

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 4 July 2020
Accepted 15 July 2020

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; copper(l) iodide; coordination complexes.

CCDC references: 2016675; 2016674;
2016673; 2016672; 2016671
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Structural diversity in copper(I) iodide complexes with 6-thioxopiperidin-2-one, piperidine-2,6-dithione and isoindoline-1,3-dithione ligands

Amelia M. Wheaton, Ilia A. Guzei* and John F. Berry

University of Wisconsin-Madison, Department of Chemistry, 1101 University Avenue, Madison, WI, 53703, USA.
*Correspondence e-mail: iguzei@chem.wisc.edu

Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile- $\kappa N)(6$-sulfanylidenepiperidin-2-one- κS)copper(I)], $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{2}\right] \quad(\mathbf{I})$, bis(acetonitrile- $\left.\kappa N\right)$ tetra- μ_{3}-iodido-bis(6-sulfanylidenepiperidin-2-one- κ S)-tetrahedro-tetracopper (I), $\quad\left[\mathrm{Cu}_{4} \mathrm{I}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{4}\right]$ (II), catena-poly[[(μ-6-sulfanylidenepiperidin-2-one- $\kappa^{2} O: S$)cop-$\operatorname{per}(\mathrm{I})]-\mu_{3}$-iodido $], \quad\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)\right]_{n} \quad$ (III), poly $[[($ piperidine-2,6-dithione$\kappa S)$ copper $(\mathrm{I})]-\mu_{3}$-iodido $],\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NS}_{2}\right)\right]_{n}(\mathbf{I V})$, and poly $[[(\mu$-isoindoline-1,3-dithione- $\kappa^{2} S: S$ copper(I) $]-\mu_{3}$-iodido $],\left[\mathrm{CuI}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]_{n}(\mathbf{V})$. Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III, IV, and \mathbf{V} crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal $\left[\mathrm{Cu}_{3} \mathrm{I}_{3}\right]$ structure that is not supported by bridging ligands. Structures I, II, and IV display weak to moderately strong $\mathrm{Cu} \cdots \mathrm{Cu}$ cuprophilic interactions $[\mathrm{Cu} \cdots \mathrm{Cu}$ internuclear distances range between 2.5803 (10) and 2.8485 (14) \AA]. All structures except III display weak hydrogen-bonding interactions between the $\mathrm{N}-\mathrm{H}$ of the ligand and the μ_{2} and $\mu_{3}-\mathrm{I}^{-}$atoms. Structure III contains classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions between the SNO ligands that connect the molecules in a threedimensional framework. Complex \mathbf{V} features $\pi-\pi$ stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV, there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules.

1. Chemical context

Copper (I) iodide compounds have been of interest for the past 50 years because of their diverse structural (Peng et al., 2010) and spectroscopic properties (Ford et al., 1999; Hardt \& Pierre, 1973). In particular, Cu^{I} complexes range from simple $\mathrm{Cu}_{2} \mathrm{I}_{2} L_{2}$ dimers ($L=$ Lewis basic ligands) to complex threedimensional coordination polymers (Peng et al., 2010). Traditionally, soft Lewis basic donors such as thiols or phosphines have been used as ligands to the Cu^{I} centers. We were interested in exploring the structures of Cu^{I} coordination complexes with three ligands, piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one

6-thioxopiperidin-2-one (SNO)

piperidine-2,6-dithione (SNS)

isoindoline-1,3-dithione (SNS6)
Figure 1
Diagrams of the three ligands used in the preparation of structures I-V.
(SNO) (Fig. 1). These ligands have been previously utilized in our work due to their polydentate binding modes, which provide individual binding sites that display a range of 'hard' to 'soft' Lewis basic behavior (Dolinar \& Berry, 2013, 2014). Herein we report the synthesis and structural characterization of a series of five copper(I) iodide complexes with piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands.

2. Structural commentary

Compound I crystallizes as a discrete dimer with a rhombic $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ core that resides on a crystallographic inversion center; thus, only one half of the dimer is symmetry-independent (Fig. 2). The rhombic core is close to having an ideal geometry with almost equal $\mathrm{Cu}-\mathrm{I}$ distances (Table 1). Each Cu center is coordinated by two $\mu_{2}-\mathrm{I}^{-}$atoms, one molecule of acetonitrile, and the thione moiety of the SNO ligand and has a slightly distorted tetrahedral geometry ($\mathrm{I}-\mathrm{Cu}-\mathrm{I}$ and $\mathrm{I}-$ $\mathrm{Cu}-L$ angles of $100.19(3)-118.719(16)^{\circ} ; L=\mathrm{SNO}$ or acetonitrile). The $\mathrm{Cu} \cdots \mathrm{Cu}$ internuclear distance of 2.7274 (6) \AA is slightly shorter than the sum of the covalent radii (ca $2.87 \AA$) and is consistent with a weak cuprophilic interaction. The $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{S}$ distances (Table 1) in \mathbf{I} are similar to the $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{S}$ distances in other discrete $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ dimers reported to the Cambridge Structural Database (CSD) and selected with moderate search criteria (Groom et al. 2016; no errors, no polymers, single-crystal structures only). The SNO ligand adopts an envelope conformation, with a 49.07 (9) ${ }^{\circ}$ dihedral angle between the planes defined by atoms $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$.

Figure 2
A molecular drawing of I with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding interactions. All H atoms bound to C atoms are omitted. [Symmetry code: (i) $-x+1,-y+1,-z$.]

Complex II crystallizes with a $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}$ core; the four Cu atoms form a distorted tetrahedron with $\mu_{3}-\mathrm{I}^{-}$atoms capping each of the tetrahedron faces (Fig. 3). The center of the tetrahedron resides on a crystallographic twofold axis and therefore only two of the Cu centers are symmetry-independent. These two Cu atoms have different first coordination spheres: Cu 1 is coordinated by three $\mu_{3}-\mathrm{I}^{-}$atoms and one thione-bound SNO ligand; Cu 2 is coordinated by three $\mu_{3}-\mathrm{I}^{-}$ atoms and one acetonitrile ligand. Both Cu atoms have a distorted tetrahedral geometry $[\mathrm{I}-\mathrm{Cu}-\mathrm{I}$ and $\mathrm{I}-\mathrm{Cu}-L$ angles between 97.98 (3) and 118.71 (2) $)^{\circ} ; L=$ SNO or acetonitrile]. The internuclear $\mathrm{Cu} \cdots \mathrm{Cu}$ distances vary between 2.5803 (10) and 2.8150 (11) \AA (Table 1), which (similarly to I) are indicative of weak to moderately strong cuprophilic interactions between Cu atoms in the tetrahedron. The $\mathrm{Cu} 1-$ S and $\mathrm{Cu} 2-\mathrm{N}$ distances in II (Table 1) are slightly shorter than the $\mathrm{Cu}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{N}$ distances in \mathbf{I} as a result of the

Figure 3
A molecular drawing of II shown with 50% probability ellipsoids. Dotted lines are used to indicate hydrogen-bonding interactions. All H atoms bound to C atoms are omitted. [Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.]

Table 1
Selected bond lengths for structures $\mathbf{I}-\mathbf{V}$.

	\mathbf{I}^{a}		II ${ }^{\text {b }}$		III ${ }^{c}$		$\mathbf{I V}^{d}$		\mathbf{V}^{e}	
$\mathrm{Cu}-\mathrm{I}$	$\begin{aligned} & \mathrm{I} 1-\mathrm{Cu} 1 \\ & \mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}} \end{aligned}$	$\begin{aligned} & 2.6261 \text { (6) } \\ & 2.6321 \text { (7) } \end{aligned}$	$\mathrm{I} 1-\mathrm{Cu} 1$	2.6451 (6)	$\mathrm{I} 1-\mathrm{Cu} 1$	2.6264 (11)	$\mathrm{I} 1-\mathrm{Cu} 1$	2.6365 (8)	$\mathrm{I} 1-\mathrm{Cu} 1$	2.6152 (13)
			$\mathrm{I} 1-\mathrm{Cu} 2{ }^{\text {i }}$	2.7017 (7)	$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}}$	2.6709 (12)	$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}}$	2.6687 (8)	$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}}$	2.6798 (13)
			$\mathrm{I} 1-\mathrm{Cu} 2$	2.7250 (6)	$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	2.6342 (10)	$\mathrm{I} 2-\mathrm{Cu} 2$	2.6719 (8)		
			$\mathrm{I} 2-\mathrm{Cu} 1$	2.7796 (6)			$\mathrm{I} 2-\mathrm{Cu} 2^{\text {ii }}$	2.6724 (8)		
			$\mathrm{I} 2-\mathrm{Cu} 1^{\mathrm{i}}$	2.6542 (6)						
			$\mathrm{I} 2-\mathrm{Cu} 2$	2.6456 (6)						
$\mathrm{Cu} \cdots \mathrm{Cu}$	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	2.7274 (6)	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	2.8150 (11)						
			$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.7864 (8)						
			$\mathrm{Cu} 1-\mathrm{Cu} 2^{\text {i }}$	2.7106 (8)						
			$\mathrm{Cu} 2-\mathrm{Cu} 2{ }^{\text {i }}$	2.5803 (10)						
$\mathrm{Cu}-\mathrm{S}$	Cu1-S1	2.3205 (6)	Cu1-S1	2.2869 (10)	$\mathrm{Cu} 1-\mathrm{S} 1$	2.2827 (15)	Cu1-S1	2.3086 (14)	$\mathrm{Cu} 1-\mathrm{S} 1$	2.269 (2)
							$\mathrm{Cu} 1-\mathrm{S} 4{ }^{\text {iii }}$	2.3075 (13)	$\mathrm{Cu} 1-\mathrm{S}^{\text {iii }}$	2.273 (2)
							$\mathrm{Cu} 2-\mathrm{S} 2$	2.2802 (15)		
							$\mathrm{Cu} 2-\mathrm{S} 3$	2.2933 (15)		
$\mathrm{Cu}-\mathrm{N}$	$\mathrm{Cu} 1-\mathrm{N} 2$	2.0225 (10)	$\mathrm{Cu} 2-\mathrm{N} 2$	1.974 (3)						

Symmetry codes: (a) (i) $-x+1,-y+1,-z$ for \mathbf{I}; (b) (i) $-x+1, y,-z+\frac{1}{2}$ for II; (c) (i) $-x+1 / 2,-y+\frac{3}{2}, z-\frac{1}{2}$ and (ii) $x,-y+1, z-\frac{1}{2}$ for III; (d) (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$ and (iii) $-x+1,-y,-z+1$ for IV; (e) (i) $x, y-1, z$ and (ii) $x,-y+1, z+\frac{1}{2}$ for \mathbf{V}.
increase from two $\mu_{2}-\mathrm{I}^{-}$to three $\mu_{3}-\mathrm{I}^{-}$atoms coordinating to each Cu center. The SNO ligand adopts an envelope conformation with a 47.5 (2) ${ }^{\circ}$ dihedral angle between the planes defined by atoms C2-C3-C4 and C2-C1-N1-C5-C4.

Compound III crystallizes with layered two-dimensional polymeric sheets with a repeat (and symmetry-independent) unit formula of $\left[\mathrm{Cu}\left(\mu_{3}-\mathrm{I}\right)(\mathrm{SNO})\right]$. The Cu atoms are coordinated by three $\mu_{3}-\mathrm{I}^{-}$atoms and one SNO ligand and have distorted tetrahedral geometries $[\mathrm{I}-\mathrm{Cu}-\mathrm{I}$ and $\mathrm{I}-\mathrm{Cu}-\mathrm{S}$ angles of 97.12 (4)-120.62 (4) ${ }^{\circ}$] (Fig. 4). The I^{-}ions have distorted trigonal pyramidal geometries $[\mathrm{Cu}-\mathrm{I}-\mathrm{Cu}$ angles of 99.58 (3)-116.92 (2) ${ }^{\circ}$] with two short and one long $\mathrm{Cu}-\mathrm{I}$ bonds (Table 1). The polymeric sheet is based on fused $\mathrm{Cu}_{3} \mathrm{I}_{3}$ six-membered rings with a screw-boat conformation $\left({ }^{3} S_{2}\right.$ with puckering amplitude $Q=1.3385 \AA$ A; Cremer \& Pople, 1975) that propagate parallel to and stack perpendicularly to the (100) crystallographic plane (Fig. 5). These fused sixmembered rings are reminiscent of the zinc-blend structure present in crystalline $\gamma-\mathrm{CuI}$ (Gruzintsev \& Zagorodnev, 2012) except that the anions are μ_{3} rather than μ_{4}. Each polymeric sheet is insulated by a sheath of SNO ligands, whose $\mathrm{Cu}-\mathrm{S}$ bonds are perpendicular to the plane of propagation of the $\mathrm{Cu}_{3} \mathrm{I}_{3}$ rings (Fig. 6). The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances between neigh-

Figure 4
A molecular drawing of the symmetry-independent portion of III with the full coordination sphere of the Cu center shown. All atoms are shown with 50% probability ellipsoids; all H atoms bound to C atoms are omitted. [Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.]
boring Cu atoms in the $\mathrm{Cu}_{3} \mathrm{I}_{3}$ rings measure between 4.2226 (15) and 4.5148 (15) \AA, which are outside the range of internuclear distances for cuprophilic interactions.

Figure 5
A molecular drawing of III's $\mathrm{Cu}_{3} \mathrm{I}_{3}$ fused rings viewed along the crystallographic a axis with 50% probability ellipsoids. All H atoms bound to C atoms are omitted.

Figure 6
A molecular drawing of III viewed along the crystallographic b axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogenbonding interactions. All H atoms bound to C atoms are omitted.

Figure 7
A molecular drawing of the repeat unit of IV shown with 50% probability ellipsoids.

Similarly to III, IV crystallizes with layered two-dimensional polymeric sheets with the symmetry-independent unit formula $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)\left(\mu_{2}-\mathrm{SNS}\right)\right]_{2}$ (Fig. 7); the Cu and $\mu_{2}-\mathrm{I}^{-}$atoms form $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ rhombi where the center of each rhombus resides on a crystallographic inversion center. Thus, the symmetry-independent unit is best described as containing two structurally distinct $\left[\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}\left(\mu_{2}-\mathrm{SNS}\right)_{2}\right]$ half-dimers. The structures of the symmetry-independent $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ rhombi differ in two notable ways: first, while the $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ rhombus formed by $\mathrm{Cu} 1, \mathrm{I} 1$, and their symmetry-equivalents is slightly distorted, the rhombus formed by $\mathrm{Cu} 2, \mathrm{I} 2$, and their symmetry-equivalents is near ideal (Table 1). Secondly, the $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in the rhombi differ by ca $0.07 \AA$ [2.8485 (14) A for the Cu1 rhombus; 2.7746 (15) \AA for the Cu2 rhombus]. These values are consistent with little to no $\mathrm{Cu} \cdot \mathrm{Cu}$ cuprophilic interaction in the Cu 1 dimer while also indicating that there is a weak $\mathrm{Cu} \cdots \mathrm{Cu}$ cuprophilic interaction in the Cu 2 dimer. For both half dimers, the Cu atom's distorted tetrahedral $[\mathrm{I}-\mathrm{Cu}-\mathrm{I}$ angles between $115.06(3)$ and $117.46(3)^{\circ}$ and $\mathrm{S}-\mathrm{Cu}-\mathrm{I}$ angles of 96.95 (4)-119.35 (6) ${ }^{\circ}$] coordination sphere is filled by two thione moieties from the μ_{2}-SNS ligand; however, only one of these μ_{2}-SNS ligands per Cu atom is symmetry-independent (Fig. 8).

Figure 8
A molecular drawing of IV with the full coordination spheres of the Cu centers shown with selected atom labels. All atoms are shown with 50% probability ellipsoids; dotted lines are used to indicate hydrogen-bonding interactions. All H atoms bound to C atoms are omitted. [Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x, 1-y, 1-z$; (iv) $-1+x, y, z]$

Figure 9
A molecular drawing of IV viewed along the [101] crystallographic direction with 50% probability ellipsoids. All H atoms bound to C atoms are omitted.

In contrast to the monodentate SNO ligands in III, which only permit polymer propagation in III through the $\mu_{3}-\mathrm{I}^{-}$ atoms, the bidentate SNS ligand facilitates polymer propagation in IV. This results in the formation of rings formed by four $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2}\left(\mu_{2}-\mathrm{SNS}\right)\right]$ units. The propagation of these rings in the (001) crystallographic plane results in a mesh-like sheet structure, and the layering of these sheets perpendicularly to the (001) plane results in the presence of sizable solventaccessible voids (ca $200 \AA^{3}$) in the structure (Fig. 9). These voids are filled with a combination of acetonitrile and dichloromethane in an approximately $2: 1$ ratio; however, these solvent species were positionally disordered and the PLATON SQUEEZE routine (Spek, 2015) was required to model the diffuse electron density from the solvent species in these voids (see Refinement section).

Complex \mathbf{V} also crystallizes as two-dimensional polymeric sheets with the symmetry-independent unit formula $\left[\mathrm{Cu}\left(\mu_{2^{-}}\right.\right.$ I) (μ_{2}-SNS6)] (Fig. 10). The Cu center is coordinated by two $\mu_{2}-\mathrm{I}^{-}$atoms and two thione moieties of the μ_{2}-SNS6 ligands and has a distorted tetrahedral geometry $[\mathrm{I}-\mathrm{Cu}-\mathrm{I}$ and $\mathrm{I}-$

Figure 10
A molecular drawing of the symmetry-independent portion of \mathbf{V} with the full coordination sphere of the Cu center shown. All atoms are shown with 50% probability ellipsoids; dotted lines are used to indicate hydrogen-bonding interactions. All H atoms bound to C atoms are omitted. [Symmetry codes: (i) $x, 1+y, z$; (ii) $x, 1-y, \frac{1}{2}+z$.]

Figure 11
A molecular drawing of \mathbf{V} viewed along the crystallographic b axis with 50% probability ellipsoids with emphasis on the weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interactions (dotted lines). All H atoms bound to C atoms are omitted.
$\mathrm{Cu}-\mathrm{S}$ angles between 100.30 (6) and $\left.120.16(7)^{\circ}\right]$. Whereas the two $\mathrm{S}-\mathrm{Cu}$ distances are almost identical, the two $\mathrm{Cu}-\mathrm{I}$ distances are quite different (Table 1).

Figure 12
A molecular drawing of \mathbf{V} viewed along the crystallographic c axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogenbonding interactions. All H atoms bound to C atoms are omitted.

The polymeric sheet propagates parallel to the (100) crystallographic plane. The $\mu_{2}-\mathrm{I}^{-}$atoms bridge two Cu centers and form $\mathrm{Cu}-\mathrm{I}$ zigzag chains that propagate parallel to the [010] crystallographic direction. Similarly to IV, the μ_{2}-SNS6 ligands participate in the polymer propagation in \mathbf{V} by bridging two Cu atoms and connecting the $\mathrm{Cu}-\mathrm{I}$ chains and are generated by the c glide plane (Fig. 11). Among the five structures discussed, \mathbf{V} is the only non-centrosymmetric structure. This results in a packing motif with a polar arrangement of SNS6 ligands on one side of the inorganic sheets, which results in a smaller spacing between the inorganic layers [7.598 (3) Å, see Fig. 12] in \mathbf{V} than in III [14.134 (5) \AA, see Fig. 13].

3. Supramolecular features

Among the five structures reported in this work, III, IV, and \mathbf{V} crystallize as polymeric sheets; their extended structural characteristics are described above. In addition to the polymeric structural features in III, IV, and \mathbf{V}, there are also several types of intermolecular interactions present in each of the five structures that are relevant to a description of their supramolecular architectures.

All structures except III display non-classical (e.g., H-atom acceptors that are not N, O or Cl) hydrogen-bonding interactions between the $\mathrm{N}-\mathrm{H}$ of the SNO/SNS/SNS6 ligands and the $\mu_{2}-\mathrm{I}^{-} / \mu_{3}-\mathrm{I}^{-}$atoms. According to our statistical analysis of $3396 \mathrm{~N}-\mathrm{H} \cdots \mathrm{I}$ interactions observed in 2030 structures

Figure 13
A molecular drawing of III viewed along the crystallographic c axis with 50% probability ellipsoids. Dotted lines are used to indicate hydrogenbonding interactions. All H atoms bound to C atoms are omitted.

Table 2
Hydrogen bonding geometries for I-V.

	$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
\mathbf{I}^{a}	$\mathrm{~N} 1-\mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.857(12)$	$2.845(13)$	$3.6980(12)$	$173.8(13)$
$\mathbf{I I}$	$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{I} 2$	$0.870(19)$	$2.81(2)$	$3.672(3)$	$170(4)$
$\mathbf{I I I}^{b}$	$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.86(2)$	$2.03(2)$	$2.881(5)$	$171(5)$
$\mathbf{I V}^{c}$	$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{I}^{\text {ii }}$	0.88	2.79	$3.628(4)$	160.9
	$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{I} 1^{\text {iv }}$	0.88	2.90	$3.679(4)$	149.2
\mathbf{V}^{d}	$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{I} 1^{\mathrm{iii}}$	0.88	2.84	$3.692(7)$	163.2

Symmetry codes: (a) (i) $-x+1,-y+1,-z$ for \mathbf{I}; (b) (iii) $-x+1,-y+1,-z+2$ for III; (c) (ii) $-x+1,-y+1,-z+1$ and (iv) $x+1, y, z$ for $\mathbf{I V}$; (d) (iii) $x,-y+1, z-\frac{1}{2}$ for $\mathbf{I V}$.
reported to the CSD, their $D \cdots A$ distances range from 3.15 to 4.12 Å with a mean $D \cdots A$ distance of 3.69 (13) A. The $D \cdots A$ distances in structures $\mathbf{I}, \mathbf{I I}, \mathbf{I V}$, and \mathbf{V} are typical for these types of interactions (Table 2). For structures I and II, the NH. \cdots I interaction is intramolecular. For IV, there are two symmetry-independent hydrogen-bonding interactions, which is expected given that the structure contains two symmetryindependent SNS ligands. The first, between atoms N1$\mathrm{H} 1 \cdots \mathrm{I} 1^{\mathrm{ii}}$ [symmetry code: (ii) $-x+1,-y+1,-z+1$], is a stronger interaction; the second is between atoms $\mathrm{N} 2^{\text {iv }}-$ $\mathrm{H} 2{ }^{\text {iv }} \cdots$ I1 [symmetry code: (iv) $x+1, y, z$] and is a weaker interaction (Table 2). Both interactions form $S(6)$ hydrogenbonding motifs (Etter et al. 1990), which provide some rigidity to the mesh-like sheet of the polymer.

Structure III is unique among all the structures discussed in this work as it is the only structure to exhibit classical hydrogen-bonding interactions. There are two identical hydrogen bonds per SNO ligand, with the $\mathrm{N}-\mathrm{H}$ serving as an H -bond donor and the O atom serving as an H -bond acceptor [$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{iii}}$ and $\mathrm{N} 1^{\mathrm{iii}}-\mathrm{H}^{\mathrm{iii}} \cdots \mathrm{O} 1$; symmetry code: (iii) $-x+1,-y+1,-z+2]$. These hydrogen bonds are relatively strong (Table 2) and form $R_{2}^{2}(8)$ motifs between the stacked $\left[\mathrm{Cu}_{3} \mathrm{I}_{3}\right]_{n}$ polymeric layers. Their presence leads to an extended three-dimensional framework structure, where the propagation of the $\left[\mathrm{Cu}_{3} \mathrm{I}_{3}\right]_{n}$ polymeric sheets accounts for two dimensions and the connection of those sheets through the hydrogen-bonding interactions provides the third (Fig. 13).

Structure \mathbf{V} has two distinct types of intermolecular interactions. First, there is the non-classical hydrogen-bonding interaction between the $\mathrm{N}-\mathrm{H}$ of the SNS6 ligand and the symmetry-equivalent $\mu_{2}-\mathrm{I}^{-}$atoms [$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{I} 1^{\mathrm{ii} ;}$ symmetry code: (ii) $\left.x, 1-y,-\frac{1}{2}+z\right]$ within the same polymeric sheet. This interaction forms $R_{2}^{2}(6)$ motifs that are of typical strength (see Figs. 10 and 11; Table 2). In addition to the non-classical hydrogen-bonding interactions, there are also $\pi-\pi$ stacking interactions between SNS6 ligands within the same polymeric sheet due to the presence of the extended π system in the SNS6 ligand backbone. These interactions, formed by the overlap between the five-membered rings with atoms C1-C2$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1\left(R_{5}\right)$ and the phenyl rings with atoms $\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 4{ }^{\mathrm{i}}-$ $\mathrm{C}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}-\mathrm{C} 7^{\mathrm{i}}\left(R_{6}\right)$ [symmetry code: (i) $\left.x, 1+y, z\right]$, is of moderate strength [plane R_{5} to R_{6} centroid distance: 3.369 (5) $\AA ; \mathrm{R}_{5}$ to R_{6} centroid offset distance: 1.165 (14) \AA]. These $\pi-\pi$ stacking interactions, in tandem with the increased size of the SNS6 ligand relative to the SNS/SNO ligands,
results in a tightly packed two-dimensional sheet (packing coefficient: 71.8%), which prevents the formation of the more mesh-like structure seen in IV (packing coefficient: 54.1\%) (Kitaigorodskii, 1973).

4. Database survey

All searches in the Cambridge Structural Database (Version 5.41, latest update May 2020; Groom et al. 2016) were performed with moderate search criteria (for structures I and II: no errors or ions, not polymeric, only single crystal structures; for structures III, IV, and \mathbf{V} : no errors or ions, only single crystal structures. The surveys of the database for each individual structure are described below.

I: A search for $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ dimers with two neutral ligands binding with one nitrogen and one sulfur atom resulted in 17 matches. Only one had a homometallic $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{I}\right)_{2}(\mathrm{~S})(\mathrm{N})\right]_{2}$ type structure where the S and N donors were part of monodentate ligands, which indicates that the coordination environment in I is a relatively unusual one. This structure, $\operatorname{bis}\left[\left(\mu_{2}\right.\right.$-iodo)(acetonitrile)(triphenylthiophosphorane)cop$\operatorname{per}(\mathrm{I})]$ (refcode: OCALOT; Lobana et al., 2001), has similar $\mathrm{Cu}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{N}$ distances and a slightly longer $\mathrm{Cu}-\mathrm{I}$ distance. However, OCALOT has a dramatically longer $\mathrm{Cu} \cdots \mathrm{Cu}$ distance $[3.4141$ (16) \AA] than that in \mathbf{I} (Table 1). This elongation is likely due to the larger steric requirements of the SPPh_{3} sulfur donor ligand in OCALOT.

II: a survey of the Cambridge Structural Database for $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}$ tetrahedrons with a mix of two $\mathrm{Cu} \mathrm{I}_{3} \mathrm{~N}$ coordination spheres and two $\mathrm{I}_{3} \mathrm{~S}$ coordination spheres provided only one match, octakis(μ_{3}-iodo)bis $\left\{\mu_{2}\right.$-bis[(2,4-dimethylphenyl)-thio]methane- $\left.S, S^{\prime}\right\}$ tetrakis(acetonitrile)octacopper(I) acetonitrile tetrahydrofuran solvate (refcode: ENAXAT; MartínezAlanis et al., 2011), which features two $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}$ tetrahedrons. Two of the Cu centers in each tetrahedron have a $\left(\mu_{3}-\mathrm{I}\right)_{3}\left(\mathrm{NCCH}_{3}\right)$ coordination sphere. The other two Cu centers have $\left(\mu_{3}-\mathrm{I}\right)_{3} \mathrm{~S}$ coordination spheres with bridging bis[(3,5-dimethylphenyl)thio]methane ligands that tether the two tetrahedra together. The geometric parameters of this structure $[\mathrm{Cu} \cdots \mathrm{Cu}, \mathrm{Cu}-\mathrm{I}, \mathrm{Cu}-\mathrm{S}$, and $\mathrm{Cu}-\mathrm{N}$ distances: 2.69 (3), 2.68 (4), 2.315 (11), and $\mathrm{Cu}-\mathrm{N} 1.979$ (6) Å] are very similar to those in II.

An additional, broader search for all non-polymeric $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)$ tetrahedra yielded 130 results for $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}(L)_{4}(L$ $=\mathrm{N}, \mathrm{S}, \mathrm{P}, \mathrm{I}, \mathrm{O}, \mathrm{As})$ tetrahedra with L as a neutral ligand. All of the resulting structures had identical first coordination spheres for each of the Cu centers $\left[\right.$ e.g., $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}(L)_{4}$, rather than the $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}(L)_{2}\left(L^{\prime}\right)_{2}$ in $\left.\mathbf{I I}\right]$. To the best of our knowledge, II is the first reported instance of a non-polymeric $\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{I}\right)_{4}$ tetrahedron with N and (non-bridging) S ligands.

III: A search for structures containing $\mathrm{Cu}_{3}\left(\mu_{3}-X\right)_{3}$ ring motifs that did not contain $\mathrm{Cu}_{4}\left(\mu_{3}-X\right)_{4}(X=$ any halogen $)$ tetrahedral motifs yielded 60 structures. Four of them contained $\mathrm{Cu}_{3}\left(\mu_{3}-X\right)_{3}$ motifs and one of them (DENQEV; Liu et al., 2018) contained a $\mathrm{Cu}_{3}\left(\mu_{3}-X\right)_{3}$ ring motif. This structure, catena-[bis $[\mu-5$-(1-aminoethyl)tetrazolato]tetrakis (μ-iodo)copper(II)tetracopper(I)], contains four monovalent and one
divalent symmetry-independent Cu centers that form a onedimensional ribbon. This ribbon, in combination with the bridging (1S)-1-(5-tetrazolyl) ethylamine ligands, forms a three-dimensional network. There are a few other examples of copper halide extended structures based on $\mathrm{Cu}_{3}\left(\mu_{3}-X\right)_{3}$ ring motifs that are both one-dimensional (Näther \& Jess, 2003; Oliver et al., 1977) and two-dimensional (Blake et al., 1999; Haakansson et al., 1991; Haakansson \& Jagner, 1990). Among these, the $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mu_{3}-1,3,5 \text {-triazine }\right)\right]_{\infty}$ structure reported by Blake et al. is the only two-dimensional sheet with hexagonal $\mathrm{Cu}_{3} \mathrm{I}_{3}$ rings and μ_{3}-triazine linkers. To the best of our knowledge, III is the first instance of this extended hexagonal $\mathrm{Cu}_{3} \mathrm{I}_{3}$ structure that is not supported by bridging ligands.

IV: A search for polymeric structures containing $\mathrm{Cu}_{2}\left(\mu_{2^{-}}\right.$ $X)_{2}\left(\mu_{2}-\mathrm{S}\right)\left(X=\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$rhombi afforded 91 matches that included 35 polymeric homometallic structures. Among the 35 structures, 23 were two-dimensional polymers. Whereas there were no closely related matches for IV, a similar structure (JIZPEQ; Raghuvanshi et al., 2019) was found. This structure has the same chemical composition as IV except with $\mu_{2}-1,3$-dithiane ligands rather than μ_{2}-SNS ligands. In contrast to the two-dimensional mesh-like structure of IV, JIZPEQ crystallizes with one-dimensional chains with links comprised of two $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ rhombi and two $\mu_{2}-1,3$-dithiane ligands. The geometric parameters of the $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}$ rhombi are in good agreement with those in IV $[\mathrm{Cu} \cdots \mathrm{Cu}, \mathrm{Cu}-\mathrm{I}$ (average), and $\mathrm{Cu}-\mathrm{S}$ (average) distances: 2.8904 (6), 2.63 (2), and 2.329 (3) Å].
\mathbf{V} : A search for structures with $\mathrm{Cu}-X$ zigzag chains that did not contain the $\mathrm{Cu}_{2}\left(\mu_{2}-X\right)_{2}$ rhombus afforded 112 matches. Among these, 56 were for polymeric homometallic structures and three of these [refcodes: AFUDUA (Caradoc-Davies et al., 2002), CIQQOL (Musina et al., 2017), and FIWWAK (Cingolani et al., 2005)] contained one-dimensional $\mathrm{Cu}-\mathrm{I}^{-}$ zigzag chains. All three structures contain tetrahedral Cu^{I} centers coordinated by the two μ_{2}-I atoms and two neutral donor ligands (binding with sulfur and nitrogen for AFUNDA, arsenic for CIQQOL, and FIWWAK). These structures have similar geometries to that of \mathbf{V} except for the Cu -ligand distances.

5. Synthesis and crystallization

The ligands piperidine-2,6-dithione (SNS) and 6-thioxopiper-idin-2-one (SNO) were purchased from Sigma-Aldrich and used as received. Isoindoline-1,3-dithione (SNS6) was prepared in a similar manner to that previously described in the literature (Yde et al., 1984).

Unless otherwise specified, all reactions were performed at room temperature under a dry N_{2} atmosphere using standard glovebox methods.

I was prepared by combining 10 ml of a clear yellow solution of 6-thioxopiperidin-2-one (0.500 mmol) in dichloromethane with 10 mL of a colorless solution of CuI (0.502 mmol) in acetonitrile. Upon combination, the solution turned a bright-orange color. Vapor diffusion of the orange
solution with diethyl ether afforded large, yellow, blockshaped crystals of \mathbf{I} after three days.

Two by-products were also obtained from the reaction of 6 -thioxopiperidin-2-one and CuI. The first (II) were small, yellow, plate-shaped crystals that co-crystallized with the larger yellow block-shaped crystals of \mathbf{I}. The second byproduct formed after exposing the initial orange solution from the reaction of 6-thioxopiperidin-2-one and CuI to air, and allowing that solution to slowly evaporate in air for approximately one week. After this time, small, red-orange crystals of III were obtained.

IV was prepared by layering 10 mL of a clear yellow solution of piperidine-2,6-dithione $(1.01 \mathrm{mmol})$ in dichloromethane over 10 mL of a colorless solution of CuI $(1.00 \mathrm{mmol})$ in acetonitrile. Dark-red crystals of IV were obtained after one week.

Black, needle-shaped crystals of \mathbf{V} were obtained in a similar manner to IV, with the exception that 1.00 mmol of isoindoline-1,3-dithione was used instead of piperidine-2,6dithione.

6. Refinement

For structure \mathbf{I}, the diffraction data were consistent with the space groups $P 1$ and $P \overline{1}$; the E-statistics were consistent for the centrosymmetric space group $P \overline{1}$ and were used to make the final space-group determination. For structures II-V, a combination of the systematic absences in the diffraction data and the E-statistics were used to assign the centrosymmetric space groups $C 2 / c$ (II), $P b c n$ (III), $P 2_{1} / c$ (IV) and the noncentrosymmetric space group $C c(\mathbf{V})$.

The structures were solved via intrinsic phasing and refined by least-squares refinement on F^{2} followed by differenceFourier synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. Unless otherwise specified, all hydrogen atoms were included in the final structure-factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

The coordinates of the H atoms bound to N atoms in structures I, II, and III were refined freely with a distance restraint for each $\mathrm{N}-\mathrm{H}$ distance.

In structure IV, there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecules. Bond-length restraints were applied to model the molecules, but the resulting isotropic displacement coefficients suggested the molecules were mobile. In addition, the refinement was computationally unstable. The SQUEEZE option (Spek, 2015) of the PLATON software suite (Spek, 2020) was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent in the unit cell to be $615 \AA^{3}$. This solvent-accessible volume is comprised of two

Table 3
Experimental details.

	I	II	III	IV	V
Crystal data					
Chemical formula	$\begin{gathered} {\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}-\right.} \\ \left.\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{2}\right] \end{gathered}$	$\begin{gathered} {\left[\mathrm{Cu}_{4} \mathrm{I}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}-\right.} \\ \left.\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{2}\right] \end{gathered}$	$\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)\right]$	$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NS}_{2}\right)_{2}\right]$	$\left[\mathrm{CuI}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$
$M_{\text {r }}$	721.34	1102.22	319.62	671.35	369.69
Crystal system, space group	Triclinic, $P \overline{1}$	Monoclinic, C2/c	Orthorhombic, Pbcn	Monoclinic, $P 2{ }_{1} / \mathrm{c}$	Monoclinic, Cc
Temperature (K)	100	105	100	100	100
$a, b, c(\AA)$	$\begin{aligned} & 8.121(2), 8.433(2), \\ & 9.154(2) \end{aligned}$	$\begin{aligned} & 14.4669(8), \\ & 12.2157(7), \\ & 16.9969(11) \end{aligned}$	$\begin{aligned} & 26.982(11), 8.195(4), \\ & 7.351 \text { (3) } \end{aligned}$	$\begin{gathered} 13.2866(9), \\ 11.6974(13), \\ 14.8089(9) \end{gathered}$	$\begin{aligned} & 15.174(5), 4.1188(16), \\ & 15.785(6) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 68.918(12), \\ & 80.523(12), \\ & 71.270(9) \end{aligned}$	90,112.562 (5), 90	90, 90, 90	90, 96.998 (6), 90	90, 92.98 (2), 90
$V\left(\AA^{3}\right)$	553.2 (2)	2773.9 (3)	1625.4 (13)	2284.4 (3)	985.2 (6)
Z	1	4	8	4	4
Radiation type	Mo $K \alpha$	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$	$\mathrm{Cu} K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.92	39.97	35.47	26.87	5.72
Crystal size (mm)	$0.15 \times 0.13 \times 0.13$	$0.1 \times 0.08 \times 0.04$	$0.08 \times 0.07 \times 0.03$	$0.22 \times 0.13 \times 0.09$	$0.30 \times 0.02 \times 0.01$
Data collection					
Diffractometer	Bruker APEXII Quazar	Bruker SMART APEXII area detector	Bruker SMART APEXII area detector	Bruker SMART APEXII area detector	Bruker APEXII Quazar
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan $S A D A B S$; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
$T_{\text {min }}, T_{\text {max }}$	0.079, 0.120	0.042, 0.188	0.030, 0.144	0.009, 0.094	0.322, 0.404
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	17922, 4099, 3988	23553, 2753, 2669	25274, 1631, 1467	78133, 4597, 4236	11871, 3603, 3226
$R_{\text {int }}$	0.021	0.060	0.051	0.063	0.041
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.779	0.622	0.622	0.622	0.770
Refinement					
$\begin{gathered} R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ w R\left(F^{2}\right), S \end{gathered}$	0.012, 0.030, 1.07	0.026, $0.063,1.10$	0.032, 0.082, 1.07	0.048, 0.126, 1.06	0.036, 0.089, 1.06
No. of reflections	4099	2753	1631	4597	3603
No. of parameters	122	140	94	181	118
No. of restraints	1	1	1	0	2
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.43,-0.34$	0.84, -1.25	1.31, -1.03	1.58, -0.49	3.17, -1.13
Absolute structure	-	-	-	-	Flack x determined using 1438 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /$ $\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter	-	-	-	-	0.034 (12)

accessible voids and is 27% of the unit-cell volume. The program calculated 155 electrons in the unit cell for the diffuse species. This corresponds to approximately one molecule of dichloromethane (42 electrons) that is 50% occupied and one molecule of acetonitrile (22 electrons) in the asymmetric unit. It is very likely that the solvent molecules are disordered over several positions. All derived results in Tables 1 and 2 are based on the known contents. No data are given for the diffusely scattering species.

Crystal data, data collection and structure refinement details are summarized in Table 3.

Acknowledgements

AMW would like to thank Michael M. Aristov for aid with the data collection of III-V. In-house programs Gn (Guzei, 2013) were used during experiment planning and structure refinement. The Bruker Quazar APEXII was UW-Madison Department of Chemistry with a portion of a generous gift from Paul J. and Margaret M. Bender.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1664999; grant No. 1953924).

References

Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W.-S. \& Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.

Bruker (2013). SAINT. and $A P E X 2$. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2016). $S A D A B S$. Madison, Wisconsin, USA.
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Caradoc-Davies, P. L., Hanton, L. R., Hodgkiss, J. M. \& Spicer, M. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1581-1585.

Cingolani, A., Di Nicola, C., Effendy, P., Pettinari, C., Skelton, B. W., Somers, N. \& White, A. H. (2005). Inorg. Chim. Acta, 358, 748-762.
Cremer, D. \& Pople, J. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dolinar, B. S. \& Berry, J. F. (2013). Inorg. Chem. 52, 4658-4667.
Dolinar, B. S. \& Berry, J. F. (2014). Dalton Trans. 43, 6165-6176.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Ford, P. C., Cariati, E. \& Bourassa, J. (1999). Chem. Rev. 99, 36253648.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Gruzintsev, A. N. \& Zagorodnev, W. N. (2012). Semiconductors 46, 149-154.
Guzei, I. A. (2013). Programs Gn. University of Wisconsin-Madison, Madison, Wisconsin, USA.
Haakansson, M. \& Jagner, S. (1990). Inorg. Chem. 29, 5241-5244.

Haakansson, M., Jagner, S. \& Walther, D. (1991). Organometallics, 10, 1317-1319.
Hardt, H. \& Pierre, A. (1973). Z. Anorg. Allg. Chem. 402, 107-112.
Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. Academic Press.
Liu, J., Tang, Y.-H., Wang, F. \& Zhang, J. (2018). CrystEngComm, 20, 1232-1236.
Lobana, T. S., Mahajan, R. \& Castineiras, A. (2001). Trans. Met. Chem. 26, 440-444.
Martínez-Alanis, P. R., Ugalde-Saldívar, V. M. \& Castillo, I. (2011). Eur. J. Inorg. Chem. 2011, 212-220.
Musina, E. I., Galimova, M. F., Musin, R. R., Dobrynin, A. B., Gubaidullin, A. T., Litvinov, I. A., Karasik, A. A. \& G.Sinyashin, O. (2017). ChemistrySelect ,2, 11755-11761.

Näther, C. \& Jess, I. (2003). Inorg. Chem. 42, 2968-2976.
Oliver, K., Waters, T., Cook, D. \& Rickard, C. (1977). Inorg. Chim. Acta, 24, 85-89.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Peng, R., Li, M. \& Li, D. (2010). Coord. Chem. Rev. 254, 1-18.
Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. \& Viau, L. (2019). Inorg. Chem. 58, 57535775.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Yde, B., Yousif, N., Pedersen, U., Thomsen, I. \& Lawesson, S.-O. (1984). Tetrahedron, 40, 2047-2052.

supporting information

Acta Cryst. (2020). E76, 1336-1344 [https://doi.org/10.1107/S2056989020009676]

Structural diversity in copper(I) iodide complexes with 6-thioxopiperidin-2-one, piperidine-2,6-dithione and isoindoline-1,3-dithione ligands

Amelia M. Wheaton, Ilia A. Guzei and John F. Berry

Computing details

Data collection: APEX3 (Bruker, 2017) for (I), (V); APEX2 (Bruker, 2013) for (II), (III), (IV). Cell refinement: APEX3 (Bruker, 2017) for (I), (V); SAINT (Bruker, 2013) for (II), (III), (IV). Data reduction: APEX3 (Bruker, 2017) for (I), (V); SAINT (Bruker, 2013) for (II), (III), (IV). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di- μ-iodido-bis[(acetonitrile- κN)(6-sulfanylidenepiperidin-2-one- κ S)copper(I)] (I)

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{2}\right]$
$M_{r}=721.34$
Triclinic, $P \overline{1}$
$a=8.121$ (2) \AA
$b=8.433$ (2) \AA
$c=9.154(2) \AA$
$\alpha=68.918(12)^{\circ}$
$\beta=80.523(12)^{\circ}$
$\gamma=71.270(9)^{\circ}$
$V=553.2(2) \AA^{3}$

Data collection

Bruker APEXII Quazar

 diffractometerRadiation source: microfocus sealed X-ray tube, Incoatec $\mathrm{I} \mu \mathrm{s}$
Mirror optics monochromator
Detector resolution: 7.9 pixels mm^{-1}
$0.5^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.012$
$w R\left(F^{2}\right)=0.030$
$S=1.07$
4099 reflections
122 parameters
$Z=1$
$F(000)=344$
$D_{\mathrm{x}}=2.165 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9905 reflections
$\theta=2.4-33.6^{\circ}$
$\mu=4.92 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, yellow
$0.15 \times 0.13 \times 0.13 \mathrm{~mm}$
$T_{\text {min }}=0.079, T_{\text {max }}=0.120$
17922 measured reflections
4099 independent reflections
3988 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=33.6^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-12 \rightarrow 13$
$l=-14 \rightarrow 13$

1 restraint
Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.010 P)^{2}+0.2 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

supporting information

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
$\Delta \rho_{\min }=-0.34$ e \AA^{-3}

Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.71563(2)$	$0.27834(2)$	$-0.05209(2)$	$0.01894(2)$
Cu1	$0.45123(2)$	$0.38128(2)$	$0.13294(2)$	$0.01894(3)$
S1	$0.56399(3)$	$0.24010(4)$	$0.37914(3)$	$0.01986(5)$
O1	$0.05297(11)$	$0.66482(10)$	$0.51701(10)$	$0.02183(14)$
N1	$0.28752(11)$	$0.45357(12)$	$0.47278(10)$	$0.01722(15)$
H1	$0.278(2)$	$0.5149(19)$	$0.3753(15)$	0.021^{*}
N2	$0.26648(13)$	$0.25871(13)$	$0.15713(11)$	$0.02214(17)$
C1	$0.41889(13)$	$0.30218(13)$	$0.51318(11)$	$0.01629(16)$
C2	$0.42947(14)$	$0.19443(14)$	$0.68381(12)$	$0.02105(18)$
H2A	0.508966	0.227581	0.731337	0.025^{*}
H2B	0.479000	0.067327	0.694709	0.025^{*}
C3	$0.25216(15)$	$0.22197(14)$	$0.77191(12)$	$0.02196(19)$
H3A	0.265859	0.157362	0.885379	0.026^{*}
H3B	0.176642	0.174405	0.734521	0.026^{*}
C4	$0.16790(15)$	$0.41932(14)$	$0.74515(12)$	$0.02137(19)$
H4A	0.048628	0.437280	0.795116	0.026^{*}
H4B	0.235816	0.462532	0.795254	0.026^{*}
C5	$0.15956(13)$	$0.52448(13)$	$0.57383(12)$	$0.01738(17)$
C6	$0.17193(13)$	$0.17425(13)$	$0.20890(12)$	$0.01823(17)$
C7	$0.05487(15)$	$0.06411(15)$	$0.27580(14)$	$0.02279(19)$
H7A	0.012545	0.043830	0.191652	0.034^{*}
H7B	-0.044124	0.123970	0.332437	0.034^{*}
H7C	0.117167	-0.049821	0.348452	0.034^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02097(3)$	$0.01735(3)$	$0.01597(3)$	$-0.00396(2)$	$0.00281(2)$	$-0.00554(2)$
Cu1	$0.02026(6)$	$0.01995(6)$	$0.01757(6)$	$-0.00817(5)$	$0.00300(4)$	$-0.00688(5)$
S1	$0.01667(10)$	$0.02251(11)$	$0.01925(11)$	$-0.00292(9)$	$0.00063(8)$	$-0.00856(9)$
O1	$0.0229(4)$	$0.0176(3)$	$0.0234(4)$	$-0.0036(3)$	$0.0001(3)$	$-0.0073(3)$
N1	$0.0191(4)$	$0.0168(4)$	$0.0141(3)$	$-0.0045(3)$	$0.0007(3)$	$-0.0044(3)$
N2	$0.0219(4)$	$0.0223(4)$	$0.0229(4)$	$-0.0073(3)$	$0.0004(3)$	$-0.0079(3)$
C1	$0.0164(4)$	$0.0175(4)$	$0.0165(4)$	$-0.0059(3)$	$-0.0013(3)$	$-0.0062(3)$
C2	$0.0237(5)$	$0.0204(4)$	$0.0161(4)$	$-0.0028(4)$	$-0.0038(3)$	$-0.0044(3)$
C3	$0.0292(5)$	$0.0181(4)$	$0.0165(4)$	$-0.0082(4)$	$0.0017(4)$	$-0.0033(3)$
C4	$0.0270(5)$	$0.0200(4)$	$0.0159(4)$	$-0.0075(4)$	$0.0037(4)$	$-0.0059(3)$

C5	$0.0192(4)$	$0.0169(4)$	$0.0176(4)$	$-0.0071(3)$	$0.0020(3)$	$-0.0071(3)$
C6	$0.0180(4)$	$0.0177(4)$	$0.0183(4)$	$-0.0029(3)$	$-0.0013(3)$	$-0.0069(3)$
C7	$0.0233(5)$	$0.0219(5)$	$0.0254(5)$	$-0.0108(4)$	$0.0042(4)$	$-0.0088(4)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

I1-Cul	2.6261 (6)	C2-H2B	0.9900
$\mathrm{I} 1-\mathrm{Cu1}{ }^{\text {i }}$	2.6321 (7)	$\mathrm{C} 2-\mathrm{C} 3$	1.5216 (16)
$\mathrm{Cu}-\mathrm{Cu1}{ }^{\text {i }}$	2.7274 (6)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
Cu1-S1	2.3205 (6)	C3-H3B	0.9900
$\mathrm{Cu}-\mathrm{N} 2$	2.0225 (10)	$\mathrm{C} 3-\mathrm{C} 4$	1.5260 (16)
S1-C1	1.6607 (11)	C4-H4A	0.9900
O1-C5	1.2117 (13)	C4-H4B	0.9900
N1-H1	0.857 (12)	C4-C5	1.4988 (15)
N1-C1	1.3493 (13)	C6-C7	1.4518 (15)
N1-C5	1.4055 (13)	C7-H7A	0.9800
N2-C6	1.1446 (14)	C7-H7B	0.9800
C1-C2	1.4987 (15)	C7-H7C	0.9800
C2-H2A	0.9900		
$\mathrm{Cu} 1-\mathrm{I}-\mathrm{Cul}^{\text {i }}$	62.489 (13)	C3-C2-H2B	109.2
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\text {i }}$	117.511 (13)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7
$\mathrm{I} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	58.647 (16)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.7
$\mathrm{I} 1-\mathrm{Cu}-\mathrm{Cu1}{ }^{\text {i }}$	58.864 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	109.71 (9)
S1-Cu1-I1	102.61 (2)	H3A-C3-H3B	108.2
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\text {i }}$	118.719 (16)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{Cu}^{\text {i }}$	132.375 (17)	C4-C3-H3B	109.7
N2-Cu1- $1^{1}{ }^{\text {i }}$	105.18 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
N2-Cu1-I1	111.38 (3)	C3-C4-H4B	109.3
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {i }}$	127.14 (3)	H4A-C4-H4B	108.0
N2-Cu1-S1	100.19 (3)	C5-C4-C3	111.49 (9)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	109.94 (4)	C5-C4-H4A	109.3
C1-N1-H1	118.1 (10)	C5-C4-H4B	109.3
C1-N1-C5	127.15 (9)	O1-C5-N1	118.17 (9)
C5-N1-H1	114.7 (10)	O1-C5-C4	125.23 (10)
C6-N2-Cu1	162.96 (9)	N1-C5-C4	116.60 (9)
N1-C1-S1	121.16 (8)	N2-C6-C7	178.87 (12)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	117.20 (9)	C6-C7-H7A	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	121.63 (8)	C6-C7-H7B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2	C6-C7- H 7 C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	H7A-C7-H7B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	112.14 (9)	H7A-C7- H 7 C	109.5
H2A-C2-H2B	107.9	H7B-C7-H7C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.2		
$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-20.58 (9)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-54.31 (12)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	160.32 (7)	C2-C3-C4-C5	54.18 (12)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-153.63 (8)	C3-C4-C5-O1	153.16 (10)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$27.24(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-27.45(13)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 1$	$178.41(10)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$-177.90(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-1.02(15)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.24(15)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{i}}$	$0.86(1)$	$2.85(1)$	$3.6980(12)$	$174(1)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Bis(acetonitrile- κN)tetra- μ_{3}-iodido-bis(6-sulfanylidenepiperidin-2-one- κ S)-tetrahedro-tetracopper(I) (II)

Crystal data

$\left[\mathrm{Cu}_{4} \mathrm{I}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)_{2}\right]$
$M_{r}=1102.22$
Monoclinic, $C 2 / c$
$a=14.4669$ (8) \AA
$b=12.2157$ (7) \AA
$c=16.9969$ (11) \AA
$\beta=112.562(5)^{\circ}$
$V=2773.9(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII area detector diffractometer
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 90
Equatorially mounted graphite monochromator
Detector resolution: 7.9 pixels mm^{-1}
$0.60^{\circ} \omega$ and $0.6^{\circ} \varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.063$
$S=1.10$
2753 reflections
140 parameters
1 restraint
Primary atom site location: dual
$F(000)=2032$
$D_{\mathrm{x}}=2.639 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9916 reflections
$\theta=4.9-73.4^{\circ}$
$\mu=39.97 \mathrm{~mm}^{-1}$
$T=105 \mathrm{~K}$
Block, yellow
$0.1 \times 0.08 \times 0.04 \mathrm{~mm}$
$T_{\text {min }}=0.042, T_{\text {max }}=0.188$
23553 measured reflections
2753 independent reflections
2669 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=73.4^{\circ}, \theta_{\text {min }}=4.9^{\circ}$
$h=-17 \rightarrow 17$
$k=-15 \rightarrow 15$
$l=-19 \rightarrow 20$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0336 P)^{2}+8.1228 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.84 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.25 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
I1	$0.60668(2)$	$0.86418(2)$	$0.17606(2)$	$0.01452(8)$
I2	$0.64470(2)$	$0.62302(2)$	$0.36802(2)$	$0.01064(8)$
Cu1	$0.56033(4)$	$0.66150(4)$	$0.20182(3)$	$0.01367(13)$
Cu2	$0.57587(4)$	$0.82337(4)$	$0.32174(3)$	$0.01552(13)$
S1	$0.60446(7)$	$0.54868(7)$	$0.11461(5)$	$0.01569(19)$
O1	$0.6145(2)$	$0.2772(2)$	$0.32682(16)$	$0.0174(6)$
N1	$0.6055(2)$	$0.3917(3)$	$0.22074(19)$	$0.0126(6)$
H1	$0.606(4)$	$0.445(3)$	$0.255(2)$	0.015^{*}
N2	$0.6525(3)$	$0.9386(3)$	$0.4015(2)$	$0.0169(7)$
C1	$0.6091(3)$	$0.4194(3)$	$0.1448(2)$	$0.0123(7)$
C2	$0.6188(3)$	$0.3267(3)$	$0.0903(2)$	$0.0159(8)$
H2A	0.690589	0.314522	0.102177	0.019^{*}
H2B	0.585384	0.347436	0.029590	0.019^{*}
C3	$0.5734(3)$	$0.2208(3)$	$0.1056(2)$	$0.0202(8)$
H3A	0.587416	0.160825	0.072514	0.024^{*}
H3B	0.499919	0.228893	0.086154	0.024^{*}
C4	$0.6177(3)$	$0.1928(3)$	$0.2001(3)$	$0.0191(8)$
H4A	0.581117	0.129536	0.210478	0.023^{*}
H4B	0.688502	0.170761	0.216276	0.023^{*}
C5	$0.6128(3)$	$0.2859(3)$	$0.2552(2)$	$0.0132(7)$
C6	$0.6848(3)$	$1.0148(3)$	$0.4409(2)$	$0.0148(7)$
C7	$0.7242(3)$	$1.1137(3)$	$0.4894(2)$	$0.0180(8)$
H7A	0.709649	1.176523	0.450663	0.027^{*}
H7B	0.796763	1.106656	0.519796	0.027^{*}
H7C	0.692732	1.124854	0.530632	0.027^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01753(14)$	$0.01161(13)$	$0.01566(13)$	$-0.00092(8)$	$0.00776(10)$	$0.00418(7)$
I2	$0.01430(13)$	$0.01007(13)$	$0.00576(12)$	$0.00111(7)$	$0.00185(9)$	$0.00183(7)$
Cu1	$0.0197(3)$	$0.0114(3)$	$0.0103(2)$	$0.0035(2)$	$0.0062(2)$	$0.00158(19)$
Cu2	$0.0167(3)$	$0.0119(3)$	$0.0134(2)$	$-0.0027(2)$	$0.0007(2)$	$-0.00354(19)$
S1	$0.0246(5)$	$0.0150(4)$	$0.0113(4)$	$0.0070(3)$	$0.0112(4)$	$0.0050(3)$
O1	$0.0214(14)$	$0.0183(13)$	$0.0118(11)$	$-0.0011(11)$	$0.0056(11)$	$0.0035(10)$
N1	$0.0198(17)$	$0.0107(14)$	$0.0071(13)$	$0.0003(12)$	$0.0049(12)$	$-0.0007(11)$
N2	$0.0173(16)$	$0.0157(16)$	$0.0139(14)$	$-0.0037(13)$	$0.0019(12)$	$-0.0027(13)$
C1	$0.0123(17)$	$0.0152(18)$	$0.0078(14)$	$0.0021(13)$	$0.0021(13)$	$0.0000(13)$
C2	$0.0216(19)$	$0.0150(18)$	$0.0118(15)$	$0.0062(15)$	$0.0071(15)$	$-0.0020(13)$
C3	$0.023(2)$	$0.019(2)$	$0.0190(18)$	$-0.0007(16)$	$0.0083(16)$	$-0.0087(15)$
C4	$0.027(2)$	$0.0127(18)$	$0.0225(18)$	$-0.0004(15)$	$0.0145(17)$	$-0.0027(15)$
C5	$0.0111(17)$	$0.0135(17)$	$0.0132(16)$	$-0.0019(13)$	$0.0029(14)$	$-0.0001(13)$
C6	$0.0169(18)$	$0.0143(18)$	$0.0091(14)$	$0.0025(14)$	$0.0003(14)$	$0.0011(14)$
C7	$0.029(2)$	$0.0071(17)$	$0.0103(16)$	$-0.0010(15)$	$-0.0003(15)$	$-0.0020(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{Cu} 1$	2.6451 (6)	N1-C5	1.405 (5)
$\mathrm{I} 1-\mathrm{Cu} 2^{\text {i }}$	2.7017 (7)	N2-C6	1.137 (5)
I1-Cu2	2.7250 (6)	$\mathrm{C} 1-\mathrm{C} 2$	1.504 (5)
I2-Cu1	2.6542 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{I} 2-\mathrm{Cu} 1^{\text {i }}$	2.7796 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
I2-Cu2	2.6456 (6)	C2-C3	1.518 (6)
$\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {i }}$	2.8150 (11)	C3-H3A	0.9900
$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.7864 (8)	С3-H3B	0.9900
$\mathrm{Cu}-\mathrm{Cu} 2^{\text {i }}$	2.7106 (8)	C3-C4	1.523 (5)
$\mathrm{Cu} 2-\mathrm{Cu} 2^{\text {i }}$	2.5803 (10)	C4-H4A	0.9900
$\mathrm{Cu} 1-\mathrm{S} 1$	2.2869 (10)	C4-H4B	0.9900
$\mathrm{Cu} 2-\mathrm{N} 2$	1.974 (3)	C4-C5	1.492 (5)
S1-C1	1.654 (4)	C6-C7	1.451 (5)
O1-C5	1.213 (5)	C7-H7A	0.9800
N1-H1	0.870 (19)	C7-H7B	0.9800
N1-C1	1.354 (5)	C7-H7C	0.9800
$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2^{\text {i }}$	60.911 (18)	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{I} 1^{\text {i }}$	98.80 (11)
$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2$	62.493 (17)	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{I} 1$	104.44 (10)
$\mathrm{Cu} 2-\mathrm{I} 1-\mathrm{Cu} 2$	56.78 (2)	N2-Cu2-I2	114.05 (10)
$\mathrm{Cu}-\mathrm{I} 2-\mathrm{Cu}{ }^{1}$	62.35 (2)	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cu} 1$	151.07 (11)
$\mathrm{Cu} 2-\mathrm{I} 2-\mathrm{Cu} 1$	63.439 (17)	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cu} 1^{\mathrm{i}}$	143.75 (11)
$\mathrm{Cu} 2-\mathrm{I} 2-\mathrm{Cu} 1^{\text {i }}$	59.892 (17)	$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cu} 2^{\mathrm{i}}$	134.36 (10)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	107.43 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	111.24 (13)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2^{\text {i }}$	112.60 (2)	C1-N1-H1	117 (3)
$\mathrm{I} 1-\mathrm{Cu}-\mathrm{Cu}^{\text {i }}$	110.454 (13)	C1-N1-C5	127.1 (3)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 2^{\text {i }}$	60.576 (18)	C5-N1-H1	115 (3)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	60.157 (18)	C6-N2-Cu2	169.7 (3)
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{I} 2^{\text {i }}$	113.84 (2)	N1-C1-S1	121.6 (3)
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	61.007 (19)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	116.4 (3)
$\mathrm{I} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	56.64 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	122.0 (3)
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{Cu} 2$	101.87 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{Cu} 2{ }^{\text {i }}$	107.32 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{Cu} 2$	58.129 (16)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	112.8 (3)
$\mathrm{Cu} 2^{\text {i }}-\mathrm{Cu} 1-\mathrm{I} 2^{\text {i }}$	57.602 (18)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.8
$\mathrm{Cu} 2-\mathrm{Cu}-\mathrm{Cu} 1^{\text {i }}$	60.53 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{Cu} 2-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	57.881 (18)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{Cu} 2-\mathrm{Cu} 1-\mathrm{Cu} 2$	55.97 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7
S1-Cu1-I1	107.77 (3)	C2-C3-H3B	109.7
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I} 2^{\mathrm{i}}$	97.98 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	109.7 (3)
S1-Cu1-I2	117.03 (3)	H3A-C3-H3B	108.2
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {i }}$	140.07 (3)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	159.65 (4)	C4-C3-H3B	109.7
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{Cu} 2^{\text {i }}$	135.38 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{I} 1{ }^{\text {i }}-\mathrm{Cu} 2-\mathrm{I} 1$	118.71 (2)	C3-C4-H4B	109.0
$\mathrm{I} 1{ }^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\mathrm{i}}$	58.512 (18)	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.8

$\mathrm{I} 1{ }^{\text {i }}-\mathrm{Cu} 2-\mathrm{Cu} 1$	109.64 (2)	C5-C4-C3	112.9 (3)
$\mathrm{I} 1-\mathrm{Cu} 2-\mathrm{Cu} 1$	57.350 (16)	C5-C4-H4A	109.0
$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{I} 1^{\mathrm{i}}$	115.15 (2)	C5-C4-H4B	109.0
$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{I} 1$	105.38 (2)	O1-C5-N1	117.9 (3)
$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{Cu} 1^{\mathrm{i}}$	62.509 (18)	O1-C5-C4	125.1 (3)
$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{Cu} 1$	58.432 (17)	N1-C5-C4	117.0 (3)
$\mathrm{Cu} 1{ }^{\text {i }} \mathrm{Cu} 2-\mathrm{I} 1$	111.24 (2)	N2-C6-C7	178.5 (4)
$\mathrm{Cu1}-\mathrm{Cu} 2-\mathrm{Cu} 1$	61.59 (3)	C6-C7-H7A	109.5
Cu 2 - $\mathrm{Cu} 2-\mathrm{I} 1$	61.16 (2)	C6- $77-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{Cu} 2^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{I} 1^{\mathrm{i}}$	62.06 (2)	C6- $\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{Cu} 2-\mathrm{Cu} 2-\mathrm{I} 2$	111.572 (12)	H7A-C7- 77 -	109.5
Cu 2 - $\mathrm{Cu} 2-\mathrm{Cu} 1$	60.528 (19)	H7A-C7- H 7 C	109.5
$\mathrm{Cu} 2-\mathrm{Cu} 2-\mathrm{Cu} 1^{\mathrm{i}}$	63.50 (2)	H7B-C7-H7C	109.5
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-11.4 (4)	C1-C2-C3-C4	-53.9 (4)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	169.3 (3)	C2-C3-C4-C5	51.0 (5)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-152.4 (3)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	156.9 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	28.3 (5)	C3-C4-C5-N1	-22.9 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{O} 1$	175.3 (4)	C5-N1-C1-S1	-177.2 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	-4.9 (6)	C5-N1-C1-C2	2.1 (6)

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I} 2$	$0.87(2)$	$2.81(2)$	$3.672(3)$	$170(4)$

catena-Poly[[(μ-6-sulfanylidenepiperidin-2-one- $\left.\left.\kappa^{2} O: S\right) \operatorname{copper}(\mathrm{I})\right]-\mu_{3}$-iodido] (III)

Crystal data

$\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NOS}\right)\right.$]
$M_{r}=319.62$
Orthorhombic, Pbcn
$a=26.982$ (11) \AA
$b=8.195$ (4) \AA
$c=7.351$ (3) \AA
$V=1625.4(13) \AA^{3}$
$Z=8$
$F(000)=1200$

Data collection

Bruker SMART APEXII area detector diffractometer
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 90
Equatorially mounted graphite monochromator
Detector resolution: 7.9 pixels mm^{-1}
$0.60^{\circ} \omega$ and $0.6^{\circ} \varphi$ scans
Absorption correction: multi-scan
SADABS; Bruker, 2016)
$D_{\mathrm{x}}=2.612 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 6676 reflections
$\theta=3.3-73.1^{\circ}$
$\mu=35.47 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, orange
$0.08 \times 0.07 \times 0.03 \mathrm{~mm}$
$T_{\text {min }}=0.030, T_{\text {max }}=0.144$
25274 measured reflections
1631 independent reflections
1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=73.6^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-32 \rightarrow 33$
$k=-10 \rightarrow 9$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.082$
$S=1.07$
1631 reflections
94 parameters
1 restraint

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.055 P)^{2}+1.1889 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.31 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.03$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
I1	$0.23415(2)$	$0.59898(3)$	$0.50901(3)$	$0.02390(13)$
Cu1	$0.28100(2)$	$0.62683(8)$	$0.82066(9)$	$0.02635(18)$
S1	$0.36555(4)$	$0.63113(12)$	$0.83026(14)$	$0.0266(2)$
O1	$0.50567(13)$	$0.2890(4)$	$0.9865(4)$	$0.0346(8)$
N1	$0.43783(13)$	$0.4297(5)$	$0.9030(5)$	$0.0274(8)$
H1	$0.4550(18)$	$0.516(4)$	$0.923(7)$	0.033^{*}
C1	$0.38916(15)$	$0.4443(5)$	$0.8540(6)$	$0.0253(8)$
C2	$0.35970(15)$	$0.2932(5)$	$0.8285(6)$	$0.0269(8)$
H2A	0.334849	0.311483	0.731519	0.032^{*}
H2B	0.341637	0.268491	0.942412	0.032^{*}
C3	$0.39185(16)$	$0.1470(5)$	$0.7775(7)$	$0.0303(9)$
H3A	0.405740	0.162739	0.654072	0.036^{*}
H3B	0.371432	0.046611	0.776524	0.036^{*}
C4	$0.43403(17)$	$0.1289(6)$	$0.9153(7)$	$0.0333(10)$
H4A	0.420142	0.095872	1.034455	0.040^{*}
H4B	0.456863	0.041794	0.874268	0.040^{*}
C5	$0.46238(17)$	$0.2851(6)$	$0.9374(6)$	$0.0299(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02516(19)$	$0.0217(2)$	$0.02479(19)$	$0.00135(8)$	$0.00003(9)$	$-0.00010(9)$
Cu1	$0.0258(3)$	$0.0243(3)$	$0.0290(4)$	$0.0002(2)$	$-0.0002(2)$	$0.0001(3)$
S1	$0.0245(5)$	$0.0238(5)$	$0.0315(5)$	$0.0009(4)$	$-0.0001(4)$	$-0.0002(4)$
O1	$0.0273(16)$	$0.0285(16)$	$0.048(2)$	$0.0009(14)$	$-0.0039(13)$	$-0.0007(14)$
N1	$0.0253(18)$	$0.0211(17)$	$0.036(2)$	$-0.0028(13)$	$0.0010(15)$	$-0.0012(15)$
C1	$0.0257(19)$	$0.025(2)$	$0.0252(19)$	$0.0017(16)$	$0.0007(16)$	$-0.0006(17)$
C2	$0.0245(19)$	$0.025(2)$	$0.031(2)$	$-0.0007(16)$	$0.0000(17)$	$-0.0015(17)$
C3	$0.029(2)$	$0.023(2)$	$0.039(2)$	$-0.0018(16)$	$0.0003(18)$	$-0.0042(19)$
C4	$0.029(2)$	$0.025(2)$	$0.046(3)$	$-0.0004(18)$	$-0.001(2)$	$0.001(2)$

C 5	$0.028(2)$	$0.028(2)$	$0.034(2)$	$0.0032(17)$	$0.0023(17)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{Cu} 1$	2.6264 (11)	C2-H2A	0.9900
$\mathrm{Il}-\mathrm{Cul}^{\text {i }}$	2.6709 (12)	C2-H2B	0.9900
$\mathrm{I} 1-\mathrm{Cul}^{1 i}$	2.6342 (10)	C2-C3	1.526 (6)
$\mathrm{Cu} 1-\mathrm{S} 1$	2.2827 (15)	C3-H3A	0.9900
S1-C1	1.668 (4)	C3-H3B	0.9900
O1-C5	1.223 (6)	C3-C4	1.531 (6)
N1-H1	0.86 (2)	C4-H4A	0.9900
N1-C1	1.367 (6)	C4-H4B	0.9900
N1-C5	1.381 (6)	C4- 55	1.500 (6)
C1-C2	1.483 (6)		
$\mathrm{Cu}-\mathrm{Il}-\mathrm{Cu} 1^{\text {ii }}$	106.77 (3)	H2A-C2-H2B	107.8
$\mathrm{Cu}-\mathrm{Il-Cu1}{ }^{\text {i }}$	116.92 (2)	C3-C2-H2A	109.1
$\mathrm{Cu1}{ }^{\text {ii}}-\mathrm{Il}-\mathrm{Cul}^{\text {i }}$	113.08 (4)	C3-C2-H2B	109.1
$\mathrm{I} 1{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{I} 1^{\text {iv }}$	104.19 (4)	C2-C3-H3A	109.7
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{H} 1^{\text {iv }}$	116.85 (3)	C2-C3-H3B	109.7
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{H} 1^{\text {iii }}$	99.58 (3)	C2-C3-C4	109.6 (4)
S1-Cu1-I1 ${ }^{\text {iv }}$	97.12 (4)	H3A-C3-H3B	108.2
S1-Cu1-I1	120.62 (4)	C4-C3-H3A	109.7
S1-Cu1-I1 ${ }^{\text {iii }}$	118.31 (4)	C4-C3-H3B	109.7
C1-S1-Cu1	111.76 (15)	C3-C4-H4A	109.3
C1-N1-H1	120 (4)	C3-C4-H4B	109.3
C1-N1-C5	125.7 (4)	H4A-C4-H4B	108.0
C5-N1-H1	115 (4)	C5-C4-C3	111.6 (4)
N1-C1-S1	118.4 (3)	C5-C4-H4A	109.3
N1-C1-C2	118.3 (4)	C5-C4-H4B	109.3
C2-C1-S1	123.3 (3)	O1-C5-N1	119.3 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.1	O1-C5-C4	122.8 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.1	N1-C5-C4	117.9 (4)
C1-C2-C3	112.5 (3)		
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-165.4 (3)	C1-C2-C3-C4	52.5 (5)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	13.3 (4)	C2-C3-C4-C5	-52.7 (5)
S1-C1-C2-C3	155.5 (3)	C3-C4-C5-O1	-154.2 (5)
N1-C1-C2-C3	-25.9 (5)	C3-C4-C5-N1	26.9 (6)
C1-N1-C5-O1	-177.4 (4)	C5-N1-C1-S1	176.5 (4)
C1-N1-C5-C4	1.5 (7)	C5-N1-C1-C2	-2.2 (7)

Symmetry codes: (i) $-x+1 / 2,-y+3 / 2, z-1 / 2$; (ii) $x,-y+1, z-1 / 2$; (iii) $x,-y+1, z+1 / 2$; (iv) $-x+1 / 2,-y+3 / 2, z+1 / 2$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$

$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{v}}$	$0.86(2)$	$2.03(2)$	$2.881(5)$	$171(5)$

Symmetry code: (v) $-x+1,-y+1,-z+2$.

Poly[[(piperidine-2,6-dithione- κS) copper(I)]- μ_{3}-iodido] (IV)

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NS}_{2}\right)_{2}\right]$
$M_{r}=671.35$
Monoclinic, $P 2{ }_{1} / c$
$a=13.2866$ (9) \AA
$b=11.6974$ (13) \AA
$c=14.8089(9) \AA$
$\beta=96.998$ (6) ${ }^{\circ}$
$V=2284.4$ (3) \AA^{3}
$Z=4$
$F(000)=1264$
$D_{\mathrm{x}}=1.952 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 9761 reflections
$\theta=3.4-73.6^{\circ}$
$\mu=26.87 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, red
$0.22 \times 0.13 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEXII area detector
diffractometer
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 90
Equatorially mounted graphite monochromator
Detector resolution: 7.9 pixels mm^{-1}
$0.60^{\circ} \omega$ and $0.6^{\circ} \varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\text {min }}=0.009, T_{\text {max }}=0.094$
78133 measured reflections
4597 independent reflections
4236 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.063$
$\theta_{\text {max }}=73.6^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-16 \rightarrow 16$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.126$
$S=1.06$
4597 reflections
181 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0963 P)^{2}+0.866 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.58$ e \AA^{-3}
Primary atom site location: dual

Special details

$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I2	$0.55860(2)$	$0.62760(3)$	$0.40198(2)$	$0.04041(13)$
I1	$-0.04785(2)$	$0.16932(3)$	$0.55075(2)$	$0.04179(13)$
Cu1	$0.09352(5)$	$0.01033(6)$	$0.55762(5)$	$0.03868(18)$
Cu2	$0.50067(5)$	$0.41451(7)$	$0.43516(5)$	$0.04040(19)$
S4	$0.88076(9)$	$0.04448(10)$	$0.29165(8)$	$0.0381(3)$
S2	$0.38476(10)$	$0.38690(11)$	$0.31034(9)$	$0.0419(3)$

S3	$0.64474(10)$	$0.30477(12)$	$0.45389(8)$	$0.0444(3)$
S1	$0.24194(9)$	$0.09681(11)$	$0.52729(8)$	$0.0410(3)$
N1	$0.2946(3)$	$0.2359(4)$	$0.4050(3)$	$0.0400(9)$
H1	0.341595	0.255812	0.449306	0.048^{*}
N2	$0.7560(3)$	$0.1895(4)$	$0.3534(3)$	$0.0393(9)$
H2	0.784079	0.164625	0.406656	0.047^{*}
C6	$0.6808(4)$	$0.2704(4)$	$0.3544(3)$	$0.0392(10)$
C1	$0.2258(4)$	$0.1562(5)$	$0.4253(3)$	$0.0399(10)$
C10	$0.7913(4)$	$0.1441(4)$	$0.2793(4)$	$0.0373(10)$
C5	$0.2980(4)$	$0.2881(4)$	$0.3228(4)$	$0.0400(10)$
C2	$0.1396(4)$	$0.1307(5)$	$0.3541(4)$	$0.0451(12)$
H2A	0.077033	0.121868	0.383553	0.054^{*}
H2B	0.152702	0.056988	0.324839	0.054^{*}
C9	$0.7453(4)$	$0.1855(5)$	$0.1882(3)$	$0.0414(11)$
H9A	0.687396	0.135704	0.165575	0.050^{*}
H9B	0.796127	0.180538	0.144760	0.050^{*}
C7	$0.6364(5)$	$0.3190(5)$	$0.2646(4)$	$0.0473(12)$
H7A	0.620041	0.400624	0.272580	0.057^{*}
H7B	0.572524	0.278409	0.243395	0.057^{*}
C4	$0.2216(4)$	$0.2518(5)$	$0.2464(4)$	$0.0449(11)$
H4A	0.247023	0.184112	0.216075	0.054^{*}
H4B	0.211015	0.314198	0.200990	0.054^{*}
C8	$0.7087(5)$	$0.3083(5)$	$0.1928(4)$	$0.0480(12)$
H8A	0.673595	0.331533	0.132807	0.058^{*}
H8B	0.767460	0.359753	0.208203	0.058^{*}
C3	$0.1218(4)$	$0.2229(5)$	$0.2805(4)$	$0.0474(12)$
H3A	0.072927	0.194853	0.229493	0.057^{*}
H3B	0.092969	0.292195	0.305907	0.057^{*}
H35				

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I2	$0.0431(2)$	$0.0411(2)$	$0.0377(2)$	$-0.00315(12)$	$0.00764(14)$	$0.00019(12)$
I 1	$0.0442(2)$	$0.0404(2)$	$0.0395(2)$	$0.00544(12)$	$0.00003(14)$	$-0.00445(12)$
Cu 1	$0.0398(4)$	$0.0393(4)$	$0.0368(4)$	$0.0010(3)$	$0.0043(3)$	$0.0020(3)$
Cu2	$0.0397(4)$	$0.0416(4)$	$0.0404(4)$	$0.0001(3)$	$0.0066(3)$	$-0.0006(3)$
S4	$0.0389(6)$	$0.0400(6)$	$0.0356(5)$	$0.0026(4)$	$0.0055(4)$	$0.0004(5)$
S2	$0.0425(6)$	$0.0427(6)$	$0.0406(6)$	$-0.0043(5)$	$0.0054(5)$	$0.0042(5)$
S3	$0.0462(7)$	$0.0530(7)$	$0.0346(6)$	$0.0106(5)$	$0.0069(5)$	$0.0011(5)$
S1	$0.0416(6)$	$0.0460(7)$	$0.0352(6)$	$-0.0036(5)$	$0.0034(5)$	$0.0044(5)$
N1	$0.039(2)$	$0.044(2)$	$0.0367(19)$	$-0.0026(17)$	$0.0041(16)$	$0.0006(18)$
N2	$0.039(2)$	$0.044(2)$	$0.0346(19)$	$0.0019(17)$	$0.0018(16)$	$0.0039(17)$
C6	$0.041(2)$	$0.038(2)$	$0.038(2)$	$0.0000(19)$	$0.0046(19)$	$0.003(2)$
C1	$0.041(3)$	$0.044(3)$	$0.035(2)$	$0.000(2)$	$0.004(2)$	$0.001(2)$
C10	$0.036(2)$	$0.037(2)$	$0.039(2)$	$-0.0020(18)$	$0.0048(19)$	$0.001(2)$
C5	$0.038(2)$	$0.042(3)$	$0.040(2)$	$0.001(2)$	$0.0050(19)$	$-0.001(2)$
C2	$0.047(3)$	$0.051(3)$	$0.037(3)$	$-0.008(2)$	$0.003(2)$	$0.003(2)$
C9	$0.046(3)$	$0.044(3)$	$0.034(2)$	$0.005(2)$	$0.006(2)$	$-0.001(2)$

C7	$0.055(3)$	$0.049(3)$	$0.037(3)$	$0.013(2)$	$0.004(2)$	$0.002(2)$
C4	$0.049(3)$	$0.045(3)$	$0.040(3)$	$-0.005(2)$	$0.004(2)$	$0.006(2)$
C8	$0.062(3)$	$0.047(3)$	$0.035(2)$	$0.012(3)$	$0.010(2)$	$0.006(2)$
C3	$0.042(3)$	$0.057(3)$	$0.042(3)$	$-0.004(2)$	$0.001(2)$	$0.002(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

I1-Cu1	2.6365 (8)	C1-C2	1.490 (7)
$\mathrm{I} 1-\mathrm{Cu} 1^{\text {i }}$	2.6687 (8)	C10-C9	1.491 (7)
I2- Cu 2	2.6719 (8)	C5-C4	1.487 (7)
$\mathrm{I} 2-\mathrm{Cu} 2^{\text {ii }}$	2.6724 (8)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{Cu} 1-\mathrm{S} 4{ }^{\text {iii }}$	2.3075 (13)	C2-H2B	0.9900
$\mathrm{Cu}-\mathrm{S} 1$	2.3086 (14)	$\mathrm{C} 2-\mathrm{C} 3$	1.531 (8)
$\mathrm{Cu} 2-\mathrm{S} 2$	2.2802 (15)	C9-H9A	0.9900
$\mathrm{Cu} 2-\mathrm{S} 3$	2.2933 (15)	C9-H9B	0.9900
S4-C10	1.659 (5)	C9-C8	1.521 (7)
S2-C5	1.659 (5)	C7-H7A	0.9900
S3-C6	1.654 (5)	C7-H7B	0.9900
S1-C1	1.652 (5)	C7-C8	1.522 (8)
N1-H1	0.8800	C4-H4A	0.9900
N1-C1	1.365 (7)	C4-H4B	0.9900
N1-C5	1.367 (7)	C4-C3	1.514 (8)
N2-H2	0.8800	C8-H8A	0.9900
N2-C6	1.378 (7)	С8-H8B	0.9900
N2-C10	1.354 (7)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
C6-C7	1.498 (7)	C3-H3B	0.9900
$\mathrm{Cu} 2-\mathrm{I} 2-\mathrm{Cu} 2^{\text {ii }}$	62.54 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{Cu}-\mathrm{I} 1-\mathrm{Cu} 1^{\text {i }}$	64.94 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{i}}$	115.06 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	113.7 (5)
$\mathrm{S} 4 \mathrm{iii}-\mathrm{Cu} 1-\mathrm{I} 1$	104.72 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7
$\mathrm{S} 4^{\text {iii }}-\mathrm{Cu} 1-\mathrm{I} 1^{\text {i }}$	111.04 (4)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
S4 ${ }^{\text {iii- }} \mathrm{Cu} 1-\mathrm{S} 1$	106.30 (5)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I1}{ }^{\text {i }}$	111.41 (4)	C10-C9-H9A	109.4
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I} 1$	107.75 (4)	C10-C9-H9B	109.4
$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{I} 2^{\text {ii }}$	117.46 (3)	C10-C9-C8	111.3 (4)
$\mathrm{S} 2-\mathrm{Cu} 2-\mathrm{I} 2{ }^{\text {ii }}$	117.47 (4)	H9A-C9-H9B	108.0
$\mathrm{S} 2-\mathrm{Cu} 2-\mathrm{I} 2$	99.46 (4)	C8-C9-H9A	109.4
$\mathrm{S} 2-\mathrm{Cu} 2-\mathrm{S} 3$	119.35 (6)	C8-C9-H9B	109.4
$\mathrm{S} 3-\mathrm{Cu} 2-\mathrm{I} 2{ }^{\text {ii }}$	96.95 (4)	C6-C7-H7A	109.2
$\mathrm{S} 3-\mathrm{Cu} 2-\mathrm{I} 2$	106.83 (5)	C6-C7- H 7 B	109.2
$\mathrm{C} 10-\mathrm{S} 4-\mathrm{Cu} 1^{\text {iii }}$	108.78 (18)	C6-C7-C8	112.1 (5)
C5-S2-Cu2	114.75 (19)	H7A-C7-H7B	107.9
C6-S3-Cu2	110.88 (19)	C8-C7-H7A	109.2
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	110.1 (2)	C8-C7-H7B	109.2
C1-N1-H1	116.7	C5-C4-H4A	109.5
C1-N1-C5	126.6 (5)	C5-C4-H4B	109.5
C5-N1-H1	116.7	C5-C4-C3	110.7 (5)

$\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2$	116.5
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2$	116.5
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 6$	$127.0(4)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{S} 3$	$117.7(4)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$117.3(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{S} 3$	$125.0(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$118.2(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.3(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$124.5(4)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 4$	$120.0(4)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$117.5(4)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{S} 4$	$122.5(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 2$	$120.6(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$117.2(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 2$	$122.2(4)$
$\mathrm{Cu} 1 \mathrm{iii}-\mathrm{S} 4-\mathrm{C} 10-\mathrm{N} 2$	
$\mathrm{Cu} 1 \mathrm{iii}-\mathrm{S} 4-\mathrm{C} 10-\mathrm{C} 9$	$8.2(5)$
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$-170.5(4)$
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$162.9(4)$
$\mathrm{Cu} 2-\mathrm{S} 2-\mathrm{C} 5-\mathrm{N} 1$	$-15.7(5)$
$\mathrm{Cu} 2-\mathrm{S} 2-\mathrm{C} 5-\mathrm{C} 4$	$4.8(5)$
$\mathrm{Cu} 2-\mathrm{S} 3-\mathrm{C} 6-\mathrm{N} 2$	$-174.9(4)$
$\mathrm{Cu} 2-\mathrm{S} 3-\mathrm{C} 6-\mathrm{C} 7$	$-169.5(3)$
$\mathrm{S} 4-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$9.3(5)$
$\mathrm{S} 2-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-151.7(4)$
$\mathrm{S} 3-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-145.6(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$157.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$160.4(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-18.2(7)$

$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$109.9(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.7
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.7
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.7
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.7
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$109.2(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.3
$\mathrm{~N} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-23.4(7)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$29.6(7)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 10-\mathrm{S} 4$	$-178.4(4)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	$0.4(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$51.7(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 2$	$177.9(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-2.4(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$48.8(7)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 6-\mathrm{S} 3$	$175.3(4)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$-3.7(8)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$-54.8(6)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$175.1(4)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-6.3(8)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-56.3(6)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I}^{\mathrm{ii}}$	0.88	2.79	$3.628(4)$	161
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{I}^{\text {iv }}$	0.88	2.90	$3.679(4)$	149

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iv) $x+1, y, z$.
Poly[[(μ-isoindoline-1,3-dithione- $\left.\left.\kappa^{2} S: S\right) \operatorname{copper}(\mathrm{I})\right]-\mu_{3}$-iodido] (V)

Crystal data

$\left[\mathrm{CuI}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$
$M_{r}=369.69$
Monoclinic, Cc
$a=15.174$ (5) \AA
$b=4.1188(16) \AA$
$c=15.785$ (6) \AA
$\beta=92.98(2)^{\circ}$

$$
\begin{aligned}
& V=985.2(6) \AA^{3} \\
& Z=4 \\
& F(000)=696 \\
& D_{\mathrm{x}}=2.492 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4507 \text { reflections } \\
& \theta=2.6-31.9^{\circ}
\end{aligned}
$$

$\mu=5.72 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$

Data collection

Bruker APEXII Quazar diffractometer
Radiation source: microfocus sealed X-ray tube, Incoatec $\mathrm{I} \mu \mathrm{s}$
Mirror optics monochromator
Detector resolution: 7.9 pixels mm^{-1}
$0.5^{\circ} \omega$ and $0.5^{\circ} \varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.089$
$S=1.06$
3603 reflections
118 parameters
2 restraints
Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites

Block, black
$0.30 \times 0.02 \times 0.01 \mathrm{~mm}$
$T_{\text {min }}=0.322, T_{\text {max }}=0.404$
11871 measured reflections
3603 independent reflections
3226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=33.2^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-22 \rightarrow 22$
$k=-6 \rightarrow 6$
$l=-23 \rightarrow 23$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0417 P)^{2}+7.0163 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=3.17$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.13$ e \AA^{-3}
Absolute structure: Flack x determined using 1438 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: 0.034 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
I1	$0.68957(2)$	$0.10931(10)$	$0.74974(2)$	$0.01374(11)$
Cu1	$0.59491(6)$	$0.5992(2)$	$0.69164(6)$	$0.0146(2)$
S1	$0.60747(14)$	$0.6607(5)$	$0.54996(12)$	$0.0139(3)$
S2	$0.46550(14)$	$0.2757(5)$	$0.25028(12)$	$0.0146(3)$
N1	$0.5450(5)$	$0.4774(16)$	$0.3969(4)$	$0.0133(12)$
H1	0.587624	0.579000	0.371951	0.016^{*}
C1	$0.5382(5)$	$0.4700(18)$	$0.4850(5)$	$0.0122(13)$
C2	$0.4596(5)$	$0.2691(18)$	$0.4975(5)$	$0.0124(14)$
C3	$0.4197(5)$	$0.1812(19)$	$0.5712(5)$	$0.0147(14)$
H3	0.442699	0.252848	0.625113	0.018^{*}
C4	$0.3448(5)$	$-0.015(2)$	$0.5639(5)$	$0.0148(14)$
H4	0.316667	-0.082004	0.613403	0.018^{*}
C5	$0.3106(5)$	$-0.115(2)$	$0.4828(5)$	$0.0165(15)$
H5	0.259718	-0.249734	0.478913	0.020^{*}
C6	$0.3493(5)$	$-0.0227(18)$	$0.4093(5)$	$0.0128(13)$
H6	0.325668	-0.090075	0.355269	0.015^{*}

C 7	$0.4244(5)$	$0.1733(18)$	$0.4172(5)$	$0.0125(13)$
C 8	$0.4795(5)$	$0.3123(19)$	$0.3538(5)$	$0.0118(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.0131(2)$	$0.01109(17)$	$0.0169(2)$	$-0.0009(2)$	$-0.00081(15)$	$-0.0008(2)$
Cu1	$0.0155(5)$	$0.0162(5)$	$0.0122(5)$	$-0.0008(4)$	$0.0004(4)$	$-0.0010(4)$
S1	$0.0141(9)$	$0.0150(8)$	$0.0124(8)$	$0.0001(6)$	$0.0003(7)$	$-0.0011(6)$
S2	$0.0132(8)$	$0.0185(9)$	$0.0120(8)$	$-0.0011(7)$	$-0.0002(7)$	$-0.0017(7)$
N1	$0.014(3)$	$0.014(3)$	$0.012(3)$	$0.001(2)$	$0.001(2)$	$0.001(2)$
C1	$0.012(3)$	$0.012(3)$	$0.013(3)$	$0.003(2)$	$0.000(3)$	$0.002(3)$
C2	$0.012(4)$	$0.009(3)$	$0.017(3)$	$0.006(3)$	$0.002(3)$	$0.000(2)$
C3	$0.014(3)$	$0.013(3)$	$0.017(3)$	$0.002(3)$	$0.002(3)$	$0.001(3)$
C4	$0.010(3)$	$0.018(3)$	$0.017(4)$	$0.001(3)$	$0.003(3)$	$0.002(3)$
C5	$0.012(3)$	$0.018(4)$	$0.019(4)$	$-0.002(3)$	$-0.003(3)$	$0.001(3)$
C6	$0.011(3)$	$0.011(3)$	$0.017(3)$	$0.000(2)$	$-0.001(3)$	$0.001(3)$
C7	$0.015(3)$	$0.009(3)$	$0.014(3)$	$0.002(2)$	$0.002(3)$	$0.001(2)$
C8	$0.011(3)$	$0.013(3)$	$0.012(3)$	$0.003(2)$	$0.002(3)$	$0.000(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{I} 1-\mathrm{Cu} 1$	2.6152 (13)	C2-C7	1.405 (11)
$\mathrm{I} 1-\mathrm{Cu} 1^{\text {i }}$	2.6798 (13)	C3-H3	0.9500
$\mathrm{Cu} 1-\mathrm{S} 1$	2.269 (2)	C3-C4	1.394 (12)
$\mathrm{Cu} 1-\mathrm{S} 2{ }^{\text {ii }}$	2.273 (2)	C4-H4	0.9500
S1-C1	1.632 (8)	C4-C5	1.417 (12)
S2-C8	1.645 (7)	C5-H5	0.9500
N1-H1	0.8800	C5-C6	1.380 (11)
N1-C1	1.400 (10)	C6-H6	0.9500
N1-C8	1.357 (10)	C6-C7	1.396 (11)
C1-C2	1.473 (11)	C7-C8	1.455 (11)
C2-C3	1.388 (11)		
Cu1-I1-Cu1 ${ }^{\text {i }}$	102.12 (4)	C2-C3-H3	120.9
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\text {iii }}$	102.12 (4)	C2-C3-C4	118.1 (8)
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\text {iii }}$	100.30 (6)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.9
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{I} 1$	111.05 (6)	C3-C4-H4	120.0
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{S} 2{ }^{\text {ii }}$	119.65 (8)	C3-C4-C5	120.1 (8)
S2 ${ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{I} 1{ }^{\text {iii }}$	98.16 (7)	C5-C4-H4	120.0
S2i- ${ }^{\text {ii }}$ - $1-\mathrm{I} 1$	120.16 (7)	C4-C5-H5	119.1
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Cu} 1$	118.8 (3)	C6-C5-C4	121.8 (8)
C8-S2-Cu1 ${ }^{\text {iv }}$	108.3 (3)	C6-C5-H5	119.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	123.3	C5-C6-H6	121.1
C8-N1-H1	123.3	C5-C6-C7	117.7 (7)
C8-N1-C1	113.3 (7)	C7-C6-H6	121.1
N1-C1-S1	122.3 (6)	C2-C7-C8	107.7 (7)
N1-C1-C2	104.3 (7)	C6-C7-C2	120.9 (7)

C2-C1-S1	133.3 (6)	C6-C7-C8	131.4 (7)
C3-C2-C1	130.6 (7)	N1-C8-S2	126.7 (6)
C3-C2-C7	121.4 (7)	N1-C8-C7	106.6 (6)
C7-C2-C1	108.0 (7)	C7-C8-S2	126.7 (6)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-175.6 (5)	C2-C7-C8-S2	-179.1 (6)
$\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	5.3 (9)	C2-C7-C8-N1	1.0 (8)
$\mathrm{Cu} 1^{\text {iv- }} \mathrm{S} 2-\mathrm{C} 8-\mathrm{N} 1$	18.3 (8)	C3-C2-C7-C6	-2.0 (11)
$\mathrm{Cu} 1^{\text {iv }}-\mathrm{S} 2-\mathrm{C} 8-\mathrm{C} 7$	-161.5 (6)	C3-C2-C7-C8	178.2 (7)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.4 (13)	C3-C4-C5-C6	-0.2 (12)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	178.6 (6)	C4-C5-C6-C7	0.4 (12)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.9 (8)	C5-C6-C7-C2	0.7 (11)
N1-C1-C2-C7	-0.6 (8)	C5-C6-C7-C8	-179.6 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 2$	178.7 (6)	C6-C7-C8-S2	1.1 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	-1.5 (9)	C6-C7-C8-N1	-178.7 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.8 (8)	C7-C2-C3-C4	2.1 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	179.5 (7)	C8-N1-C1-S1	-178.0 (6)
C1-C2-C7-C8	-0.2 (8)	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	1.3 (8)
C2-C3-C4-C5	-1.0 (12)		

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-y+1, z+1 / 2$; (iii) $x, y+1, z$; (iv) $x,-y+1, z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{I} 1^{\text {iv }}$	0.88	2.84	$3.692(7)$	163

Symmetry code: (iv) $x,-y+1, z-1 / 2$.

