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THE POSITIVE DRESSIAN EQUALS THE POSITIVE
TROPICAL GRASSMANNIAN

DAVID SPEYER AND LAUREN K. WILLIAMS

ABSTRACT. The Dressian and the tropical Grassmannian parameterize ab-
stract and realizable tropical linear spaces; but in general, the Dressian is
much larger than the tropical Grassmannian. There are natural positive no-
tions of both of these spaces — the positive Dressian, and the positive tropical
Grassmannian (which we introduced roughly fifteen years ago in [J. Algebraic
Combin. 22 (2005), pp. 189-210]) — so it is natural to ask how these two pos-
itive spaces compare. In this paper we show that the positive Dressian equals
the positive tropical Grassmannian. Using the connection between the positive
Dressian and regular positroidal subdivisions of the hypersimplex, we use our
result to give a new “tropical” proof of da Silva’s 1987 conjecture (first proved
in 2017 by Ardila-Rincén-Williams) that all positively oriented matroids are
realizable. We also show that the finest regular positroidal subdivisions of the
hypersimplex consist of series-parallel matroid polytopes, and achieve equal-
ity in Speyer’s f-vector theorem. Finally we give an example of a positroidal
subdivision of the hypersimplex which is not regular, and make a connection
to the theory of tropical hyperplane arrangements.

CONTENTS

Introduction

The positive Grassmannian and positroid polytopes

The positive tropical Grassmannian equals the positive Dressian
The positive tropical Grassmannian and positroidal subdivisions
A new proof that positively oriented matroids are realizable
Finest positroidal subdivisions of the hypersimplex

Nonregular positroidal subdivisions

Appendix. Combinatorics of cells of the positive Grassmannian

Acknowledgments
References

1. INTRODUCTION
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The tropical Grassmannian, first studied in [HKTO06LKTO06LISS04], is the space
of realizable tropical linear spaces, obtained by applying the valuation map to
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Puisseux-series valued elements of the usual Grassmannian. Meanwhile the Dres-
sian is the space of tropical Pliicker vectors P = {PI}IG([n]), first studied by An-
k

dreas Dress, who called them wvaluated matroids. Thinking of each tropical Pliicker
vector P as a height function on the vertices of the hypersimplex Ay ,, one can
show that the Dressian parameterizes regular matroid subdivisions Dp of the hy-
persimplex [Kap93][Spe08], which in turn are dual to the abstract tropical linear
spaces of the first author [Spe08].

There are positive notions of both of the above spaces. The positive tropical
Grassmannian, introduced by the authors in [SWO05], is the space of realizable pos-
itive tropical linear spaces, obtained by applying the valuation map to Puisseux-
series valued elements of the totally positive Grassmannian [Posl[Lus94]. The pos-
itive Dressian is the space of positive tropical Pliicker vectors, and it was recently
shown to parameterize the regular positroidal subdivisions of the hypersimplex
[LPW20, AHLS20]

In general, the Dressian Dry ,, is much larger than the tropical Grassmannian
Trop Gy, — for example, the dimension of the Dressian Dr3 ,, grows quadratically
is n, while the dimension of the tropical Grassmannian Trop Grs , is linear in n
[HJJS08]. However, the situation for their positive parts is different. The first main
result of this paper is the following, see [Theorem 3.91

Theorem. The positive tropical Grassmannian Trop™ Gry,n equals the positive
Dressian DIZHE

We give several interesting applications of [Theorem 3.91 The first application
is a new proof of the following 1987 conjecture of da Silva, which was proved in
2017 by Ardila, Rincén and the second author [ARW17], using the combinatorics
of positroid polytopes.

Theorem ([ARWI17]). Every positively oriented matroid is realizable.

Reformulating this statement in the language of Postnikov’s 2006 preprint [Pos],
da Silva’s conjecture says that every positively oriented matroid is a positroid. We
give a new proof of this statement, using [Theorem 3.9] which we think of as a
“tropical version” of da Silva’s conjecture. Interestingly, although the definitions
of positively oriented matroid and positroid don’t involve tropical geometry at all,
there does not seem to be an easy way to remove the tropical geometry from our
proof without making it significantly longer.

There are two natural fan structures on the Dressian: the Pliicker fan, and the
secondary fan, which were shown in [OPS19] to coincide. Our second application
of [Theorem 3.9] is a description of the maximal cones in the positive Dressian, or
equivalently, the finest regular positroidal subdivisions of the hypersimplex. The

following result appears as [Theorem 6.6l

LAlthough this result did not appear in the literature until recently, it was anticipated by
various people including the first author, Nick Early [Ear19al, Felipe Rincén, Jorge Olarte.

20ur result was announced in [LPW20, Theorem 9.6], and subsequently appeared in the inde-
pendent work [AHLS20].
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Theorem. Let P be a positive tropical Pliicker vector, and consider the correspond-
ing regular positroidal subdivision Dp. The following statements are equivalent:

(1) Dp is a finest subdivision.
(2) Ewery facet of Dp is the matroid polytope of a series-parallel matroid.
(3) Ewery octahedron in Dp is subdivided.

It was shown by the first author in [Spe09] that if P is a tropical Pliicker vector
corresponding to a realizable tropical linear space, Dp has at most i k_c)!EZ:Z:IC))!! =1
interior faces of dimension n — ¢, with equality if and only if all facets of Dp cor-
respond to series-parallel matroids. We refer to this result as the f-vector theo-
rem. Combining this result with [Theorem 6.6l gives the following elegant result (see

Corollary 6.7):

Corollary. Every finest positroidal subdivision of Ay, ,, achieves equality in the f-
vector theorem. In particular, such a positroidal subdivision has precisely (Z:f)
facets (top-dimensional polytopes).

Most of our paper concerns the regular positroidal subdivisions of Ay, ,,, which
are precisely those induced by positive tropical Pliicker vectors. However, it is also
natural to consider the set of all positroidal subdivisions of Ay ,,, whether or not
they are regular. In light of the various nice realizability results for positroids,
one might hope that all positroidal subdivisions of Ay, are regular. However, this
is not the case. In we construct a nonregular positroidal subdivision
of A3 12, based off a standard example of a nonregular mixed subdivision of 9A,.
We also make a connection to the theory of tropical hyperplane arrangements and
tropical oriented matroids [ADOQ9.Hor16].

It is interesting to note that the positive tropical Grassmannian and the positive
Dressian have recently appeared in the study of scattering amplitudes in ' = 4
SYM [DFGK19,/AHHLT19,HP19l[Ear19blLPW20,[AHLS20|, and in certain scalar
theories [CEGM19.[BCI9]. In particular, the second author together with Lukowski
and Parisi [LPW20] gave striking evidence that the positive tropical Grassmannian
Trop™ G7Tk41,n controls the regular positroidal subdivisions of the amplituhedron
Ay, k.2 C Gry k42, which was introduced by Arkani-Hamed and Trnka [AHT14] to
study scattering amplitudes in ' =4 SYM.

The structure of this paper is as follows. In we review the notion
of the positive Grassmannian and its cell decomposition, as well as matroid and
positroid polytopes. In after introducing the notions of the (positive)
tropical Grassmannian and (positive) Dressian, we show that the positive tropical
Grassmannian equals the positive Dressian. We review the connection between the
positive tropical Grassmannian and positroidal subdivisions in [Section 4] then give
a new proof in[Section Hlthat every positively oriented matroid is realizable. We give
several characterizations of finest positroidal subdivisions of the hypersimplex in
and show that such subdivisions achieve equality in the f-vector theorem.
Then in we construct a nonregular positroidal subdivision of Aj 12, and
make a connection to the theory of tropical hyperplane arrangements and tropical
oriented matroids [AD09,[Hor16]. We end our paper with an appendix (Secfion J),
which reviews some of Postnikov’s technology [Pos] for studying positroids.
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2. THE POSITIVE GRASSMANNIAN AND POSITROID POLYTOPES

Definition 2.1. The (real) Grassmannian Gry,,, (for 0 < k < n) is the space of
all k-dimensional subspaces of R"”. An element of Gry,, can be viewed as a k X n
matrix of rank £ modulo invertible row operations, whose rows give a basis for the
k-dimensional subspace.

Let [n] denote {1,...,n}, and ([Z]) denote the set of all k-element subsets of [n].

Given V € Gy, represented by a k x n matrix A, for I € ([Z]) we let p; (V) be the
k x k minor of A using the columns I. The p;(V) do not depend on our choice of
matrix A (up to simultaneous rescaling by a nonzero constant), and are called the
Pliicker coordinates of V.

2.1. The positive Grassmannian and its cells.

Definition 2.2 ([Pos, Section 3]). We say that V' € Gry p is totally nonnegative
(respectively, totally positive) if pr(V) > 0 (resp. pr(V) > 0) for all T € ([Z]). The
set of all totally nonnegative V' € Gry ,, is the totally nonnegative Grassmannian
Gr,i?b and the set of all totally positive V is the totally positive Grassmannian Gr,i%.
For M C ([Z]), let Sy; be the set of V € GT,?% with the prescribed collection
of Pliicker coordinates strictly positive (i.e. py(V) > 0 for all I € M), and the

remaining Pliicker coordinates equal to zero (i.e. py(V) =0 for all J € ([Z]) \ M).
If Sy # 0, we call M a positroid and Sy, its positroid cell.

Each positroid cell Sy is indeed a topological cell [Pos, Theorem 6.5], and more-
over, the positroid cells of Gr,i?l glue together to form a CW complex [PSW09].

As shown in [Pos|, the cells of Grk%?l are in bijection with various combinatorial
objects, including decorated permutations m on [n] with k anti-excedances, I -
diagrams D of type (k,n), and equivalence classes of reduced plabic graphs G of
type (k,n). In we review these objects and give bijections between them.
This gives a canonical way to label each positroid by a decorated permutation, a
J-diagram, and an equivalence class of plabic graphs; we will correspondingly refer
to positroid cells as S, Sp, etc.

2.2. Matroid and positroid polytopes. In what follows, we set ej := ZiEI e; €
R™, where {ey,...,e,} is the standard basis of R™.

Definition 2.3. Given a matroid M = ([n], B), the (basis) matroid polytope T ps
of M is the convex hull of the indicator vectors of the bases of M:

'y = convex{ep | B € B} C R".

The dimension of a matroid polytope is determined by the number of connected
components of the matroid. Recall that a matroid which cannot be written as the
direct sum of two nonempty matroids is called connected.

Proposition 2.4 ([OxI11]). Let M be a matroid on E. For two elements a,b € E,
we set a ~ b whenever there are bases By, By of M such that By = (B —{a})U{b}.
The relation ~ is an equivalence relation, and the equivalence classes are precisely
the connected components of M.

Proposition 2.5 ([BGW03]). For any matroid, the dimension of its matroid poly-
tope is dimI'y; = n — ¢, where ¢ is the number of connected components of M.
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Recall that any full rank & x n matrix A gives rise to a matroid M(A) = ([n], B),
where B = {I € ([Z]) | pr(A) # 0}. Positroids are the matroids M(A) associated
to k x n matrices A with maximal minors all nonnegative. We call the matroid
polytope I'j; associated to a positroid a positroid polytope.

3. THE POSITIVE TROPICAL GRASSMANNIAN EQUALS THE POSITIVE DRESSIAN

In this section we review the notions of the tropical Grassmannian, the Dressian,
the positive tropical Grassmannian, and the positive Dressian. The main theorem
of this section is which says that the positive tropical Grassmannian
equals the positive Dressian.

Definition 3.1. Given e = (e,...,en) € Zgo, we let x° denote z7* ... 2. Let
EC Zgo. For f =3 cp fex® a nonzero polynomial, we denote by Trop(f) C RY
the set of all points (X7,..., Xy) such that, if we form the collection of numbers

Z?{:l e; X; for e ranging over F, then the minimum of this collection is not unique.
We say that Trop(f) is the tropical hypersurface associated to f.

In our examples, we always consider polynomials f with real coefficients. We

also have a positive version of [Definition 3.1}

Definition 3.2. Let E = ET UE~ C ZY,, and let f be a nonzero polynomial
with real coefficients which we write as f = Yecrr JeXC = cp— fex©, where all
of the coefficients f. are nonnegative real numbers. We denote by Trop™ (f) ¢ RY
the set of all points (X7,..., Xy) such that, if we form the collection of numbers
Z?{:l e; X; for e ranging over E, then the minimum of this collection is not unique
and furthermore is achieved for some e € E* and some ¢ € E~. We say that
Trop ™t (f) is the positive part of Trop(f).

The Grassmannian Gy, p, is a projective variety which can be embedded in pro-

[
jective space p('% )_1, and is cut out by the Plicker ideal, that is, the ideal of
relations satisfied by the Pliicker coordinates of a generic k x m matrix. These

relations include the three-term Pliicker relations, defined below.

Definition 3.3. Let 1 < a < b < c < d<n and choose a subset S € (k[ﬁ]Q) which
is disjoint from {a,b,c,d}. Then psacPssd = PSabPScd + PSadPSbe 1S a three-term
Pliicker relation for the Grassmannian Gry ,,. Here Sac denotes S U {a, c}, etc.

Definition 3.4. Given S, a,b,c,d as in [Definition 3.3] we say that the tropical
three-term Pliicker relation holds if

® Psgc+ Psyg = Psap + Psca < Psaq + Pspe or
L4 PSac+Pde:PSad+PSbc<PS’ab+PScd0r

® Psap + Pscqg = Psaq + Pspe < Psqc + Pspa-

And we say that the positive tropical three-term Pliicker relation holds if either of
the first two conditions above holds.

Definition 3.5. The tropical Grassmannian Trop Gry , C R([Z]) is the intersec-
tion of the tropical hypersurfaces Trop(f), where f ranges over all elements of

the Pliicker ideal. The Dressian Dry , C R([Z]) is the intersection of the tropical
hypersurfaces Trop(f), where f ranges over all three-term Pliicker relations.
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The tropical Grassmannian Trop Gry,,, first studied in [SS04,HKTO06, KT06],
parameterizes tropicalizations of ordinary linear spaces, defined over the field of
generalized Puisseux series K in one variable ¢, with real exponents. More formally,
recall that there is a valuation valgk : K\ {0} — R, given by valg(c(t)) = ap
if ¢(t) = )" ca,,t*, where the lowest order term is assumed to have non-zero
coefficient ¢, 7# 0. Then P lies in the tropical Grassmannian Trop Gy, if and
only if there is an element A = A(t) € Gry ,(K) whose Pliicker coordinates have
valuations given by P = { Py} (see [Pay09|[Pay12] for a proof). We will call elements
of Trop Gry,,, realizable tropical linear spaces. The tropical Grassmannian is a
proper subset of the DressianE which parameterizes what one might call abstract
tropical linear spaces. Moreover, the Dressian has a natural fan structure, whose
cones correspond to the regular matroidal subdivisions of the hypersimplex [Kap93],
Spe08, Proposition 2.2], see [Theorem 4.2 Note that the Dressian Dry , is the

subset of R([Z]) where the tropical three-term Pliicker relations hold.

tnl
Definition 3.6. The positive tropical Grassmannian Trop™ Gry, C r(W) is the
intersection of the positive tropical hypersurfaces Trop™ (f), where f ranges over
e
all elements of the Plicker ideal. The positive Dressian Drz_n C R(%) is the

intersection of the positive tropical hypersurfaces Trop™ (f), where f ranges over
all three-term Pliicker relations.

The positive tropical Grassmannian was introduced by the authors fifteen years
ago in [SWO03], and was shown to parameterize tropicalizations of ordinary lin-
ear spaces that lie in the totally positive Grassmannian (defined over the field
of Puiseux series). The positive tropical Grassmannian lies inside the positive
Dressian, which controls the regular positroidal subdivisions of the hypersimplex
[LPW20], see Mheorem 4.3l Note that the positive Dressian Dr; is the subset of

in]
R(%) where the positive tropical three-term Pliicker relations hold.

[n]
k

Definition 3.7. We say that a point {PI}IE([H]) e R(Y) is a (finite) tropical
k
Pliicker vector if it lies in the Dressian Dry ,, i.e. for every three-term Pliicker
relation, it lies in the associated tropical hypersurface. And we say that {Pr}, et
"

is a positive tropical Pliicker vector, if it lies in the positive Dressian Dlr;n7 i.e.
for every three-term Pliicker relation, it lies in the positive part of the associated
tropical hypersurface.

Example 3.8. For Gy 4, there is only one Pliicker relation, pizpas = piopsa +

P14p23. We have that Trop Gra 4 = Dray C R([g]) is the set of points (Pya, P13, P14,
Pa3, Pay, P34) € RS such that

o P35+ Poy = Pio+ P3y < Piy+ Po3or

o Pi3g+ Poy = Piy+ Pog < Pig+ P34 o1

o Py + P3y = Piy+ Pog < P13+ Poy.
And Dr;’)4 = Trop"™ Gray C R(Z) is the set of points (Pia, P13, P14, P23, Pog, P34) €
RS such that

o Pi3+ Poy = Pig+ P34 < Py + P or

3Also called the tropical pre-Grassmannian in [SS04] and named in [HJJS08] for Andreas
Dress’ work on valuated matroids.
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® Pig+ Poy = Piy+ Po3 < Pio+ Psy .

In general, the Dressian Dry ,, is much larger than the tropical Grassmannian
Trop Gry,,, — for example, the dimension of the Dressian Dr3 ,, grows quadratically
is n, while the dimension of the tropical Grassmannian Trop Grs . is linear in n
[HJJS08]. However, the situation for their positive parts is different. The main
result of this section is the following.

Theorem 3.9. The positive tropical Grassmannian Trop™ Gry,n equals the positive
Dressian Dr;;n.

Theorem 3.9 was recently announced in [LPW20]. It subsequently appeared in

independent work of [AHLS20)].
Before proving [Theorem 3.9) we review some results from [SWO05] which allow
one to compute positive tropical varieties.

Remark 3.10. In[Section §we describe many parametrizations of cells of (Grg.,) >0,
which were given by Postnikov using plabic graphs. [SW05, Proposition 2.5] says
that if one has a subtraction-free rational map f which surjects onto the positive
part VT (J) of a variety (for example a cluster chart), then the tropicalization of this
map surjects onto the positive tropical part Trop™ V/(.J) of the variety. Therefore
we can tropicalize each parameterization ®¢ from [Theorem 8.8 — to obtain a pa-
rameterization of a positive tropical positroid variety (in particular, Trop™ Grin)-
More specifically, we tropicalize ®¢ by replacing the positive parameters x,, (with
[1, z, = 1) with real parameters X, (with > X, = 0) — and replacing products
with sums and sums with minimums in the expressions for flow polynomials. Then
[SWO05|, Proposition 2.5] say that this tropicalized map Trop @ gives a parameter-
ization of Trop™ Gri .

For the proof of [Theorem 3.9]it is convenient to use one particular plabic graph
(corresponding to the directed graph Weby, ,, from [SW05], Section 3]), see [Figure 1]

1 1
2 2
3 3

FIGURE 1. Weby ,, for K = 3 and n = 6. If w is the path on
the right-hand side, then wt(w) = x25224236235734 and Wt(w) =

Applying [Theorem 8.8 to the graph from we have the following result.

Theorem 3.11. Label the faces of Go := Weby,, by indices p and let Py, denote
the collection of indices. Define the weight wt(w) of a path w in Weby, to be
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the product of parameters x, where p ranges over all face labels to the left of a
path. Define the weight of a flow (i.e. a collection of nonintersecting paths) to be
the product of the weights of its paths. Let p?o = > wt(F) where F ranges over
all flows from {1,2,...,k} to J. Then the map ® := &g, sending (,)ucp,., €
(R>0)k("_k) to the collection of flow polynomials {p?O}JE([Z]) is @ homeomorphism

from (Rs)F"=%) to the totally positive Grassmannian (Gry.n)so (realized in its
Pliicker embedding).

In the case of the graph Gy = Weby, ,,, we obtain the following parameterization
of Trop™ Grig .

Theorem 3.12. Label the faces of Weby,, by indices pn as before. Define the
weight Wt(w) of a path w in Weby, to be the sum of parameters X, where
ranges over all face labels to the left of a path. Define the weight of a flow (i.e.
a collection of nonintersecting paths) to be sum of the weights of its paths. Let
PS° = ming Wt(F) where F ranges over all flows from {1,2,...,k} to J. Then
the map Trop ®g = Trop g, sending (X,)uep,., € (R)*("=k) to the collection of
tropical flow polynomials {PJGO}JG([’;]) is a bijection from RF("=F) to the tropical

positive Grassmannian Trop™ Gry.p (realized in its Pliicker embedding).

In the case of Gy = Weby ,, we can easily invert the maps ® := ®, and
Trop ® = Trop P¢,. This was done in [SWO05]; we review the construction here.
First, given ¢ and j labeling horizontal and vertical wires of Weby,, (i.e. 1 <i <k
and k+1 < j <n),let

K(i,j):={1,2,....i—1}U{i+j—ki+j—k+1,....,5—1,4}
If (4, 7) does not correspond to a region of Weby, ,,, set K (4, j) := [k].

n]

[
Definition 3.13. Let p = {pK}KE([n]) € Rgg) Then for ¢ and j labeling hor-
k

izontal and vertical wires of Weby,, (ie. 1 < i < kand k+1 < j < n), we

define » » »
K(i,j)PK (i+1,j—2)PK (i+2,j—1
U(p) ) = GHPK (41,5 -2)PK (i42,j-1)

PK(i,j—1)PK(i+1,j)PK (i+2,5—2)

We likewise define the tropical version. Let P = { Pk} Ke( c R([’,;l).
k

Trop U(P) i) = (Prc(i) + Prc(i+1.4-2) + Pr(iv24-1))
- (PK(i,jfl) + Pr(it1,5) + PK(i+2,jf2)) :
[Definition 3.13] gives a way to label each face of Weby, ,, by a (tropical) Laurent
monomial in (tropical) Pliicker coordinates. This is shown in
Proposition 3.14. The maps ® : R’;(gl_k) — Gr,i:n and U : Grlj,n — Ri(g_k) are
1NVerses.

Proposition 3.15 ([SW05, Corollary 3.5 and its proof]). The maps Trop @ :
RF(=F) 5 Trop™ Gry,n and Trop ¥ : Trop™ Gryn — RF("=FK) gre inverses.

Lemma 3.16. The collection of Pliicker coordinates C = {pg ¢ j | 1 <i < k,k+
1 < j < n} form a cluster for the cluster algebra structure [Sco06] on (the affine
cone over the) Grassmannian Gry,. We call this the corectangles cluster. In
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R

V' N
|

P234
P134

P345P124
P234P145

P456P134P125
P345P156P124

P145P123 JARYS

P125P134

P156P124
P126P145

6 5 4

FIGURE 2. Inverting the map.

particular, this collection of Pliicker coordinates is algebraically independent, and
all other Pliicker coordinates can be written as Laurent polynomials with positive
coefficients in the Pliicker coordinates from the collection.

Proof. Note that for each ¢ and j as above, K(i,7) is a k-element subset of [n].
Moreover, if we identify Young diagrams contained in a k x (n — k) rectangle with
the labels of the vertical steps in the length-n lattice path taking unit steps south
and west from (k,n —k) to (0,0), then the elements K (4, j) precisely correspond to
the Young diagrams \ whose complementary Young diagram is a rectangle. It is not
hard to see that the collection {K (4, j)} is a maximal weakly separated set collection
[OPST5], and hence form a cluster for the cluster algebra structure [Sco06].

Example 3.17. depicts the map Trop ¥. Since Trop ® and Trop ¥ are
inverses, this example shows how to express each of the variables X;; (as shown
in in terms of the tropical Pliicker coordinates C = {Pg; ;) | 1 < i <
k,k+1 < j < n}. Note moreover that if we choose a normalization in tropical
projective space (e.g. where Pjo3 = 0), then we can solve for the tropical Pliicker
coordinates in C in terms of the X;;’s. For example, comparing and
we see that if P123 = O, then P124—P123 = P124 = X34, P134—P124 = X24,
so Pi34 = X34 + Xo4, etc. In this example we see that from the collection {Xij}
together with the normalization Pjo3 = 0, we can uniquely determine the Pliicker
coordinates {124, 125,134, 145} U {123,234, 345, 456, 156, 126}. As in
this collection of Pliicker coordinates is a cluster for the cluster algebras structure
on the Grassmannian. *

It is easy to generalize obtaining the following result.
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Lemma 3.18. The map Trop V¥ sending C = {Pk ;) | 1 <i <k k+1<j<n}
(with the convention that Pz = 0) to {Trop W(P)(; j)} is an injective map from
Rk(n—k) to Rk(n—k)

Proof of Theorem 3.9, To prove[Theorem 3.9, we must show that every point in the

positive Dressian also lies in the positive tropical Grassmannian. We will consider

any tropical Pliicker vector P = {Pk} a1y € Dr},, with the normalization
i ,

Py, =0, and compute @ := (Trop @) o (Trop ¥)(P). This will give an (a priori
new) realizable tropical Pliicker vector in Trop™ Gy, ,,. We must show that Q = P.

Recall that the map Trop ¥ depends only on the tropical Pliicker coordinates
inC={Pguj |1 <i<kk+1<j<n}, mapping them to {Trop U(P) ;)}-
Moreover from [Cemma 3.18, Trop ¥ is an injective map from RF("—k) to RE(—FK)
Therefore, since Trop ¥ and Trop ® are inverses, we have that Qg ; jy = Pk i,j) for
all K(i,7) with 1 <4< kand k+1 < j < n. But now from [Lemma 3.16, the
collection { Pk ; )} is a cluster for the cluster structure on Gry . And by [OS17],
all Pliicker clusters can be obtained from each via three-term Pliicker relations.
Since every Pliicker coordinate lies in a Pliicker cluster [OPS15], the three-term
Pliicker relations alone (which we know are satisfied since P € Dr;n) determine

all the other values Px and Qg for K € ([Z]), so we must have Px = Qg for all
K e ([Z]). Therefore P = K and we are done.

Remark 3.19. One may generalize [Theorem 3.9 and its proof to any positroid cell,
using the J-network associated to a positroid cell and the inverse map from [Talll].

4. THE POSITIVE TROPICAL GRASSMANNIAN AND POSITROIDAL SUBDIVISIONS

Recall that Ay, denotes the (k,n)-hypersimplex, defined as the convex hull of
the points e; where I runs over ([Z]). Consider a real-valued function {I} — Py
on the vertices of Ay ,. We define a polyhedral subdivision Dp of Ay, as follows:
consider the points (er, Pr) € Ag, x R and take their convex hull. Take the
lower faces (those whose outwards normal vector have last component negative)
and project them back down to Ay ,; this gives us the subdivision Dp. We will
omit the subscript P when it is clear from context. A subdivision obtained in this
manner is called regular.

Remark 4.1. A lower face F' of the regular subdivision defined above is determined
by some vector A = (Aq,..., Ay, —1) whose dot product with the vertices of the
F' is maximized. So if F' is the matroid polytope of a matroid M with bases B,
this is equivalent to saying that A;; + -+ + X, — Pr = A\jy + -+ X5, — Py >
Ahy + -+ Ap, — Py for any two bases I, J € B and H ¢ B.

Given a subpolytope I' of Ay, ,,, we say that I' is matroidal if the vertices of T',
considered as elements of ([Z]), are the bases of a matroid M, i.e. I' =Ty,.
The following result is originally due to Kapranov [Kap93]; it was also proved in
[Spe08|, Proposition 2.2].
Theorem 4.2. The following are equivalent.
e The collection {PI}IE [ 18 a tropical Pliicker vector.

o The one-skeleta of Dp and Ay, ,, are the same.
e FEvery face of Dp is matroidal.
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Given a subpolytope I' of Ay ,,, we say that I' is positroidal if the vertices of T',
considered as elements of ([Z]), are the bases of a positroid M, i.e. I' = T'p;. The
positroidal version of [Theorem 4.2] was recently proved in [LPW20], and indepen-
dently in [AHLS20].

Theorem 4.3. The following are equivalent.
e The collection {Pr} 1e(1) 18 a positive tropical Pliicker vector.
k

e Fwvery face of Dp is positroidal.

It follows from [Theorem 4.3] that the regular subdivisions of Ay, consisting
of positroid polytopes are precisely those of the form Dp, where P = {P;} is a
positive tropical Pliicker vector.

5. A NEW PROOF THAT POSITIVELY ORIENTED MATROIDS ARE REALIZABLE

In 1987, da Silva [dS87] conjectured that every positively oriented matroid
is realizable. Reformulating this statement in the language of Postnikov’s 2006
preprint [Pos], her conjecture says that every positively oriented matroid is a
positroid. In 2017, da Silva’s conjecture was proved by Ardila, Rincén and the
second author [ARW17], using the combinatorics of positroid polytopes. In this
section we will give a new proof of the conjecture, using our [Theorem 3.9, which
we think of as a “tropical version” of da Silva’s conjecture.

Recall that an oriented matroid of rank k on [n] can be specified by its chirotope,
which is a function from [n]* to {—,0,+} obeying certain axioms [BLVS+99]. If
M is a full rank k X n real matrix, the function taking (iq, iz, ..., i) to the sign of
the minor using columns (41,14s2,...,4) is a chirotope, and the realizable oriented
matroids are precisely the chirotopes occurring in this way. Thus, if M represents
a point of the totally nonnegative Grassmannian, then M gives a chirotope x with
X(il,’ig,...,’ik) € {0,+} for 1 <iqp <ig<- - <ip <n.

We define a positively oriented matroid to be a chirotope x : [n]*¥ — {—,0,+}
such that x(i1,i2,...,ix) € {0,4} for 1 <43 < iy < -+ < i < n. Since every
positroid gives rise to a positively oriented matroid, to prove da Silva’s conjecture,
we need to verify that every positively oriented matroid comes from a positroid, or
in other words, is realizable.

Theorem 5.1 (JARWIT, Theorem 5.1]). Let M be a positively oriented matroid of
rank k on the ground set [n]. Then M is realizable.

Before proving [Theorem 5.11 we need the following lemma, which was implicit
in [Spe08, Section 4].

Lemma 5.2. Suppose that P = {Pr} lies in the tropical Grassmannian Trop Gry, .
Then every face of the matroidal subdivision Dp of Ay, corresponds to a realizable
matrotd.

Proof. Let T'p; be a face of Dp, and let B denote the bases of the matroid M.
Adding an affine linear function to P, we may assume that P; is 0 for I € B;
convexity then implies that Py > 0 for I ¢ B.

Since P lies in the tropical Grassmannian, we can choose a K-valued k x n matrix
A = A(t) whose Pliicker coordinates have valuations given by P = {P;} (see the
discussion following [Definition 3.5). But now if we set ¢ = 0, then the matrix A(0)
has Pliicker coordinates which are nonzero for I € B and zero for I ¢ B. Therefore
M is a realizable matroid.
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Proof of [Theorem 5.1 We first use the matroid M to construct a point of the
Dressian, following the method of [Spe08| Proposition 4.4] Namely, let pys be the
rank function of the matroid M, and for I € ([Z]), set P = —pp(I). Then
[Spe08|, Proposition 4.4] implies that P := {PI}IG([Z]) is a point of the Dressian,
and that the matroid polytope I'; is a face of the subdivision Dp.

Using the fact that M is positively oriented, we will show that P is in fact a
point of the positive Dressian. Indeed, consider any (k — 2)-element subset S of [n]
and any a < b < ¢ < din [n]\ S. We need to show that

PSac + PS’bd = min(PSab + PScd7 PSad + PSbc)u
or equivalently, that
pa(Sac) + par(Sbd) = max(ppr(Sab) + par(Sed), par(Sad) + par(She)).

Let M’ be the matroid (M/S)|(4p.c,qy on the ground set {a,b,c,d}. For z,
y € {a,b,c,d}, we have ppr(Szy) = pamr(S) + pa (2y). Thus, we need to show that

(5.3) pu (ac) + par (bd) = max(par (ab) + par (ed), par (be) + par (ad)).

Now we claim that M’, being a minor of a positively oriented matroid, is itself a
positively oriented matroid. It is easy to verify that the dual of a positively oriented
matroid is again a positively oriented matroid, and moreover, [ARW17, Lemma
4.11] showed that positively oriented matroids are closed under restriction. An
analogous proof shows that positively oriented matroids are closed under contrac-
tion. This verifies the claim.

It now remains to verify (B.3) for all positively oriented matroids on four ele-
ments, which is routine.

We now know that P = { P} lies in the positive Dressian, so[Theorem 3.9 shows
that P is in the positive tropical Grassmannian. But now by this
implies that every face of the matroidal subdivision Dp of Ay, corresponds to a
realizable matroid. In particular, we have P; < 0 with equality if and only if I is a
basis of M, so I'ps is a face of Dp, and we have shown that I'j; is realizable.

Interestingly, although the definitions of “positively oriented matroid” and
“positroid” don’t involve tropical geometry at all, there does not seem to be a
way to remove the tropical geometry from our proof without making it significantly
longer.

6. FINEST POSITROIDAL SUBDIVISIONS OF THE HYPERSIMPLEX

In this section we show that finest positroidal subdivisions of the hypersimplex
Ay, achieve equality in the first author’s f-vector theorem.

Definition 6.1. A matroid is called series-parallel if it can be obtained by repeated
series-parallel extensions from the matroid corresponding to a generic point of Gy 2.

See [Whi86), Section 6.4] for background on series-parallel matroids.

Theorem 6.2 ([Spe09]). Let P be a tropical Plicker vector arising as val(pr(A))

for some A € Gry n(K). Then Dp has at most (k—c)!EZ:Z:lc))I!(c—l)! interior faces
of dimension n — ¢, with equality if and only if all facets of Dp correspond to

series-parallel matroids.
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In particular, the number of facets of Dp — that is, the number of matroid
polytopes of dimension n — 1 in Dp — is at most (2:%)

The following result can be found in [OxI11l Corollary 11.2.15].
Theorem 6.3. A connected matroid is series-parallel if and only if it has no minor
which is the uniform matroid Us 4 or the graphical matroid My, associated to the
complete graph Kj.

The graphical matroid Mg, is not a positroid, and all minors of positroids are
positroids [ARW16], so we have the following corollary.

Corollary 6.4. A connected positroid is series-parallel if and only if it has no
uniform matroid Uz 4 as a minor.

If M is a matroid on the ground set [n], with matroid polytope I'ss, and I and
J are disjoint subsets of [n], then the the polytope I'yp\7/7 is Ty N{z; =0:d €
It Nn{zj=1:j € J}. So we can phrase Corollary [6.4] as

Corollary 6.5. Let M be a connected positroid. Then M is series-parallel if and
only if its matroid polytope Ty does not contain any face which is an (unsubdivided)
octahedron.

It follows from that in a matroidal subdivision, all facets corre-

spond to connected matroids.

Theorem 6.6. Let P = {PK}KG(["]) be a positive tropical Pliicker vector. For the
k
positroidal subdivision Dp of A, the following are equivalent:
(1) Dp is a finest subdivision.
(2) Ewery facet of Dp is the matroid polytope of a series-parallel matroid.
(3) Ewery octahedron in Dp is subdivided.

Proof. Suppose that (3) holds. Let I'jy; be a facet of this subdivision. Since
dim 'y = n — 1, the matroid M is connected, and by hypothesis M is a positroid.
Hypothesis (3) says that I'y; does not contain any octahedron, so Corollary
says that M is series-parallel. We have shown (2).

Now suppose that (2) holds. If every facet is series-parallel, then by [Theorem 6.2
we get equality in the f-vector theorem, and in particular get equality in the ¢ =
1 term. So we have the maximal number of possible facets, so the positroidal
subdivision is finest possible. This implies (1).

Now suppose that (1) holds. To show that every octahedron in Dp is subdivided,
we need to show that we never have equality in a tropical 3-term Pliicker relation,
in other words, we never have

Psap + Pscq = Psaq + Pspe

fora<b<c<dand S € (k[f]2) disjoint from {a, b, ¢, d}.

Using the fact that the positive Dressian equals the positive tropical Grassman-
nian (Theorem 3.9), as well as [Remark 3.10) we can use flows in plabic graphs to
parameterize the points in the positive Dressian, as in [[Theorem 8.8 We note that
it follows from the technology of [PSWQ9] that a flow is uniquely determined by
its weight wt(F') (compare Definition 4.3 and Table 1, and note that flows are in
bijection with almost perfect matchings).

Let us choose a reduced plabic graph G for (Gri.n)s0, i.e. a reduced plabic
graph with trip permutation (k+ 1,k +2,...,n,1,2,...,k), and choose a perfect
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orientation O with sources at Ip = Sab. (The fact that we can do so follows from
c.5. [Proposition 5).
Then by [Remark 3.10, we can express P = Trop ®¢({X,}), for some fixed real
values X, labeling the faces of G. In particular, the coordinates of P = {PK}Ke([”])
k

can be expressed as Px = minp(Wt(F')), where F' ranges over all flows from Sab
to K, and Wt(F) is a sum of certain parameters X,.

Since we are assuming that Dp is finest, we can assume that the parameters X,
are generic: that these parameters are distinct real numbers, and that there are
not two different subsets of parameters whose sums coincide.

Let us consider the tropical Pliicker coordinate Pgqp. This equals ming(Wt(F)),
where F' ranges over all flows from Sab to Sab; in this case, the flows F' are simply
collections of vertex-disjoint cycles in G (including the empty collection). We now
explain how to reduce to the case that the flow achieving the minimum is the empty
flow.

Let F’ be the flow achieving the minimum, so F” is a collection of disjoint cycles.
Adjust O to a new perfect orientation O’ by reversing the orientation of all edges
belonging to F’. Then (0’ is again a perfect orientation (see [PSW09, Lemma 4.5])
and that (preserving the values of the X,) the collection of new Pliicker coordinates
are all adjusted by the same scalar (the weight of F’), preserving the point in
tropical projective space which is represented by P. Now, in the orientation (O,
the minimum flow for Pgg, is the empty flow. We therefore assume, from now on,
that the minimum flow for Ps,;, is the empty flow. With this reduction, we have
PSab =0.

Meanwhile Pg.q is the weight of the minimal flow F from Sab to Secd, which
will be a pair of paths {wy,ws} taking a to d and b to ¢ (plus possibly some closed
loops). Pgqq is the weight of the minimal flow F5 from Sab to Sad, which will be
a single path w3 from b to d (plus possibly closed loops). And Pgy. is the weight
of the minimal flow Fy from Sab to Sbc, which will be a single path w4 from a to

¢ (plus possibly closed loops), see

a a a a
b b b b
2
+ = +
C C C C
a d d a

Psap Pseq Psaq Pspe
FiGure 3. Flows Fy, Iy, F3, Fy used to compute Psap, Pscds Psads Pspe-

But now because our parameters X, associated to the faces are generic, the only
way to get equality Psap + Pscd = Psad + Pspe is if our minimal flow F5 from Sy
to Scq has to its left precisely the same multiset of faces that the pair of flows
(F3, Fy) (which consists of the paths ws, w4 plus possibly some loops) does. This is
only possible if w; and wy are obtained from w3 and w4 by “switching tails” at an
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intersection point of ws and wy. But then {wi,ws} would not be vertex-disjoint
and hence not part of a flow.

Combining [Theorem 3.9 [Theorem 6.21 and [Theorem 6.6 we now have the fol-

lowing.

Corollary 6.7. Every finest positroidal subdivision of Ay, achieves equality in the
f-vector theorem. In particular, such a positroidal subdivision has precisely (Z:f)
facets.

7. NONREGULAR POSITROIDAL SUBDIVISIONS

In this paper we have discussed the positive Dressian, which consists of weight
functions on the vertices of the hypersimplex Ay, ,, which induce positroidal subdivi-
sions of Ay, ,,; recall that subdivisions induced by weight functions are called regular
or coherent. It is also natural to consider the set of all positroidal subdivisions of
Aj.n, whether or not they are regular. (See [DLRS10] for background on regular
subdivisions.) In this section, we will construct a nonregular positroidal subdi-
vision of Az 2, and also make a connection to the theory of tropical hyperplane
arrangements and tropical oriented matroids [AD09[Hor16].

Our strategy for producing the counterexample is as follows. We will start with
a standard example of a nonregular rhombic tiling of a hexagon (with side lengths
equal to 3), and extend it to a nonregular mixed subdivision of 9As; this mixed
subdivision gives rise to a dual arrangement H of 9 tropical pseudohyperplanes
in TP?. Moreover, the mixed subdivision corresponds, via the Cayley trick, to a
polyhedral subdivision of Ay x Ag. We then map this polyhedral subdivision to a
matroidal subdivision of A3 ;2, and analyze the 0-dimensional regions of H to show
that it is a positroidal subdivision of Ag 2. Note that [HJJS08, Example 4.7] used
a similar strategy to encode a nonregular matroidal subdivision of Agg. We give a
careful exposition here in order to verify that our subdivision is positroidal.

7.1. The product of simplices and the hypersimplex. Let I be any k-element
subset of [n] and let J = [n] \ I. Let II; C Ay, be the convex hull of all points of
the form ey —e; +¢; for ¢ € I and j € J; clearly this set of points is in bijection
with I x J. The polytope II; is isomorphic to Ag_1 X A, _r_1, with vertices in
bijection with I x J. II; has dimension n — 2 and sits inside Ay ,, which has
dimension n — 1. We review standard constructions for passing between polyhedral
subdivisions of II; and matroidal subdivisions of Ay ,. We will be interested in
polyhedral subdivisions of IT; all of whose vertices are vertices of II;, and we will
take the phrase “subdivision of II;” to include this condition.

In many references, I is standardized to be [k]. However, we will want to keep
track of how these standard constructions relate to the property of a matroid being
a positroid and, for this purpose, it will be important how I sits inside the circularly
ordered set [n], so we do not impose a standard choice of T.

Given a matroidal subdivision D of A ,,, we can intersect D with II; and obtain
a polyhedral subdivision Gy of Il;. If D is regular, so is Gj.

7.2. From subdivisions of II; to subdivisions of Ay, ,,. Following [HHJS14, The-
orem 7 and Remark 8], as well as [Rin13], we will explain how to map each convex
hull of vertices of II; to a matroid polytope inside Ay ,; this will be the matroid
polytope of a principal transversal matroid.
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Let X C I xJ. We define a polytope v(X) = Hull(; jyex(er —e; +e;) C ;. We
also define a bipartite graph G(X) with vertex set I U J = [n] and an edge from
i €1toje Jifand ounly if (i,7) € X.

Associated to the graph G(X) is the principal transversal matroid Trans(G(X))
(see [Bru87] and [Whi86, Chapter 7]), defined as follows: B is a basis of Trans(G(X))
if and only if there is a matching of I \ B to J N B in the bipartite graph G(X)
The matroid Trans(G(X)) is realized by a k x n matrix A = Ax, with rows labeled
by I and columns labeled by [n] where:

o the values A;; for (7,j) € X (where ¢ € I and j € J) are algebraically
independent,
o A;; =0if (4,j) ¢ X (where i € I and j € J),
o A, =0y (Where i,’i/ € I)
Remark 7.1. Note that the restriction of A to the columns labeled by I is the k x k
identity matrix.

In terms of polyhedral geometry, the matroid polytope of Trans(G(X)) is the
intersection of Ay , with ey +Spang__{e; —e; : (i,j) € X}. Summarizing, we have
the following.

Lemma 7.2. Each polytope v(X) = Hull(; jyex(er —e;+e;) C I; gives rise to the
matroid polytope U'yans(c(x)) € Drn. Abusing notation, we say that Trans maps
Y(X) to I'irans(a(x)) -

If G is a polyhedral subdivision of II;, then we can apply Trans to each polytope
ingG.
Proposition 7.3 ([HIJS14, Theorem 7 and Remark 8] and [Rinl3]). If we apply
Trans to each polytope in a polyhedral subdivision G of 11, then we will obtain a
matroid subdivision Trans(G) of Ay n. The subdivision Trans(G) is regular if and
only if G is.

We will eventually be studying triangulations of II7, so we will want to focus on
the case that y(X) is an (n — 2)-dimensional simplex.

Lemma 7.4. Let X C 1 x J. The following are equivalent:
(1) The polytope v(X) is an (n — 2)-dimensional simplez.
(2) The graph G(X) is a tree on the vertices [n).

Proof. The equivalence of (1) and (2) is simple. The polytope (X) is an (n — 2)-
dimensional simplex if and only if it’s the convex hull of (n—1) affinely independent
points. But this is equivalent to the statement that G(X) consists of n — 1 edges
and no subset forms a cycle. This means that G(X) is a tree on [n].

Remark 7.5. The conditions from [Cemma 7.4 are additionally equivalent to the
condition that the matroid Trans(G(X)) is series-parallel. One can prove this using
e.g. [Spe08, Proposition 5.1].

We will want to know when the matroids in Lemma [(4] are positroidal. One
direction of [Lemma. 7.6 comes from [Marl9, Theorem 6.3].

Lemma 7.6. Suppose that X is a subset of I x J such that G(X) is a tree. The
matroid Trans(G(X)) is positroidal if and only if we can embed the tree G(X) in
a disk so that it is planar, and its vertices lie on the boundary of the disk in the
standard circular order on I U J = [n].
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FIGURE 4. The labeling of the regions of a tropical hyperplane.

Proof. If G(X) can be embedded as a planar tree in a disk as above, then this graph
is noncrossing, and by [Mar19l Theorem 6.3] the transversal matroid Trans(G(X))
is a positroid.

On the other hand, if it cannot be embedded as a planar tree, then we can
find 1,42 € I and j1,j2 € J, such that (i1, j1) and (i2, j2) lie in X, and when we
put the numbers {i1, 42, j1,j2} at the boundary of a disk in the standard circular
order, the two chords (i1,71) and (iz, j2) cross each other. Moreover since G(X) is
a tree, we cannot have both (i1, j2) and (ia,j1) in X. Without loss of generality
we can assume that either 47 < 19 < j1 < jo or i1 < jo < j1 < 4. Let us
consider the first case. Then if we look at the rows labeled by {i1,i2} and the
columns labeled by {i1, 2, j1,j2} in the matrix A = Ax, we find that the minors
Diri, and pj, 4, are nonzero, but the product p;, j, pi,;, is zero. This fails to be a
positroid on {41,142, j1,j2} because such conditions are incompatible with finding
a non-negative solution to the Pliicker relation p;,j,Pisj» = DirizPjija + DisjaPisja-
Using [Remark 7.1} we can now extend this 2 x 4 submatrix of A to a k x (k + 2)
submatrix of A, by adding the rows and columns indexed by I'\ {i1,i2} The second
case is analogous.

7.3. From tropical pseudohyperplane arrangements to subdivisions of the
product of simplices. We now explain how to go between tropical pseudohyper-
plane arrangements and subdivisions of IT;. This section is based on [ADQ9], which
initiated the study of tropical oriented matroids and conjectured that they are in
bijection with subdivisions of the product of two simplices. [AD09] proved their
conjecture in the case of Ag_1 X Ay, which is all we need here; [Horl6] proved their
conjecture in general. Consult these sources for more detail.

Let TP*—! denote tropical projective space R¥/R(1,1,...,1), and let c=(cy, ..., cy)
be an element of TP*~!. The tropical hyperplane H,. centered at c is the set of
points (z1,xa,...,x;) € TP*~! such that mini<j<x{z; — ¢;} is not unique. If
r = (x1,,...,2;) is any point of TP*~! we let S(H, ) be the set of indices
J € [k] at which z; — ¢; is minimized. shows a tropical hyperplane in TPZ2,
where the horizontal and vertical coordinates are x; — x3 and xo — x3, and each
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FIGURE 5. A nonregular subdivision of 9A,.

region is labelled with the set S(H,z) for = in that region. An arrangement of m
labelled tropical hyperplanes is a list of m tropical hyperplanes in TP*~1.

A tropical pseudohyperplane H is a subset of TP*~! which is PL-homeomorphic
to a tropical hyperplane. Note that the quantity S(H,z) makes sense for H a
tropical pseudohyperplane in TP*~! and & € TP*~!. An arrangement of m labelled
tropical pseudohyperplanes is a list of m tropical pseudohyperplanes which intersect
in “reasonable” ways, see [Horl6l Section 5] for details. Our main focus in this
section will be on the case of tropical pseudohyperplanes in TP2.

Consider an arrangement of n — k tropical pseudohyperplanes Hy, Hs, ..., H,_
in TP*~!. Given a point z € TP*~! we define a subset X(x) of [k] x [n — k]
where (i,7) € X(x) if and only if j € S(H;,z). We can thus associate to each
x € TP*~! a polytope y(X (z)) € Ap_1 X Ap_x_1, as well as the matroid polytope
Irans(G(x(2))) of the transversal matroid Trans(G (X (z))). If we let = range over
the bounded regions of the tropical pseudohyperplane arrangement, we obtain the
interior regions of a subdivision of Ap_1 X A,,_k_1. Using [DS04, Theorem 1] and
[Horl6, Theorems 1.2 and 1.3], this subdivision is regular if and only if tropical
pseudohyperplane arrangement can be realized by genuine tropical hyperplanes.

7.4. Our counterexample. We start with the mixed subdivision of 9A5 shown
in[Figure 5 The subdivision of the central hexagon (with each side of length 3) is a
standard example of a nonregular subdivision of a hexagon into rhombi, originally
found by Richter-Gebert, see [ER96l Figure 9]. Thus, this mixed subdivision of
9A, is not regular.

Mixed subdivisions of bA,_; are dual to arrangements of b labeled tropical pseu-
dohyperplanes in TP?~!. The arrangement of 9 tropical pseudohyperplanes in TP?
which is dual to the mixed subdivision from is shown in In this
figure we have labeled the coordinates of TPP? by {4, 8,12} — placing the labels at the
“ends” of the rays, according to which coordinate is becoming large along the ray
— and labelled the tropical pseudohyperplanes by {1,2,3,5,6,7,9,10, 11}, placing
the label at the trivalent point.

Also, by the “Cayley trick” [HRS00[San05], mixed subdivisions of bA,_; corre-
spond to polyhedral subdivisions of A,_1 x Ay_1, with regular mixed subdivisions
of bA,_1 corresponding to regular polyhedral subdivisions of A,_; X Ap_;. There-
fore the mixed subdivision from corresponds to a nonregular polyhedral
subdivision of Ilg4 512} C Az 12
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FIGURE 6. The dual arrangement of 9 tropical pseudohyperplanes.

It remains to check that this subdivision is positroidal. We need to check that
each of the 45 two-dimensional polytopes in[Figure 5] or equivalently, each of the 45
zero-dimensional cells of the tropical pseudohyperplane arrangement in
corresponds to a positroid. Letting = be one of these zero dimensional cells, we
must check that G(X (z)) is a tree in each case, which can be embedded in a disk
as in [Lemma 7.0l

For example, let = be the crossing which is circled in [Figure 6} the dual rhombus
is shaded in We have

S(Hy,xz) = {12} S(Hs,z) = {12} S(Hs,x) = {4,12}
S(H57x) = {478} S(H@,ﬂ?) = {8} S(H’y,fﬂ) {8}
S(Hg,z) = {8} S(Hy,z) = {8} S(Hu,z) = {12}

We draw the corresponding tree in Figure [

8. APPENDIX. COMBINATORICS OF CELLS OF THE POSITIVE (GRASSMANNIAN

In [Pos], Postnikov defined several families of combinatorial objects which are in
bijection with cells of the positive Grassmannian, including decorated permutations,
and equivalence classes of reduced plabic graphs. Here we review these objects as
well as parameterizations of cells.

Definition 8.1. A decorated permutation of [n] is a bijection 7 : [n] — [n] whose
fixed points are each colored either black (loop) or white (coloop). We denote a
black fixed point i by 7(i) = i, and a white fixed point i by (i) = 7. An anti-
excedance of the decorated permutation 7 is an element ¢ € [n] such that either
71(i) > i or w(i) =i.
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FIGURE 7. The planar tree corresponding to the marked point in
Figure [6l Elements of I are shown in white.

For example, 7 = (3,2,5,1,6,8,7,4) has a loop in position 2, and a coloop in
position 7. It has three anti-excedances, in positions 4,7, 8. We let k(7) denote the
number of anti-excedances of .

Postnikov showed that the positroids for Grkz_% are indexed by decorated permu-
tations of [n] with exactly k anti-excedances [Posl, Section 16].

Definition 8.2. A plabic gmpiﬁ is an undirected planar graph G drawn inside a
disk (considered modulo homotopy) with n boundary vertices on the boundary of
the disk, labeled 1,. .., n in clockwise order, as well as some internal vertices. Each
boundary vertex is incident to a single edge, and each internal vertex is colored
either black or white. If a boundary vertex is incident to a leaf (a vertex of degree
1), we refer to that leaf as a lollipop.

Definition 8.3. A perfect orientation O of a plabic graph G is a choice of orienta-
tion of each of its edges such that each black internal vertex wu is incident to exactly
one edge directed away from u; and each white internal vertex v is incident to ex-
actly one edge directed towards v. A plabic graph is called perfectly orientable if it
admits a perfect orientation. Let G denote the directed graph associated with a
perfect orientation O of G. The source set I» C [n] of a perfect orientation O is the
set of i which are sources of the directed graph G. Similarly, if j € o = [n] - Io,
then j is a sink of O.

See [F1g 8| for an example.
g p

All perfect orientations of a fixed plabic graph G have source sets of the same
size k, where k — (n — k) = >_ color(v) - (deg(v) — 2). Here the sum is over all
internal vertices v, color(v) = 1 for a black vertex v, and color(v) = —1 for a white
vertex; see [Pos|. In this case we say that G is of type (k,n).

As shown in [Posl, Section 11], every perfectly orientable plabic graph gives rise
to a positroid as follows. (Moreover, every positroid can be realized in this way.)

4“Plabic” stands for planar bi-colored.
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FIGURE 8. A plabic graph G with trip permutation (3,4, 5,1, 2),
together with a perfect orientation O with source set Ip = {1, 2}.

Proposition 8.4. Let G be a plabic graph of type (k,n). Then we have a positroid
Mg on [n] whose bases are precisely

{Io | O is a perfect orientation of G},
where Io is the set of sources of O.

Each positroid cell corresponds to a family of reduced plabic graphs which are
related to each other by certain moves; see [Posl, Section 12]. From a reduced plabic
graph G, we can read off the corresponding decorated permutation 7 as follows.

Definition 8.5. Let G be a reduced plabic graph of type (k,n) with boundary
vertices 1,...,n. For each boundary vertex i € [n], we follow a path along the edges
of G starting at 4, turning (maximally) right at every internal black vertex, and
(maximally) left at every internal white vertex. This path ends at some boundary
vertex (7). By [Pos, Section 13|, the fact that G is reduced implies that each
fixed point of 7 is attached to a lollipop; we color each fixed point by the color of
its lollipop. In this way we obtain the decorated permutation mg = m of G. The
decorated permutation 7w will have precisely k anti-excedances.

We now explain how to parameterize elements of positroid cells using perfect
orientations of reduced plabic graphs.

We will associate a parameter x,, to each face of G, letting P denote the indexing
set for the faces. We require that the product [] pepe T of all parameters equals
1. A flow F from Ip to a set J of boundary vertices with |J| = |Ip| is a collection
of paths and closed cycles in O, all pairwise vertex-disjoint, such that the sources
of the paths are Io — (Ip N J) and the destinations of the paths are J — (Ip N J).

Note that each directed path and cycle w in O partitions the faces of G into
those which are on the left and those which are on the right of w. We define the
weight wt(w) of each such path or cycle to be the product of parameters z,,, where
w ranges over all face labels to the left of the path. And we define the weight wt(F)
of a flow F' to be the product of the weights of all paths and cycles in the flow.

Fix a perfect orientation O of a reduced plabic graph G. Given J € ([Z]), we
define the flow polynomial

(8.6) p§ = wi(F),
F

where F' ranges over all flows from I to J.



POSITIVE DRESSIAN EQUALS THE POSITIVE TROPICAL GRASSMANNIAN 351

Example 8.7. Consider the graph from Figure 8 There are two flows F from I
to {2,4}, and P{%A} = Tungtay + Toton gy There is one flow from Ip to

{3,4}, and P{%A} = x‘:‘:‘x':‘:‘:‘xEIEleEE' .

The following result is a combination of [Pos, Theorem 12.7] and [Tal08, Theorem
1.1].

Theorem 8.8. Let G be a reduced plabic graph of type (k,n), and choose a perfect

orientation O with source set In. Then the map ®¢ sending (z,),cps € (Rsq)Pe

to the collection of flow polynomials {p?}Je([n,]) is a homemorphism from (Rsq)"e
k

to the corresponding positroid cell S¢ C Gry,p, (realized in its Pliicker embedding).
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