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DNA Repair Pathway Choices in
CRISPR-Cas9-Mediated Genome

Chaoyou Xue'* and Eric C. Greene'*

Many clustered regularly interspaced short palindromic repeats (CRISPR)-
CRISPR-associated protein 9 (Cas9)-based genome editing technologies take
advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at
desired locations within a genome. Further processing of the DSBs by the
cellular DSB repair machinery is then necessary to introduce desired mutations,
sequence insertions, or gene deletions. Thus, the accuracy and efficiency
of genome editing are influenced by the cellular DSB repair pathways.
DSBs are themselves highly genotoxic lesions and as such cells have
evolved multiple mechanisms for their repair. These repair pathways include
homologous recombination (HR), classical nonhomologous end joining
(cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand an-
nealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe
the mechanisms of DSB repair. Finally, we summarize recent findings of
factors that can influence the choice of DNA repair pathway in response to
Cas9-induced DSBs.

Introduction

DSB repair mechanisms have been harnessed for genome editing, based on the use of
engineered nucleases that introduce DSBs at target sites, and relies on these DNA repair path-
ways to insert, delete, or replace pieces of DNA [1]. Examples of engineered nucleases include
zinc-finger nucleases (ZFNs; see Glossary) [2], transcription activator-like effector nucleases
(TALENS) [3], and the CRISPR-Cas-based RNA guided DNA endonucleases [4-8]. DSBs
genotoxic DNA lesions, which if left unrepaired can cause chromosomal rearrangements, geno-
mic instability, and cell death. Eukaryotes have numerous pathways to repair DSBs [9-12]. Two
major pathways include error-free, template-dependent HR, and the error-prone, template-
independent cNHEJ [9,10]. Additional pathways include MMEJ and SSA, both of which are
more error-prone [11,12].

Genome editing is achieved through homology-directed repair (HDR) of the resulting
DSB, however, mammalian cells often prefer to repair DSBs by error-prone repair path-
ways, such as cNHEJ, which can generate undesirable mutations. The term HDR does
not represent a single DNA repair pathway. Instead, HDR is related to the nature of
DNA donor templates used to guide the DNA repair reaction, including double-stranded
DNA donor templated repair (DSTR) and single-stranded DNA donor templated repair
(SSTR) [13].

Here, we briefly describe the CRISPR-Cas9 system. We then discuss the different DSB repair
pathways, focusing mainly on mammalian DSB repair mechanisms. Finally, we discuss how
CRISPR-Cas9-induced DSBs are repaired by the host cell and the factors that influence the
choice of repair pathway.
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monogenic human genetic diseases.
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for asymmetric repair.
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Overview of the Cas9 CRISPR-Cas System

CRISPR technologies have emerged as powerful tools for genome engineering [5-7]. The funda-
mental basis for genome editing using the CRISPR protein Cas9 is the ability to introduce a precise
DSB within a genome based upon sequence complementarity with the guide (g)RNA (Box 1) [1].

Cas9 Nuclease Activity

Cas9 is a large multidomain protein comprising a recognition lobe, which is formed of the REC1,
REC2, and REC3 domains, and a nuclease lobe, which is composed of a protospacer-adjacent
motif (PAM)-interacting domain and two nuclease domains: a RuvC-like domain and an HNH-like
domain (Figure 1A) [4,8,14]. PAM recognition triggers initial unwinding of the adjacent double-
strand (ds)DNA (referred to as the seed region), allowing the gRNA to begin forming an RNA-
DNA hybrid (Figure 1A) [15,16]. If the DNA sequence is fully complementary to the gRNA, then
there can be further RNA-DNA hybrid formation, resulting in the formation of a stable R-loop
[16]. During R-loop formation, the Cas9 protein undergoes a conformational change to activate
its nuclease activity [17,18], allowing the HNH-like domain to cut the target DNA strand three
base pairs upstream from the PAM, while the RuvC-like nuclease domain cuts 3-5 bps away
on the non-target strand (Figure 1A) [19].

Off-target effects arise from the ability of Cas9 to tolerate mismatches between the gRNA and po-
tential dsDNA targets [20-22]. A single base mismatch in the PAM or seed region can reduce
Cas9 cleavage activity, but mismatches within the PAM-distal region are tolerated [4]. To address
this problem, high-fidelity variants of Cas9 have been developed [17,18,23-26]. For example,
eSpCas9(1.1) decreases off-target effects by weaking interactions between the protein and the
non-targeted DNA strand, such that partial DNA-RNA pairing interactions are less tolerated
[23]. SpCas9-HF1 decreases off-target effects by reducing interactions between the protein
and the targeted DNA strand [24], whereas HypaCas9 prevents DNA cleavage when there are
mismatches between the gRNA and potential off-target sites [17,18]. Cas9 mutations in the
REC3 domain, which affect the activation of Cas9 after DNA binding, also enhance target recog-
nition fidelity [25,26]. Development of these higher-fidelity Cas9 variants could be beneficial for
clinical applications.

Box 1. Overview of CRIPSR-Cas Systems

The first CRISPR locus was discovered more than three decades ago [189-191]. However, the function of these loci was
not recognized until 20 years later [192]. In 2007, Barrangou et al. demonstrated that CRISPR loci represent an adaptive
immune system, which can 'memorize' past viral infections by inserting viral genetic fragments into the host CRISPR array
[192]. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crBNAs, also referred to as guide RNA
or gRNA), which assemble with Cas effector proteins [193]. Using the crBNAs as guides, viral genomes are targeted
through sequence-specific DNA-RNA base pairing interactions and then destroyed [192,194-196]. CRISPR-Cas systems
can be divided into two classes (Class 1 and Class 2), each of which contains three types [197]. Class 1 systems are further
subdivided into types I, Ill, and IV, whereas Class 2 systems are subdivided into types Il, V, and VI [197]. Importantly, Class
2 CRISPR-Cas systems, such as Cas9, require just one protein component for interference, thus offering a significant ad-
vantage as genome editing tools [197]. Cas9 is the effector protein of type Il CRISPR-Cas systems and is the first CRISPR-
associated effector protein that was repurposed for genome editing (see Figure 1A in main text) [1]. In nature, Cas9 re-
quires two RNA molecules, a crRNA and a trans-activating crBNA (tracrRNA), which base pairs with the repeat sequence
of the crRNA [4,8,198]. The resulting Cas9-RNA complex must recognize a short DNA sequence motif called the
protospacer-adjacent motif (PAM) and then test the flanking dsDNA for sequence complementarity to the crRNA (Figure
1A) [15]. For genome engineering, the crRNA and tracrRNA can be combined into a single guide-RNA (sgRNA) without
affecting Cas9-mediated target binding and cleavage activities; we use the general term 'gRNA' to represent either the sin-
gle sgRNA or dual tracrRNA-crRNA (Figure 1A) [4-7]. The Cas9-gRNA complex must recognize a short DNA sequence
motif called the PAM and then test the flanking dsDNA for sequence complementarity to the crRNA (Figure 1A) [15]. When
Cas9 binds to the correct dsDNA target it cleaves the DNA to yield either blunt or staggered ends (Figure 1A) [14,19]. Ge-
nome editing is achieved during the repair of the resulting DSB [199]. Notably, Cas9 can potentially recognize and cleave
DNA sites that may not perfectly match the sgRNA or tracrRNA-crRNA, which has the potential to cause off-target ge-
nome mutations [20-22,199,200].
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Glossary

BLM: Bloom helicase is a member of
the RECQ helicase family. BLM
mutations are associated with the
disease Bloom’s syndrome, which is
characterized by a greatly increased
cancer risk.

BRCA1-BARD1: breast cancer type 1
susceptibility protein (BRCA1) and
BRCA1-associated RING domain 1
(BARD1) form a heterodimeric protein
complex that plays essential roles in
maintaining genome integrity.

Cas9: CRISPR-associated protein 9 is
an RNA-guided endonuclease from the
CRISPR adaptive immune system from
Streptococcus pyogenes. Cas9 has
emerged as a prominent tool in the
genome engineering field.

CRISPR: clustered regularly
interspaced short palindromic repeats
are bacterial chromosomal loci
consisting of short DNA sequences
derived from the genomes of foreign
pathogens. CRISPR loci provide a
‘memory" of past infections, allowing
Cas proteins to detect and destroy any
similar foreign pathogens during
subsequent infections.

DSTR: double-stranded DNA donor
templated repair, refers to any HDR
mechanism that utilizes a dsDNA as a
template to guide DNA repair.

HDR: homology-directed repair refers
to any DNA repair mechanism that
utilizes a homologous DNA donor to
help guide the repair of broken DNA
molecules.

PAM: the Protospacer adjacent motif or
PAM is a short DNA sequence required
by Cas9 to recognize a potential DNA
cleavage site. PAMs are found in
invading DNA but are not present in the
bacterial CRISPR locus, enabling Cas9
to identify and destroy pathogenic
viruses or plasmids without harming the
bacterial chromosome.

R-loop: refers to a double-stranded
nucleic acid structure comprised of one
DNA strand and one RNA strand.
RADS51: a protein that forms long helical
filaments on ssDNA. RAD51 filaments
pair the ssDNA with a related (i.e.,
homologous) dsDNA found elsewhere in
the genome. This pairing step allows
repair to take place using the
homologous DNA as a template to copy
any missing genetic information.
RADS51 paralogs: proteins that are
closely related to RAD51; promote HR
by stimulating the assembly and/or
stability of RAD51 filaments. Mammals
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Guide RNAs

The gRNA can be produced either in situ or ex situ [27]. For instance, the gRNA can be produced
intracellularly via transcription from a plasmid template or from a viral DNA [e.g., adeno-associ-
ated viruses (AAV), adenovirus (AdV), and lentivirus (LV)] and the resulting gRNA will bind to co-
expressed Cas9 protein to form the active Cas9-gRNA complex (Figure 1B) [28-31]. The
gRNA can also be produced using in vitro transcription or chemical synthesis (Figure 1B) [32].
An advantage of ex situ gRNA production is that the gRNAs can be synthesized with chemical
modifications that can protect the gRNA from digestion by cellular nucleases [33,34]. Chemical
gRNA modifications can also alter the thermodynamic stability of the gRNA-target dsDNA to im-
prove target recognition and decrease off-target activity [33,34]. gRNAs produced by chemical
synthesis can also include chemical maodifications to reduce cellular toxicity and inhibit type | in-
terferon a (IFN-a) related proinflammatory cytokine response, which is induced by single-strand
(ss)RNA recognition through the Toll-like receptor 7 (TLR7) (Figure 1B) [35,36].

Cas9-gRNA Delivery

Genome editing requires delivery of Cas9-gRNA to the cell nucleus (Figure 1B). Timing and dos-
age are important factors that can be modulated to prevent undesirable off-target effects [37,38].
Currently, there are three major delivery methods (Figure 1B). First, the mature Cas9-gRNA ribo-
nucleoprotein (RNP) can be delivered using gold nanoparticles or lipid nanoparticles [38-40]. This
delivery method provides control over the timing and dosage of the Cas9-gRNA. However, deliv-
ering such a large RNP can be challenging and its introduction has the potential to trigger immu-
nological responses [41]. Second, genes encoding Cas9 and the gRNA can be delivered with a
DNA vector (Figure 1B) [6,7,30,42]. Although, this method allows for long-term Cas9 and gRNA
expression, however, persistent expression of the Cas9 complex might increase potential for off-
target effects [32,43,44]. In addition, cellular receptors that sense exogenous DNA, including the
Toll-like receptor 9 (TLR9), melanoma 2 (AIM2), and cyclic GMP-AMP synthase-stimulator of in-
terferon genes (CGAS-STING), can cause cytotoxic effects and induce IFN-a related immune re-
sponses (Figure 1B) [45-48]. Third, the gRNA can be delivered along with an mRNA encoding
Cas9 [33]. This approach allows for transient Cas9 expression, which can help mitigate off-target
events [27], but may have limited efficiency due to rapid degradation of the Cas9-encoding
MRNA [33]. Several strategies have been developed to allow for conditional activation of Cas9
in situ, and for a more detailed discussion of these methods we refer readers to several recent re-
views [27,49-51].

Cas9 is currently being evaluated in several early clinical trials, including studies targeting
genetic diseases such as sickle cell anemia and [3-thalassemia (Phase I/Il; ClinicalTrials.gov
ID: NCT03745287 and NCT03655678), cancers such as B cell and non-Hodgkin lymphomas
(Phase I; ClinicalTrials.gov ID: NCT04035434), multiple myeloma (Phase I; ClinicalTrials.gov ID:
NCT04244656), and leukemia and lymphoma (Phase I/Il, Clinicaltrials.gov ID: NCT03166878)
[52]. In addition to Cas9, the type V CRISPR-Cas12a (formerly named Cpf1) system has
received widespread attention due to several advantages [53]. First, Cas12a is smaller than
Cas9 and easier to deliver in clinical applications [53]. Second, Cas12a is guided by a single
CRISPR (cr)RNA that is less than half the size of the short guide (sg)RNA for Cas9 [54]. In
addition, the CRISPR-Cas12a system is considered to have lower off-target efficiency,
which may be related to its lower nuclease activities [55,56]. Moreover, Cas12a cleaves
dsDNA with 4-5 bp staggered 5' overhangs, in contrast to the mixed blunt and 1-2 bp staggered
5" overhangs of Cas9, which might affect DNA repair outcomes (see later) [54]. However, the
recently discovered Cas12a cis (target-dependent) and trans dsDNA (target-independent)
nicking and cleavage activities may be detrimental for genome editing and need careful evaluation
[67,58].
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have two primary RAD51 paralog
complexes called CX3, comprised of
RAD51C and XRCC3, and BCDX2,
comprised of RAD51B, RAD51C,
RAD51D, and XRCC2.

RPA: replication protein A is a sSDNA
binding protein that protects ssDNA
from nucleases and prevents formation
of secondary structures. RPA is involved
in many reactions that include an ssDNA
intermediate.

SSTR: single-stranded DNA donor
templated repair, refers to any HDR
mechanism that utilizes a single-
stranded DNA as a template to guide
DNA repair.

TALENS: transcription activator-like
effector nucleases are artificial
endonucleases made up of short (33-35
amino acid) DNA-binding modules
called TALEs and can be engineered to
cut any desired DNA sequence.

ZFNs: zinc-finger nucleases are artificial
endonucleases that consist of a
designed zinc-finger protein (ZFP) fused
to the cleavage domain of a restriction
enzyme.
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Figure 1. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)- CRISPR-Associated Protein 9 (Cas9) Delivery. (A) Mechanism of

(A i
CRISPR-Cas9 genome editing. A short guide (sg)RNA/trans-activating CRISPR (tracr)RNA-CRISPR (cr)RNA associates with the Cas9 endonuclease to form the Cas9-
gRNA complex. The gRNA guides Cas9 to its target site of the genomic DNA by recognizing the protospacer-adjacent motif (PAM). When Cas9 binds to the correct
double strand (ds)DNA target, its HNH and RuvC nuclease domains cleave the DNA to vyield either blunt or staggered ends. Genome editing is achieved during the
repair of the resulting double-stranded break (DSB), resulting in precise mutations, gene deletions, or sequence insertions. (B) Cas9 can be delivered in three forms.
First, introducing Cas9-gRNA ribonucleoprotein (RNP) complex and DNA templates directly through nanoparticles, electroporation, or microinjection. Second,
delivering a plasmid DNA or viral vector for Cas9 and gRNA production in situ. Third, delivering separate gRNA together with mRNA for Cas9 protein expression inside
the cell. With the exception of microinjection, during which Cas9 components can be directly injected into the nucleus, other delivery methods release Cas9
components into the cytosol. DNA sensing receptors in endosome or cytosol, including the Toll-like receptor 9 (TLR9), melanoma 2 (AIM2) and cyclic GFP-AMP
synthase-stimulator of interferon genes (CGAS-STING), drive cell immune responses to foreign DNA. mRNA can also be recognized by TLR7 and TLR8 in endosomes

causing mRNA degradation and type | interferon a (IFN-a)-mediated immune responses. Cas9 in the cytosol can be directed into nucleus through nuclear localization
sequence; how plasmid DNA, viral DNA and DNA templates enter the nucleus remains unknown

642  Trends in Genetics, July 2021, Vol. 37, No. 7


Image of Figure 1

Trends in Genetics

Double-Strand Break Repair Pathways

In eukaryotic cells, the most prevalent DSB repair pathways include cNHEJ, MMEJ, SSA, and HR
(Figure 2). Here, we briefly discuss these different repair pathways and highlight the advantages
and disadvantages of each.

Classical Nonhomologous End Joining

cNHEJ is used for re-ligating broken DNA ends, but it is inaccurate and often leads to new mu-
tations [10]. During cNHEJ, DSBs are repaired by directly ligating the broken ends together
with minimal DNA end processing (Figure 2A) [10]. cNHEJ is initiated when the ring-shaped
Ku70/Ku80 protein heterodimer binds to the DSB ends, which protects the DNA ends from fur-
ther resection and also recruits the DNA-dependent protein kinase (DNA-PK) [59,60]. DNA-PK
recruits the DNA ligase IV-X-ray cross complementing group 4-XRCC4-like factor (LiglV-
XRCC4-XLF) complex to ligate the DSB ends [61-63]. When the DSBs ends are not directly
ligatable, additional proteins including Artemis nuclease, polynucleotide kinase 3' phosphatase
(PNKP) and DNA polymerases, such as Poly and PolA, are required for end processing (Figure
2A) [64-66]. For Cas9-induced DSBs, Cas9 asymmetrically releases the PAM-proximal end of
the cleaved DNA within minutes while the PAM-distal end of the DSB remains bound by Cas9
for a longer time period [67,68]. As a result, the PAM-proximal DSB end is exposed for further
processing, whereas the other end may be temporally blocked from further processing by the
still bound Cas9 [68]. RNA-polymerase and facilitates chromatin transcription (FACT) can remove
Cas9 from the PAM-distal side, but how Cas9 is removed during genome editing remains unclear
[68,69]. How the tight binding of Cas9 to the PAM-distal DSB end affects DSB repair pathway
choice is also unclear.

Given that cNHEJ is an inaccurate repair pathway, several groups are pursuing strategies to in-
hibit cNHEJ in favor of the much more accurate repair that is achieved through HR. For example,
HR-mediated gene editing in mammalian cells can be increased by blocking LiglV activity using
small molecules [70-72] or by stimulating proteolytic degradation of LiglV [72]. Suppression of
DNA-PK or Ku also promotes DSBs repair through HR [72-75].

Microhomology-Mediated End Joining

MMEJ begins with short-range resection of the DSB (Figure 2B). Like cNHEJ, MMEJ does not re-
quire a template for repairing the damaged DNA (Figure 2C) [11]. Instead, the DSB ends are
realigned using short (5-25 base pairs) microhomologous sequences present near the broken
DNA ends (Figure 2C) [76]. Any remaining 3" ssDNA flaps are cleaved off, which results in the
loss of sequence information [11,76]. The remaining gaps are filled in through DNA synthesis,
and the remaining nicks are sealed through ligation [77,78].

During MMEJ, some short-range end resection generates short ssDNA overhangs (~20 bps;
Figure 2C) [79]. Short-range end resection promotes MMEJ, whereas more extensive end
resection favors SSA and HR (see later; Figure 2D) [80,81]. In mammalian cells, the damage-
sensing MRN complex (MRE11-RAD50-NBS1), together with its interacting partner CtIP (C-
terminal binding protein interacting protein), initiates end resection (Figure 2C) [82,83]. CtIP
phosphorylation during S/G2 phases stimulates the MRE11 endonuclease activity which
generates a nick at the 5' strand near to the DSB end and prevents cNHEJ by removing Ku
from the DNA-ends [83-85]. The resulting nick allows the 3'to 5' MRE11 exonuclease activity
to generate short 3’ overhangs which can be used to initiate MMEJ [79,86]. Inhibition of MMEJ
by blocking the ligase activities of DNA ligase (Lig)l and Il (involved in the last step of MMEJ; see
below) with small molecule inhibitors can promote DSB repair through the more accurate HR
pathway [72,87].
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Figure 2. The Four Major Pathways to Repair DNA Double-Strand Breaks (DSBs). (A) Unprocessed DSBs can be
repaired through classic nonhomologous end joining (cNHEJ) allowing the two ends of the DSB to be re-ligated. (B) DSB
ends can also be processed by the MRE11-RAD50-NBS1 (MRN) complex and its interacting factors to yield short 3’
single-strand (ss)DNA overhangs. (C) The short 3" ssDNA overhangs can then be channeled into the microhomology-
mediated end joining (MMEJ) pathway. (D) Alternatively, the DSB ends can undergo further long-range resection by either
EXO1 or Bloom helicase (BLM)/DNA2. These longer ssDNA overhangs are first bound by replication protein A (RPA) and

(Figure legend continued at the bottom of the next page.)
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We have a limited understanding of the factors that regulate the annealing of micronomologous
sequences during MMEJ [11,76]. The ssDNA binding-protein replication protein A (RPA) can in-
hibit MMEJ by preventing annealing, whereas poly ADP-ribose polymerase 1 (PARP1) tethers
DNA fragments together and promotes the annealing reaction [88-91]. However, there is conflict-
ing evidence regarding the regulation of PARP1 in MMEJ [91,92]. Some studies suggest that
PARP1 promotes MMEJ by competing with Ku for DSBs end binding [91], while other studies in-
dicate that PARP1 promotes Ku loading [92]. In addition, pol 6 can strip RPA from ssDNA to pro-
mote MMEJ [93]. Future studies will be essential to more fully understand how the interplay
between these protein factors affect MMEJ.

If the microhomologous sequences are at the very ends of the DNA, then no further trimming is
required [11]. By contrast, for microhomologies located distal to the DNA ends, the resulting het-
erologous 3' ssDNA flap must be removed by XPF-ERCC1 endonuclease (called Rad1-Rad10in
Saccharomyces cerevisiae), or perhaps another unidentified nuclease, to allow a DNA polymer-
ase to fill in the gap [94]. In mammalian cells, pol 8 stabilizes annealed overhangs and fills any
gaps via template-directed DNA synthesis [77,95]. Once the gaps are filled, the remaining
nicks are sealed by DNA ligase Il (Liglll) or DNA ligase | (Ligl) [78].

Up to ~58% of Cas9-induced DSBs are repaired through MMEJ [96]. The resulting repair out-
comes are not totally random and can be predicated at a given DSB site, indicating that the align-
ment between resected DNA ends at a given DSB site is reproducible and may depend on local
sequence context [19,96-98]. Several lines of evidence suggest that deletion of two or more nu-
cleotides at the Cas9 cut site is the most common outcome [19,96,98,99]. Inhibition of MMEJ de-
creases these nucleotide deletions significantly [100]. By taking advantage of this reproducible
behavior, precise template-free genome editing through MMEJ has been achieved [96].

Single-Strand Annealing

SSA and MMEJ are similar in several aspects, in particular, they both require 3’ ssDNA overhangs
for the annealing of homologous sequences [11,12]. Like MMEJ, SSA requires removal of heter-
ologous 3' flaps followed by gap filling [12].

SSA requires long-range DSB end resection to yield long (>1000 nucleotides) ssDNA overhangs
(Figure 2D). These 3' ssDNA overhangs are generated by the 5'to 3' exonuclease activities of ei-
ther EXO1 or Bloom helicase (BLM)-DNA2 [80,101,102]. The resulting ssDNA overhangs are
then coated by RPA, followed by the binding of RAD52, which mediates the annealing of homol-
ogous sequences within the two DSB ends (Figure 2E) [103-1085]. In S. cerevisiae, Rad52 also
stimulates the assembly of Rad51 filaments onto the ssDNA to promote HR (see later) [106].
By contrast, mammalian RAD52 does not stimulate RAD51 filament assembly [105,107]. Indeed,
the protein BRCA2 promotes RAD51 filament assembly in mammals, thus inhibiting SSA and fa-
voring HR. In S. cerevisiae, Rad59 helps to channel repair intermediates through Rad52-
mediated SSA by alleviating the inhibition of Rad51 on the strand annealing activity of Rad52
[108]. Although there is no mammalian Rad59 homolog, other factors (e.g., RAD52) that function
similarly may exist [109]. Like MMEJ, the heterologous 3’ flap is removed by XPF-ERCC1 endo-
nuclease during SSA [110]. However, details regarding how the gaps are filled and ligated remain
uncertain [12,109].

can then be channeled into the (E) single-strand annealing (SSA) pathway, which is mediated by the protein RAD52. (F)
Alternatively, the RPA-ssDNA can serve as a substrate for RAD51 filament assembly, allowing the resulting DNA
intermediates to be directed towards repair by (G) homology repair (HR). For HR, both ssDNA and dsDNA templated
homology-directed repair (HDR) pathways are shown. Abbreviations: CtIP, C-terminal binding protein interacting protein;
DNA-PK, DNA-dependent protein kinase; XLF, XRCC4-like factor; XRCC4, X-ray cross complementing group 4.
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Homologous Recombination

HR uses a homologous DNA template to guide DSB repair (Figure 2F,G) [9,81,109]. HR involves
long-range end resection to form long 3" ssDNA overhangs that are then coated by RPA (Figure
2D) [111]. RPAis replaced by the ATP-dependent DNA recombinase RAD51, which forms long
helical filaments on the ssDNA (Figure 2F) [112,113]. RAD51 then aligns and pairs the ssDNA with
homologous dsDNA elsewhere in the genome (Figure 2G). The 3’ invading end of the RAD51-
coated ssDNA strand is used to prime DNA synthesis and the resulting intermediates can be
used to complete repair of the DSB [9,81,109,114].

End Resection

End resection during HR requires two steps, beginning with MRN-CtIP mediated short-range re-
section (Figure 2B), followed by long-range end resection involving EXO1 and/or BLM/DNA2
(Figure 2D) [83,84,101,102]. Activation of key DNA end resection factors is strictly regulated by
cell cycle and restricted mainly to the S/G2 phases of the cell cycle [82,115]. Several regulatory
factors affect these DNA end resection steps.

Short-Range End Resection

MRN is crucial for short-range end resection and is controlled by numerous regulatory factors
(Figure 2B) [116,117]. PARP1 is quickly recruited to new DSBs and can inhibit resection and re-
cruit Ku to favor cNHEJ [92]. However, PARP1 can also facilitate MRN recruitment, which may
favor MMEJ, SSA or HR [118]. Further studies are required to more fully understand these seem-
ingly conflicting roles. DNA-PK also binds DNA ends and may commit cells to cNHEJ [10,109].
DNA-PK can be removed by phosphorylation of Ku70 to reduce its DNA-binding affinity [119],
degradation of Ku through ubiquitination [120], or MRN-mediated DNA cleavage [121]. Removal
of DNA-PK favors MMEJ, SSA, and HR [9,122]. DNA-PK can also promote MRN-mediated end
processing, indicating that it plays a key role in initiating short-range end resection [121]. Phos-
phorylated CtIP and the breast cancer type 1 susceptibility protein-BRCA1-associated domain
1 (BRCA1-BARD1) complex both stimulate short-range end resection by MRN [84,123]. The re-
cently discovered protein DYNLL1 (dynein light chain 1 protein) also inhibits MRN nuclease activ-
ity [124] and ZPET (zinc figure protein proximal to RAD18) delays MRN-CtIP recruitment through
an unknown mechanism to inhibit the short-range end resection [125,126].

Long-Range End Resection

Short overhangs generated by MRN serve as an entry site for enzymes such as BLM/DNA2 or
EXO1, which are necessary for long-range end resection (Figure 2D) [101,102]. EXO1 generates
long 3" ssDNA overhangs through its processive 5' to 3' exonuclease activity [102]. MRN stimu-
lates EXO1, whereas CtIP inhibits EXO1 [102,127]. In mammalian cells, RPA can both stimulate
and inhibit EXO1 activity (depending upon whether or not RPA is phosphorylated) [128], while
SOSS1, the human SSB homologue 1, can stimulate resection by EXO1 [129].

BLM acts in concert with DNA2, which has both 5’ and 3" endonuclease activities [128]. BLM sep-
arates the DNA strands, allowing DNA2 to cleave the ssDNA [102]. During long-range end resec-
tion, RPA inhibits the 3" endonuclease activity of DNA2 while stimulating its 5 endonuclease activity
to ensure the 5'to 3' polarity of resection (Figure 2D) [130]. BLM/DNAZ2 loading at DNA ends is me-
diated by the TOPIlla-RMI1-RMI2 complex and MRN [131]. CtIP also interacts with BLM and
DNA2 and stimulates both BLM helicase activity and DNA2 5" endonuclease activity [132].

Recent discoveries have revealed a regulatory mechanism involving 53BP1, PTIP, RIF1, and

Shieldin-CST that inhibits end resection and a competing regulatory mechanism involving
BARD1-BARD1 that promotes end resection [133-135]. In S. cerevisiae, Rad9 (a homolog of
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human 53BP1) limits long-range resection [136]. Activated ATM at DSBs leads to histone H2AX
phosphorylation, referred to as yH2AX, leading to MDC1 recruitment and phosphorylation [137].
Phosphorylated MDC1 recruits two E3 ubiquitin ligases, RNF8 and RNF168, to ubiquitinate his-
tone H2A [138]. Ubiquitylated H2A together with H4AK20me2 recruit 53BP1 to chromatin adja-
cent to the DSBs. Phosphorylated 53BP1 interacts with either PTIP or RIF1, both of which
inhibit end resection albeit by different mechanisms [138]. The function of PTIP remains elusive
[138], whereas RIF1 recruits the Shieldin complex (comprising SHLD1, SHLD2, SHLD3, and
REV7) [133-135]. One model suggests that Shieldin binds at the DNA end to protect the 5
end from end resection [133,135]. An alternative model suggests that Shieldin recruits CST,
Pola, and Primase to DSBs [134]. CST binds at the dsDNA-ssDNA junction to protect the 5
end and Pola and primase execute a fill-in reaction, which are stimulated by CST to counteract
end resection [134].

BRCA1-BARD1 and 53BP1 may act in opposition to one another [139,140]. Current evidence
suggests that BRCA1 prevents 53BP1 from inhibiting long-range resection and directly promotes
long-range end resection [139]. 53BP1 blocks BRCA1 accumulation at DSBs during G1,
whereas BRCA1 prevents 53BP1 and RIF1 foci formation at DSBs during S/G2 [126,139]. The
antagonistic relationship between BRCA1-BARD1 and 53BP1 may be related to two histone
(H2A and H4) post-translational modification states, lysine 15 ubiquitylation of H2A and lysine
20 methylation of H4 to effect DSB repair pathway choice [141]. In addition, BRCA1 can interact
with MRN and CtIP to stimulate end resection during S/G2 [142].

RADS51 Filament Formation

The 3'ssDNA overhang generated by long-range resection is first bound by RPA (Figure 2D) [111].
RPA must be replaced by RAD51, which is the recombinase that catalyzes key DNA transactions
during HR (Figure 2F) [112,113]. However, RPA presents a barrier to RAD51 filament assembly
[109,143]. During S/G2, RAD51 is phosphorylated by CDK1, which enhances its ability to compete
with RPA for ssDNA [144]. However, RAD51 alone cannot efficiently replace RPA from ssDNA
in vivo [143]. In' S. cerevisiae, Rad52 stimulates Rad51 filament formation on RPA-bound ssDNA
[106]. However human RAD52 does not fuffill a similar role [105,107]. Instead, human RAD51 fila-
ment assembly is facilitated by the BRCA2-DSS1 complex. BRCA1-BARD1 maybe also be in-
volved in this process as part of a large complex with PALB2 and BRCA2-DSS1 [139,145].

Loss of the RAD51 paralogs BCDX2 or CX3 significantly reduces RAD51 foci formation in cells,
indicating that both are required to promote RAD51 filament formation or stability [146]. Loss of
SWS1 or SWSAP1, both components of the human Shu complex, also reduces RAD51 foci for-
mation, although HR efficiency in these cells is comparable to wild-type [147]. These data all sug-
gest roles for BCDX2, CX3, and the Shu complex during RAD51 filament formation, but
underlying mechanisms remain unclear. DSS1 is a highly acidic protein that mimics DNA and di-
rectly interacts with RPA to weaken the affinity of RPA for ssDNA [148]. BRCA2 comprises an N-
terminal DNA binding domain (NTD) which interacts with PALB2 [149], eight BRC repeats domain
(BRC) that recruit RAD51 [150], a DNA binding domain (DBD) comprised of three OB folds to bind
ssDNA [151], and an additional C-terminal RAD51-binding domain (CTRB) [152]. The SWI5-
SFR1 complex also stabilizes RAD51 bound to ssDNA [153].

There are also negative regulatory factors that remove RAD51 from ssDNA [143]. In human cells,
the helicases RECQ5, FBH1, and FANCJ downregulate HR by using the energy derived from
ATP hydrolysis to translocate along ssDNA while stripping RAD51 from the ssDNA [143]. Simi-
larly, the helicase FBH1 acts together with SCF ubiquitin ligase complex to ubiquitylate RAD51
causing RAD51 to relocate to the cytoplasm [154].
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RAD51-Mediated Pairing of Homologous Sequences

RAD51, together with additional accessary factors, must align the ssDNA overhang with a homol-
ogous sequence that can be used to guide repair (Figure 2G). It must then invade the homolo-
gous dsDNA to form base-pairing interactions with the homologous template strand, resulting
in the formation of a heteroduplex DNA joint (Figure 2G) [9,81,109,114]. Accessory factors that
participate in this process, include RAD54, BRCA1-BARD1, PALB2, RAD51AP1-UAF1, and
HOP2-MND1 [155-161]. S. cerevisiae Rad54 acts as a molecular motor to drive rapid ATP-
dependent translocation of the RAD51 presynaptic filament along the dsDNA to facilitate se-
quence alignment and opens the dsDNA to facilitate strand invasion [155]. BRCA1-BARD1
and RAD51AP1-UAF1 promote the interaction between the RAD51 filament and the homologous
dsDNA [156,157]. PALB2 stimulates RAD51 strand invasion activity through an unknown mech-
anism [158,159], although, its N-terminal DBD may play an important role [160]. HOP2-MND1
stabilizes RAD51 filaments and stimulates strand invasion [161].

DNA Synthesis and Product Resolution

After D-loop formation, the 3' end of the invading strand is engaged by DNA polymerase & (Pold),
PCNA, and clamp loader complex RFC1-5, allowing the broken DNA end to be extended using
the homologous donor dsDNA as a template [9,81,109,114]. The resulting intermediates can be
resolved through several mechanisms, including the non-crossover synthesis-dependent DNA
strand annealing (SDSA), double Holliday junction (dHJ) crossover and non-crossover pathway and
break-induced replication (BIR) (reviewed in [109,162,163]). BIR enables repair of just one of the
two DSB ends and is not applicable to genome editing [163]. In SDSA, the heteroduplex DNA joint
is disrupted by BLM, RTEL1, or another helicase [109,164,165] and can then be annealed with the
other end of the DSB allowing for completion of repair by gap filing and ligation (Figure 2G) [109].
When both ends invade the same template, the interacting DNAs are joined by two Holliday junctions
to form a dHJ (Figure 2G). dHJ can undergo dissolution to yield two intact dsDNA molecules [162]. In
mammals, dHJ dissolution is catalyzed either by topoisomerase llla together with BLM-RMI1-RMI2
resulting in noncrossover products. Alternatively, dHJs can be resolved into cross-over products
when cleaved by nucleases such as MUS81-EME1, SLX1-SLX4, and GEN1 [162].

Factors Affecting DNA Repair Outcomes of Cas9-Induced DSBs

Cas9-mediated genome editing outcomes depend on which DNA repair pathway is utilized. In
this section, we summarize factors that can affect DNA repair outcomes of Cas9-induced
DSBs and describe DNA repair outcomes of Cas9-induced DSBs.

Cell Cycle

The cell cycle is one of the most important factors affecting repair pathway choice
[115,123,166,167]. cNHEJ is active across all stages of the cell-cycle, whereas SSA, MMEJ
and HR function mainly during S/G2 (Figure 3A) [115,123,166,167]. Aphidicolin, which arrests
cells in S/G2, promotes repair of Cas9-induced DSBs via SSA, MMEJ, and HR [168]. Fusing
Cas9 to the protein Geminin, which is proteolytically degraded in G1, restricts Cas9 activity to
S/G2 [169]. The recently developed technique of 'very fast CRISPR on demand', in which
Cas9 prebinds to its target in genomic DNA in an inactive form and is activated by light to cleave
the target DNA, can also be used to introduce DSBs when cells enter S/G2 [67].

Target Site Sequence and Chromatin Structure

DNA editing outcomes vary considerably among different genomic sites [97,98], but they are not
completely arbitrary. For template-independent repair pathways (e.g., cNHEJ or MMEJ), the
editing outcomes are significantly affected by the target site sequence (Figure 3B). A single
protospacer targeting different genomic sites yielded similar repair events (Figure 3B) [99]. It
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Figure 3. Factors affecting DNA Repair Outcomes of Clustered Regularly Interspaced Short Palindromic
Repeats-Associated Protein 9 (Cas9)-Induced Double-Strand Breaks (DSBs). (A) DSB repair pathways during
the cell cycle. Classic nonhomologous end joining (cNHEJ) is active throughout the cell cycle (black circle).
Microhomology-mediated end joining (MMEJ) and homology-directed repair (HDR) can only be used in S/G2 phases
(green circle). (B) In the absence of a template guided repair mechanism editing outcomes are significantly affected by the
target site sequence. MMEJ efficiency and the pattern of DNA small deletions are dependent upon the presence of
microhomologies within the first 10 bp from the DSB end. One to 2 bp insertions/deletions through cNHEJ are affected by
the nucleotide at the fourth position upstream from the protospacer adjacent motif (PAM). (C) Nucleosomes can potentially
block Cas9 access to the target site, although sites can be exposed through nucleosome breathing or by a nucleosome
remodeler. Compacted heterochromatin promotes homology repair (HR), MMEJ, and single-strand annealing (SSA), while
cNHEJ is preferred in euchromatin. (D) Homology-directed repair (HDR) with single-strand (ss)DNA or double-strand (ds)
DNA donor templates. dsDNA donor templated repair (DSTR) occurs mainly through HR and single-stranded DNA donor
templated repair (SSTR) occurs mainly through SSA and SDSA. Asymmetric HDR can arise when one end is repaired
through HR, while the other end is repaired through cNHEJ or MMEJ. With ssDNA, the end that is complementary to the
3" end of ssDNA templates is repaired through SSA/synthesis-dependent DNA strand annealing (SDSA); it is not known
how the other end is repaired. The repair of the other end through MMEJ generates asymmetric HDR which displays a
bias directionality with respect to the orientation of the ssDNA templates.

has been shown that the nucleotides adjacent to the Cas9 cutting site can also affect editing out-

comes [19,96-98]. The most common repair outcomes are small deletions (>3 bp) [96]. These
small deletions are MMEJ products, indicating that microhomology adjacent to the cutting site
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affects the deletion patterns (Figure 3B). Indeed, MMEJ efficiency and repair outcomes are signif-
icantly dependent on the microhomologies within the first 10 bp from the break [89]. Short 1-2 bp
insertions/deletions are another common outcome and the relative percentage is affected by the
nucleotide at the fourth position upstream from the PAM (see later) (Figure 3B) [96,170,171].
Thus, the sequence adjacent to the Cas9 cut site affects DSB repair.

Cas9 cleavage efficiency is also dependent on DNA accessibility (Figure 3C) [172]. Nucleosome
breathing or changes in nucleosome architecture due to chromatin remodeling proteins can in-
crease Cas9 cleavage efficiency (Figure 3C) [172]. Local chromatin structure also affects the
choice of DSB repair pathways [173]. For example, histone post-translational modifications con-
trol recruitment of proteins such as 53BP1 and BRCA1, both of which influence DSB repair
(Figure 3C) [174]. Heterochromatin and euchromatin also differentially affect DNA repair [174].
The H3KQ trimethylated (H3K9me2/3) marks present in heterochromatin promote HR, MMEJ,
and SSA, while cNHEJ is preferred for euchromatin (Figure 3C) [173]. Detailed mechanisms of
how local chromatin structure affects DNA repair pathways remain unclear and current studies
are seeking to elucidate how chromatin structure affects Cas9-mediated genome editing [174].

Homology-Directed Repair with ssDNA or dsDNA Donor Templates

During CRISPR-Cas9 induced-DSB repair, template-dependent DSB repair pathways use an ex-
ogenous donor template to achieve precise gene editing [1]. Double-stranded DNA donor tem-
plated repair (DSTR) occurs mainly through the HR pathway, whereas single-stranded DNA
donor templated repair (SSTR) occurs mainly through SSA and SDSA (synthesis dependent
strand annealing) (Figure 3D) [13,175]. It has become clear that mis-integration events arise
from MMEJ due to microhomologies within the DNA templates (Figure 3D) [175]. Thus, strategies
that suppress MMEJ may improve both DSTR- and SSTR-based HDR.

For DSTR, the donor dsDNA can be either a PCR product or an exogenous plasmid [1]. For PCR
products, mis-integration events arise mainly when the PCR products are ligated directly to a
DSB through cNHEJ (Figure 3D) [175]. Inhibition of cNHEJ or 5’ covalent modification of the
PCR products to prevent ligation can direct repair through HR [175]. In addition, a chromatin
donor template is more efficient in D-loop formation than a naked DNA donor template in vitro
[176]. In vivo, dsDNA donor templates coated with nucleosomes increase the frequency of
DSTR-mediated HDR indicating that strategies which stimulate HR may be used to improve
HDR [177]. For plasmid-based dsDNA templates, cells can incorporate the desired template
along with the undesired plasmid backbone sequence into the genome [175]. Integration of the
plasmid backbone is probably caused by asymmetric HDR which involves precise editing
through HR on one side of a DSB and direct ligation through cNHEJ or MMEJ at the other side
of the DSB (Figure 3D) [175]. Integration of the plasmid backbone might be reduced by transiently
blocking cNHEJ or MMEJ [175]. Indeed, HDR can be improved by introducing two flanking Cas9
cleavage sites to excise the desired template from the plasmid backbone [178,179].

DSTR is more efficient than SSTR in S. cerevisiae, but SSTR- and DSTR-mediated genome
editing occur with comparable efficiencies in mammalian cells [13]. SSTR is a more attractive op-
tion because short homology arms (around 70-100 bases compared with the 0.6-1.0 kb require-
ment for DSTR) can achieve efficient HDR and short ssDNA templates can be easily synthesized
with multiple modifications to improve transformation efficiency and in vivo stability (Figure 3D)
[180,181]. In S. cerevisiae, SSTR can be mediated through the SSA pathway and depends on
Rad52, Rad59, antirecombinase Srs2, and MRX complex [108]. Thus, factors that inhibit SSA im-
pair SSTR including Rad51, Rad57, and Rdh54 [108]. Similarly, SSTR in mammalian cells is also
RAD51-independent and requires RAD52 [182]. RAD52 over-expression or fusion of RAD52 to Cas9
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promotes SSTR mediated genome editing efficiency [182]. In addition to the SSA pathway, SDSA is
also used during SSTR mediated DNA repair. Asymmetric HDR when using ssDNA donor templates
is more prevalent than that of dsDNA donors and displays a bias with respect to the orientation of the
targeted insertion (Figure 3D) [175]. These results may indicate that one end of the ssDNA donor is
annealed to one of the DSB ends and repaired through SDSA or SSA, while the other end of the
ssDNA donors may be repaired through non-HDR mechanism (Figure 3D) [175]. Although short
ssDNA donor templates are more efficient than the dsDNA donor templates in promoting genome
editing, long ssDNA donors induce more error-prone repair events than dsDNA donors because
the microhomology sequences within long ssDNA donors generate truncations.

DNA Repair Outcomes of Cas9-Induced DSBs

As summarized earlier, cell cycle and end resection properties are important factors in determin-
ing DNA repair pathway choice between cNHEJ, MMEJ, SSA, and HR (Figures 2 and 3A). DNA
repair outcomes are dependent on Cas9-induced DSB formation and detection time (Figure 4).
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Figure 4. The Outcomes of Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein 9
(Cas9)-Induced DNA Double-Strand Break (DSB) Repair. Once the Cas9-guide (@)RNA complex binds to its target site,
the HNH domain accurately cuts at the target strand -3 bp upstream of the protospacer-adjacent motif (PAM), while the RuvC-
like domain cuts the -3, —4, or -5 positions of non-target strand. These cleavages can generate DSBs with either blunt ends or
1-2 nucleotide staggered ends. Blunt ends can be ligated directly through classic nonhomologous end joining (cNHEJ) without
introducing any mutations, while staggered ends need to be filled or cleaved before ligation resulting 1-2 bp insertions or
deletions. End resection directs DSB repair through template-independent microhomology-mediated end joining (MMEJ) or
template-dependent homology-directed repair (HDR). For MMEJ, small homologous DNA sequences (5-25 bp) within the two
resected ends are paired and lead to DNA repair resulting in small deletions or insertions. In the presence of either single-strand
(sS)DNA or dsDNA templates, HDR compete with cNHEJ and MMEJ for precise DNA repair.
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The time required for Cas9 to generate a DSB has been studied extensively and strategies have
been developed to generate DSBs in S/G2 when HDR pathways function. However, the time re-
quired for the cell to detect a Cas9-induced DSB may be different from the time needed to detect
a naturally occurring DSB. In vitro, Cas9 remains tightly bound for hours after cutting the DNA
[15]. Delayed detection of Cas9-induced DSBs may influence the choice of DNA repair pathway
(Figure 4) [68,170]. Although Cas9 dissociation is much faster in vivo, it still takes the cell at least
10 minutes to detect Cas9-induced DSBs, which is much longer than the time needed to detect
normal DSBs [67]. Another study has suggested that Cas9 remains more tightly bound to the
PAM-distal DSB end even after the proximal end is released [68]. Tight binding of Cas9 on the
PAM-distal DSB end may alter repair kinetics and/or mechanism [170]. Factors such as RNA-
polymerase and the histone chaperone FACT promote Cas9 release and may affect DNA repair
outcomes [68,69]. cNHEJ is the major repair pathway to repair ionizing radiation (IR) induced
DSBs and MMEJ is less efficient [183]. However, MMEJ is improved at least twofold for Cas9 in-
duced DSBs [170]. Indeed, up to 58% of Cas9-induced DSBs can be repaired through MMEJ
[96]. These results indicate the possibility that the asymmetric release of Cas9-induced DSB
ends may somehow enhance MMEJ while disfavoring cNHEJ.

DSB ends generated by Cas9 are either blunt or have a 1-2 bp staggered 5' end (Figure 4) [19].
Blunt ends can be ligated directly by the LiglV-XRCC4-XLF complex through cNHEJ (Figure 4A),
while staggered ends require further processing (Figure 4B,C)[184]. cNHEJ is a major pathway
used to repair the 5’ staggered ends, resulting in 1-2 bp insertions or deletions (Figure 4) [96].
The 1-2 bp staggered ends may be filled in by a polymerase or removed by a nuclease to create
a blunt end, followed by ligation through cNHEJ (Figure 4A)[184]. In addition, we speculate that
the 5" staggered ends slow cNHEJ repair kinetics long enough for cells to initiate MMEJ, SSA,
or HR (Figure 3D).

Increasing evidence has suggested that large deletions can happen at on-target sites during
CRISPR-Cas9 editing [185-187]. Current evidence suggests that large deletions are mainly
caused by the DSBs generated by CRISPR-Cas9 in a p53-dependent mechanism [188]. Al-
though the frequency of large deletion events is very low, they may cause serious problems.
Thus, studies to elucidate how large deletions are generated could be highly beneficial.

Concluding Remarks

It is important to recognize that CRISPR-Cas-based genome editing depends on the four major
DSB repair pathways found in eukaryotic cells. Different pathways result in different editing out-
comes. Hence, efforts are being made to control which pathways cell utilize to repair DSBs during
genome editing (see Outstanding Questions). However, the mechanisms that control DSB repair
are themselves highly complex and are not yet fully understood [9-12,115,1283,166,167,174].
Understanding DSB repair mechanisms will yield fundamental insights into genome integrity
and will help establish better genome editing strategies.
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Outstanding Questions

After cleavage, Cas9 asymmetrically
releases the PAM-proximal end of the
DSB within minutes. How is this
achieved? How is the PAM-proximal
end of the DSB released? How long
does Cas9 remain bound to the
PAM-distal end of the DSB after the
PAM-proximal end is released? How
is the PAM-distal end of the DSB
released? How might asymmetric
release of Cas9 from a DSB affect
repair pathway choice?

Long-range end resection commits
DSB repair to the HR and SSA
pathways. How is end resection
regulated by BRCA1-BARD1, 53BP1,
and the Shieldin complex? What is
the temporal recruitment order of
these regulators?

For SSTR, how do mammalian cells
choose between the SSA and SDSA
pathways? What is the relative
contribution of each pathway to
repair? Do other pathways also
contribute to SSTR?

How do DNA templates in the cytosol
enter the nucleus? How do foreign
DNA sensing pathways, including
TLR9, AIM2, and cGAS, affect
genome editing? Is it possible to
transiently inhibit foreign DNA sensing
pathways during template delivery?
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