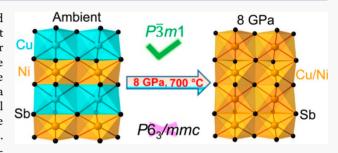
Inorganic Chemistry

pubs.acs.org/IC Article

Ambient and High Pressure CuNiSb₂: Metal-Ordered and Metal-2 Disordered NiAs-Type Derivative Pnictides

- 3 Callista M. Skaggs, Chang-Jong Kang, Christopher J. Perez, Joke Hadermann, Thomas J. Emge,
- 4 Corey E. Frank, Chongin Pak, Saul H. Lapidus, David Walker, Gabriel Kotliar, Susan M. Kauzlarich,
- 5 Xiaoyan Tan,* and Martha Greenblatt*

Cite This: https://dx.doi.org/10.1021/acs.inorgchem.0c01848


ACCESS

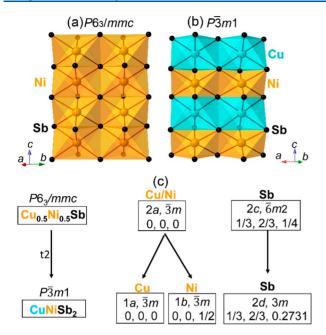
III Metrics & More

Article Recommendations

Supporting Information

6 ABSTRACT: The mineral Zlatogorite, CuNiSb₂, was synthesized 7 in the laboratory for the first time by annealing elements at ambient 8 pressure (CuNiSb₂-AP). Rietveld refinement of synchrotron powder 9 X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the 10 NiAs-derived structure ($P\overline{3}m1$, #164) with Cu and Ni ordering. The 11 structure consists of alternate NiSb₆ and CuSb₆ octahedral layers via 12 face-sharing. The formation of such structure instead of metal 13 disordered NiAs-type structure (P6₃/mmc, #194) is validated by the 14 lower energy of the ordered phase by first-principle calculations. 15 Interatomic crystal orbital Hamilton population, electron local-

16 ization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in 17 CuNiSb₂-AP. The magnetic measurement indicates that CuNiSb₂-AP is Pauli paramagnetic. First-principle calculations and 18 experimental electrical resistivity measurements reveal that CuNiSb₂-AP is a metal. The low Seebeck coefficient and large thermal 19 conductivity suggest that CuNiSb₂ is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. 20 The high pressure sample (CuNiSb₂-8 GPa) was prepared by pressing CuNiSb₂-AP at 700 °C and 8 GPa. However, the structures of 21 single crystal and CuNiSb₂-8 GPa are best fit with a disordered metal structure in the $P\overline{3}m1$ space group, corroborated by 22 transmission electron microscopy.


23 INTRODUCTION

24 The hexagonal NiAs structure ($P6_3/mmc$, #194) is one of the 25 common structures that accommodates a large number of 26 intermetallic compounds such as binary TX and ternary $27 \text{ TT'}X_2(T = \text{transition metal}, X = \text{nonmetal})$ compounds with 28 disordered T and T' atoms occupying the same site. When the 29 two metals located in the structure have a large size or charge 30 difference, they can become ordered and form a derived-31 trigonal "112" structure ATX₂ (A = alkali metal, Ag, Cu, Cd, 32 Tl; T = transition metal, Tl, In, Sn, Bi; X = nonmetal) with $\overline{33}$ P3m1 space group. In the hexagonal NiAs (P6₃/mmc) 34 structure, As atoms are hexagonal close-packed with Ni 35 atoms occupying all the octahedral sites. The structure can 36 be viewed as layered face-sharing NiAs₆ octahedral sheets 37 stacking along the crystallographic c axis (Figure 1a). When 38 NiAs₆ octahedra are replaced with alternate AX₆ and TX₆ 39 octahedral layers, a metal-ordered NiAs-derived trigonal 40 structure is formed. The reported examples of "112" structures 41 are mainly chalcogenides, such as, LiCrQ₂ (Q = S, Se, Te), $^{2-4}$ 42 LiTiS₂, ⁵ LiVS₂, ³ LiSnS₂, ⁶ NaCrTe₂, ⁴ CdTlQ₂ (Q = S, Se, ⁴³ Te), ^{7,8} CdInS₂, ⁹ TlCrTe₂, ^{10,11} CuRTe₂ and CuRSe₂ (R = rare-44 earth metal), ^{12,13} AgTmTe₂, ¹⁴ AgScSe₂, ¹⁵ and AgBiQ₂ (Q = S, ⁴⁵ Se, Te). ¹⁶ Among those, CuTmTe₂, ¹⁷ AgTmTe₂, ¹⁸ and ⁴⁶ AgBiSe₂ are experimentally established good thermoelectric materials. First-principles calculations also predicted 47 other related "112" (such as YAgTe2, YCuTe2) compounds as 48 promising thermoelectric materials.²²

In addition to the reported chalcogenides, this metal- 50 ordered NiAs-derived structure has also been observed in other 51 "112" intermetallic compounds. AuCuSn2 and AuNiSn2 are 52 two examples of stannides in which Au and Cu/Ni have 53 different atom sizes.^{23,24} In terms of pnictides, an experimental ₅₄ compound HfMnSb₂ was reported in 2016.²⁵ It is not ₅₅ surprising that Hf and Mn atoms are ordered due to the 56 large size difference. This is an interesting compound that 57 exhibits conical spin order due to Mn layers. The first "112" 58 pnictide, however, should be the mineral compound CuNiSb_{2, 59} which was reported in 1994²⁶ and named as Zlatogorite later 60 based on its origin from the Zolotaya Gora deposit in the 61 Central Urals.²⁷

Received: June 22, 2020

Figure 1. Structure of theoretical metal disordered $Cu_{0.5}Ni_{0.5}SbwithNiAs$ -type structure (a, $\underline{P6}_3/mmc$), $CuNiSb_2$ with metal-ordered NiAs-derived structure (b, P3m1 space group), and the group-subgroup relations between those two space groups (c).

The mineral compound CuNiSb₂ caught our attention, 64 because it is uncommon that similar covalent radii of Cu (r =65 1.32 Å) and Ni $(r = 1.24 \text{ Å})^{28}$ atoms could stabilize this metal-66 ordered NiAs-derived structure, while the reported examples of 67 such "112" intermetallics in the Pearson handbook contain 68 metals with a significant size difference. In contrast, MnCrSb₂, 69 MnNiSb₂, and CrNiSb₂ crystallize in the NiAs-type structure, 70 in which 3d transition metals are disordered. ^{29–31} Although 71 MnCrSb₂ can be prepared by a solid-state method easily, 72 MnNiSb₂ can only be formed at high pressure.³¹ CuNiSb₂ has 73 only been found in nature and is yet to be synthesized in the 74 laboratory. Therefore, it is of interest to study if CuNiSb₂ 75 could be made at ambient pressure or high pressure and 76 whether or not high pressure would affect the metal-ordered or 77 metal-disordered NiAs-derived structure. In addition, the 78 physical properties of CuNiSb₂ are worthy of study, because 79 many related layered nominal "112" pnictides exhibit exotic

physical properties. For instance, LaAgSb₂ and LaAuSb₂ (P4/80 nmm) exhibit charge density wave, 32,33 SrZnSb₂ (Pnma) shows 81 large magnetoresistance and magnetothermopower, 34 and 82 AMnBi₂ (A = Ca, Sr, Ba, or rare earth elements, P4/nmm) 83 are topological materials. 35

In this paper, we report the synthesis, electronic structure, 85 and physical properties of CuNiSb₂ for the first time. 86 Polycrystalline samples can be prepared at ambient pressure 87 with a two-step solid-state annealing process. The crystal 88 structure and composition have been confirmed by high-89 intensity synchrotron X-ray diffraction and elemental analysis. 90 Density functional theory calculations have been carried out to 91 understand the electronic structure and bonding and reveal the 92 energy difference between the metal-ordered and metal-93 disordered NiAs structures. High pressure (8 GPa) was also 94 applied to the crystal structure to investigate a possible 95 structural transition.

97

EXPERIMENTAL SECTION

Starting Materials and Synthesis. $CuNiSb_2$ polycrystalline 98 samples were synthesized at ambient pressure (CuNiSb2-AP) with 99 the solid-state method in two steps. Copper (99.999 wt %, Alfa 100 Aesar), nickel (99.996 wt %, Alfa Aesar), and antimony (99.999 wt %, 101 Alfa Aesar) powders were mixed and ground in stoichiometric 102 amounts inside of an argon-filled glovebox with a low concentration of 103 O2 and H2O (<1 ppm). The thoroughly ground elements were 104 pressed into a pellet and transferred into a quartz tube (O.D = 9.5 105 mm), which was sealed under a vacuum ($<10^{-2}$ mbar). The ampule 106 was first slowly heated to 800 °C in 2 days, held at this temperature 107 for 7 days, and cooled to room temperature in 6 h. This treatment 108 turned the pellet into a shinning metallic ball. The ball was then 109 ground, pelletized, and again sealed in a quartz tube. The ampule was 110 heated to 650 °C within 1 day, held at this temperature for 7 days, 111 and then cooled over the course of 6 h. The obtained black pellet was 112 ground and characterized by powder X-ray diffraction. The chemical 113 vapor transport method was used to grow single crystals of CuNiSb₂. 114 CuNiSb₂ polycrystalline powder and AlCl₃ as a transport reagent were 115 sealed in a quartz tube (O.D = 12.5 mm) and heated in a three-zone 116 horizontal furnace. The source temperature and crystal growth zone 117 temperatures were set at 800 and 765 °C, respectively. Tiny crystals 118 (<0.1 mm) were grown after being held at the programed heating 119 profile for 2 weeks.

High Pressure Sample. CuNiSb₂-AP powders were packed into 121 an open-ended Al_2O_3 crucible, which was transferred into a 6 mm, 122 finned, 646 ceramic octahedron module monitored and controlled 123 with type D W3Re/W25Re thermocouple wires. The octahedron 124 module was then assembled with eight truncated tungsten carbide 125

Table 1. Selected Refined Structure Parameters of Polycrystalline and Single Crystal of CuNiSb₂Samples

Sample		CuNiSb ₂ -AP		CuNiSb ₂ -8GPa			CuNiSb ₂ -Single Crystal		
Empirical formula		CuNiSb ₂		CuNiSb ₂			Cu _{0.95(4)} Ni _{0.95(4)} Sb ₂		
Temperature		300 K		300 K			150 K		
Mol. wt.		365.76		365.76			359.64		
X-ray wavelength, λ		0.414532 Å		0.412718 Å			0.71073 Å		
Space group, #		$P\overline{3}m1$, #164		$P\overline{3}m1$, #164			$P\overline{3}m1, #164$		
Z		1		1			1		
Lattice parameters		a = b = $4.05685(1)$ Å,c = $5.13363(1)$ Å, V = $73.0446(1)$ Å ³ $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$		a = b = 4.05692(1) Å, c = 5.12467(1) Å, V = 73.1701(2) Å ³ α = β = 90°, γ = 120°			a = b = 3.9692(1) Å, c = 5.1297 (1) Å, V = 69.989(2) Å ³ $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$		
R indices		$R_{\text{exp}} = 9.04\%, R_{\text{F}} = 6.73\%, R_{\text{Bragg}} = 8.38\%$		$R_{\rm exp} = 5.58\%$, $R_{\rm F} = 8.52\%$, $R_{\rm Bragg} = 8.25\%$			$R_1 = 2.18\%, \ wR_2 = 4.72\%$		
Site	Wyckoff symbol	x, y, z	Occ.	Site	x, y, z	Occ.	Site	x, y, z	Occ.
Cu	1a	0, 0, 0	1	Cu/Ni	0, 0, 0	0.5/0.5	Cu/Ni	0, 0, 0	0.5/0.5
Ni	1b	0, 0, 0.5	1	Cu/Ni	0, 0, 0.5	0.5/0.5	Cu/Ni	0, 0, 0.5	0.5/0.5
Sb	2d	1/3, 2/3, 0.2731(1)	1	Sb	1/3, 2/3, 0.2426(1)	1	Sb	1/3, 2/3, 0.2530(1)	1

Table 2. Selected Bond Distances in CuNiSb₂ and Related Compounds

Comp.	Space group	Ni-Sb, Å	Cu-Sb, Å	M ^a -M, Å	Sb-Sb, Å
CuNiSb ₂ -AP	$P\overline{3}m1$	2.6159 (1)	2.7299(2)	2.5668 (1)	3.3031(3), 3.6536(3)
CuNiSb ₂ -8 GPa	$P\overline{3}m1$	2.6519(3), 2.688	2(3)	2.5623(2)	3.4159(6), 3.5277(7)
CuNiSb ₂ - Single Crystal	$P\overline{3}m1$	2.6185 (2), 2.633	37 (2)	2.5649(2)	3.4163(4), 3.4628(4)
MnNiSb ₂ ³¹	$P6_3/mmc$	2.6750		2.700	3.5530
CrNiSb ₂ ³⁰	P6 ₃ /mmc	2.7303		2.660	3.5724
MnCrSb ₂ ⁵⁶	$P6_3/mmc$			2.8505	3.7104
NiSb ⁵²	$P6_3/mmc$	2.6174		2.5750	3.4386
Sb ⁵⁷	$P6_3/mmc$				3.2456
					3.330

^aM= Cu, Mn, Cr, Ni.

126 cubes and loaded into the Walker-type multianvil high pressure press. 127 The pressure was increased to 8 GPa overnight. Once the pressure 128 reached the programed pressure (8 GPa), the sample was heated 129 quickly from room temperature to 700 °C, held for 1 h, and then 130 quenched to 25 °C in a few minutes. The obtained high pressure 131 sample (CuNiSb₂-8 GPa) was a dense black metallic pellet.

Laboratory and Synchrotron Powder X-ray Diffraction. 133 Powder X-ray diffraction (PXD) patterns of polycrystalline samples 134 were collected at room temperature for 30 min with the 2Θ range 135 from 10 to 70° on a Bruker D8 Advance Diffractometer (Cu K α , λ = 136 1.5418 Å) with an SOL-X solid-state detector. Room-temperature 137 synchrotron powder X-ray diffraction (SPXD) patterns were collected 138 $(0.5^{\circ} < 2\Theta < 50^{\circ})$ on both CuNiSb₂-AP and CuNiSb₂-8 GPa samples 139 at the 11-BM beamline at the Advanced Photon Source, Argonne 140 National Laboratory. Rietveld refinements of the SPXD data were 141 carried out with the suite of FullProf programs. 38

Single Crystal X-ray Diffraction. Single crystal X-ray data were recorded at 150 K on a Bruker Smart diffractometer with an APEX LCD detector and graphite-monochromatized Mo Kα radiation. The data were corrected for absorption (numerical type) with Bruker SAINT software (SADABS method). The 150 K crystal structure of CuNiSb₂ was solved with the known P3m1 phase and refined with the SHELXL (2018) program. The details of structure refinement are provided in Tables 1 and 2 below and SI Tables S1 and S2.

Chemical Analysis. Elemental analyses of CuNiSb₂-AP poly-151 crystalline samples were carried out with a Zeiss-Sigma Field Emission 152 Scanning Electron Microscope (SEM) with Oxford INCAEnergy 250 153 Energy Dispersive X-ray spectroscopy (EDX) microanalysis system.

Thermogravimetric Analysis (TGA) and Differential Scan-155 ning Calorimetry (DSC). TGA and DSC data were collected on 156 CuNiSb₂-AP with an SDT Q600 TA Instrument. Polycrystalline 157 samples (~25 mg) were heated inside an alumina crucible from 25 to 158 1000 °C at a heating and cooling rate of 10 °C/min under argon flow. 159 After the measurement, the remaining samples were analyzed by PXD.

Physical Properties. Magnetic properties were measured on 161 CuNiSb2-AP polycrystalline samples with a Quantum Design 162 superconducting quantum interference device (SQUID) MPMS-XL 163 magnetometer. Field-cooled (FC) magnetic susceptibility was 164 recorded between 1.8 and 300 K in a direct-current applied field of 165 1 T. The sample was measured without a sample holder and sealed 166 directly inside the straw. A Dr. Sinter Lab Jr. SPS-211Lx spark plasma 167 sintering (SPS) system (Sumitomo, Tokyo, Japan) was used to 168 consolidate the bulk powder sample (about 0.5 g) into a dense pellet 169 in a 4 mm high-density graphite die (POCO) under a vacuum (<10 170 Pa). The sample was pressed at 550 °C for 15 min with the applied 171 pressure of 3 kN. The geometric sample density was larger than 91% 172 of the theoretical density. The resulting black disk (4 mm diameter, 173 1.5 mm thick) was polished flat and attached between two gold plated 174 copper leads with silver conductive epoxy. The epoxy was cured in a 175 vacuum oven at 150 °C for 2 h and allowed to cool under a vacuum 176 overnight. Thermoelectric properties were measured (2 K ~ 300 K) 177 with a PPMS (Physical Property Measurement System) using the thermal transport option (TTO).

179 **Transmission Electron Microscopy (TEM).** Both CuNiSb₂-AP 180 and CuNiSb₂-8 GPa samples were analyzed with TEM. Ground fine

powders were mixed with ethanol in an ultrasonic bath. The obtained 181 suspension was then deposited onto a holey TEM grid covered with 182 carbon. Electron diffraction (ED) patterns of both samples were 183 acquired with a Phillips CM20 microscope operated at 200 kV. 184

First Principle Calculations. Density functional theory (DFT) 185 was used to investigate the electronic structure. Structural parameters 186 were taken from SPXD refinements. To study the stable type of 187 crystal structure, the virtual crystal approximation (VCA) method, 188 which is implemented in the Quantum Espresso code, 40,41 was 189 employed within the optimized norm-conserving Vanderbilt pseudo-190 potential. The kinetic energy cutoffs for wave functions and charge 191 density were chosen to be 40 and 160 Ry, respectively, in the VCA 192 calculations. After the stable crystal structure was found through the 193 VCA calculations, electronic structures including the density of states 194 (DOS), electron localization function (ELF), and charge density 195 distribution were obtained using the projector augmented wave 196 method as implemented in the Vienna *ab initio* simulation package 197 (VASP).

An $11 \times 11 \times 8$ k-point mesh was used for the Brillouin zone 199 integration. A plane-wave cutoff of 520 eV and the generalized 200 gradient approximation of Perdew–Burke–Ernzerhof (PBE) was 201 used. The full-potential linearized augmented plane-wave method 202 implemented in WIEN2k was also employed to double-check the 203 electronic structures. The interatomic crystal orbital Hamilton 204 population (COHP) analysis of CuNiSb₂-AP was performed with the 205 tight binding-linear muffin tin orbitals-atomic sphere approximation 206 (TB-LMTO-ASA) software package. Package Calculations of CuNiSb₂-AP 207 containing a basis set of Cu-4s/4p/3d, Ni-4s/4p/3d/, Sb-5s/5p/4d 208 were carried out with space group P3m1 after converging the total 209 energy on a dense of $24 \times 24 \times 16$ mesh with 885 irreducible k- 210 points.

■ RESULTS AND DISCUSSION

Synthesis and Crystal Structure. On the basis of the 213 literature reports on the synthesis of MnNiSb2 and 214 $Mn_{1-x}Ni_xSb$ (0 < x < 1) at high pressure with MnSb and 215 and MnCrSb₂ at ambient pressure from the 216 elements,²⁹ we planned to start the synthesis of CuNiSb₂ 217 with the two binary pnictides: CuSb and NiSb, but CuSb is 218 absent in the Cu-Sb phase diagram. 50 Therefore, polycrystal- 219 line samples of CuNiSb₂ were prepared by mixing elements in 220 the stoichiometric ratio in a vacuum quartz ampule. After the 221 first step of annealing the ampule at 800 °C for a week, a 222 melted ball with metallic shinning color was obtained. PXD 223 data indicate that the product is a mixture of CuNiSb₂, Cu₂Sb, 224 NiSb, and Sb (Figure S1). On the basis of the balanced 225 equation Cu₂Sb + 2NiSb + Sb = 2CuNiSb₂, this mixture was 226 then annealed at 650 °C for 7 days to obtain the target phase. 227 Phase-pure samples (Figure 2) were successfully formed at 228 f2 ambient pressure, which is a much simpler method in 229 comparison to the high-pressure process required for the 230 formation of MnNiSb₂. These results reveal that the reported 231

212

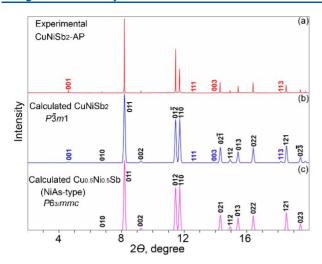


Figure 2. PXD patterns of experimental (a) and calculated (b) $CuNiSb_2$ with P3m1 space group (b), and calculated $Cu_0 sNi_0 sSbwithP6_3/mmc$ space group (c).

232 mineral Zlatogorite, $CuNiSb_2$, can be prepared in the 233 laboratory. The details on the synthesis of $CrNiSb_2$ were not 234 given in the previous report, 30 and we could not reproduce 235 $CrNiSb_2$ using the solid-state method with binary pnictides or 236 elements as precursors either at ambient or at high pressure 237 (up to 8 GPa). Efforts to prepare related $CuMSb_2$ (M = Cr, 238 Mn, Fe, Co), $CuNiAs_2$, and $AgNiSb_2$ with similar procedures 239 at ambient pressure only yielded binary pnictides.

Laboratory PXD and SPXD data analysis indicates that 241 CuNiSb₂ crystallizes in the P3m1 space group, in agreement 242 with previous reports on the mineral samples. The calculated 243 PXD pattern of CuNiSb₂ with $P\overline{3}m1$ space group is very similar 244 to that of the calculated disordered Cu_{0.5}Ni_{0.5}Sb with NiAs-245 type structure in P63/mmc space group (Figure 2). Compared 246 to the $P\overline{3}m1$ space group, there are fewer reflections in the 247 P6₃/mmc space group due to higher symmetry group with the 248 following reflection conditions: 00*l*: l = 2n; hkl: l = 2n, or h - k249 + l = 3n + 1 or 3n + 2. As a result, (001), (003), (111), and 250 (113) reflections are absent in the P6₃/mmc space group but 251 are allowed in the P3m1 space group. Those reflections are also 252 observed in the experimental PXD pattern, therefore, the 253 published structure of mineral $CuNiSb_2$ with $P\overline{3}m1$ space 254 group was used as the starting model for the Rietveld 255 refinements (Figure 3). In this model, Cu and Ni atoms 256 occupy the 1a (0, 0, 0) and 1b (0, 0, 1/2) positions, 257 respectively. We also tried another model with antisite disorder 258 between Cu and Ni on both sites, but there was no 259 improvement of the fitting, and the results contradicted with 260 EDX results. If we constrained 50/50% of disordered Cu/Ni 261 on both sites, the refinement resulted in two very different Cu/ 262 Ni-Sb bond distances (2.723 and 2.616 Å), which is not 263 reasonable. Therefore, we performed the refinement with ordered Cu and Ni atoms in the $P\overline{3}m1$ space group (Figure 3). In the refined structure, Sb atoms are arranged in a dense 266 hexagonal packing with Cu and Ni occupying the octahedral 267 sites (Figure 1). Each CuSb₆ or NiSb₆ octahedron connects 268 with six octahedra by edge-sharing in the hexagonal ab plane. 269 Alternate layers of CuSb₆ and NiSb₆ stack via face sharing 270 along the crystallographic c axis and form the layered structure. 271 The structure can be viewed as metal ordered NiAs-type (P6₃/ 272 mmc) derivative because $P\overline{3}m1$ (#164) space group is one of 273 the subgroups of P6₃/mmc (#194) based on Bärnighausen tree

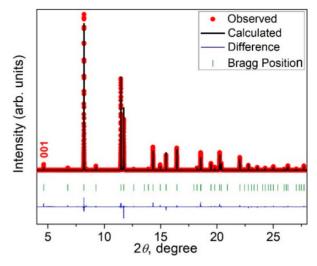


Figure 3. Rietveld refinement of SPXD of CuNiSb₂-AP in the $P\overline{3}m1$ space group with observed data (red), calculated pattern (black), Bragg position (green), and the difference between the observed and calculated pattern (blue).

formalism, as shown in Figure 1c.⁵¹ In the NiAs structure, Ni 274 and As atoms occupy the special Wyckoff site 2a (0, 0, 0) and 275 2c (1/3, 2/3, 1/4), respectively. The 2-fold 2a Ni site in the 276 $P6_3/mmc$ space group splits into the one-fold 1a (0, 0, 0) and 277 1b (0, 0, 1/2) sites to accommodate the ordering of Cu and Ni 278 atoms in the $P\overline{3}m1$ space group. Because of the unequal size of 279 CuSb₆ and NiSb₆ octahedra, the symmetric Sb hexagonal 280 dense packing is distorted. Sb atoms are closer to smaller Ni 281 atoms and form smaller NiSb₆ layers. As a result, position 2c 282 (1/3, 2/3, 1/4) in the $P6_3/mmc$ shifts to position 2d (1/3, 2/3, 2/3, 2/3, 1/4) in the lower-symmetry $P\overline{3}m1$ space group.

The refined parameters and structure information are given 285 in Tables 1 and 2. The occupancy of each site has been refined, 286 but there are no obvious vacancies. The refined lattice 287 parameters using SPXD data are a = b = 4.05685(1) Å, c = 2885.13363(1) Å, V = 73.1701(2) Å³, which are close to the ²⁸⁹ reported values (a = b = 4.0510(2) Å, c = 5.1382(4) Å, V = ²⁹⁰ $73.02 (1) \text{ Å}^3$). The refined Cu, Ni, Sb atoms occupy the 1a 291 (0, 0, 0), 1b(0, 0, 1/2), and 2d(0, 0, 0.2731), respectively. Cu- 292 Sb, Ni-Sb bond distances are refined to be 2.7299(2) Å and 293 2.6159(1) Å, respectively (Table 2). The bond distances are 294 very close to the sum of covalent radii of Cu (1.32 Å), Ni (1.24 295 Å), and Sb (1.39 Å), 28 which indicate the covalent nature of 296 bonding between Cu/Ni and Sb atoms. The smaller Ni-Sb 297 distance than the Cu-Sb bond distance implies that the 298 electron localization environments of Ni-Sb and Cu-Sb are 299 different, which will be further discussed in the electronic 300 structure section. The Ni-Sb bond distance (2.6159 Å) is close 301 to the reported value (2.6174 Å) of binary NiSb ($P6_3/302$ mmc), $^{52-5\$}$ but smaller than those (2.6750 Å, 2.7303 Å) in the 303 disordered MnNiSb₂ and CrNiSb₂($P6_3/mmc$). The Cu-Ni 304 transition metal bond distances are 2.5668(1) Å, which are 305 close to the Ni-Ni (2.575 Å) metal bonds observed in NiSb, 306 but smaller than those in MnNiSb₂ (2.700 Å) and 307 $CrNiSb_{2}(2.660 \text{ Å}).$

The shortest interlayer Sb-Sb lengths in NiSb₆ and CuSb₆ 309 layers are 3.3031(3) Å and 3.6536(3) Å, respectively (Table 2, 310 Figure 4a). The intralayer Sb-Sb distances are 4.0569 Å. The 311 f4 Sb-Sb distances are comparable with those in NiSb, but shorter 312 than that of MnNiSb₂, CrNiSb₂, MnCrSb₂ (Table 2). The Sb- 313

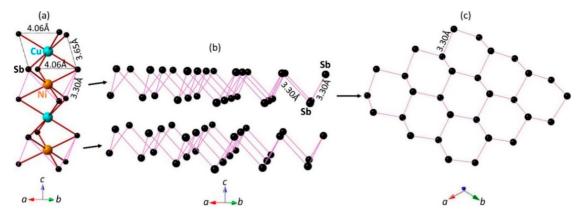


Figure 4. (a) Crystal structure with Sb-Sb distances, (b) layers of Sb-Sb connection within $NiSb_6$ layers, (c) perspective view of Sb-Sb connection in one layer along the c axis.

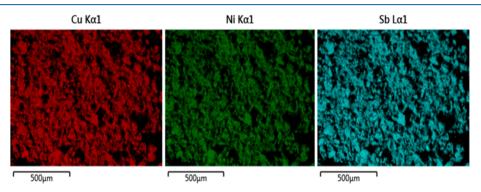
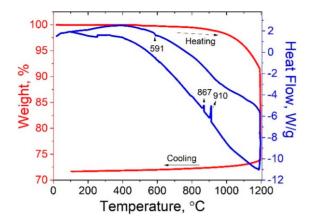


Figure 5. Energy-dispersive X-ray (EDX) elemental mapping of CuNiSb₂-AP particles.


314 Sb distance (3.3031 Å) is much longer than the normal range 315 of single Sb-Sb bond (~2.8 Å)⁵⁸ but close to those of the 316 hexagonal elemental Sb (3.2456 Å, 3.330 Å). 57 The long Sb-Sb 317 distances can be considered as a weak hypervalent bond that 318 has been observed in some other Sb-containing intermetallic 319 compounds, ⁵⁸ such as Li₂Sb (Sb-Sb = 3.26 Å), ⁵⁹ BaZnSb₂ (Sb-320 Sb = 3.24 Å), ⁶⁰ Ca₁₄MnSb₁₁/Eu₁₄MnSb₁₁ (Sb-Sb = 3.22–3.26 321 Å), 61,62 and 61,62 and 63,64 and 63,64 322 The Sb-Sb long weak bonds are arranged in a zigzag array 323 within the NiSb₆ layers (Figure 4b), and Sb and Sb are 324 connected as a distorted hexagonal net along the crystallo-325 graphic ab plane (Figure 4c). If we consider the elongated Sb-326 Sb distance as a half bond (one-electron per bond) as 327 suggested by Jeitschko and Mar, 65,66 each Sb has 5 lone 328 electrons to meet the octet rule; then the formal charge on 329 each Sb in the hexagonal net is -1.5. If we assume the formal 330 chargea of Cu and Ni are +1 and +2, respectively, CuNiSb₂ can be ideally written as $Cu^{1+}Ni^{2+}(Sb^{1.5-})_2$ or $Cu^{1+}Ni^{2+}(Sb_2^{1.5-})_2$. 332 The real interactions between atoms in intermetallic compounds are complicated, and more discussions are 334 included in the electronic structure section. On the basis of 335 the observed bond distances, the three-dimensional layered 336 framework of CuNiSb₂ is mainly constructed by Ni-Sb, Cu-Sb, 337 and Cu-Ni bonds.

CuNiSb₂ is a rare example of a ternary "112" transition metal 339 pnictide with a metal-ordered NiAs-derived structure, consid-340 ering that MnNiSb₂, MnCrSb₂, and CrNiSb₂ all adopt the 341 NiAs-type ($P6_3/mmc$) structure with disordered metals. ^{28,30,31} 342 The covalent radii difference (0.15 Å) between Cr (r = 1.39 343 Å)/Mn (r = 1.39 Å) and Ni (r = 1.24 Å) is larger than that 344 (0.08 Å) between Cu (r = 1.32 Å) and Ni (r = 1.24 Å). ²⁸ The

different Cu-Sb and Ni-Sb covalent bonding strength may be 345 responsible for stabilizing the metal ordering of the CuNiSb₂ 346 structure. The total energy of stabilizing the metal-ordered 347 NiAs-derived structure is lower than that of the NiAs-type 348 $(P6_3/mmc)$ structure, as discussed later in the electronic 349 structure section. The recent report of HfMnSb₂ is another 350 example of "112" pnictides with metal-ordering, 25 which is 351 attributed to the large size difference between Hf (r = 1.75 Å) 352 and Mn (r = 1.39 Å) atoms, similar to the scenario observed in 353 AuNiSn₂ and AuCuSn₂. 3354

The average size of obtained polycrystalline particles is less 355 than 100 μ m, based on the SEM-EDX results (Figure S2). 356 EDX mapping and microanalysis of 1 mm \times 1 mm area of 357 particles indicated the homogeneous distribution of Cu, Ni, 358 and Sb elements (Figure 5). The molar ratio of Cu/Ni/Sb is 359 f5 close to 1:1:2, which is good agreement with the Rietveld 360 refinement results.

The stability of the CuNiSb₂-AP phase was studied via 362 thermogravimetric analysis (TGA) and differential scanning 363 calorimetry (DSC) technique (Figure 6). Powder samples 364 f6 (~25 mg) were heated in an alumina crucible from 25 to 1200 365 °C, held at this temperature for 1 h, and then cooled down to 366 100 °C at a rate of 10 °C/min. The sample is stable below 800 367 °C, based on the relatively stable mass. However, the sample 368 mass starts decreasing above 800 °C, remains about 90% of its 369 initial mass as the temperature reaches 1200 °C, and drops to 370 70% after 1 h. After the TGA, the remaining sample was a 371 shinning ball, which was mainly a mixture of NiSb, Cu₂Sb, 372 Cu₃Sb, and Sb according to the PXD results (Figure S3). The 373 decrease in mass in the TGA at high temperature (Figure 6) is 374 due to the loss of Sb, which has a low melting point (630.6 °C) 375

Figure 6. TGA-DSC data of CuNiSb₂-AP measured between 25 and 1200 °C.

376 and high vapor pressure. Two obvious endothermal peaks were 377 observed in the DSC curve during cooling at 867 and 910 °C, 378 which is probably related to the recrystallization of the binary 379 pnictides (Figure 6). A small exothermal peak at 591 °C 380 observed during the heating process may be an indication of 381 the cation order to disorder process in the structure, which 382 requires in situ synchrotron or neutron diffraction for 383 confirmation in a future study.

Structure at High Pressure. Among all the reported 3d 385 transition metals "112" pnicitdes, CuNiSb₂ is the only example 386 that shows metal ordering, while MnNiSb₂, MnCrSb₂, and 387 CrNiSb₂ adopt the NiAs-type structure with disordered 388 metals. 28,30,31 Considering that MnNiSb₂ was prepared at 389 high pressure, we carried out the high pressure experiment to 390 investigate the possible structural transition. The CuNiSb₂-AP 391 powders were assembled into a Walker-type multianvil high 392 pressure press. After applying the pressures (8 GPa), the 393 sample was heated at 700 °C for 1 h before quenching quickly 394 to room temperature. The resulting pellet (sample CuNiSb₂-8 395 GPa) was ground and checked by PXD. In comparison to the 396 PXD pattern of CuNiSb2-AP, the intensity of the (001) 397 reflection seems to decrease as the pressure increases from 6 to 398 8 GPa. As discussed above, the absence of (001) reflection is a 399 signature of the formation of possible metal-disordered NiAs-400 type structure. However, the (001) reflection is weak in the 401 PXD pattern of CuNiSb2-AP sample, and the intensity of this 402 easy-axis reflection may be reduced due to the strong preferred 403 orientation under the high pressure.

To examine if the structure of CuNiSb₂-AP changes to NiAs-405 type structure under high pressure, electron diffraction patterns 406 were taken (Figure 7). For electron diffraction patterns, conclusions cannot be based on the presence of the (001) or (010) reflections, as these could be caused by double 409 diffraction. However, the presence of the hhl:l = odd reflections 410 on the $[\overline{3}10]$ electron diffraction patterns agrees with $P\overline{3}m1$ 411 but not with $P6_3/mmc$, and their presence cannot be explained 412 through double diffraction paths. The results were consistent 413 for all particles for which this particular zone could be obtained 414 (8 for CuNiSb₂-AP and 4 for CuNiSb₂-8 GPa). These results 415 clearly indicate that NiAs-type (P63/mmc) structure under 8 416 GPa does not form. Rietveld refinement of SXRD data of 417 CuNiSb₂-8 GPa sample was carried out with $P\overline{3}m1$ space 418 group and March-Dollase Multiaxial Function preferred 419 orientation function including (001) and (101) reflections, 420 which yielded the refined unit cell parameters: a = b =

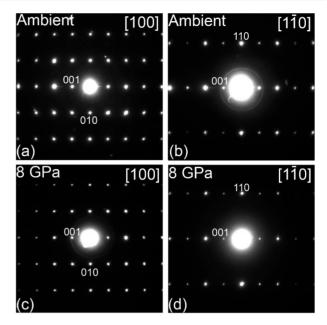
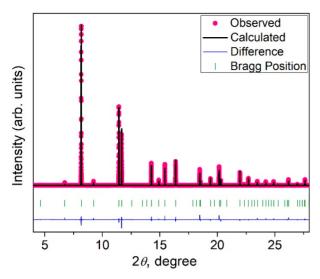



Figure 7. Representative electron diffraction patterns of $CuNiSb_2$ -AP (a,b) and $CuNiSb_2$ -8 GPa (c, d).

4.05692(1) Å, c = 5.12467(1) Å, V = 73.0446(1) Å³. The a 421 parameter increases slightly, and the c parameter and volume 422 decrease compared to those (a = b = 4.05685 Å, c = 5.13363 Å, 423 $V = 73.1701 \text{ Å}^3$) of CuNiSb₂-AP (Table 1). The overall 424 structure is compressed slightly at 8 GPa. The initial model is 425 the same as used for CuNiSb₂-AP with Cu and Ni occupying 426 the (0, 0, 0), and (0, 0, 1/2), respectively. However, the Sb 427 position shifts to (0, 0, 0.2461), in comparison to that (0, 0, 428 0.2731) of the CuNiSb₂-AP sample, which causes the Cu-Sb 429 and Ni-Sb bond distances to become 2.6519 (3) Å and 2.6882 430 (Å) in CuNiSb₂-8 GPa. The Sb position is close to the (0, 0, 431 0.25), and the almost equal M-Sb (M = Cu, Ni) bond 432 distances indicate that a model with disordered Cu/Ni on both 433 (0, 0, 0), and (0, 0, 1/2) sites is more reasonable. Due to the 434 close electron density between Cu and Ni, however, a reliable 435 percentage of Cu/Ni on each site cannot be determined with 436 X-ray or electron diffraction. Therefore, the structure was 437 finalized with totally disordered Cu/Ni on both sites, as shown 438 in Table 1 and Figure 8. The Sb position shift is mainly 439 f8 responsible for one Sb-Sb bond distance to increase, and the 440 other one to decrease, as shown in Table 2. However, the Cu- 441 Ni distance is only related to the unit cell parameter c, and 442 therefore it decreases as expected, when the unit cell parameter 443 c decreases under 8 GPa. The CuNiSb₂-8 GPa sample was 444 obtained at 700 °C for 1 h, and the high temperature probably 445 causes the Cu/Ni atoms to migrate between (0, 0, 0) and (0, 0, 446 1/2) sites around 591 °C as indicated in the DSC plot (Figure 447 6), or both high pressure and high temperature cause the 448 structural transition.

Single Crystal Structure. Single crystals were grown using 450 CuNiSb₂-AP as the starting material and AlCl₃ as the transport 451 reagent at 800-765 °C. A few small (<0.1 mm) crystals were 452 obtained and selected for the single crystal X-ray diffraction 453 measurement. The data collection was carried out at 150 K 454 instead of 300 K, because of the low freezing point of the 455 mineral oil used to support the single crystal. The trigonal 456 crystal system is confirmed with the P3m1 space group. On the 457 basis of the electron density, transition metals occupy the (0, 0, 458 0) and (0, 0, 1/2) sites, and Sb atoms occupy the (0, 0, 459

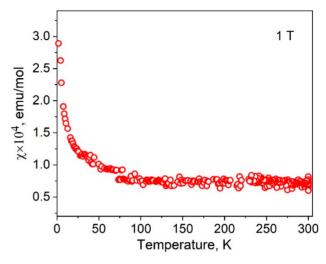
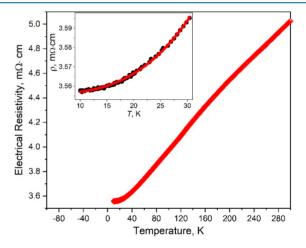


Figure 8. Rietveld refinement of SPXD of $CuNiSb_2$ -8 GPa in the P3m1 space group with observed data (pink), calculated pattern (black), Bragg position (green), and the difference between the observed and calculated pattern (blue).

460 0.2530) site. The position of Sb is nearly identical to that of 461 CuNiSb₂-8 GPa sample. Similarly to the refinement of 462 CuNiSb₂-8 GPa sample, the best single crystal refinement is 463 obtained by assigning disordered Cu/Ni on both (0, 0, 0) and 464 (0, 0, 1/2) sites, which in the single crystal case apparently also 465 contain 5% vacancies. The refined structural information and 466 related parameters are given in Tables 1 and 2 and S1. The 467 refined unit cell parameters (a = b = 3.9692 Å, c = 5.1297 Å, V $_{468} = 69.989 \text{ Å}^3$) are significantly smaller than those of CuNiSb₂-469 AP ($a = b = 4.05685 \text{ Å}, c = 5.13363 \text{ Å}, V = 73.1701 \text{ Å}^3$) and 470 CuNiSb₂-8 GPa (a = b = 4.05692 Å, c = 5.12467 Å, V =471 73.0446 Å³) samples. The crystal structure is relatively 472 compressed within the ab plane at the low temperature. The 473 refined Cu/Ni-Sb distances are 2.6185 (2) and 2.6337 (2) Å 474 and are smaller than those in both polycrystalline phases, due 475 to the smaller a and b parameters. As shown in Table 2, the M-476 M (M = Cu, Ni) and Sb-Sb distances are comparable to that of 477 the CuNiSb₂-8 GPa sample, because of the similar c parameter 478 and identical Sb positions. The cation disorder in the single 479 crystal is consistent with the use of high temperatures during 480 the crystal growth.


Physical Properties. Magnetic susceptibility as a function 482 of temperature was conducted on $\text{CuNiSb}_2\text{-AP}$ powder 483 samples with an applied magnetic field of 1 T. The data is 484 noisy due to the weak signal of magnetic susceptibility (\sim 3 × 485 10^{-4} emu/mol at 2 K). The bump at 75 K is due to the 486 transition from paramagnetic (<75 K) to diamagnetic (>75 K) 487 region with raw data above 75 K being negative. The 488 diamagnetic correction was approximately carried out by 489 subtracting the reported Pascal constants of Cu^+ (-12×10^{-6} 490 emu/mol), Ni^{2+} (-12×10^{-6} emu/mol), and covalent Sb (III, 491 -74×10^{-6} emu/mol). The overall trend shown in Figure 9 492 indicates that $\text{CuNiSb}_2\text{-AP}$ is Pauli paramagnetic, which is 493 similar to the magnetic behavior observed in NiSb. 68

CuNiSb₂-AP powder samples were pressed into a dense pellet (91% density) to measure the thermoelectric properties because some related "112" materials such as CuTmTe₂ and AgTmTe₂ have shown good properties. The PXD pattern for the dense pellet indicates that the phase does not change after the SPS treatment (Figure S5). Resistivity (ρ) was

Figure 9. Temperature-dependent magnetic susceptibility of CuNiSb₂-AP with an applied magnetic field of 1T.

measured from 2 to 300 K with the thermal transport option 500 (TTO) two-point method with a PPMS. The alternating 501 current (AC) four-point measurement transport option was 502 not carried out. In low resistivity systems, it is known that 503 using a two-probe method can overestimate resistivity by up to 504 an order of magnitude due to contact resistance. The 505 resistivity increases as the temperature increases from 2 to 300 506 K, which indicates that the sample is metallic (Figure 10), but 507 f10

Figure 10. Electrical resistivity as a function of temperature. The inset shows the fitting with $\rho = \rho_0 + AT^n$ below 30 K.

the high residual resistivity at low temperature implies that this 508 material falls in the range of a bad metal. Fitting the data below 509 30 K with the function $\rho = \rho_{\rm o} + {\rm A}T^{\rm n}$ yields $\rho = 3.5 + 9.5T^{\rm 3}$, 510 which suggests electron–electron correlations and also some 511 contributions from phonons. To Due to the metallic con-512 ductivity, the high thermal conductivity (~15 W/K·m at 300 513 K) (Figure 11) is expected. The Seebeck coefficient (~1 μ V/ 514 f11 K) is also very small (Figure S6), which renders this material a 515 poor thermoelectric.

Electronic Structures. Unlike "112" chalcogenides such as 517 LiCrQ₂ (Q = S, Se, Te), in which the formal oxidation states of 518 cations and anions can be assigned as +1, +3, -2, respectively, 519 based on the Zintl–Klemm concept that more electropositive 520 elements are electron donors such as alkali, alkaline earth, and 521 rare earth elements. The discussed formal charge above in 522

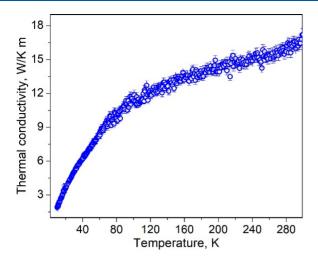
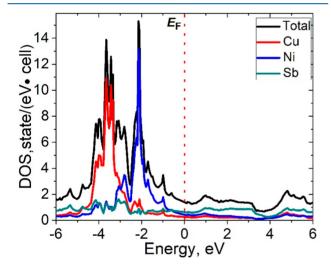
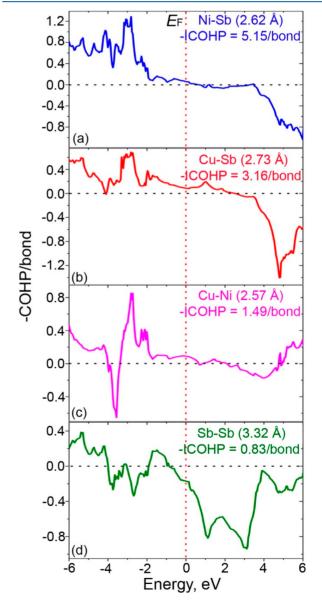


Figure 11. Thermal conductivity as a function of temperature.

523 Cu⁺Ni²⁺Sb₂³⁻ cannot be simply interpreted using Zintl-524 Klemm concept due to 3d electrons. This interpretation is in 525 contrast to the electronic structure in which the valence band is 526 mainly composed of transition metals Cu-d and Ni-d instead of 527 Sb-p orbitals (Figure 12). The density of states (DOS) of

f12




Figure 12. Density of state (DOS) of CuNiSb₂-AP.

528 $\text{CuNiSb}_2\text{-AP}$ was calculated using both LMTO (Figure 12) 529 and Wien2k (Figure S7) software that resulted in very similar 530 results. The DOS of Cu, Ni, and Sb are distributed over the 531 whole energy range from -6 eV to the Fermi level in the 532 valence band, which suggests the strong hybridization between 533 Cu/Ni and Sb with covalent bonding as the major bonding 534 character.

The nonzero DOS at the Fermi level $(E_{\rm F})$ indicates the metallicity of the compound, which is in agreement with the say experimental resistivity measurement (Figure 10). The maximum DOS of Ni and Cu orbitals locates at lower energy $(\sim -2, -3.5 \text{ eV}, \text{ respectively})$ below the $E_{\rm F}$. The metallic nature and small DOS (small effective mass) at the $E_{\rm F}$ explain the small Seebeck coefficient observed in CuNiSb₂-AP. To understand that CuNiSb₂-AP adopts the metal-ordered NiAsderived structure $(P\overline{3}m1)$ instead of a metal-disordered NiAsset type structure $(P6_3/mmc)$, we simulate the disordered NiAsset structure with virtual crystal approximation (VCA). The

calculations indicate that the energy of CuNiSb_2 in $P\overline{3}m1$ 546 space group is much lower (19.9 eV/f.u.) than that in the $P6_3$ /547 mmc space group. We also carried out the CuNiSb_2 -8 GPa 548 phase with metal-ordered NiAs-derived structure ($P\overline{3}m1$) 549 using the unit cell parameters from the Rietveld refinement. 550 The DOS is very similar to that of the CuNiSb_2 -AP phase. 551 Even though it is hard to precisely calculate the electronic 552 structure of the CuNiSb_2 -8 GPa phase with the metal-553 disordered structure in the $P\overline{3}m1$ space group, the overall 554 shape of DOS is probably the same.

To understand the bonding nature in CuNiSb₂, we carried 556 out the crystal orbital Hamilton population (COHP) analysis 557 of Ni-Sb, Cu-Sb, Cu-Ni, and Sb-Sb. The positive and negative 558 -COHP represents bonding and antibonding, respectively. As 559 shown in Figure 13, Ni-Sb and Cu-Sb bonding states locate 560 f13 mainly below the $E_{\rm F}$ with weak bonding at the $E_{\rm F}$. The 561 nonbonding character of Ni-Sb is mainly at energy higher than 562 the $E_{\rm F}$ up to 3 eV. The Ni-Sb and Cu-Sb covalent bonding are 563

Figure 13. Crystal orbital Hamilton population (COHP) plots of Ni-Sb (a), Cu-Sb (b), Cu-Ni(c), and Sb-Sb (d) interactions in CuNiSb₂-AP.

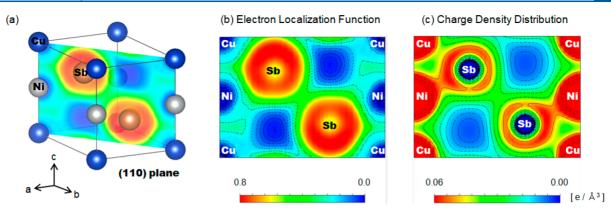


Figure 14. Structure of CuNiSb₂-AP with a (110) slice of ELF (a), electron localization function (b), and particle charge density distribution integrated from $E_F - 2$ eV to E_F (c) in the (110) plane.

564 expected based on the bond distances observed, as discussed 565 above, which is corroborated by the large negative integrated 566 COHP (-ICHOP) of Ni-Sb (5.15 eV/bond) and Cu-Sb (3.16 567 eV/bond). The higher magnitude of -ICHOP of Ni-Sb is 568 consistent with a stronger covalent bond in Ni- Sb than in Cu-569 Sb. The Cu-Ni bonding states are also observed at and near the 570 $E_{\rm F}$, with the overall — ICHOP of 1.49 eV/bond, which is 571 smaller than those of Cu/Ni-Sb. The antibonding states of Sb-572 Sb exist at the $E_{\rm F}$, but there are bonding characters in energy 573 ranges of -6 eV to -4 eV and -2 eV to -1 eV. The overall—574 ICHOP of 0.83 eV/bond suggests weak Sb-Sb interactions in 575 the structure.

The bonding nature of CuNiSb₂ is further studied with electron localization function (ELF) and charge density distribution (Figure 14). A slice of ELF that included all Cu, 579 Ni, and Sb atoms are shown in Figure 14b, with the 580 corresponding charge density distribution displayed in Figure 14c. The highest electron localization is around Sb atoms, and 582 there are electrons distributed between the nearest Sb atoms. The larger area of lowest electron localization around Ni than that of Cu indicates that Ni shared more electrons with Sb 585 atoms for forming the Cu/Ni-Sb bond. However, a maximum 586 is not observed between Cu/Ni-Sb to directly confirm the covalent bond using ELF analysis. The charge density distribution clearly shows the highest charge around Ni 589 atoms and its extension to neighboring Sb atoms, indicating strong Ni-Sb bonding. Cu-Sb and Cu-Ni bonding also exist based on the charge density distribution. The absence of the 592 minimum of electron localization and charge density between 593 Sb atoms indicates the existence of the weak Sb-Sb bonding. 594 Both ELF and charge density distribution results support the 595 COHP analysis with the bonding strength decreases in the 596 order of Ni-Sb, Cu-Sb, Cu-Ni, and Sb-Sb bonding.

7 CONCLUSION

598 Polycrystalline CuNiSb₂ was successfully synthesized at 599 ambient pressure for the first time with a two-step solid-state 600 method. Single crystals were also obtained by chemical vapor 601 transport. Rietveld refinements based on synchrotron X-ray 602 diffraction data indicate that CuNiSb₂ adopts a cation-ordered 603 NiAs-derived structure type in $P\overline{3}m1$ space group instead of 604 NiAs structure ($P6_3/mmc$), which is ascribed to the 605 significantly lower energy of the ordered structure relative to 606 the disordered one as confirmed by first principle calculations. 607 The structure is constructed by Ni-Sb, Cu-Sb covalent bonds, 608 Cu-Ni metallic bonds, and weak Sb-Sb interactions, which is

supported by the bond lengths, calculations of COHP, ELF, 609 and charge density. The space group symmetry remains 610 unchanged when the sample is pressed at 8 GPa high pressure 611 and 700 °C, but the cations appear to disorder, which is also 612 observed in the single crystal structure refinement. The analysis 613 of the specific effect of high pressure on the structure is in 614 progress and will be reported in due course. Both the 615 temperature dependence of resistivity and the calculated 616 DOS indicate that CuNiSb₂ is metallic. The Pauli para- 617 magnetism, low Seebeck coefficient, and high thermal 618 conductivity indicate that CuNiSb2 is not a potential magnetic 619 or thermoelectric material. However, CuNiSb₂ represents a 620 rare case of "112" in ternary pnictides and provides a reference 621 for further study of "112" compounds of which many are 622 predicted to be promising thermoelectrics.²² More "112" 623 ternary pnictides such as T₁T₂Pn₂ or RTPn₂ (T = transition 624 metal, R = rare-earth metal) with metal-ordered NiAs-derived 625 structure require further exploration using solid-state methods 626 at ambient and high pressure and/or other synthetic methods 627 including Sb, Bi, and salt fluxes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 631 https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01848. 632

Refined structural parameters of single crystal; PXD 633 patterns of samples after the first annealing step, TGA 634 measurement, SPS treatment, and CuNiSb₂-8 GPa; 635 overall elemental mapping of CuNiSb₂-AP; Seebeck 636 coefficient of CuNiSb₂-AP; DOS and band structure of 637 CuNiSb₂-AP using the WIEN2k software (PDF)

629

630

646

647

Accession Codes

CCDC number 2010628 contains the supplementary crystallo- 640 graphic data for this paper. These data can be obtained free of 641 charge from FIZ Karlsruhe via www.ccdc.cam.ac.uk/structures. 642 or by emailing data_request@ccdc.cam.ac.uk, or by contacting 643 The Cambridge Crystallographic Data Centre, 12 Union Road, 644 Cambridge CB2 1EZ, UK; fax: + 44 1223 336033. 645

AUTHOR INFORMATION

Corresponding Authors

I

Martha Greenblatt — Department of Chemistry and Chemical 648
Biology, Rutgers, The State University of New Jersey,
Piscataway, New Jersey 08854, United States; ◎ orcid.org/
0000-0002-1806-2766; Email: greenbla@chem.rutgers.edu 651

f14

Xiaoyan Tan — Department of Chemistry and Biochemistry,
 George Mason University, Fairfax, Virginia 22030, United
 States; Department of Chemistry and Chemical Biology,
 Rutgers, The State University of New Jersey, Piscataway, New
 Jersey 08854, United States; orcid.org/0000-0002-1742 8252; Email: xtan6@gmu.edu

658 Authors

663

664

665

666

667

668

669

670

671

672

673

678

679

680

681

682

684

685

686

687

688

689

690

691

692

Callista M. Skaggs — Department of Chemistry and
Biochemistry, George Mason University, Fairfax, Virginia
22030, United States; orcid.org/0000-0002-4380-2201
Chang-long Kang — Department of Physics and Astronomy

Chang-Jong Kang — Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States; orcid.org/0000-0003-2895-

Christopher J. Perez — Department of Chemistry, University of California, Davis, California 95616, United States;
orcid.org/0000-0002-1088-0190

Joke Hadermann – EMAT, University of Antwerp, B-2020 Antwerp, Belgium; orcid.org/0000-0002-1756-2566

Thomas J. Emge – Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States

Corey E. Frank – Department of Chemistry and Chemical
Biology, Rutgers, The State University of New Jersey,
Piscataway, New Jersey 08854, United States; orcid.org/
0000-0003-2638-7795

Chongin Pak – Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States

Saul H. Lapidus – Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States;

orcid.org/0000-0002-7486-4325

David Walker – Lamont Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States

Gabriel Kotliar — Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States; orcid.org/0000-0001-6366-7687

Susan M. Kauzlarich — Department of Chemistry, University of California, Davis, California 95616, United States;
orcid.org/0000-0002-3627-237X

693 Complete contact information is available at: 694 https://pubs.acs.org/10.1021/acs.inorgchem.0c01848

695 Notes

696 The authors declare no competing financial interest.

97 ACKNOWLEDGMENTS

698 C.-J.K., G.K., and M.G. were supported by the Center for 699 Computational Design of Functional Strongly Correlated 700 Materials and Theoretical Spectroscopy under DOE Grant 701 No. DE-FOA-0001276. S.M.K, C.J.P. thank NSF DMR-702 1709382 for funding. C.M.S. and X.T. were supported by the 703 George Mason University and COS-Seed Award No. 181283. 704 Use of the Advanced Photon Source at Argonne National 705 Laboratory was supported by the U.S. Department of Energy, 706 Office of Science, Office of Basic Energy Sciences, under 707 Contract No. DE-AC02-06CH11357. The authors thank Dr. 708 V. Ovidiu Garlea for assistance with Rietveld refinement, Dr. 709 N. J. Ghimire for useful discussions on resistivity data, and Dr. 710 K. Kovnir for access to the PPMS.

REFERENCES

- (1) Villars, P. Pearson's Handbook: Desk ed.: Crystallographic Data for 712 Intermetallic Phases Rev., Sub ed.; ASM International: Materials Park, 713 1997.
- (2) White, J. G.; Pinch, H. L. The Crystal Structure of Lithium 715 Thiochromite, LiCrS₂. *Inorg. Chem.* **1970**, *9*, 2581–2583.
- (3) van Laar, B.; Ijdo, D.J.W. Preparation, Crystal Structure, and 717 Magnetic Structure of LiCrS₂ and LiVS₂. *J. Solid State Chem.* **1971**, 3, 718 590–595.
- (4) Kobayashi, S.; Ueda, H.; Michioka, C.; Yoshimura, K. 720 Competition Between the Direct Exchange Interaction and Super-721 exchange Interaction in Layered Compounds LiCrSe₂, LiCrTe₂, and 722 NaCrTe₂ with a Triangular Lattice. *Inorg. Chem.* **2016**, 55, 7407–723 7413.
- (5) Dahn, J. R.; McKinnon, W. R.; Haering, R. R.; Buyers, W. J. L.; 725 Powell, B. M. Structure Determination of $\text{Li}_{X}\text{TiS}_{2}$ by Neutron 726 Diffraction. *Can. J. Phys.* **1980**, 58, 207–213.
- (6) Le Blanc, A.; Rouxel, J. Structural Types of Intercalation 728 Compounds MSnS₂ (M = Li, Na, K, Rb). C. R. Acad. Sci, Ser. C: 729 Chem. **1972**, 274, 786–788.
- (7) Guseinov, G. D.; Ismailov, M. Z.; Guseinov, G. On the New 731 Semiconducting Compound CdTlS₂. *Mater. Res. Bull.* **1967**, 2, 765–732 772.
- (8) Guseinov, G. D.; Guseinov, G. G.; Ismailov, M. Z.; Godzhaev, E. 734 M. Structure and Physical Properties of New Semiconductor 735 Compounds CdTlS₂(Se₂, Te₂). *Inorg. Mater.* **1969**, *5*, 27–32.
- (9) Avilov, A. S.; Agaev, K. A.; Guseinov, G. G.; Imamov, R. M. 737 Determination of Crystals Structures of Some Three-Component 738 Semiconductors with the Overall Formula A. *Kristallografiya* **1969**, *14*, 739 443–446.
- (10) Boller, H.; Klepp, K. O.; Kirchmayr, K. On the Knowledge of 741 Two Thallium-Tellurochromites [TlCrTe₂ and TlCr₃Te₈]. *Mater. Res.* 742 *Bull.* **1995**, 30, 365–371.
- (11) Ronneteg, S.; Lumey, M. W.; Dronskowski, R.; Berger, R. The 744 Magnetic Structure of TlCrTe₂. J. Alloys Compd. **2005**, 403, 71–75. 745
- (12) Daszkiewicz, M.; Gulay, L. D.; Shemet, V. Y.; Pietraszko, A. 746 Comparative Investigation of the Crystal Structure of LnCuSe₂ 747 Compounds (Ln = Tb, Dy, Ho, Er, Tm, Yb, and Lu). *Z. Anorg.* 748 *Allg. Chem.* **2008**, 634, 1201–1204.
- (13) Gulay, L. D.; Daszkiewicz, M.; Shemet, V. Y. Crystal Structure 750 of \sim RCu₃S₃ and \sim RCuTe₂ (R = Gd-Lu) Compounds. *J. Solid State* 751 *Chem.* **2012**, 186, 142–148.
- (14) Gulay, L. D.; Stępień-Damm, J.; Daszkiewicz, M.; Pietraszko, A. 753 Crystal Structure of the TmAgTe₂ Compound. *J. Alloys Compd.* **2007**, 754 431, L1–L3.
- (15) Shemet, V. Y.; Gulay, L. D.; Olekseyuk, I. D. Crystal Structures 756 of the $ScAgSe_2$ and $Sc_{1.02}Cu_{0.54}Sn_{1.1}S_4$ Compounds. J. Alloys Compd. 757 **2006**, 426, 186–189.
- (16) Geller, S.; Wernick, J. H. Ternary Semiconducting Compounds 759 with Sodium Chloride-like Structure: AgSbSe₂, AgSbTe₂, AgBiS₂, 760 AgBiSe₂. Acta Crystallogr. **1959**, 12, 46–54.
- (17) Lin, H.; Chen, H.; Shen, J. N.; Chen, L.; Wu, L. M. Chemical 762 Modification and Energetically Favorable Atomic Disorder of a 763 Layered Thermoelectric Material TmCuTe₂ Leading to High 764 Performance. *Chem. Eur. J.* **2014**, 20, 15401–15408.
- (18) Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Li, G.; Bajaj, 766 S.; Pöhls, J. H.; Broberg, D.; Chen, W.; Jain, A.; et al. Computational 767 and Experimental Investigation of TmAgTe₂ and XYZ₂ Compounds, a 768 New Group of Thermoelectric Materials Identified by First-Principles 769 High-Throughput Screening. *J. Mater. Chem. C* **2015**, 3, 10554–770 10565
- (19) Pan, L.; Bérardan, D.; Dragoe, N. High Thermoelectric 772 Properties of N-Type AgBiSe₂. J. Am. Chem. Soc. **2013**, 135, 4914–773 4917.
- (20) Zou, M.; Liu, Q.; Wu, C. F.; Wei, T. R.; Tan, Q.; Li, J. F.; Chen, 775 F. Comparing the Role of Annealing on the Transport Properties of 776 Polymorphous $AgBiSe_2$ and Monophase $AgSbSe_2$. RSC Adv. **2018**, 8, 777 7055–7061.

779 (21) Li, S.; Feng, Z.; Tang, Z.; Zhang, F.; Cao, F.; Liu, X.; Singh, D. 780 J.; Mao, J.; Ren, Z.; Zhang, Q. Defect Engineering for Realizing p-781 Type AgBiSe₂ with a Promising Thermoelectric Performance. *Chem.* 782 *Mater.* **2020**, 32, 3528–3536.

(22) Pöhls, J.-H.; Luo, Z.; Aydemir, U.; Sun, J.-P.; Hao, S.; He, J.;

- 784 Hill, I. G.; Hautier, G.; Jain, A.; Zeng, X.; Wolverton, C.; Snyder, G. J.; 785 Zhu, H.; White, M. A. First-Principles Calculations and Experimental 786 Studies of XYZ₂ Thermoelectric Compounds: Detailed Analysis of 787 van Der Waals Interactions. *J. Mater. Chem. A* **2018**, *6*, 19502–19519.
- 787 van Der Waais Interactions. J. Mater. Chem. A 2018, 6, 19502–19519.
 788 (23) Lange, S.; Nilges, T.; Hoffmann, R. D.; Pöttgen, R. The
 789 Stannides AuNiSn₂ and AuCuSn₂ Bulk Synthesis and Superstructure
 790 Determination. Z. Anorg. Allg. Chem. 2006, 632, 1163–1166.
- 791 (24) Lange, S.; Schappacher, F. M.; Johrendt, D.; Nilges, T.; 792 Hoffmann, R. D.; Pöttgen, R. 119Sn Mössbauer Spectroscopy and 793 Chemical Bonding in $AuTSn_2$ (T = Ni, Cu, Pd). *Z. Anorg. Allg. Chem.* 794 **2006**, 632, 1432–1436.
- 795 (25) Murakami, T.; Yamamoto, T.; Tassel, C.; Takatsu, H.; Ritter, 796 C.; Ajiro, Y.; Kageyama, H. HfMnSb₂: A Metal-Ordered NiAs-type 797 Pnictide with a Conical Spin Order. *Angew. Chem., Int. Ed.* **2016**, *SS*, 798 9877–9880.
- 799 (26) Rozenberg, K. A.; Rastsvetaeva, R. K.; Chukanov, N. V.; Pekov, 800 I. V. Crystal Structure of a New Mineral CuNiSb₂. *Dokl. Chem.* **1994**, 801 39, 224–226.
- 802 (27) Kabalov, Y.; Sokolova, E. Discovery of New Minerals 803 Zlatogorite, Turkestanite and Belovite-(La) by Rietveld Refinement 804 from X-Ray Powder Diffraction Data. *Mater. Sci. Forum* **1998**, 278–805 281, 785–790.
- 806 (28) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; 807 Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii 808 Revisited. *Dalt. Trans.* **2008**, *21*, 2832–2838.
- 809 (29) Reimers, W; Hellner, E; Treutmann, W; Heger, G Magnetic 810 Phase Diagram of the System $Mn_{1-x}Cr_xSb$ (0 $\leq x \leq$ 1). *J. Phys. C*: 811 *Solid State Phys.* **1982**, *15*, 3597–3615.
- 812 (30) Varich, N. I.; Varich, A. N.; Kravtsov, I. A. Continuous Series of 813 Solid Solutions between Intermetallic Compounds in Quasi-Binary 814 Systems. *Reports Aca. Sci. Uka. SSR. Ser. A* 1973, *1*, 84–88.
- 815 (31) Adachi, K.; Imura, R.; Matsui, M.; Sawamoto, H. Spin Glass 816 State of MnxNi1-XSb: Synthesis in High Pressure and High 817 Temperature Atmospheres. *J. Phys. Soc. Jpn.* **1978**, *44*, 114–121.
- 818 (32) Chen, R. Y.; Zhang, S. J.; Zhang, M. Y.; Dong, T.; Wang, N. L. 819 Revealing Extremely Low Energy Amplitude Modes in the Charge-820 Density-Wave Compound LaAgSb₂. *Phys. Rev. Lett.* **2017**, *118*, 821 107402.
- 822 (33) Kuo, C. N.; Shen, D.; Li, B. S.; Quyen, N. N.; Tzeng, W. Y.; 823 Luo, C. W.; Wang, L. M.; Kuo, Y. K.; Lue, C. S. Characterization of 824 the Charge Density Wave Transition and Observation of the 825 Amplitude Mode in LaAuSb₂. *Phys. Rev. B: Condens. Matter Mater.* 826 *Phys.* **2019**, 99, 235121.
- 827 (34) Wang, K.; Petrovic, C. Large Linear Magnetoresistance and 828 Magnetothermopower in Layered SrZnSb₂. *Appl. Phys. Lett.* **2012**, 829 *101*, 152102.
- 830 (35) Liu, J.; Hu, J.; Cao, H.; Zhu, Y.; Chuang, A.; Graf, D.; Adams, 831 D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; et al. Nearly 832 Massless Dirac Fermions Hosted by Sb Square Net in BaMnSb₂. *Sci.* 833 *Rep.* **2016**, *6*, 1–9.
- 834 (36) Walker, D.; Li, J. Castable Solid Pressure Media for Multianvil 835 Devices. *Matter Radiat. Extrem.* **2020**, *5*, 018402.
- 836 (37) SMART and SAINT. Bruker AXS INc.: Madison, WI, 2007.
- 837 (38) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr., 838 Sect. A: Found. Crystallogr. 2008, 64A, 112–122.
- 839 (39) Bellaiche, L.; Vanderbilt, D. Virtual Crystal Approximation 840 Revisited: Application to Dielectric and Piezoelectric Properties of 841 Perovskites. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2000**, *61*, 842 7877–7882.
- 843 (40) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; 844 Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, 845 I.; Corso, A. D.; Gironcoli, S. d.; Fabris, S.; Fratesi, G.; Gebauer, R.; 846 Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-847 Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, St.;

- Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; 848 Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. 849 QUANTUM ESPRESSO: A Modular and Open-Source Software 850 Project for Quantum Simulations of Materials. *J. Phys.: Condens.* 851 *Matter* 2009, 21, 395502.
- (41) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; 853
 Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; 854
 Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, 855
 A.; de Gironcoli, S.; Delugas, P.; Di Stasio, R. A., Jr.; Ferretti, A.; 856
 Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; 857
 Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; 858
 Kucukbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; 859
 Nguyen, N. L.; Nguyen, H.-V.; Otero-De-La-Roza, A.; Paulatto, L.; 860
 Ponce, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. 861
 P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; 862
 Wu, X.; Baroni, S. Advanced Capabilities for Materials Modelling with 863
 Q Uantum ESPRESSO. J. Phys.: Condens. Matter 2017, 21, 395502. 864
 (42) Hamann, D. R. Optimized Norm-Conserving Vanderbilt 865
- (42) Hamann, D. R. Optimized Norm-Conserving Vanderbilt 865 Pseudopotentials. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2013**, 866 88, 1–10.
- (43) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: 868 Condens. Matter Mater. Phys. 1994, 50, 17953–17979.
- (44) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy 870 Calculations for Metals and Semiconductors Using a Plane-Wave 871 Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.
- (45) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab 873 Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys.* 874 *Rev. B: Condens. Matter Mater. Phys.* 1996, 54, 11169–11186.
- (46) Joubert, D. From Ultrasoft Pseudopotentials to the Projector 876 Augmented-Wave Method. *Phys. Rev. B: Condens. Matter Mater. Phys.* 877 **1999**, *59*, 1758–1775.
- (47) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient 879 Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868. 880
- (48) Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, 881 J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for 882 Calculating Crystal Properties. Technische Universität Wien: Wien: 883 Austria, 2001.
- (49) Tank, R.; Jepsen, O.; Burkhardt, A.; Andersen, O. K. *The* 885 *Program TB-LMTO-ASA*. Version 4.7; Max-Planck-Institut für 886 Festkorperforschung: Stuttgart, 1999.
- (50) Fürtauer, S.; Flandorfer, H. A New Experimental Phase 888 Diagram Investigation of Cu-Sb. *Monatsh. Chem.* **2012**, *143*, 1275–889 1287
- (51) Baernighausen, H. Group-Subgroup Relations Between Space 891 Groups: A Useful Tool in Crystal Chemist. MATCH, Commun. Math. 892 Chem. 1980, 9, 139.
- (52) Zhuravlev, N. N.; Zhdanov, G. S.; Smirnova, Y. M. 894 Investigation of Ternary Solid Solutions on the Basis of Super- 895 conducting Compounds. *Phys. Met. Metallogr.* **1962**, *13*, 55–61.
- (53) Kjekshus, A.; Walseth, K. P.; Rasmussen, S. E.; Heinegård, D.; 897 Balaban, A. T.; Craig, J. C. On the Properties of the $Cr_{1+x}Sb$, $Fe_{1+x}Sb$, 898 $Co_{1+x}Sb$, $Ni_{1+x}Sb$, $Pd_{1+x}Sb$, and $Pt_{1+x}Sb$ Phases. *Acta Chem. Scand.* 899 1969, 23, 2621–2630.
- (54) Makovetskii, G. I.; Shakhlevich, G. M. Phase Diagram and 901 Certain Properties of Alloys of the NiSb NiTe System. *Inorg. Mater.* 902 **1982**, *18*, 186–189.
- (55) Lomnytska, Y. F.; Berezovets, V. V. Phase Relations in the Nb- 904 Ni-Sb System. *Inorg. Mater.* **2005**, *41*, 1324–1329.
- (56) Grazhdankina, N. P.; Medvedeva, I. V. Effect of High Pressure 906 on Magnetic Properties of Manganese-Chromium-Antimony 907 (Mn_{1-x}Cr_xSb) Alloys. *Fiz. Met. Metalloved.* **1983**, *55*, 96–101. 908
- (57) Dilshad, K.; Vankar, V. D.; Goel, T. C.; Chopra, K. L. 909 Metastable Structures of Splat-Cooled and Vapor-Deposited Lead and 910 Antimony Films. *Thin Solid Films* **1979**, *58*, 327–332.
- (58) Papoian, G. A.; Hoffmann, R. Hypervalent Bonding in One, 912 Two, and Three Dimensions: Extending the Zintl-Klemm Concept to 913 Nonclassical Electron-Rich Networks. *Angew. Chem., Int. Ed.* **2000**, 39, 914 2408–2448.

- 916 (59) Mueller, W. Preparation and Crystal Structure of Lithium 917 Antimonide (Li₂Sb). Z. Naturforsch., B: J. Chem. Sci. **1977**, 32B, 357–918 359.
- 919 (60) Brechtel, E.; Cordier, G.; Schafer, H. New Ternary Alkaline 920 Earth-Transition Element Pnictide. *J. Less-Common Met.* **1981**, 79, 921 131–138.
- 922 (61) Rehr, A.; Kauzlarich, S. M. Eu₁₄MnSb₁₁, a Novel Rare Earth 923 Metal Zintl Compound. *J. Alloys Compd.* **1994**, 207–208, 424–426.
- 924 (62) Hu, Y.; Wang, J.; Kawamura, A.; Kovnir, K.; Kauzlarich, S. M.
- 924 (62) Hu, Y.; Wang, J.; Kawamura, A.; Kovnir, K.; Kauziarich, S. M. 925 Yb₁₄MgSb₁₁ and Ca₁₄MgSb₁₁-New Mg-Containing Zintl Compounds
- 926 and Their Structures, Bonding, and Thermoelectric Properties. *Chem.* 927 *Mater.* **2015**, 27, 343–351.
- 928 (63) Alemany, P.; Alvarez, S.; Hoffmann, R. The Electronic 929 Structure of $Ba_7Ga_4Sb_9$, a Compound Seemingly Probing the Limits 930 of the Zintl Concept. *Inorg. Chem.* **1990**, *29*, 3070–3073.
- 931 (64) He, H.; Stoyko, S.; Bobev, S. New Insights into the Application 932 of the Valence Rules in Zintl Phases-Crystal and Electronic Structures 933 of Ba₇Ga₄P₉, Ba₇Ga₄As₉, Ba₇Al₄Sb₉, Ba₆CaAl₄Sb₉, and Ba₆CaGa₄Sb₉. *J.* 934 *Solid State Chem.* **2016**, 236, 116–122.
- 935 (65) Brylak, M.; Möller, M. H.; Wolfgang, J. Ternary Arsenides 936 ACuAs₂ and Ternary Antimonides AAgSb₂ (A = Rare-Earth Elements 937 and Uranium) with HfCuSi₂-Type Structure. *J. Solid State Chem.* 938 **1995**, *115*, 305–308.
- 939 (66) Ferguson, M. J.; Hushagen, R. W.; Mar, A. Crystal Structures of 940 La₃ZrSb₅, La₃HfSb₅, and LaCrSb₃. Structural Relationships in Ternary 941 Rare-Earth Antimonides. *J. Alloys Compd.* **1997**, *249*, 191–198.
- 942 (67) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's 943 Constants. J. Chem. Educ. 2008, 85, 532–536.
- 944 (68) Kobayashi, H.; Kageshima, M.; Kimura, N.; Aoki, H.; 945 Oohigashi, M.; Motizuki, K.; Kamimura, T. Magnetism and de 946 Haas-Van Alphen Effect in NiSb. *J. Magn. Magn. Mater.* **2004**, 272–947 276, 2003–2004.
- 948 (69) Singh, Y. Electrical Resistivity Measurements: A Review. *Int. J.* 949 Mod. Phys.: Conf. Ser. 2013, 22, 745–756.
- 950 (70) Singleton, J. Band Theory and Electronic Properties of Solids, 951 1st ed.; Oxford Matter Series in Physics, 2001.