gl(G) ={0€S,|As = P,AyPL H c G}. By Corollary
5.15, we have |Hz(C,)| = |[Hz(Cp, @ Cy,)| whenever |Z| has no set of at least min{n1, n,}/4 vertex
disjoint edges. Since S, is a group and has unique inverses, we also have|H LC)| = [Hz(Cp)| =
|7_{Z(Cn1 D an)l = |7-{2_1(Cn1 @ Cn2)|-
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We now define a function ¢; : S, — S, such that (PUAa1 Pg)ul. = (PlPi(U)AWPi(o))Ui for
every o € 5,. Now fix any signed graph X such that £ = (P, Az PT)y, for some o € S,,. Note that
the set of m € S,, such that & = (PnAEn Pﬁ)ui is precisely Hg 1(En). Similarly, the set = € S,, such
that & = (PrAz 56— G, Pl)u, is precisely Hy 1(Cy, ® Cy,). Also, by construction of U, we know that
the maximum set of vertex disjoint edges in U;, and therefore in X is t < min{ny, n2}/4, So by
the above, we know there is a bijection PrH _1(6 ) — H! (Cn, ® Cy,) for every such realizable
matrix X. Taking ¢i(0) = 1, ‘(o) satisfies the desired properties for C,, =0 s m
Notice that this implies that C,, =t s, Cy, ® Cy,, since C, and C,,, & Cy, are both obtamed from
obtained C,, and C,, ® C,, by changing every entry with the value —1 to 0.

(P(T ACn o )Ll

Proposition 5.11. Fix any t > 1, and set either dy = 4t, and d = 2dy + 1. Set B = 1/2(Ac, + Aly) and
D =1/2(Ac 2®Cipn T Ally), where A = =2 cos(szZ‘iol). Then we have that B is PSD, Amin(D) < —0 where
o= 6(1/‘12)/ ”BHOO/ ”D”oo < 1, and B E(Ll;,sd D.

Proof. By Proposition 5.10, we know Cag,+1 =qqt

. Ca, ® Cgy+1, so to show subgraph equiva-
lence suffices to show that adding All4,+1 to both Ca4,11 and Cy, @ Cy,41 does not effect the fact that
they are (Lléo, S4, subgraph-equivalent. But note that this fact is clear, since we have only changed
the diagonal which is still equal to A everywhere for both B, D. Namely, for any o, m € Sy4,41 and
i € [2dy+ 1] we have (P,BPI)

and C 4, ® C4,+1 still holds using the same functions 1; as required for Cp4,11 =ULSagi
0+ ’ +

i) = = (P,DP )( iy = A, thus the subgraph equivalence between Cagy+1
Cay®Copr1.
Note that the L., bound on the entries follows from the fact that adjacency matrices are bounded by
1 and zero on the diagonal, A < 2, and we scale each matrix down by 1/2. Next, by Fact 5.9, we
know that B is PSD and Apin(D) = —@(dl—z), which holds still after scaling by 1/2, and completes the
proof. [ ]

We now state our main theorem, which is direct result of instantiating the general lower bound
of Lemma 5.8 with the matrices as described above in Proposition 5.11.

Theorem 5.12. Any non-adaptive sampling algorithm which solves with probability at least 2/3 the PSD
testing problem with e- 5 gap must query at least Q( 5) entries of the input matrix.

Proof. Setk = C—— T 6(1/)

and as before set m = n/(dk). We first apply Lemma 5.8 with Z = 1"*™, and the matrices

B =1/2(Ac, + Alz) and D = 1/2(Ac, ec,,., + Ala) from Proposition 5.11, where A = -2 COS(ZZde_Ol).

D via Proposition 5.11, it follows that any non-adaptive

for a small enough constant C > 0. Also set t =logk, do = 4t. d =2dy +1,

Thenby Lemma 5.8, using that B =,

+1752dg+1
sampling algorithm that distinguishgs D, from D, requires Q(k?) samples.

We now demonstrate every instance of 9 and D, satisfy the desired ¢3-gap as defined in
Problem 1.2. First, since the eigenvalues of the Kronecker product Y ® Z of any matrices Y, Z are all
pairwise eigenvalues of the matrices Y, Z, it follows that B is PSD as B is PSD by Proposition 5.11 and
and 1" = 1"(1")T is PSD. By the same fact and Proposition 5.11, since A1(1"*") = m, we have
that Amm(ﬁ) = -O(m/(d?)) = —O(557). Now note that if A; ~ Dy, then A; is a block-diagonal matrix
where each block is PSD, thus A; is PSD. Note also that if A, ~ 9,, then A; is a block-diagonal
matrix where each block is has an eigenvalue smaller than —C’ 7 for some constant C" > 0. Since
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the eigenvalues of a block diagonal matrix are the union of the eigenvalues of the blocks, it follows
that

D, (AP = ZAM(D)Z

i:Ai(A2)<0
> k(C' )2
d3k (32)
C’)log’(1
B T U
C(8log( o 6(1/ ))+1)
> en?

Where the last inequality follows from setting the constant C = €% 5o that

1000
(C")? logé(l/e) B 100° log6(1/e)
6 6
P

(8 o8 oghize >)+1) (SIOg(wo%log"’u/e))”)
_ 1oof log®(1/€) (33)
B (1610g(%))6
>1

16 ( (C")?
S —_—
3-100%€ log®(1/€)
long as € < Cy for some constant Cy. Note that if € > Cy, then a lower bound of Q(1) = Q(1/€2)

follows from the one heavy eigenvalue ¢, gap lower bound. Thus A1, A; satisfies the e-L, gap

8
and using that the first inequality above holds whenever (1) ) , which is true so

property as needed, which completes the proof.
|

5.2.1 Cy,+n, is Subgraph Equivalent to C,, ® C,,

In this section, we demonstrate the subgraph equivalence of the the cycle C,,,+,, and union of
cycles Cy, ® Cy,. In order to refer to edges which are not in the cycles Cy,, 44, and Cy, ® Cy,, it will
actually be convenient to show that C,;, 44, is subgraph equivelant to C,,, ® C,,,, where recall that G
for a simple graph G is the result of adding negative edges to G for each edge ¢ = (1, v) ¢ E(G).
Equivalently, the adjacency matrix of G is the result of replacing the 0’s on the off-diagonal of Ag
with —1’s. Notice that, by the definition of subgraph equivalence, it does not matter whether these
values are set to 0 or to —1.

Overview of the bijection. =~ We now intuitively describe the bijection of Lemma 5.13, which
demonstrates that for any singed graph L such that any set of pairwise vertex disjoint edges
{e1,...,ex} (i.e. any matching) in X has size at most k < min{n;, n2}/4, the number of subgraphs
of Cy,+n, isomorphic to I is the same as the number of subgraphs of C,,, & C,, isomorphic to . So
let H be any subgraph of C;;, 44, that is isomorphic to X.. For simplicity, let n; = n,, and suppose H
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@ﬂ@

n |n+1

Figure 2: An illustration of the bijection in Lemma 5.13, when H only contains positive edges. The
three colored paths represent the graph H, which must be mapped from C5, to C;, & C;,. Since the
paths intersect the edges (21, 1) and (1, n + 1) to be cut, we must first swap the last four vertices
{n-4,...,n}and {2n —4,...,2n} of Cy, before the two splitting points n,2n, and then cut the
cycle. Note that four is the smallest number of vertices which can be swapped, without swapping
in the middle of a path of H.

contains only positive edges, so that H is actually a subgraph of the unsigned cycle Cy,,. Since X has
at most n1/4 edges, £ = H must be a collection of disjoint paths. So the problem can be described as
an arrangement problem: for each arrangement H of X in C,,,, map it to a unique arrangement H’
of 2in C, & Cy.

We would like to construct such a mapping by “splitting” the big cycle C», into two smaller
cycles, see Figure 2 for an example. Specifically, we could split the cycle C;, down the middle,
cutting the edges (1, n + 1), and (1, 1), and instead connecting the first vertex to the n-th and the
n + 1-st to the 2n-th. Now if H does not contain either of the cut edges, then the resulting collection
of paths will be an isomorphic copy of H living inside of C, ® C,,. However, if H does contain
such an edge, we cannot cut the cycle here, as the resulting paths inside of C,, & C,, would not
be isomorphic. For example see Figure 2, where if we just cut the edge between (7,1 + 1) and
rerouted it to (1, 1), then the red cycle with 4 vertices would be disconnected into a cycle of length
three, and an isolated vertex. To handle this, before cutting and rerouting the edges (n, n + 1) and
(2n,1), we first swap the last i vertices before the cutting points, for some i. Namely, we swap the
vertices (n —i,n—i+1,...,n)with(2n —i,2n —i+1,...,2n) and then split the graph at the edges
(n,n +1) and (2n,1). For the resulting graphs to be isomorphic, we cannot swap in the middle
of a path, thus the value i is chosen as the smallest i > 0 such that the edges (n —i —1,n — i) and
(2n —i—-1,2n — i) do not exist in any path of H. Moreover, such an i must exist, so long as H has
fewer than min{ny, n2} edges (the stronger bound of min{#n, n;}/4 is only needed for the more
general case, where negative edges are included).

One can show that this mapping is actually an involution; namely, given the collection of paths
H’ in C, ® C, which are obtained from applying the function on H, one can similarly find the
smallest i > 0 such that the edges (n —i—1,n —i) and (2n — i — 1, 2n — i) are not in H’, which must
in fact be the same value of i used when mapping H! Then, by swapping the last i vertices before n
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and 2n, and then reconnecting C,, @ C, into a single cycle, one obtains the original graph H. From
this, demonstrating bijectivity becomes relatively straightforward. Extending this to the case where
H is allowed to contain negative edges of Ca,, follows similar steps, albiet with a stronger condition
on the choice of i. The full proof is now presented below.

Lemma 5.13. Fix any n = ny + ny. Fix any simple graph |X|, such that any set of vertex disjoint edges
{e1,...,ex} in |L| has size at most k < min{ny, ny}/4, and let ©. = (|Z|, o) be any signing of |X|. Let
Fx(Cy) denote the set of subgraphs of C,, isomorphic to |L|, and similarly define Fx(Cy, ® Cy,). Then we
have

= |72(Cu @ Co)

Proof. Order the vertices’s of the cycle C, = {1,2,...,n}, which we will describe as the same
vertex set for C,,; ® C,,, where {1, ..., n1} are the vertices of the first cycle Cj,, and {n1 +1,...,n}
are the vertices of C,,,. We derive a bijection ¢ : 73.(C;) — F5(Cy, @ Cy,). We describe a
point X € F1(Cp) U F2(Cy, ® Cy) by its (signed) adjacency matrix X € {-1,0,1}"*". Namely,

X € {-1,0,1}"™" is any matrix obtained by setting a subset of the entries of A or Az Cry
1+n ny

equal to 0, such that the signed graph represented by X is isomorphic to X. In this following, we
will always modularly interpret the vertex v,,4; = v; fori > 1.

Thus, we can now think of ¢ as being defined on the subset of the matrices {-1,0, 1}"*" given
by the adjacency matrices of signed graphs in 5(C,). In fact, it will useful to define ¢ on a larger
domain. Let O c {-1,0,1}"”" be the set of all adjacency matrices for signed graphs G with the
property that any set of vertex disjoint edges {e, . . ., ex} in G size at most k < min{n1, n,}/4. Notice
that O contains both ﬁ(C_n) and 7z (C,, ® C,,). For a given X € D, we will define ¢(X) = PUXXP(T,X
for some permutation ox. Since the graph of P;, XP!_is by definition isomorphic to X, it follows
that P,,XP] € O, thus ¢ maps D into D. So in order to define the mapping ¢(X), it suffices to
define a function ¢ : © — S, mapping into the symmetric group so that ¢ (X) = PyxXP,

¢(X)
Fori=0,1,2,...,ming,, n, —1, define the permutation o; € S, as follows. For j € {0,1,...,n —

iyU{n1+1,...,n—i},wesetoi(j) =j. If i >0, then foreach0 < j <i,wesetoj(ni—j)=n-j
and o;(n — j) = n1 — j. In other words, the function o; swaps the last max{0, i — 1} vertices before
the spliting points 11, n of the cycle. Notice that o; is an involution, so ¢;(0;) = id and 0; = ai‘l.

We now define our bijection ¢. For X € D, let i(X) be the smallest value of i > 0 such that
Xony—in—i+1 = Xn—in—i+1 = Xn=in—i+1 = Xuj—=in-i+1 = 0. Equivalently, i(X) is the smallest value of
i > 0 such that none of the four edges of the cycle c; = (vy;,—i, Unj—i+1, Un—i, Un—i+1) €xist in X. We
then define ¢(X) = 0;x) = ox, so that ¢(X) = Pgl(X)XPg 0" Note that if the maximum number of
vertex disjoint edges in X is at most min{#n, n,}/4, then i(X) must always exist and is at most
min{n, ny}/2 + 1. This can be seen by the fact that for each i such that i(X) > i + 1, there must be
at least one edge with endpoints in the set {v,,—i, Vn,—i+1, Vn—i, Vn-i+1}, thus for each i > 0 with
i < i(X) we can assign an edge e;, such that eg, e, e4, . . ., ej(x)-1 are vertex disjoint.

We must first argue thatif X € TZ(C_,Z), then ¢(X) € F=(C,, ® Cy,), namely that the function maps
into the desired co-domain. To do this, we must show that for every (i, j) with (PGXXPT )i,j %0,
we have (Pg, XP] Jij = ( m)i’j' This is equivalent to showing that for any signed edge
e = (vi,vj) € X, v;, vj are connected in Cy, if and only if v, ;), Uoy(j) are connected in Cp; ® Cy,. In
the proof of this fact, we will only use that X € D.

So suppose v;, v; were connected in C;, and wlog j > i. First suppose that i ¢ {n, n1}. Then we
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have j =i + 1. Since e = (v;, vj) € X is an edge of the subgraph, we know i ¢ {n —i(X), n1 — i(X)}
by construction of i(X). Thus (vsy(i), Voy(j)) = (vi7, Vir+1) for some i’ ¢ {nq, n}, which is always an
edge of C,; ® Cp,. If i = 1, then j = 1, and we have i(X) > 0, so 0(i) = n1 and o(j) = 1, and (v, v1)
is an edge of C,,, ® C,,,. Similarly, if i = ny, then j = ny + 1, and since again necessarily #(X) > 0
we have 0(i) = n,0(j) = n1 + 1, and (v,,, v, 41) is an edge of C,,; ® C,,,. We now consider the case
where (v;, vj) € Xis not an edge in C,,. Suppose for the sake of contradiction that (v, (i), Voy(j)) is
an edge in Cy,, ® Cp,,. WLOG, i, j are in the first cycle C,,,. We can write ox(i) = i’, ox(j) = i’ + 1 for
some i’ € {1,2,...,n1}, where i’ + 1 is interpreted as 1 if i’ = ny. If i’ < i(X) — 1, then both i’ = i
and i’ +1=1i+1 = j, but (v;, vis1) is also connected in C,,. If i’ > i(X) + 1, then i’ = i + ny and
i"+1=1i+mny+1 (wherei+np+1is interpreted modularly as 1 if i = n;), and again v;,,, and
Vi+n,+1 are connected in C,,. Finally, if i’ = i(X), then i = i’ and j = i + np + 1, but then we cannot
have (v;, v;) € X by construction of i(X), which completes the of the claim that ¢ maps #+(C,) into
Fs(Cn, & Cyy).

We now show that ¢ is injective. To do this, we show that ¢(¢(X)) = X for any X € D — namely
that ¢ is an involution on 9. This can be seen by showing that we always have i(X) = i(¢(X)). To
see this, observe that i(X) is defined as the first i > 0 such that none of the four edges of the cycle ¢; =
(Vny=i, Uny—i+1, Un—i, Un—i+1) exist in X. Thus it suffices to show that for each min{n;,n2} -1>17 >0,
the number of edges in c; is preserved after permuting the vertices by o;x). To see this, note that
if i(x) > i, then (0;x)(Vn;—i), 0ix)(Vny—i+1), i) (Vn=i), Oix)(Vn—i+1)) = (Vn—i, Vn—it1, Vny—i, Uny—i+1),
which is the same cycle. If i(X) < i, then ¢;x) does not move any of the vertices in c;. Finally,
if i(X) = i, then (0;x)(Vn1-i), Tix)(Vn1-i+1), Tix)(On-i), 0ix)(Vn-i+1)) = (Ony=i, Vn—i+1, On—i, Uny—i+1),
which again is the same cycle ¢; (just with the ordering of the vertices reversed). So ¢ (¢ (X)) = X for
any X € 9, so in particular ¢ : TZ(C_”) — Fx(Cp, ® Cy,) is injective.

To show surjectivity, it suffices to show that if X € F=(C,, ® Cy,) then ¢(X) € F5(Cy). Namely,
that ¢ can also be defined as a valid function ¢ : F=(C,, & Cp,) — ﬁ(C_n). Again, this is equivalent
to showing that for any signed edge e = (v;,vj) € X, v;,v; are connected in C,, ® Cy, if and
only if vgy(i), Uoy(j) are connected in C,. Since ox is an involution, this is the same as asking that
for any signed edge e = (vi, vj) € X, Vgy(ox(i) Uox(ox(j)) are connected in Cy; ® Cy, if and only if
Uox(i)s Vox(j) are connected in C,. Setting i’ = ox(7), j’ = ox(j), this states that for all signed edges
(vir,vj) € PoyXPgy = Y € D, we have that v, v are connected in C,, if and only if v gy, Uoy(j7) are
connected in C,,, & C,,. But as shown above, we have that i(X) = i(¢(X)), so ox = 0y, and then this
fact was already proven above for any Y € O, which completes the proof.

| |

Now for any signed graph X on n vertices, let Ay be its adjacency matrix. Note that we
can equivalently define via TZ(C_n) = {H C Cy, | P,AsP! = Ay,0 € S,}. Here H C C,
means H is a subgraph of C,. On the other hand, we may be interested in the potentially
much larger set of all possible permutations ¢ such that P,AxP? = Ay for some H c C,.
So define (HZ(C_H) = {0 | P,AsPL = Ay, H C C, 0 € Su}. It is not difficult to show that
|Hs(C,)| = |Aut(Z)||F=(Cp)|, where Aut(X) is the set of (signed) graph automorphisms of X.

Fact 5.14. We have |Hx(C,,)| = |Aut(2)||F=(Cy)|.

Proof. Fix any H C C, such that PGAZPE = Ap for some o € S;;. We show that there are exactly
|Aut(X)| elements ¢’ € S, such that P AZP; = Ap. By definition, Aut(X) is the set of permutations
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n € S, with P,AxP! = Ay. For every m € Aut(X), we have P,P,AsP,Pl = P,, AsP! = Ay, and
moreover the set of elements [{c o7t | © € Aut(X)}| = [Aut(X)| since S, is a group. Now suppose we
have some A € S, such that P;\AZPE =Apgand A ¢ {oomn | w e Aut(X)}. Then PUAEPZ = P/\AZPE,
so P,-1, )\AEP;10 1 = Ar, which by definition implies that 071 o A = x for some x € Aut(X). Thus
A=cox e{oomn|ne Aut(X)}, which is a contradiction. [

Corollary 5.15. Fix any n = ny + na. Fix any simple graph |X|, such that any set of vertex disjoint edges
{e1,...,ex} in || has size at most k < min{ny, ny}/4, and let ©. = (||, o) be any signing of |X|. Let
Fx(C,) denote the set of subgraphs of C,, isomorphic to |L|, and similarly define Fx(Cy, @ Cy,). Then we
have

‘7‘{2 (Cn)

= ‘WZ(Cnl @ an)

5.3 Lower Bounds for Schatten, Ky-Fan, and Tail Error Testing

In this section, we demonstrate how our construction of subgraph equivalent matrices with gaps in
their spectrum result in lower bounds for a number of other spectral testing problems via Lemma
5.8. We begin by proving a lower bound for testing Schatten norms. To do this, we must first
demonstrate that there is a gap in the Schatten 1 norm between a cycle and the union of two disjoint
cycles.

Fact 5.16 (Theorem 1 of [Kna09]). Fix any a, b, n € R with sin(b/2) # 0. Then we have

= sin(%2) ( +(n—1)b)

n
_ 2

cos(a + kb) = — ) cos >
k=0 2

Proposition 5.17. Fix any d > 6 be any integer divisible by 4. Then

' cos (mt/d)

ICalls, =4 sin(r/d)

Proof. By [Chu96], for any d > 3 the eigenvalues of C; are given by 2 - cos(z%j) forj=0,1,...,d-1.
Letay = |d/4],a, = |3d/4],a3=d —ap — 1.

27j
ICalli =2 )  |cos (7])‘
j=0
5 < 27 2 27 a1 27
= ‘ Ccos 7 - Z Ccos 7 + Z Ccos 7 (34)
j=0 j=a1+1 j=ax+1
2 27 < 27
= Z COSs (T) — Z COSs (7)
j=—a3 j=a1+1

We analyze each term in the above via Fact 5.16. Firstly:
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L omj\ 21 2mas
Z COSs (T) = Z COSs (7 — d )
j=-a3 j=0 (35)
_sin((aq + a3 + 1)1 /d) cos ((a1 +az)m 27u13)

sin(7t/d) d d

Note that if d is divisible by 4, the above becomes 2 cos(mt/d)/sin(rt/d). Next, for the second
term, we have

ap . ar—ai;—1 .

Z cos (%) = Z cos(zz;] - 2n(a;+1))

j=a1+1 j=0 (36)
_sin((az —ay)m/d) (ap—a1 - 2m(a; +1)

Bl sin(7t/d) d B d

Again, note that if d is divisible by 4, the above becomes 2 cos(7t/d)/sin(mt/d). Putting these two

equations together, we have that
cos (7t/d)

Proposition 5.18. Fix any d larger than some constant. Then we have

1
lICsalls, — 1Caa ® Cualls,| 2 =

Proof. By the prior Lemma, we have ||Cy||s, = 4 cot(rt/d) for any d divisible by 4. Thus using the
Taylor expansion of cotangent, we have

8d e 73

4= ———— + O(1/d" 7

ICulls, =4(38 + 552 + s + 01 /) @)
and

IICaa @ Caalls, = 2[[Caalls,
8d T e (38)
:4 —_— [ e 1 5
(n Y244 T O ))
Thus
1
[ICsalls, = 11Caq ® Cualls,| 2 = (39)
n

Theorem 5.19. Fix any % < € < 1. Then given A € R™" with ||Allc < 1, any non-adaptive sampling
algorithm which distinguishes between the cases

1. ||Alls, > eon'?
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1.5 1.5

2. ||Alls, < €on> —en

with probability at least 3/4, where €y = O(e), must query at least Q(1/€*) entries of A.

Proof. We use the hard instance D1, D, as earlier. Set k = Czl—g(l/) t =logk, and d = 4k, and
m = n/(dk). We instantiate the matrices (B, D, Z) in the hard instance via B = Cp4, D = C; & Cy,
andletZ = 6; ; fori < j, where 6; ; € {-1,1} arei.i.d. Bernoulli random variables, so that Z € R™*™
is a symmetric random Bernoulli matrix. Using the fact that ||Z||, < O(y/n) with high probability
[Ver10], along with the fact that ||Z||%_ = n? deterministically, we have that ||Z||s, > Cym!®> with
non-zero probability for some constant C; > 0, as the former two facts imply that Z has Q(n)
eigenvalues with magnitude ©(y/n). Thus, we can deterministically fix Z to be such a matrix with
{1, -1} entries such that ||Z||s, > C;m'®. Given this, we have ||]A3#||31 =||B®Z|ls, = ||Blls, - |Z]|s,,
and so by Proposition 5.18, we have

~ mls
IBlls, - IDlls,| > Co- e
for some absolute constant Cy > 0. Note also that we have ||B||s, > Q(d), where we use the fact that
a constant fraction of the eigenvalues 2 - cos( el )for j=0,1,...,d — 1 of B are Q)(1). Thus we have
IBlls, = dm?S. ) )
Now by Proposition 5.10, we obtain that B =01l 50 D and thus B = B®Z =4l Togpn DOZ =D by

Lemma 5.7. Thus by Lemma 5.8, we have that distinguishing 9; from D requires Q(k?) = O(1/€*)
samples for any non-adaptive algorithm. It suffices then to show that if A; ~ Dy and Ay ~ D», then
we have the desired gap in Schatten norms. We have

15
WM&WMM_Z%——

i=1
15 (40)
C0d45k1/2
S enls

Where the last inequality follows setting C large enough, and assuming that 1/€ is larger than some
constant as in Theorem 5.12. Again, if 1/e€ is not larger than some constant, a €2(1) lower bound
always applies, since an algorithm must read at least one entry of the matrix to have any advantage.
Now note that we also have [|Aq]ls, = k||F]§||31 = kdml® = n13/\dk = C:)(enl'S) as desired. To
complete the proof, we can scale down all the entries of the input matrix by 1/2, which results in
the required bounded entry property, and only changes the gap by a constant factor. [ ]

We now present our lower bound for testing Ky-Fan norms. Recall that for a matrix A € R™"
and 1 < s > n, the Ky-Fan s norm is defined as ||A||xri) = Zi-‘zl 0i(A), where ¢;(A) is the i-th
singular value of A.

Theorem 5.20. Fix any 1 < s < n/(polylogn). Then there exists a fixed constant ¢ > 0 such that given
A € RP" with ||Alle < 1, any non-adaptive sampling algorithm which distinguishes between the cases

”A”KF(S) > log(s)
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2. Allkre) < (1~ eo) g
with probability at least 3/4, where ey = ©(1/log?(s)), must query at least C(s?) entries of A.12

Proof. The proof is nearly the same as the usage of the hard instance in Theorem 5.12. Set
k = s, and let dy = O(logs) and d = 2dp + 1. We apply Lemma 5.8 with the hard instance as
instantiated with Z = 1", and the matrices B = 1/4(Ac, —2I;) and D = 1/4(ACd0€BCdO+1 - 21,).
Notice that since the eigenvalues of C; are given by 2 - cos(%) forj =0,1,...,d =1 [Chu%],
we have Amin(Ac,) = -2 COS(% = 2+ 0(1/log*(1/e)), Amin(Acy @Cy) = —2, and Amax(Ac,) =
/\maX(AchEBcdoﬂ) = 2. Thus ||D||, = 4 and ||B|]» = 4 — ©(1/d?), and moreover ||D ® Z||, = 4m
IB® Z||; = 4m(1 — ©(1/log*(1/€))). Thus if A; ~ Dy, we have ||A1lxres) > S, 4m = 4km, and
|A2|lkF(s) < 4km(1—©O(1/ log2(1 /€))). The proof then follows from the Q(k?) lower bound for this
hard instance via Lemma 5.8.

|

We now present our lower bound for testing the magnitude of the s-tail [[A — A, ||I%, where
A;s = UL, VT is the truncated SVD (the best rank-s approximation to A). Note that ||A — A, ||12: =

Zj>s GJZ(A)

Theorem 5.21. Fix any 1 < s < n/(polylogn). Then there exists a fixed constant ¢ > 0 (independent of
€), such that given A € R™" with ||A|| < 1, any non-adaptive sampling algorithm which distinguishes
between the cases

2
1A -AR > - 2

2

2 A=Al <(-e0) oo &

S
with probability at least 3/4, where €g = O(1), must query at least Q(s2) entries of A.

Proof. We set s = k, and use the same hard instance as in Theorem 5.20 above. Note that if D, D>
are defined as in Theorem 5.20, if A; ~ Dy, A; ~ Ds, we have Y.°_; Ai(A1) = s(4m)? = 16n2/(sd?)
and ¥7_; Ai(A2) = 16n2/(sd?)(1 — ©(1/log” 5)). Now note that [|A1]|2 = [|Az||? = kdm? = n?/(dk) =
n?/(ds), using that each of the single cycle and union of two smaller cycles has d edges, so the
Frobenius norm of each block is dm? in both cases. Using that d = ©(logs), we have that if
I80) = (Aslf > n2/(ds) = 1602 (50?) = st

n?/(ds) —16n%/(sd*)(1 - @(1/10g s)) = Cslog(s) + @(” ), which completes the proof after applying
Lemma 5.8. [

for some constant ¢ > 0, and ||(A2) — (A2)5||I%

5.4 Lower Bound For Estimating Ky-Fan of AAT via Submatrices

In this section, we demonstrate a Q(1/e*) query lower bound for algorithms which estimate the
quantity Zle 07(A) = |AAT||gpk) for any k > 1 by querying a sub-matrix. The following lemma as
a special case states that for € = ©(1/+/n), additive en? approximation of ||AAT|| KF(k) Tequires one
to read the entire matrix A.

20 hides log(s) factors here.
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Lemma 5.22. Fixany 1 < k < n, and fix any % < € < 1/4. Any algorithm that queries a submatrix Agxr

of A € R™" with ||Alle < 1 and distinguishes with probability at least 4/5 between the case that either:

o YK, 02(A) > n?/2+ en’.
. Zle GZ.Z(A) < n?/2
must make |S| - |T| = Q(1/e*) queries to the matrix A.

Proof. We design two distributions D1, D». If A; ~ D1, we independently set each row of A; equal
to the all 1’s vector with probability p; = 1/2 + 2¢, and then return either A = Aj or A = AlT with
equal probability. If Ay ~ D,, we independently set each row of A, equal to the all 1’s vector
with probability po = 1/2 — 2¢, and then return either A = Ay or A = A;F with equal probability.
Our hard instance then draws A ~ % from the mixture. First note that in both cases, we have

||A||§ = ||A||l2: = Zle GZ.Z(A), since the matrix is rank 1. Since % > €, by Chernoff bounds, we have

that if A; ~ D; then Zle GZ.Z(A) > n?/2 + en? with probability at least 99/100. Similarly, we have
that if Ay ~ 9, then Zle GZ.Z(A) < n? with probability at least 99/100.

Now suppose that such an algorithm sampling |S| - |T| < g—i entries exists, for some constant
¢ > 0. Then by Yao’s min-max principle, there is a fixed submatrix S, T C [n] such that, with
probability 9/10 over the distribution %, the algorithm correctly distinguishes 9, from D,
given only Asxr. Suppose WLOG that |S| < 5. Then consider the case only when A; or A; is
returned by either of the distributions, and not their transpose, which occurs with probability at
least 1/2. Then Agxr is just a set of |S| rows, each of which are either all 0’s or all 1’s. Moreover, each
row is set to being the all 1’s row independently with probability p; in the case of D,, and p; in
the case of D,. Thus, by Independence across rows, the behavior of the algorithm can be assumed
to depend only on the number of rows which are set to 1. Thus, in the case of D, the algorithm
receives X1 ~ Bin(|S|, p1) and in D, the algorithm receives X, ~ Bin(|S|, p2). Then if dry (X1, X2) is
the total variational distance between X1, X5, then by Equation 2.15 of [A]06], assuming that e\/m
is smaller than some constant (which can be obtained by setting ¢ small enough), we have

drv(X1, Xa2) < O(ev/19])

Which is at most 1/100 for ¢ a small enough constant. Thus any algorithm can correctly distinguish
these two distributions with advantage at most 1/100. Since we restricted our attention to the event
when rows were set and not columns, and since we conditioned on the gap between the norms
which held with probability 99/100, it follows that the algorithm distinguishes O; from D, with
probability at most 1/2 +1/4 + (2/100) < 4/5, which completes the proof. [

6 Conclusion

In this work, we gave an optimal (up to log(1/¢€) factors) algorithm for testing if a matrix was PSD, or
was far in spectral norm distance from the PSD cone. In addition, we gave a query efficient algorithm
for testing if a matrix was PSD, or was en? far from the PSD-cone in ¢ % distance. Furthermore, we
established a new technique for proving lower bounds based on designing “subgraph-equivelant”
matrices. We believe that this technique is quite general, as shown by its immediate application to
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lower bounds for the Schatten-1 norm, Ky-Fan norm, and tail error testing. Our construction could
also likely be useful for proving lower bounds against testing of graph properties, which is a well
studied area [Gol10]. We pose the open problem to design (or demonstrate the non-existence of)
additional subgraph-equivalent matrices beyond the cycle graph construction utilized in this work,
which have gaps in their spectral or graph-theoretic properties.

Additionally, we pose the open problem of determining the exact non-adaptive query complexity
of PSD testing with ¢3 gap. As discussed in Section 1.1, there appear to be several key barriers
to improving the complexity beyond O(1/e*). Indeed, it seems that perhaps the main tool that is
lacking is a concentration inequality for the eigenvalues of random principal submatrices. Since
most such decay results apply only to norms [Tro08, RV07], progress in this direction would likely
result in important insights into eigenvalues of random matrices.

Finally, we note that the complexity of the testing problems for several matrix norms, specifically
the Schatten p and Ky-Fan norms, are still open in the bounded entry model. In particular, for the
Schatten 1 norm, to the best of our knowledge no non-trivial algorithms exist even for estimation
with additive error ('), thus any improvements would be quite interesting.
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A Proof of Eigenvalue Identity

Proposition A.1. Let A € R"™" beany real symmetric matrix. Then mingso [|A—B||Z = 3.1, (a)<0 AZ(A).

Proof. Let g; be the eigenvector associated with A; = A;(A). First, setting B = 3;.1,(a)>0 Ai7ig;",
which is a PSD matrix, we have ||A - BJ|Z = || i1 (A)<0 Ai(gigiTA)H% = 2iAi(A)<0 /\?(A), where the
second equality follows from the Pythagorean Theorem, which proves that mings [|A — B2 <
i (A)<0 /\f(A). To see the other direction, fix any PSD matrix B,andletZ = B—A. ThenZ+ A > 0,
where > is the Lowner ordering, thus Z > —A, which by definition implies that x"Zx > —xTAx
for all x € R". Then by the Courant-Fischer variational characterization of eigenvalues, we have
that A;(Z) > —A;(A) for all i. In particular, |A;(Z)| > |A;(A)| for all i such that A;(A) < 0. Thus
||Z||12: =2 /\f(Z) > DA, (A)<0 /\f(Z) > DliiAi(A)<0 /\f(A), which completes the proof.
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