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Abstract. We study the detailed process by which slow contraction smooths and flattens
the universe using an improved numerical relativity code that accepts initial conditions with
non-perturbative deviations from homogeneity and isotropy along two independent spatial
directions. Contrary to common descriptions of the early universe, we find that the geom-
etry first rapidly converges to an inhomogeneous, spatially-curved and anisotropic ultralocal

state in which all spatial gradient contributions to the equations of motion decrease as an
exponential in time to negligible values. This is followed by a second stage in which the
geometry converges to a homogeneous, spatially flat and isotropic spacetime. In particular,
the decay appears to follow the same history whether the entire spacetime or only parts of
it are smoothed by the end of slow contraction.
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1 Introduction

Explaining the observed uniformity of the universe on large scales is one of the longest-
standing challenges in physical cosmology. Although observations show that the evolution of
the universe since the onset of radiation domination is well-described by the laws of general
relativity, this is only possible for a particular set of initial conditions. For almost all other
initial conditions, the universe would have evolved towards an inhomogeneous, anisotropic
and spatially curved geometry. In this sense, the large-scale properties of our universe appear
to be special.

In general, initial conditions are independent of the dynamical evolution equations. It
is therefore remarkable that the cosmic initial conditions problem and the possible solutions
to it can be directly related to a basic feature of the Einstein field equations: namely, the
characteristic physical length scale is in general different from and evolves differently with
time than the characteristic length scale of interactions [1]. In particular, in a Friedmann-
Robertson-Walker (FRW) space-time (like our large-scale universe), which is given by the
line element,

ds2 = −dτ2 + a2(τ)δijdxidxj , (1.1)

physical distances evolve as the scale factor a(τ). The characteristic length scale of interac-
tions, on the other hand, is given by the Hubble radius |H−1|, where H ≡ d ln a/dτ . Today
the volume that encompasses the regions of spacetime which have been in causal contact has
a radius roughly equal to 1/H0, where H0 is the current Hubble parameter. (Throughout,
quantities are given in reduced Planck units and the scale factor is normalized such that
a(τi) = 1 at some initial time τi.)
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From the Einstein equations for an FRW space-time, one obtains the relation

|H−1| ∝ aε , (1.2)

from which it is immediately obvious that the Hubble radius evolves at a different rate than
the scale factor and the relative growth rate is determined by the equation of state

ε ≡ 3

2

(

1 +
p

̺

)

, (1.3)

where p is the pressure and ̺ is the energy density of the dominant stress-energy component.
For example, in a radiation (ε = 2) or matter (ε = 3/2) dominated universe, the Hubble
radius grows faster than the scale factor. As a result, the volume comprising the observable
universe today extrapolated back to the onset of radiation domination contained approx-
imately e180 ∼ 1080 causally independent Hubble-sized patches at the onset of radiation
domination. Consequently, the uniformity observed today would require some mechanism to
smooth and synchronize those 1080 patches by the onset of radiation domination.

Classical smoothing mechanisms, inflation [2–4] and slow contraction [5], rely on a
simple yet elegant idea to achieve this smoothing and synchronization: by causing a single
initial homogeneous and isotropic Hubble volume |H−3

beg| to evolve to encompass exponentially

many (at least 1080) Hubble volumes |H−3
end| by the time the smoothing phase ends and

the radiation dominated phase begins. After the 60 e-foldings of subsequent radiation and
matter dominated decelerated expansion, it is a subvolume of the initial Hubble-sized patch
that makes up the observable universe. For example, slow contraction (ε > 3) is a classical
smoother because the scale factor shrinks much more slowly than the Hubble radius as given
in eq. (1.2). (Note: the same is true for more rapid contraction with 3 ≥ ǫ > 1, but, in
those cases, anisotropy can grow to overtake the energy density and prevent smoothing, as
discussed in ref. [6].) For typical values of the equation of state (ε ∼ 50), the initial Hubble
radius (|Hbeg|−1) shrinks by a factor of 250 while the scale factor (and, hence, the radius of
the initial Hubble volume) decreases by only a factor of 2 [7].

Note that, contrary to (Newtonian) intuition, in a universe where gravity follows the
laws of General Relativity, both expansion and contraction can smooth or unsmooth the
cosmological background depending on the equation of state ε. For example, decelerated ex-
pansion (ε > 1) can amplify small deviations from homogeneity and fast contraction (ε < 3)
can amplify small deviations from isotropy. Accelerated expansion (ε < 1) and slow con-
traction (ε > 3), on the other hand, both suppress small deviations from both homogeneity
and isotropy.

The virtue of classical smoothing mechanisms is that they show how the observed fea-
tures of the large-scale universe might be traced back to the features of a single (rather
than 1026) initial Hubble-sized patch. Yet classical smoothing is not sufficient to solve the
cosmic initial conditions problem for two reasons: first, classical smoothing does not guaran-
tee stability to quantum fluctuations around the classical background. For example, despite
being a classical smoother, inflation famously suffers from a quantum runaway problem,
leading to eternal inflation and the multiverse [8–10]. Second, classical smoothing relies
on assuming that the initial Hubble volume (|Hbeg|−3) is already homogeneous before the
smoothing phase begins, which is clearly a very special initial condition as difficult to ac-
count for as the problem one is trying to solve in the first place. Either being unstable to
quantum fluctuations or not being robust enough to smooth the universe for initial conditions
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that lie outside the perturbative regime of FRW space-times presents a roadblock to solving
the cosmic initial conditions problem.

Currently, slow contraction is the only known classical smoothing mechanism that is
both quantum stable and robust [11, 12]. Notably, in ref. [12], we observed signs that smooth-
ing and flattening during slow contraction are achieved in a particular way: namely, indepen-
dent of the initial data, the evolution first becomes ultralocal, i.e., spatial gradients quickly
become unimportant, even before homogeneity, flatness and isotropy are achieved. This is
contrary to common descriptions of the early universe where it is assumed that smoothing
proceeds by first converging to a homogeneous spacetime that is in general spatially-curved
curved and anisotropic.

Ultralocal behavior during contraction has been considered for several decades in dif-
ferent contexts without reference to smoothing and flattening. Originally, it was conjectured
in ref. [13] that, in contracting vacuum space-times, spatial gradients, measured relative to
parallel transported coordinates, are ‘velocity dominated,’ i.e. spatial gradients in the equa-
tions of motion become small compared to the time derivatives. Several numerical analyses
studying how relativistic space-times approach a putative singularity provide evidence for
the conjecture in some special settings, assuming certain symmetry conditions or a particu-
lar matter source (vacuum, stiff fluid, or a free scalar) [14–16]. Mathematically, the conjecture
is not (yet) proven in the global setting. In the special cases where a rigorous proof could
already be obtained, ultralocality is understood as following from the stability of Kasner
spacetimes [17–19].

In this paper, we go beyond ref. [12] using an improved numerical relativity code that
accepts initial conditions with non-perturbative deviations from homogeneity and isotropy
along two independent spatial directions to do a more extensive, detailed study. We find that
in relativistic spacetimes where matter is sourced by a minimally coupled, ordinary scalar
field with negative potential energy density, the smoothing during slow contraction occurs
in general through first converging to an ultralocal state. To demonstrate this effect, we
numerically solve the Einstein-scalar field equations in non-perturbative and non-symmetric
settings, confirming and generalizing the results obtained in ref. [12]. As one of the highlights,
we show that spatial points in regions that eventually become smooth and flat explore the
same dynamical history whether the entire spacetime or only parts of it end up smooth and
flat by the end of the smoothing phase. In addition, we demonstrate that ultralocality is
always achieved in a particular way where the gradient fall-off follows an exponential behavior
in time.

2 Numerical evolution scheme

To carry out our non-perturbative, numerical calculations, we shall employ the orthonormal
tetrad formulation of the Einstein-scalar field equations. A comprehensive introduction to
the formulation including the derivation of the partial differential equation system is given
in ref. [12]. Here, we will not repeat the same details but provide a complementary yet
self-contained overview which underlies the results in this paper.

2.1 Geometric variables

Tetrad formulations have in common that they locally represent each space-time point by a
family of unit basis four-vectors {e0, e1, e2, e3} rather than (scalar) coordinates. Here, the
timelike vierbein e0 defines the future directed timelike congruence, to which it is tangent.
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The spacelike unit four-vectors {e1, e2, e3} span a spatial triad, each lying in a rest three-
space of e0. The basis four-vectors define a local Lorentz frame with the spacetime metric
being given by the inner product “·” of the vierbein. For an orthonormal tetrad,

gαβ ≡ eα · eβ = ηαβ , (2.1)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric. Tetrad frame indices are raised and
lowered with ηαβ .

The forty geometric variables of the formulation are the sixteen tetrad vector compo-
nents {eα

µ} and the twenty-four Ricci rotation coefficients,

γαβλ ≡ eα · ∇λ eβ , (2.2)

where ∇λ ≡ eλ
µ∇µ is the spacetime covariant derivative projected onto the vierbein eλ.

Throughout, spacetime indices (0 − 3) are Greek and spatial indices are Latin (1 − 3). The
beginning of the alphabet (α, β, γ or a, b, c) denotes tetrad indices and the middle of the
alphabet (µ, ν, ρ or i, j, k) denotes coordinate indices.

The Ricci rotation coefficients define the deformation of the tetrad frame {e0, e1, e2, e3}
when moving from point to point. The role of these geometric quantities becomes apparent
by performing a (1+3) split relative to the timelike congruence tangent to e0: since γαβλ is
antisymmetric in its first two indices, the Ricci rotation coefficients that have at least one
timelike index can be described through fifteen three-dimensional quantities

γa00 = −γ0a0 ≡ ba, (2.3)

γab0 = −γba0 ≡ ǫabcΩ
c, (2.4)

γ0ab = −γa0b ≡ −Kba, , (2.5)

where ǫabc is the Levi-Civita symbol; and the rotation coefficients with purely spatial indices
γabc are described by the nine three-tensor components

Nab ≡ 1
2ǫb

cdγcda . (2.6)

The three-vectors ba and Ωa are frame gauge quantities, defining the local proper acceleration
and the local angular velocity of the spacelike triad relative to Fermi propagated axes, respec-
tively. The eighteen dynamical variables are comprised by the components of the shear (or
rate-of-strain) tensor Kab and the components of the induced curvature tensor Nab associated
with the spatial three-congruence.

Here, we require that

- the spatial triad is ‘Fermi propagated’ (Ωa ≡ 0), meaning that it is a local, inertially
non-rotating frame; and

- the timelike congruence is hypersurface orthogonal (Kab ≡ Kba), meaning that the
timelike vierbein is the future directed unit normal to the spacelike hyersurfaces of
constant time {Σt} with the spatial tetrads being tangent to {Σt}.

Note that, with this frame gauge choice, the acceleration of the congruence ba is given through

ba × e0(x0) = −ea e0(x0) , (2.7)
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where x0 is the time coordinate of Σt, and the dynamical variables obtain definite physical
meaning: the three-tensor Kab describes the extrinsic curvature of the constant time hy-
persurfaces {Σt} while the components of the three-tensor Nab are the spatial (or intrinsic)
curvature variables. Furthermore, all three-tensor components {Kab, Nab} act as scalars on
{Σt}. (Throughout, × denotes scalar-scalar multiplication.)

Of course, the geometric variables must be supplemented by the dynamical variables
describing the matter that we will specify next.

2.2 Matter source

As summarized in the Introduction, classical smoothing through slow contraction is based on
the idea that a stress-energy source which behaves as a perfect fluid with super-stiff equation
of state (ε > 3) breaks up the initial Hubble volume into ∼ 1080 self-similar homogeneous,
isotropic and flat Hubble patches at the end of the contracting phase.

A standardly used microphysical model that can generate a period of slow contraction
has a stress-energy consisting of an ordinary scalar field φ minimally coupled to Einstein
gravity with canonical kinetic energy and a negative potential V (φ). Indeed, on a smooth
and flat FRW background, a scalar field φ behaves like a perfect fluid with energy density
and pressure defined as

̺ ≡ 1

2
φ̇2 + V (φ), (2.8)

p ≡ 1

2
φ̇2 − V (φ) , (2.9)

where dot denotes differentiation with respect to the physical FRW time coordinate τ , such
that the scalar field equation of state is given by

ε ≡ 3

2

(

1 +
p

ρ

)

= 3 ×
1
2 φ̇

2

1
2 φ̇

2 + V (φ)
, (2.10)

and the Einstein-scalar field equations reduce to the Friedmann equations,

3H2 = ̺ =
1

2
φ̇2 + V (φ), (2.11)

−2Ḣ = ̺+ p = φ̇2. (2.12)

In particular, for a negative exponential potential

V (φ) = V0 exp(−φ/M) , (2.13)

where M is the characteristic mass scale associated with the scalar field and V0 < 0, the
Friedmann equations admit the scaling attractor solution

a(τ) = (−τ)1/ε, φ(τ) =

√

2

ε
× ln



−
√

V0
ε2

3 − ε
× τ



 , ε =
1

2
M−2. (2.14)

Note that we have chosen coordinates such that the physical time variable τ < 0 is running
from large negative to small negative values during the slow contraction phase. For typical
values of M , say M ∼ 0.1 (in reduced Planck units) or ε ∼ 50, the scale factor a (and all
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physical distances) shrinks by only a factor of two or three during the entire slow contraction
phase while the Hubble radius |H−1| decreases by a factor of 250.

When testing for robustness to initial conditions, the question is whether the non-linear
Einstein-scalar system of coupled partial differential equations (PDEs),

Rαβ = Tαβ − 1

2
ηαβTλ

λ , (2.15)

�φ = V,φ , (2.16)

where Rαβ is the Ricci tensor and the stress-energy is given by

Tαβ ≡ ∇αφ∇βφ−
(

1

2
∇λφ∇λφ+ V (φ)

)

ηαβ , (2.17)

evolves for a broad range of initial conditions towards the simple, homogeneous Friedmann
system (2.11)–(2.12) of ordinary differential equations (ODEs), especially in situations where
the initial data lies far outside the perturbative regime of FRW spacetimes.

With the frame gauge choice as described in section 2.1, the macroscopic matter vari-
ables take the following form:

̺ ≡ e0
αe0

βTαβ =
1

2
D0φD0φ+

1

2
DaφD

aφ+ V (φ), (2.18)

ja ≡ e0
αea

βTαβ = −D0φDaφ, (2.19)

sab ≡ ea
αeb

βTαβ = DaφDbφ+

(

1

2
D0φD0φ−DcφD

cφ− V (φ)

)

δab, (2.20)

p ≡ 1

3
sa

a =
1

2
D0φD0φ− 1

6
DaφD

aφ− V (φ) , (2.21)

where ̺ is the energy density, ja the three-momentum flux, sab the spatial stress tensor, and
p the pressure; D0 denotes the Lie derivative along e0 and Da is the directional derivative
along ea. Note that, when gradients are non-negligible, ja, sab 6= 0, a hypersurface-orthogonal
tetrad frame gauge is not the same as co-moving frame of the scalar matter field.

2.3 Evolution and constraint equations in orthonormal tetrad form

Numerical relativity simulations evolve variables specified on an initial spacelike hypersurface
Σt0 which are subject to a system of partial differential equations (PDEs). Accordingly, for
the non-perturbative, numerical solution of the Einstein-scalar field equations (2.15)–(2.17),
we must represent the tetrad variables {γabc, eα} in terms of scalar functions that depend
on coordinates; and we must also represent the directional derivatives along tetrad vectors
Dα in terms of partial derivatives acting upon scalars which are functions of the coordinates.
Finally, the coordinate gauge must be fixed such that, for appropriately defined initial data
and boundary conditions, the resulting PDE system is well-posed, yielding a unique solution
that continuously depends on the initial data.

2.3.1 Coordinate representation of tetrad variables

Having fixed the tetrad frame gauge to be Fermi propagated and hypersurface-orthogonal, the
coordinate representation of the tetrad variables becomes particularly straightforward: the
Ricci rotation coefficients which are true dynamical variables, namely the six components
of the extrinsic curvature tensor Kab and the nine components of the intrinsic curvature
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tensor Nab, act as scalar functions of coordinates on spatial hypersurfaces of constant time
Σt. Hence, it remains to write the tetrad vector components {eα

µ} as coordinate functions.
First, we introduce the matrix {λα

µ} that defines the transformation between tetrad
and coordinate vectors,

eα ≡ λα
µeµ . (2.22)

With e0 being the future-directed timelike normal to the spacelike hypersurface of constant
time Σt and ea being tangent to Σt, the matrix elements {λα

µ} can easily be identified with
quantities of the 3+1 (coordinate-based) Arnowitt-Deser-Misner (ADM) formalism [20]:

λ0
0 =

1

N
, λ0

i = −N i

N
, λa

0 = 0, λa
i = Ea

i , (2.23)

where N is the ADM lapse function and N i the ADM shift vector, and the coordinate metric,

gµν = ηαβλα
µλβ

ν , (2.24)

is given by

g00 = − 1

N2
, g0i = −N i

N2
, gij = Ea

iEa
j . (2.25)

In particular, orthogonal hypersurface-slicing implies that the tetrad and coordinate lapse
function and shift vector coincide. This is because, in this special frame gauge, the tetrad
congruence simultaneously defines a particular foliation of spacetime into spacelike hyper-
surfaces. (In an arbitrary tetrad frame gauge, this is not the case in general. For example,
the tetrad lapse is, in general, smaller than the coordinate lapse due to the time dilation of
the tetrad observer in the rest frame of Σt.) It is important to note, though, that the rep-
resentation of tetrad vector components through ADM variables does not mean the tetrad
formulation is equivalent to the 3+1 ADM form. In particular, the tetrad formulation can
be rendered well-posed by an appropriate choice of gauge. By contrast, the 3+1 ADM for-
mulation with algebraic gauge conditions (as commonly used in cosmology) cannot, which
means the former can be implemented in numerical relativity but not the latter.

In terms of partial derivatives along the coordinate directions, the directional derivatives
along the vierbein take the simple form:

D0 = N−1
(

∂t −N i∂i

)

and Da = Ea
i∂i . (2.26)

2.3.2 Coordinate gauge fixing

The lapse function and the shift vector are gauge variables that together determine the
particular foliation. In fixing the coordinate system, we have two goals: we want to choose
a gauge that (i) renders the PDE system to yield a well-posed formulation and (ii) is well-
adapted to the physical setting of contracting spacetimes. Most especially, the formulation
should allow for studying spacetime contraction that lasts several hundreds of e-foldings.

Co-moving coordinates, i.e.,
N i ≡ 0 , (2.27)

are a natural gauge choice, meaning that the spatial coordinates xi are constant along both
the congruence and, due to the hypersurface orthogonal tetrad frame gauge, the foliation.
For example, if the foliation is the same as the one used by observers, the spatial coordinates
do not introduce gauge artifacts.
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We fix the lapse N by requiring that hypersurfaces of constant time Σt are constant
mean curvature (CMC) hypersurfaces. That is, the trace of the extrinsic curvature is spatially
uniform on each Σt,

Θ−1 ≡ 1

3
Ka

a = const. (2.28)

In the homogeneous and isotropic FRW limit, Θ is the Hubble radius |H−1|. Choosing CMC
slicing has several advantages:

First, it leads to a natural time coordinate choice

et =
1

3
Θ , (2.29)

with t measuring the number of e-foldings of contraction of the Hubble radius. Note that, in
the FRW limit, t is related to the physical time coordinate τ through

1

3
e−t =

d ln a(τ)

dτ
. (2.30)

Second, it leads to a numerical scheme that is free of stiffness issues. The stiffness
problem arises becaue there are two dynamical variables, the Hubble radius and the scale
factor, which decrease at exponentially different rates. As noted above, in realistic scenarios
of slow contraction, the Hubble radius decreases by a factor of ∼ 250 during the same time
that the scale factor shrinks by only a factor of two. By choosing CMC slicing that forces
Θ to be uniform and monotonic on slices of constant time t, we can eliminate the Hubble
radius from the evolution equations by normalizing each dynamical variable by appropriate
factors of Θ, i.e.

N → N ≡ N/Θ, (2.31)

{Kab, Nab, Ea
i, φ} → {K̄ab, N̄ab, Ēa

i, φ̄} , (2.32)

V → V̄ ≡ V × Θ2 , (2.33)

where N is the Hubble-normalized lapse and bar denotes normalization by the mean curvature
Θ−1 on constant time hypersurfaces.

Third, the numerical simulation can run for any finite period without encountering
singular behavior. With the time choice given in eq. (2.29), t runs from small to large negative
values. The singular behavior occurs when Θ → 0, but this only occurs for t → −∞. For
any finite duration of the simulation, every curvature and each scalar field matter variable
remains finite.

2.3.3 Evolution scheme

Putting everything together, we obtain the Einstein-scalar system (2.15)–(2.17) in Hubble
normalized, orthonormal tetrad form:

∂tĒa
i = − (N − 1) Ēa

i − N Σ̄a
bĒb

i, (2.34)

∂tΣ̄ab = − (3N − 1) Σ̄ab − N
(

2n̄〈a
c n̄b〉c − n̄c

cn̄〈ab〉 − S̄〈aS̄b〉

)

+ Ē〈a
i∂i

(

Ēb〉
i∂iN

)

(2.35)

− N
(

Ē〈a
i∂iĀb〉 − ǫcd

(a

(

Ēc
i∂in̄b)d − 2Ācn̄b)d

))

+ ǫcd
(an̄b)dĒc

i∂iN + Ā〈aĒb〉
i∂iN ,

∂tn̄ab = − (N − 1) n̄ab + N
(

2n̄(a
cΣ̄b)c − ǫcd

(aĒc
i∂iΣ̄b)d

)

− ǫcd
(aΣ̄b)dĒc

i∂iN , (2.36)
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∂tĀa = − (N − 1) Āa − N
(

Σ̄a
bĀb − 1

2
Ēb

i∂iΣ̄a
b
)

− Ēa
i∂iN +

1

2
Σ̄a

bĒb
i∂iN , (2.37)

∂tφ = N W̄ , (2.38)

∂tW̄ = − (3N − 1) W̄ − N
(

V̄,φ + 2ĀaS̄a − Ēa
i∂iS̄

a
)

+ S̄aĒa
i∂iN , (2.39)

∂tS̄a = − (N − 1) S̄a − N
(

Σ̄a
bS̄b − Ēa

i∂iW̄
)

+ W̄ Ēa
i∂iN , (2.40)

where curved brackets denote symmetrization X(ab) ≡ 1
2(Xab+Xba) and angle brackets denote

traceless symmetrization defined as X〈ab〉 ≡ X(ab) − 1
3Xc

cδab. The geometric variables

n̄ab ≡ N̄(ab), Āb ≡ 1

2
ǫb

cdN̄cd, (2.41)

are the symmetric and antisymmetric components, respectively of the Hubble-normalized,
spatial curvature tensor N̄ab; Σ̄ab is the trace-free extrinsic curvature tensor,

Σ̄ab ≡ K̄ab − 1. (2.42)

The scalar field matter variables

W̄ ≡ N −1∂tφ, S̄a ≡ Ea
i∂iφ, (2.43)

denote the Hubble-normalized field velocity and gradient of φ, respectively.

The evolution system (2.34)–(2.40) is manifestly hyperbolic. The Hubble-normalized
lapse, on the other hand, is subject to an elliptic equation,

− Ēa
i∂

i
(

Ēa
j∂jN

)

+ 2ĀaĒa
i∂iN + N

(

3 + Σ̄abΣ̄
ab + W̄ 2 − V̄

)

= 3 , (2.44)

as a result of the CMC slicing condition. We are not aware of any rigorous proof of well-
posedness for the particular tetrad formulation we use. See, however, ref. [21] for a proof
in a closely related coordinate based formulation which involves elliptic gauge conditions.
Also, the fact that our code is stable and convergent is itself numerical evidence that the
underlying scheme is well-posed since otherwise one would expect to find instabilities or
runaway behavior.

Finally, the geometric and scalar field matter tetrad variables satisfy the constraint
equations

3 + 2Ēa
i∂aĀ

a − 3ĀaĀa − 1

2
n̄abn̄ab +

1

4
(n̄c

c)
2 − 1

2
Σ̄abΣ̄ab − 1

2
W̄ 2 − 1

2
S̄aS̄a − V̄ = 0 , (2.45)

Ēb
i∂iΣ̄a

b − 3Σ̄a
bĀb − ǫa

bcn̄b
dΣ̄cd − W̄ S̄a = 0 , (2.46)

Ēb
i∂in̄

b
a + ǫbc

aĒb
i∂iĀc − 2Ābn̄

b
a = 0 , (2.47)

S̄a − Ēa
i∂iφ = 0 , (2.48)

ǫbc
a

(

Ēb
j∂jĒc

i − ĀbĒc
i
)

− n̄a
dĒd

i = 0. (2.49)

As detailed in the following, we will utilize the constraint equations to specify the initial
conditions as well as to check for numerical convergence.
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3 Initial conditions

The Einstein-scalar field equations must be supplemented by initial conditions that satisfy the
Hamiltonian and momentum constraints. By construction, our scheme allows for the variation
of all freely specifiable geometric and scalar-matter field variables, {n̄ab, Āb, Σ̄ab, Ēa

i} and
{φ, W̄}, and therefore enables us to study slow contraction under a wide range of initial
conditions, in particular those that lie far outside the perturbative regime of FRW spacetimes.

As described in ref. [12], to specify the geometric variables {n̄ab, Āb, Σ̄ab, Ēa
i} at some

initial time t0, we shall employ the so-called York method [22] as commonly used in numerical
general relativity. In particular, we choose the spatial metric of the t0-hypersurface to be
conformally-flat,

gij (t0, ~x) = ψ4(t0, ~x)δij ; (3.1)

where the conformal factor ψ is not a free function but obeys an elliptic equation by the
Hamiltonian constraint (3.10), as described below. Together with the constant mean curva-
ture Θ−1

0 of the t0-hypersurface, which we freely specify, this choice for the spatial metric
fixes the coordinate components of the spatial triad

Ē i
a = ψ−2Θ−1

0 δ i
a ; (3.2)

as well as all intrinsic curvature variables

n̄ab(t0, ~x) = 0 , and Āb(t0, ~x) = −2ψ−1(t0, ~x)Ē i
b (t0, ~x)∂iψ(t0, ~x) . (3.3)

Note, though, that conformal flatness does not mean zero intrinsic curvature for the t0-
hypersurface. Rather, since the anti-symmetric part of the intrinsic curvature does not
transform trivially under conformal rescaling, Āb 6= 0 in general.

Furthermore, the momentum constraint (2.46) reduces to the simple expression:

Ēa
i(t0, ~x)∂iZab (t0, ~x) = Q(t0, ~x)Ē i

b (t0, ~x)∂iφ(t0, ~x) , (3.4)

relating the trace-free part of the conformally-rescaled extrinsic curvature (or shear) tensor,

Zab (t0, ~x) = ψ6(t0, ~x)Σ̄ab(t0, ~x) , (3.5)

with the scalar field matter variables, the field distribution φ(t0, ~x) and its conformally
rescaled Hubble-normalized velocity distribution on the t0-hypersurface,

Q(t0, ~x) = ψ6(t0, ~x)W̄ (t0, ~x). (3.6)

Eq. (3.4) makes it possible to freely specify both matter variables {φ,Q} as well as the vacuum
contribution Z0

ab of the Hubble-normalized extrinsic curvature tensor, which is independent
of the matter source,

∂aZ0
ab = 0 . (3.7)

The momentum constraint (3.4) yields the rest of the initial shear contribution Zab − Z0
ab.

The logic behind choosing the initial data for φ,Q and Z0
ab is detailed in refs. [12, 23].

Here, we go beyond previous work in that we allow deviations from homogeneity in two

spatial directions x and y. We define the initial vacuum shear contribution to be given by

Z0
ab =















b2 + c2 cos y ξ κ1 + c1 cos y

ξ b1 + a1 cosx κ2 + a2 cosx

κ1 + c1 cos y κ2 + a2 cosx −b1 − b2 − a1 cosx− c2 cos y















(3.8)
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where a1, a2, b1, b2, c1, c2, κ1, κ2 and ξ are constants; and we fix the scalar field variables
as follows:

Q = Θ
(

qx cos (mxx+ dx) + qy cos (myy + dy) +Q0

)

φ = fx cos (nxx+ hx) + fy cos (nyy + hy) + φ0 ,
(3.9)

where Q0, φ0, qx, qy, fx, fy,mx,my, nx, ny, dx, dy, hx, hy are constant and denote the mean
value, the amplitude, the mode number and the phase of the initial velocity and field distri-
bution, respectively. The choice of cosine reflects the fact that, for the numerical simulation,
we choose periodic boundary conditions 0 ≤ x, y ≤ 2π with 0 and 2π identified. As discussed
in refs. [12, 23], this method of specifying the initial data does not constrain the evolution of
curvature, shear or the scalar field.

Finally, putting everything together, the conformal factor ψ(t0, ~x) is numerically com-
puted from the Hamiltonian constraint (2.45), which yields an elliptic equation for ψ:

∂i∂iψ =
1

4

(

3Θ−2 − V
)

ψ5 − 1

8

(

∂iφ∂iφ
)

ψ − 1

8

(

Q2 + ZabZab

)

Θ2ψ−7. (3.10)

The initial conditions on the spatial metric, shear, and the scalar field are a small
subset of all possible non-homogeneous initial conditions, but they are sufficiently general to
address the impact of non-uniform spatial curvature, shear and scalar field configurations on
slow contraction smoothing.

4 Numerical analysis

In ref. [12], the evolution scheme described in section 2 was applied in a numerical relativity
code that accepts initial conditions with non-perturbative deviations from homogeneity and
isotropy along a single spatial direction. This section presents simulations using an improved
code that accepts initial conditions with deviations from homogeneity and isotropy along two

independent spatial directions as described in section 3. We will refer to the earlier and new
simulations as having one- and two-dimensional initial conditions, respectively. Note that
both codes evolve the full (3 + 1)-dimensional Einstein-scalar field system of equations; it is
only the dimensionality of the initial conditions that differ.

We will begin by constructing three representative simulations with two-dimensional
initial conditions to test whether the smoothing due to slow contraction is qualitatively
similar to the extraordinarily robust smoothing effect found using our earlier code with one-
dimensional initial conditions. We will then use the numerical code with two-dimensional
initial conditions in this and forthcoming papers to perform an extensive series of systematic
studies of:

• the role of ultralocality in the smoothing process (in section 5);

• the effects of mode coupling on the robustness to initial conditions and the rapidity of
the smoothing process when there are deviations from homogeneity in more than one
direction (in ref. [24]);

• and, the ‘spike’ phenomenon, i.e., rapid “small scale spatial structure” variations first
reported in ref. [25] for numerical general relativity simulations of vacuum spacetimes
and more recently observed in some of our simulations with Einstein gravity coupled
to a scalar field (in ref. [26]).
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Aside from extending the numerical code used in ref. [12] to enable initial conditions with
deviations in two independent spatial directions, the only notable change in the new code is
the use of the multigrid V-cycle method to solve more efficiently the elliptic equation (3.10)
for the lapse. The multigrid V-cycle method (along with other methods) was first tested
on the original code (with one-dimensional initial conditions) to verify that all methods
agreed. In addition, as described in appendix A, we have introduced more cross-checks for
code convergence.

A key result of the numerical studies in ref. [12] based on one-dimensional initial condi-
tions was that slow contraction with equation of state ε & 13 is powerfully robust (smoothing
and flattening for initial conditions with large non-perturbative deviations from FRW) and
rapid (accomplishing the feat by the time the Hubble radius shrinks by only a few e-folds).
The result, based on the outcomes of many hundreds of simulations, was summarized in a
series of phase diagrams that depend on Q0, the spatially averaged initial field-velocity in
eq. (3.9), and ε, the equation of state parameter.

As discussed in ref. [11], the phase behavior is especially sensitive to Q0. Positive
values of Q0 correspond to the average initial field velocity being directed down the steep
exponential potential that drives the slow contraction, the condition that naturally occurs
in bouncing and cyclic models, and, hence, the case of practical interest for cosmology.
However, to fully understand the range over which slow contraction is an effective smoothing
mechanism and to study other effects of interest in general relativity, we also consider here
and in subsequent studies cases where the average initial velocity is nearly at rest or headed
‘wrongway’ (Q0 . 0).

Figure 10 in ref. [12] contains a phase diagram showing the outcome for initial states
with large non-perturbative deviations from homogeneity and isotropy (along one dimension)
in both the scalar field and shear degrees of freedom. We reproduce a version of this diagram
in figure 1.

Using the new code that allows initial deviations from homogeneity and isotropy along
two independent spatial directions, we have run representative simulations to test whether
there are substantial changes in the phase diagram. In this section, for example, we present
three cases indicated by the three symbols in figure 1. All three correspond to a scalar field
potential V (φ) = V0 exp(−φ/M), as introduced above in eq. (2.13), with V0 = −0.1 and
ε = 1/(2M2) = 13 (assuming reduced Planck units) and to a1 = 0.5, a2 = 0.5, b1 = −0.15,
b2 = 1.8, ξ = 0.01, qx = 0.51, and dx = 0, as defined in eqs. (3.8) and (3.9). These parameters,
which describe the potential and the initial spatial variation along the x direction, were
intentionally chosen to be the same as the example used in figure 1 in ref. [12]. The one
change along the x direction compared to ref. [12] is that a higher mode spatial variation,
mx = 2 rather than mx = 1, is chosen to test whether this makes a qualitative difference
to the phase diagram. In the new code, the three examples also have non-trivial initial
deviations along the y direction corresponding to c1 = 0.5, c2 = 0.5, and κ1 = κ2 = 0.01 and
my = 3 in eqs. (3.8) and (3.9). Just as in the x direction, these parameters correspond to
highly non-perturbative deviations away from the slow contraction attractor solution reached
in the smoothed regions. (Both the old and new code also have φ(~x, t = 0) = 0; the outcomes
are relatively insensitive to the initial field values.)

The only difference among the three cases presented in this section is the average initial
field velocity parameter, Q0, as shown in figure 2. This leads to the three different plots of
W̄ (~x, t = 0), where blue represents initial velocities aimed down the potential (rightway) and
red correspond to initial velocities aimed up the potential (wrongway). As Q0 is decreased
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Q0 = 0.7 Q0 = 0.1 Q0 = -0.1

Figure 2. The initial W̄ -configuration for the three test cases with average initial field-velocity
Q0 = {0.7, 0.1, −0.1} that correspond to the circle, triangle and square, respectively, in figure 1,
where the relation between W̄ and Q is given in eq. (3.6). The first row shows a top view that only
distinguishes downhill (blue) from uphill (red) initial field-velocity; there is no spatial variation along
the z direction. The second row shows W̄ (~x, t = 0) as a function of ~x = (x, y) where the division
between blue and red corresponds to W̄ (~x, t = 0) = 0.

(Matter in this paper always refers to the scalar field energy density.) The sum of the Ωi is
constrained to equal unity on constant mean curvature hypersurfaces.

Figure 4 shows the Ωi at an early time tspike = −15 and at the end of the slow contraction
phase, tend = −150, respectively. Recall that t as defined in eq. (2.29) measures the number
of e-foldings of contraction of the Hubble radius Θ. The times correspond to 15 and 150 e-
folds of contraction of the Hubble radius. Since a(t) ∝ Θ1/ε, there is negligible contraction of
the scale factor in either case, as is characteristic of slow contraction. The value tend = −150
was chosen because the total duration of slow contraction in bouncing and cyclic models is
in the range ∆t = 100 − 150, depending on details of the model. For the Q0 = 0.7 and
Q0 = 0.1 cases (for which the average initial field-velocity is downhill directed), the final
outcome is smooth with Ωm = 1 everywhere. For the Q0 = −0.1 case, the final outcome is
a mixture of smoothed and unsmoothed regions. Note that the four unsmoothed regions do
not correspond to the (red) regions with uphill initial field-velocity in figure 2; this is due to
the initial shear that breaks the symmetry of the field-velocity distribution, as noted above,
a sign that we are observing inhomogeneities and anisotropies evolving in two independent
spatial directions.

– 14 –



J
C
A
P
0
6
(
2
0
2
1
)
0
1
3

Q0 = -0.1
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Q0 = 0.7

Ω
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Figure 3. The initial spatial distributions of the three energy density components, m = matter (blue),
k = spatial curvature (red) and s = shear (green), for the three case studies: Q0 = {0.7, 0.1, −0.1}.
Note that at t = 0 the shear (green) dominates and matter and spatial curvature contributions
are subdominant.

A

B
C

Q0 = 0.7 Q0 = 0.1 Q0 = -0.1

xxx

y
y

t = -150:

t = -15:

xxx

y y

y y

Figure 4. The spatial distributions of the three energy density components (m = matter, k = spatial
curvature and s = shear) for the three models Q0 = {0.7, 0.1, −0.1} after tspike = −15 (top row)
and tend = −150. Blue indicates smoothed regions of spacetime dominated by the scalar field energy
density (Ωm = 1); all other shades correspond to unsmoothed regions with an inhomogeneous mixture
of the three components. The behavior three points marked A, B and C in the top-left panel will be
discussed in section 5.
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The impressive result is that the three behaviors found using the code agree well with
what was found using the previous code ref. [12] despite the fact that the initial conditions
are here two-dimensional. This is a first sign that there are no significant differences when
initial deviations from FRW along two independent directions are introduced, even though
one might have imagined mode coupling and other non-linear multi-dimensional effects could
come into play. Similarly, the fact that no spiking was observed in the Q0 = 0.7 case and
that the smoothing is complete (as observed in figure 4) before tspike = −15 (that is, after
less than ten percent of the total smoothing period) is indicative that the robustness and
rapidity of slow contraction remains over most of phase space (the white region in figure 1)
when deviations in two independent directions are included.

We are also interested in extreme cases of initial conditions where more complex behavior
occurs. Both the Q0 = 0.1 and Q0 = −0.1 show small but detectable deviations from
convergence in some small isolated regions, as we will detail below, that are maximum around
tspike = −15 (see appendix A). This signifies spiking behavior, which is why we show snapshots
at this time as well. Note that, with substantial wrongway initial field velocity, neither case
is smooth at tspike = −15, though complete smoothing appears to be achieved by tend = −150
e-folds of slow contraction in the Q = 0.1 case.

5 Ultralocality

In this section, we use the three cases described in section 4 to examine the ‘detailed process’
by which slow contraction ‘smooths’ beginning from highly non-perturbative deviations from
a flat FRW spacetime.

By ‘smooths,’ we mean converging to a homogeneous and isotropic geometry well-
described by a flat FRW metric with Ωm = 1. We use the term ‘smoothing’ by itself to
describe convergence to flat FRW by the time tend in either a local region or set of regions
in a simulation; ‘complete smoothing’ refers to convergence for all spacetimes points by tend.

By ‘detailed process,’ we mean to reveal how the smoothing in any particular local
region depends on the local initial conditions. The conclusions are based on examining the
behavior of four indicators:

• the symmetric component of the Hubble-normalized spatial curvature n̄ab(t) Eq. (2.36);

• the Hubble-normalized trace-free extrinsic curvature tensor Σ̄ab(t) in eq. (2.35);

• the Hubble-normalized scalar field velocity W̄ (t) in eq. (2.39); and,

• the Hubble-normalized lapse N (t) in eq. (2.44).

Their time-variation depends on ‘velocity’ terms that do not involve spatial derivatives and
‘gradient’ terms that explicitly involve spatial derivatives [13]. Smoothing to the flat FRW
attractor solution in any local region corresponds to having the time-variation of n̄ab, Σ̄ab,
and W̄ as well as n̄ab, Σ̄ab approach zero to within the resolution limit of the simulation
(about 10−6) and N approaches 1/ε [12, 15].

As examples, we use the three representative simulations described in section 4. Each
simulation begins with the same initial conditions except for the average initial scalar field
velocity Q0:

• Q0 = +0.7: representative of most of phase space in figure 1, completely smooths
without any sign of spiking behavior;
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• Q0 = +0.1: exhibits spiking in some localized regions but appears to completely smooth
by tend; and,

• Q0 = −0.1: exhibits spiking and does not smooth in some localized regions by tend.

Figure 2 shows the top view looking down the z direction; the initial conditions of our
(3+1)D simulations vary spatially in the x − y plane and are uniform along any line along
the z direction. For each of the three simulations, we will focus on the three representative
lines indicated in the upper-left-most top-view of figure 4, labeled:

• A = (0.1, 0.28): a point that appears to go directly to a smooth phase in all three cases
above;

• B = (0.25, 0.45): a point that appears to go directly to a smooth phase in the first case
above (Q0 = 0.7), but only smooths in the last two cases (Q0 = ±0.1) following a more
complex evolution; and

• C = (0.25, 0.33): a point that appears to go directly to a smooth phase for Q0 = 0.7;
only smooths for Q0 = 0.1 following a more complicated evolution; does not smooth at
all for Q0 = −0.1.

Figures 5–8 present the behavior |∂tn̄11(t)|, |∂tΣ̄11(t)|, |∂tW̄ (t)|, and N (t), respectively,
at each of the three lines A, B and C (rows) for the three simulations (columns). The
full simulation runs from t = 0 to tend = −150, but we have truncated the t-axis and
expanded the ordinate axis to expose the detailed features. The geometric variables n̄ab and
Σ̄ab for (ab) 6= (11) display very similar behavior. For figures 5–7, the behavior of the total
gradient-dependent contributions and the individual velocity contributions have been plotted
in addition to the sum over all contributions since these are important for identifying the
smoothing stages.

In all but one panel, corresponding to Point C in the Q0 = −0.1 simulation (bottom
row, rightmost column), smoothing to flat FRW is reached by t = 35, well before tend = −150.
The first feature to note in these cases is that the smoothing occurs through a sequence of
well-defined stages that are the same independent of the local initial conditions, although the
stages can occur at different times.

During the first stage, the velocity and gradient contributions to the Einstein-scalar
field system of equations are roughly comparable and may vary up and down (e.g., see the
case of Point B in the Q0 = 0.1 simulation; middle row middle panel); the details depend
on the local initial conditions. In regions of spacetime where the initial velocity terms begin
much larger than the gradient contributions (e.g., Point A in the Q0 = 0.7 simulation; top
row left panel) the evolution proceeds directly to the next stage.

During the second stage, the gradient and the sub-leading velocity terms begin to drop
uniformly and exponentially with time compared to the leading velocity term. As this occurs,
the leading velocity term increasingly dominates and the evolution approaches ultralocal

behavior; that is, gradient terms become negligible. Note that ultralocal — even ultralocal
at every spacetime point in a simulation — is not equivalent to flat FRW because, in principle,
all velocity terms can be large and there can remain long wavelength variations in spatial
curvature and shear. This stage ends when the magnitudes of the gradient and subleading
velocity terms have decreased sufficiently. As our condition, we choose a decrease by six orders
of magnitude. (This choice is somewhat arbitrary. For example, we could have chosen four
orders of magnitude. We adopt this convention based on the fact that in our simulations the
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Figure 5. Evolution of |∂tn̄11|: columns correspond to Q0 = 0.7(left); Q0 = 0.1 (middle), and
Q0 = −0.1 (right). Rows correspond to points A (top), B (middle), and C (bottom), as described in
the text. The different curves correspond to the magnitudes of different contributions, as indicated
in the legend, to the (11)-component of eq. (2.36).

resolution floor for certain terms is ≈ 10−6.) During the same stage, the Hubble-normalized
lapse N (t) approaches the value it maintains for the remainder of the simulation, N = 1/ε. As
can be seen from figures 5–8, the duration of the second stage is nearly the same independent
of initial conditions, although the start and end times may differ.

The third stage consists of purely ultralocal evolution in which the remaining (leading)
velocity terms decrease uniformly exponentially, though at a slower rate than the subleading
velocity and gradient terms did. The third stage ends when the leading velocity terms reach
zero (to within the resolution limit of the simulation). As was observed for the second stage,
the duration of the third stage is nearly the same for all regions, although the start and end
times may differ.

The final stage is the flat FRW attractor stage that endures for the remainder of the
simulation.

The nearly-universal behavior during the second and third stages can be understood by
first considering only the leading velocity contributions to eqs. (2.36), (2.35), and eq. (2.39)
that come to dominate during the second stage:

∂tn̄ab ≈ −
(

N − 1
)

n̄ab, (5.1)

∂tΣ̄ab ≈ −
(

3N − 1
)

Σ̄ab, (5.2)

∂tW̄ ≈ −
(

3N − 1
)

W̄ − N V̄,φ. (5.3)
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Figure 6. Evolution of |∂tΣ̄11|: columns correspond to Q0 = 0.7(left); Q0 = 0.1 (middle), and
Q0 = −0.1 (right). Rows correspond to points A (top), B (middle), and C (bottom), as described in
the text. The different curves correspond to the magnitudes of different contributions, as indicated
in the legend, to the (11)-component of eq. (2.35).

The solutions to the first equations are

ln n̄ab = −(N − 1) t, ln Σ̄ab = −(3N − 1) t. (5.4)

These expressions, combined with the fact that N ≈ 1/ε, accurately explain the uniform
slopes on the log-plots observed during the third (purely ultralocal evolution) stage when
these leading terms are the only non-zero contributions. (Recall from eq. (2.29) that the
time coordinate has been chosen so that its sign is negative and t runs towards −∞ as slow
contraction proceeds.)

Finally, it is straightforward to recast the flat FRW attractor solution as given in
eq. (2.14) as

W̄ = −
√

2ε and V̄,φ =
√

2ε (3 − ε). (5.5)

In particular, the two velocity contributions to ∂tW̄ in eq. (5.3) are equal and opposite. Their
difference decreases exponentially during the ultralocal phase in proportion to N − 1/ε, with
both approaching zero (to within the resolution) at the end of the ultralocal stage and the
beginning of the final flat FRW attractor stage.

These results for the leading behavior provide an estimate of how the subleading velocity
terms behave during the second stage just by counting the powers of n̄ab and Σ̄ab involved.
For example, the subleading velocity contribution to ∂tn̄ab in eq. (2.36), N (2n̄(a

cΣ̄b)c) scales
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Figure 7. Evolution of |∂tW̄ |: columns correspond to Q0 = 0.7(left); Q0 = 0.1 (middle), and
Q0 = −0.1 (right). Rows correspond to points A (top), B (middle), and C (bottom), as described in
the text. The different curves correspond to the magnitudes of different contributions, as indicated
in the legend, to the (11)-component of eq. (2.39). The flat-lining at large t observed in some panels
is a result of reaching the resolution floor for those terms.

with time approximately as the product of n̄ab and Σ̄ab; or, equivalently, its logarithm is
proportional to ln n̄ab + ln Σ̄ab = −(4N − 2) t, an estimate that is in excellent agreement
with the simulation results. Similar scaling arguments explain the behavior of the gradient
terms as well. This is different from the naive expectation that homogeneous spatial curva-
ture (∝ −k/a2) decreases faster than homogeneous Kasner-like anisotropy (∝ 1/a6) during
contraction; see ref. [6].

For completeness, we comment on the evolution at Point C in the Q0 = −0.1 simulation
where smoothing is not reached by the end of the simulation. It is interesting to note that
N → 1/3 rather than the smoothing attractor solution N → 1/ε, consistent with a phase in
which the scalar field potential energy is negligible and scalar field energy density is purely
kinetic and gradient dominated. This is reminiscent of what is expected in Kasner-like
evolution with a free scalar field. However, we would caution that this interpretation is not
trustworthy because, as noted in the appendix, the evolution at and near Point C exhibit
substantial deviations from numerical convergence. Further studies are needed to determine
what occurs in these regions. Since they only occur in a very limited range of phase space
that is atypical for bouncing or cyclic models, we set this aside for future investigation.
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Figure 8. Evolution of |N − 1/ε|, where ε is the value at the end of the simulation tend = −150.
For the first eight panels, ε = 13 and for bottom-right most panel ε = 1/3. Columns correspond to
Q0 = 0.7(left); Q0 = 0.1 (middle), and Q0 = −0.1 (right). Rows correspond to points A (top), B
(middle), and C (bottom), as described in the text. The flat-lining at large t observed in some panels
is a result of reaching the resolution floor.

6 Discussion

In developing improved numerical relativity tools that enable the extension of cosmological
simulations to spacetimes with spatial variations along two independent directions, we have
been able to confirm the robust smoothing effect of slow contraction over a wide range of
initial conditions that are far from flat FRW (figure 1), as found previously using codes that
only allowed variations along one spatial direction.

More significantly, it has been possible for the first time to demonstrate two features of
the smoothing process. First, smoothing by slow contraction obeys to good approximation a
universal behavior that is independent of local initial conditions. Comparing the examples in
figures 5–8, the sequence of stages is the same and duration of stages two and three is the same
for any local regions where smoothing occurs. This statement applies for any two regions
in the same simulation or for two regions in simulations with different initial conditions. It
is also true whether the spacetime is completely smoothed with no evidence of spiking or
whether the spacetime does not smooth completely.

Secondly, the work establishes that the common heuristic explanation of smoothing to
flat FRW in the literature, whether through inflationary expansion or slow contraction, does
not capture the dynamics accurately, at least for the case of slow contraction. The view
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has been that ultralocality and homogeneity are reached over a given region of spacetime
that lies within a single Hubble patch of radius Θ, and then inflation or contraction trans-
forms that homogeneous region into one that spans exponentially many independent Hubble
patches. Once ultralocality and homogeneity within the initial Hubble patch are assumed, it
is straightforward to show using the Friedmann equations that homogeneous spatial curvature
and anisotropy are suppressed across the many final Hubble patches at the end.

Utilizing the advances in numerical relativity discussed in this paper, we have been able
to show that smoothing by slow contraction does not follow this picture. Instead, beginning
with a region that is far from ultralocality and homogeneity and lies within a single Hubble
patch, the Hubble radius shrinks to a size much smaller than the region before ultralocality
is reached. By the time the evolution converges to ultralocality (end of stage 2 as described
above in section 5) and the next stage begins, the region already spans exponentially many
independent Hubble-sized patches. From there, after a predictable period, the exponentially
many independent Hubble patches (except perhaps for regions with negligible small physical
volume [12, 15]) are each driven towards a flat FRW geometry and together transform the
original region into homogeneous, isotropic and flat regions of spacetime.

Studies of these phenomena for cases of slow contraction in which the scalar field com-
ponent has less pressure (smaller ε) that is closer to the critical value ε = 3, for ordinary con-
traction ε < 3 and for inflationary expansion will be the subject of forthcoming publications.
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A Numerical methods and convergence

In this appendix, we describe our tests for numerical convergence. The key results are:

• For initial data for which the evolution leads to smoothing everywhere by tend without
spiking, the simulation strongly satisfies all convergence tests at all spacetime points,
as represented by the case with average initial scalar field velocity Q0 = 0.7. This
represents the overwhelming majority of the phase diagram shown in figure 1.

• For initial data for which the evolution leads to smoothing everywhere by tend but with
spiking in some local regions, the simulation strongly satisfies all convergence tests at
all spacetime points outside the spiking regions, as represented by the case with average
initial scalar field velocity Q0 = 0.1.

• For initial data for which the evolution does not smooth in some local regions by tend, it
can still be that most of the volume that does smooth strongly satisfies all convergence
tests, as represented by the case with average initial scalar field velocity Q0 = −0.1.

To numerically solve the system of equations detailed in eqs. (2.34)–(2.40), (2.44), we
use second order accurate spatial derivatives, and a three step method for time integration
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Figure 9. Rescaled L2 norm of the Hamiltonian constraint ‖CG‖ for four resolutions. Columns
correspond to Q0 = 0.7 (left), Q0 = 0.1 (middle), and Q0 = −0.1 (right). The highest resolution
spacetime grid is 512×512 in each case. To check for the order of convergence, we repeat the simulation
with lower-resolution D × D grids with D = {256, 128, 64} and divide ‖CG‖ for these resolutions by
(512/D)n where n = 2 for the second order convergence test and n = 3 for the third order test. In
the case Q = 0.7, the simulation runs directly from second order to third order convergence (top
and bottom panels in left column). For the other cases, there is a time interval of non-convergence
in between.

given by the Iterated Crank-Nicolson method. The evolution equations consist of a coupled
elliptic-hyperbolic system of equations, so at each sub-step of the time integration, we first
solve the elliptic equation for the Hubble-normalized lapse N using a multigrid V-cycle
method with six subgrids and then update the hyperbolic equations to the next Iterated
Crank-Nicolson sub-step. In the simulations illustrated above we use a 256 × 256 grid, with
∆x = ∆y = 2π/256 and a Courant factor of 0.5. We have also computed results for 64 × 64,
128 × 128 and 512 × 512 grids in conducting our convergence tests, as described below.

Figure 9 shows the L2 norm of the Hamiltonian constraint, CG = 0, as given in eq. (2.45)
integrated over the spatial domain as a function of time, where

CG ≡ 3 + 2Ēa
i∂aĀ

a − 3ĀaĀa − 1

2
n̄abn̄ab +

1

4
(n̄c

c)
2 − 1

2
Σ̄abΣ̄ab − 1

2
W̄ 2 − 1

2
S̄aS̄a − V̄ . (A.1)

The norm is computed for four different resolutions rescaled by the convergence factor for
the three cases of Q0 = 0.7 (left), Q0 = 0.1 (middle), and Q0 = −0.1 (right). We see that, in
the case of a spacetime that smooths directly to FRW everywhere (Q0 = 0.7), after an initial
period of second order convergence, the evolution moves to directly third order convergence,
hence convergent for all t. For both the Q0 = 0.1 and Q0 = −0.1 cases, the L2 norm first
converges to second order for a period, then loses convergence for a period with a maximum
loss of convergence occurring at t ≈ −15. By t ≈ −50 both the Q0 = 0.1 and Q0 = −0.1
cases recover convergence and reach third order convergence for the rest of the simulation.

We note that the L2 norm measures the average over the entire spacetime and so, by
itself, does not allow us to discriminate regions that strongly satisfy all convergence tests at
all times from those that do not. To distinguish these, we have constructed maps exploring
the convergence factor of our entire domain over time, as shown in figure 10. The maps
demonstrate that the regions of lost convergence are comparably small (exponentially small
when normalized by conformal volume) and correlate with regions where spikes develop.
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Figure 10. Top view map showing regions of second order (green) and third order (blue) convergence
and regions of non-convergence (red) based on comparing simulations with 128×128 and 256×256 grid
resolutions. Three models with Q0 = 0.7, 0.1,−0.1 (left, middle and right columns) are compared at
tspike = −15 (top row), the time when the L2 norm exhibits the maximum deviation from convergence,
and at the end of the simulation tend = −150 (bottom row).
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