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We realize soft topological mechanical metamaterials with pronounced polar elastic responses (i.e.,
softer on one edge than the other) in both the quasistatic and dynamic regimes. Numerical simulations
and experimental results confirm the presence of directional dependence in metamaterial response at low
and high strain rates, despite the use of lossy elastomer as bulk media. The metamaterials exhibit means
to tailor the location of topologically protected uniaxial mechanical stiffnesses by virtue of both loading
orientation and geometric changes to the lattice architecture. High-speed video recordings show strong
topologically protected asymmetric wave propagation for the soft metamaterials subjected to impact. The
results indicate a class of metamaterial architectures possessing polar elastic behavior and confirm the

persistence of the response in lossy media.
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I. INTRODUCTION

The Maxwell-Betti reciprocal theorem for linear
systems states that forces exerted at point X resulting in
displacements at point Y produce the same displacements
at point X when the forces are applied at point Y [1-3].
Nonreciprocity therefore breaks such symmetry of sys-
tem behavior by eliminating the correspondence of transfer
between displacements and forces [4]. The symmetry of
linear elasticity may also be broken by the existence of
polar elasticity. Polar elasticity is manifested by differing
stiffnesses at opposite edges, so that collocated force and
displacement ratios are distinct at opposite material edges
[5]. The ability to break spatial symmetries in mechani-
cal responses in soft matter would open exciting frontiers
in numerous scientific disciplines and applications [6—
11]. Recently, nonreciprocity in mechanical properties is
cultivated in mechanical metamaterials by leveraging non-
linearities with geometrical asymmetries or by tailoring
topological features of the material frame [12,13]. The
topology of a pyrochlore lattice metamaterial has also been
found to induce polar elastic behavior when subjected to
compressive forces [5].

Polar and nonreciprocal elastic behavior in the dynamic
regime is widely considered as a means to create mechani-
cal diodes, lattices with limited wave backscattering, and
structures exhibiting asymmetric wave propagation [14—
16]. The underlying mechanisms that produce such asym-
metries are the topologically protected floppy modes on
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edges or interfaces borne out of metamaterial microstruc-
ture [4,17,18]. Topological floppy modes are analogs of
protected electronic boundary modes in the quantum Hall
effect and in topological insulators [19—21]. Kane and
Lubensky [17] identified the presence of such boundary
modes in Maxwell lattices [22], for which the average
number of constraints equals the number of degrees of
freedom. Square and kagome architectures are examples
of Maxwell lattices [23]. With small changes in the lat-
tice geometry, topological polarization is induced. As such,
floppy modes reside along edges or are manifested as
plane-wave-like states in the bulk [17,24]. In addition,
uniform twisting of a kagome lattice unit cell trans-
forms topological polarization leading to contrasting edge
stiffnesses and spatial localization of floppy edge modes
[25]. Topologically protected edge modes therefore have
been recently harnessed to cultivate non-natural dynamic
behaviors in mechanical metamaterials [14,26-28] such
as asymmetric wave transport [29]. These principles have
also been integrated into foldable structures that exhibit
directionally dependent bending stiffnesses [17,30,31].

In this work, we examine the manifestation of polar
elasticity in mechanical and dynamic behaviors in topo-
logical metamaterials formulated with soft-matter-based
lattices. We use simulations and experiments to charac-
terize distinctive material responses observed when stress
is applied at infinitesimal and finite rates and at various
incidences to edges of such soft mechanical metamate-
rials. Our comprehensive assessment reveals means to
govern directional dependence in transmission of stress
through design and transformations of the soft elastic lat-
tice. To build from the recent acceleration of interest in
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soft mechanical metamaterials [32—35], this work illumi-
nates the origins and existence of polar elastic responses in
the quasistatic and dynamic regimes of elastomeric topo-
logical lattices governed by stress application and lattice
microstructure.

II. POLAR ELASTIC QUASISTATIC RESPONSES

The soft metamaterials investigated in this work are
derived from a kagome lattice composed of 12 rows and 12
columns of unit cells (12 x 12). The samples are fabricated
from Shore 15A durometer silicone rubber (Smooth-On
Mold Star 15S, Macungie, PA). Figure 1 shows four fabri-
cated metamaterial unit cells with varying deviations to an
underlying unit cell cross section. To illustrate the differ-
ence between regular and topological lattice networks, we
investigate four types of lattices. In sample S1, the regular
kagome lattice employs two equilateral triangles in the unit
cell. In sample S2, a topological deformed kagome lattice
incorporates unit cells with one equilateral and one scalene
triangle that are not relatively rotated. Sample S2 there-
fore deviates from sample S1 by the relative difference in
cross section of one unit cell triangle. By contrast, “twist”
or rotation of the unit cell triangles is incorporated into lat-
tice samples S3 and S4. For metamaterial samples S3 and
S4, the adjacent unit cell triangles are rotated by 26° and
48°, respectively, as observed in Fig. 1. Complete metama-
terial design and fabrication details are given in Sec. 1.1 of
the Supplemental Material [36].

Measurements of uniaxial mechanical properties of the
metamaterials are conducted in a load frame (ADMET
eXpert 5600), details of which can be found in Sec. 1.2
of the Supplemental Material [36]. Each sample is placed
on an inclined plane with an angle of inclination equal
to the lattice structure inclination angle, as illustrated in

FIG. 1. Schematics and geometrical parameters of the unit
cells for metamaterial samples S1, S2, S3, and S4. S1 is derived
from a regular kagome lattice, while S2 is created from a topolog-
ical deformed kagome lattice, leading to asymmetric stiffnesses
along opposite edges of S2. By rotation of the unit cell triangles,
a twist is introduced to the deformed kagome metamaterials S3
and S4.

Fig. 2(a). Given the metamaterial geometries considered
in this work, the inclination angles of planes supporting
samples in mechanical property characterizations are 0°,
0°, 13°, and 24°, respectively, for samples S1, S2, S3,
and S4. Vertical compressive displacements are applied to
the samples using an indenter with triangular recess fit-
ting the shape of the central triangular unit cell element
of each sample. When the force and applied displacement
are delivered down on the top edge of the lattice respect-
ing the unit cell configurations in Fig. 1, here we term this
the “Down Force” condition. The “Up Force” mechanical
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FIG. 2. (a) Measured and (b) simulated mechanical response

of metamaterial samples S1, S2, S3, and S4 subjected to ver-

tical compression in the upward (solid curves) and downward

(dashed curves) directions. Samples S2, S3, and S4 demonstrate
polar elastic behavior governed by the unit cell topology.
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response is evaluated following rotation of the sample by
180° to characterize the mechanical properties of the bot-
tom edge of the lattice. The uniaxial mechanical properties
in Fig. 2 show that for uniaxial compression up to around
0.5 mm the samples respond linearly, highlighted by the
shaded area in Fig. 2(a). The slope of a line linearly fitted
to the measured properties in this regime corresponds to
the uniaxial mechanical stiffness of the metamaterial sam-
ple. The stiffness values are tabulated in Table S2 within
the Supplemental Material [36].

For the regular kagome metamaterial sample S1, the uni-
axial mechanical stiffness measured from opposite edges is
nearly identical in the linear regime, seen by the slopes of
the solid and dashed black curves in Fig. 2(a). Yet, for the
deformed kagome metamaterial samples S2, S3, and S4,
Fig. 2(a) shows that the forces against the top edges are
distinct from forces acting against the bottom edges when
subjected to the same applied displacements. This serves
as evidence of strong asymmetric mechanical stiffnesses
in the linear regime. The existence of such behavior was
suggested theoretically by Rocklin et al. [25].

In this work, the ratio between mechanical stiffnesses on
the top and bottom edges (equivalently the ratio of Down
Force stiffness to Up Force stiffness) is termed the polar
elasticity coefficient (PEC). Thus, PEC # 1 refers to bro-
ken symmetry in mechanical response, whereas PEC < 1
indicates the top edge is softer than the bottom edge and
vice versa for PEC > 1. For the regular kagome meta-
material sample S1, the coefficient is PECg;= 1, indicat-
ing symmetric mechanical behavior. For the sample S2
deformed kagome metamaterial, the polar elasticity coef-
ficient is PECg;=0.38, confirming that the top edge is
floppy (soft). Yet, by introducing the twist to the deformed
kagome metamaterial samples S3 and S4, the polar elastic-
ity coefficients are PECg3=0.52 and PECg4= 1.08, respec-
tively. This reveals that for sample S3 the top edge is
floppy while for sample S4 the bottom edge is floppy.
Thus, translations and rotations of an underlying unit cell
design result in drastic asymmetry in mechanical prop-
erties by altering the topological states of the metama-
terials. As a result, polar elastic response is strongest in
the deformed kagome metamaterial without twist (sample
S2) via the largest deviation from symmetric response, for
which PEC =1, whereas the introduction of the unit cell
twist in samples S3 and S4 may lead to reversed polarity
of mechanical stiffness.

To gain a deeper understanding of the mechanisms gov-
erning this polar elastic phenomenon, we perform numer-
ical simulations using the finite element method with
COMSOL Multiphysics. We consider boundary and load-
ing conditions that correspond to the experiments and
assess the simulated mechanical behavior similar to the
experimental characterizations. Full modeling details and
comparison between experimental and simulation results
are given in Secs. 1.3 and 2 of the Supplemental Material

[36]. In the linear region, the regular kagome metama-
terial sample S1 exhibits symmetric mechanical stiffness
while asymmetric stiffnesses are found for deformed meta-
materials S2, S3, and S4 in Fig. 2(b). Specifically, both
simulations and experiments present that samples S2 and
S3 are softer on the top edge than the bottom edge and
sample S4 is stiffer on the top edge than the bottom edge
(see Fig. 2). The similarity of the quantitative and quali-
tative trends of mechanical behavior between simulations
and experiments verifies the model development. Marginal
discrepancies between the measurements and model pre-
dictions may be due to (i) the boundary conditions in the
experiments that may permit minor lateral motion of sam-
ples on the bottom inclined planes and (ii) manufacturing
imperfections that may inhibit perfectly uniform ligament
thicknesses in all unit cells of a given sample. Yet, the
overall agreement of salient trends is sufficient justification
to further explore the model to help uncover mechanisms
governing onset of asymmetry in mechanical behavior.

II1. APPROACHES TO TAILOR POLAR ELASTIC
BEHAVIOR

We explore approaches to tailor the polar elastic
response of the soft mechanical metamaterials. We define
the oblique angle 6 as the angle of incidence of applied
displacement respecting the vertical (or normal) displace-
ment application. Thus, both axial (normal) and tangential
(shear) stresses are imparted upon the metamaterial sam-
ples, coupling axial and bending deformations at the lattice
structure level. Figure 3(a) assesses the resulting PECs of
the metamaterial samples S1, S2, S3, and S4 as functions
of the oblique angle 6 (see Sec. 2 of the Supplemental
Material [36]). The regular kagome metamaterial sample
S1 leads to PECg; ~ 1 for all oblique angles of applied dis-
placement, seen by the black circle data points in Fig. 3(a).
On the other hand, for the deformed kagome metamateri-
als the topology of the unit cell governs an oblique angle
where greatest and least polar elastic behavior is observed.
For instance, in the deformed kagome metamaterial with-
out twist sample S2, the PECs; ranges from 0.44 to 0.64,
with the greatest polar elasticity in mechanical behavior at
0 = 65°. This indicates that regardless of the oblique angle,
the bottom edge of metamaterial S2 is stiff while the top
edge is soft so that the asymmetric stiffness is topologi-
cally protected. In deformed kagome metamaterials with
twist, the polar elasticity coefficient varies according to
0.39 < PECg3<0.99 and 0.37 < PECg4 < 2.39, as depicted
in Fig. 3(a) for samples S3 and S4, respectively. Thus, for
sample S3 the metamaterial unit cell geometry supports
topologically protected asymmetric mechanical behavior,
and in fact greater stiffness variation than S2. Yet, for
metamaterial sample S4, the floppy edges shift between
top and bottom edges of the sample. Namely, for applied
displacement normal to the edge, & = 0°, the top edge is 2.4
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FIG. 3. Simulation of PEC as a function of oblique angle 6 for
(a) regular (S1), deformed (S2), and twisted deformed (S3 and
S4) kagome lattice metamaterials, and for (b) deformed kagome
lattices with relative translations for the vertex of a unit cell trian-
gle. See the center schematic for naming convention of unit cells
T1, T2, T3, and T4 according to changes in the unit cell geome-

try. PEC = 1 refers to symmetry, while PEC < 1 indicates the top
edge is softer than the bottom edge and vice versa for PEC > 1.

times stiffer than the bottom edge (PECss=2.39), while
at applied displacements inclined by 6 = 80°, the bottom
edge is 2.7 times stiffer than the top edge (PECs4=0.37).
Moreover, sample S4 may also exhibit symmetric elastic
behavior when the applied displacement is incident to the

metamaterial surface at an angle of 6 = —50° or +45°,
indicating a broad range of elastic response associated
with the topological polarization and angular incidence of
mechanical load.

These trends suggest that the directional dependence
in stiffness exhibits large sensitivity to twist or rotation
of the adjacent unit cell triangles. To assess whether this
characteristic extends to unit cell dimensional changes, we
investigate the effects on PEC caused by relative transla-
tions for the vertex of a unit cell triangle in the deformed
kagome metamaterials. A schematic representation of the
enlarged unit cells along with the naming convention used
for the unit cells is illustrated in the center of Fig. 3.
For metamaterial sample T1, one equilateral triangle and
one isosceles triangle form the unit cell. While for sam-
ples T2, T3, and T4 the vertex of the second triangle is
horizontally translated by 0.66, 1.32, and 1.98 mm, respec-
tively. Sample T2 is identical to sample S2 used in the
prior investigation. Figure 3(b) depicts simulation results
of the PEC as a function of oblique angle 6 of the meta-
materials having 12 x 12 unit cells. For sample T1, the
triangles are symmetric, which results in a nearly constant
polar elasticity coefficient of PECt; ~ 0.5. This indicates
that the angle of incident applied stress or displacement
does not cause a shift or change in the relative floppy and
stiff nature of the edges. Yet, as the vertex of the unit cell
triangle is translated by increasing distances from sym-
metry, the range of PEC increases. As a result, the polar
elasticity coefficients for samples T2, T3, and T4 range
according to 0.44 <PECt; <0.64, 0.40 <PECr; <0.89,
and 0.38 <PECr4 < 1.25. Thus, the metamaterial sample
T4 exhibits the greatest means to tailor polar elasticity
in mechanical behavior and, like sample S4, permits a
transformation of the location of the relative floppy and
stiff edges. Ultimately, these findings demonstrate that the
deformed kagome lattices have strong asymmetric stiffness
capability, which can be markedly influenced by modifica-
tions in lattice unit cells and changes of orientation of force
acting on metamaterials.

IV. DYNAMIC RESPONSE OF POLAR ELASTIC
SOFT MATTER

Compelling examples of asymmetric wave transport in
a kagome lattice metamaterial composed of thermoplas-
tic acrylonitrile butadiene styrene recently emerged in Ref.
[29]. Yet, the dissipation and diffusion of waves in soft,
thermoset-based topological metamaterials have yet to be
characterized for the impact of cross-linked elastomer on
the passage of asymmetric waves. Recently, Vuyk and
Harne [37] demonstrated the use of digital image correla-
tion (DIC) to examine high-rate local deformation in elas-
tomeric materials subjected to impact. Here, we employ
high-speed video recordings (Photron FastCam SA-X2)
of impact events on the soft mechanical metamaterials
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FIG. 4. Displacement magnitude measurements for metamaterial samples S1, S2, and S3 subjected to impact loading from opposite
edges, displaying asymmetric wave propagation in the topological samples S2 and S3 and symmetric wave propagation in the regular
sample S1. In (a), (c), and (e), impact is imparted to the top edge of S1, S2, and S3, respectively. On the other hand, in (b), (d), and
(f), samples S1, S2, and S3 are struck from the bottom edge, respectively. White arrows illustrate the wave propagation directions and

magnitudes along the lattice network.

with two-dimensional DIC to investigate the propagation
of elastic waves. An edge of each metamaterial sample
is struck by an impact hammer (PCB 086C03, Depew,
NY) with an indenter shaped identical to the probe used
for characterization of mechanical properties. The process
is repeated for impact on the opposite edge after rotat-
ing the sample by 180°. The dynamic characterization is
performed for samples S1, S2, and S3, to respectively illu-
minate the influences of topological protection (comparing
regular sample S1 to topologically protected samples S2
and S3) and influences of unit cell twist (comparing sam-
ple S2 without and sample S3 with twist). The details of the
experimental setup and videos of DIC data are presented in
Secs. 1.4 and 3 of the Supplemental Material [36].

Figure 4 displays snapshots of displacement magni-
tudes for metamaterial samples S1, S2, and S3 sub-
jected to impact loading from opposite edges. We observe
mechanical waves that propagate at angles distinguished
by the unit cell geometry of the metamaterial sample.
The wave propagation directions and magnitudes along
the lattice network are illustrated by white arrows in
Fig. 4. Due to the viscoelastic dissipative nature of elas-
tomeric metamaterials, propagating waves attenuate inside
the metamaterial, leading to a strong gradient of the dis-
placement magnitude unlike in thermoplastic based topo-
logical metamaterials [29]. Interestingly, the propagation
of waves in the metamaterials studied here significantly
depends on lattice topology, leading to gradations of
symmetric or asymmetric energy transport. For the regular

kagome metamaterial sample S1, a symmetric wave front
is induced [Figs. 4(a) and 4(b)]. In the topological metama-
terial samples S2 and S3, the wave propagation is evidently
asymmetric. In addition, based on which edge is subjected
to the impact, the transfer of energy differs significantly.
For samples S2 and S3, impacts imparted to the top (or
floppy) edge result in weak propagation of the mechani-
cal energy towards the left according to the orientations
in Figs. 4(c) and 4(e). On the other hand, if struck from
the bottom (or stiff) edge with an upward-directed force,
the waves propagate further into the bulk and to the right
[Figs. 4(d) and 4(f)]. Metamaterial S3 exemplifies the
greatest such asymmetric dynamic response. This confirms
the direction dependence of shock mitigation behavior
of the soft, elastomeric topological metamaterials studied
here. Because topological properties are robust to small
perturbations, the asymmetric wave propagation response
of the metamaterial samples S2 and S3 is expected to
be robust against imperfections such as imperfect sample
molding, inevitable by the casting process. To further cor-
roborate our conclusions, we report experimental results
for a broader range of impact forces in the Supplemental
Material [36].

V. CONCLUSIONS

In summary, we demonstrate pronounced polar elas-
tic responses (softer on one edge than the other) in both
the quasistatic and dynamic regimes in soft topological
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metamaterials. The asymmetric uniaxial stiffness is found
to be induced by a combination of unit cell microstruc-
ture and mechanical loading conditions. A particularly
unique behavior is discovered as a reversal of elastic polar-
ity as loading incidence changes, so long as the twist of
adjacent unit cell geometries is sufficiently great. Strong
asymmetric wave propagation is likewise revealed, giv-
ing evidence of direction dependence of shock mitiga-
tion behavior even in the presence of wave dissipation
in soft elastomeric microstructure. The outcomes of this
study motivate further investigation of the robustness of
these behaviors despite the lossy nature of the elastomeric
material and despite the potential for defects and precise
imperfections, thus shedding light on topological metama-
terials that may find future use as protective materials and
structures.

ACKNOWLEDGMENTS

The authors acknowledge the support by the National
Science Foundation Faculty Early Career Development
Award (No. 1749699).

[1] S. W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena,
Broken symmetries, non-reciprocity, and multiferroicity,
npj Quantum Mater. 3, 1 (2018).

[2] E. M. McMillan, Violation of the reciprocity theorem in
linear passive electromechanical systems, J. Acoust. Soc.
Am. 18, 344 (1946).

[3] M. Brandenbourger, X. Locsin, E. Lerner, and C. Coulais,
Non-reciprocal robotic metamaterials, Nat. Commun. 10, 1
(2019).

[4] S. D. Huber, Topological mechanics, Nat. Phys. 12, 621
(2016).

[5] O. R. Bilal, R. Siisstrunk, C. Daraio, and S. D. Huber,
Intrinsically polar elastic metamaterials, Adv. Mater. 29,
1700540 (2017).

[6] D.Rus and M. T. Tolley, Design, fabrication and control of
soft robots, Nature 521, 467 (2015).

[7] F. lievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and
G. M. Whitesides, Soft robotics for chemists, Angew.
Chem., Int. Ed. 50, 1890 (2011).

[8] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C.
Weaver, B. Mosadegh, K. Bertoldi, G. M. Whitesides, and
R. J. Wood, A 3D-printed, functionally graded soft robot
powered by combustion, Science 349, 161 (2015).

[9] B. C. K. Tee and J. Ouyang, Soft electronically functional
polymeric composite materials for a flexible and stretchable
digital future, Adv. Mater. 30, 1802560 (2018).

[10] E. J. Markvicka, M. D. Bartlett, X. Huang, and C. Majidi,
An autonomously electrically self-healing liquid metal-
elastomer composite for robust soft-matter robotics and
electronics, Nat. Mater. 17, 618 (2018).

[11] S. L. Yeh and R. L. Harne, Structurally-integrated res-
onators for broadband panel vibration suppression, Smart
Mater. Struct. in press (2020).

[12] C. Coulais, D. Sounas, and A. Alu, Static non-reciprocity
in mechanical metamaterials, Nature 542, 461 (2017).

[13] D. T. Ho, H. S. Park, and S. Y. Kim, Intrinsic rippling
enhances static non-reciprocity in a graphene metamaterial,
Nanoscale 10, 1207 (2018).

[14] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topolog-
ically protected elastic waves in phononic metamaterials,
Nat. Commun. 6, 8682 (2015).

[15] S.Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, Observation of
elastic topological states in soft materials, Nat. Commun. 9,
1370 (2018).

[16] H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alu,
C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman,
Nonreciprocity in acoustic and elastic materials, Nat. Rev.
Mater. 5, 1 (2020).

[17] C. L. Kane and T. C. Lubensky, Topological boundary
modes in isostatic lattices, Nat. Phys. 10, 39 (2014).

[18] X. Mao and T. C. Lubensky, Maxwell lattices and topolog-
ical mechanics, Annu. Rev. Condens. Matter Phys. 9, 413
(2018).

[19] F. D. M. Haldane, Model for a Quantum Hall Effect With-
out Landau Levels: Condensed-Matter Realization of the
“Parity Anomaly”, Phys. Rev. Lett. 61,2015 (1988).

[20] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[21] X. L. Qi and S. C. Zhang, Topological insulators and
superconductors, Rev. Mod. Phys. 83, 1057 (2011).

[22] J. C. Maxwell, L. On the calculation of the equilibrium and
stiffness of frames, Philos. Mag. 27, 294 (1864).

[23] K. Sun, A. Souslov, X. Mao, and T. C. Lubensky, Sur-
face phonons, elastic response, and conformal invariance
in twisted kagome lattices, Proc. Natl. Acad. Sci. U. S. A.
109, 12369 (2012).

[24] J. Paulose, B. G. G. Chen, and V. Vitelli, Topological modes
bound to dislocations in mechanical metamaterials, Nat.
Phys. 11, 153 (2015).

[25] D. Z.Rocklin, S. Zhou, K. Sun, and X. Mao, Transformable
topological mechanical metamaterials, Nat. Commun. 8,
14201 (2017).

[26] P. Wang, L. Lu, and K. Bertoldi, Topological Phononic
Crystals with one-way Elastic Edge Waves, Phys. Rev. Lett.
115, 104302 (2015).

[27] T. W. Liu and F. Semperlotti, Tunable Acoustic Valley—Hall
Edge States in Reconfigurable Phononic Elastic Waveg-
uides, Phys. Rev. Appl. 9, 014001 (2018).

[28] Y. Guo, T. Dekorsy, and M. Hettich, Topological
guiding of elastic waves in phononic metamaterials
based on 2D pentamode structures, Sci. Rep. 7, 18043
(2017).

[29] J. Ma, D. Zhou, K. Sun, X. Mao, and S. Gonella, Edge
Modes and Asymmetric Wave Transport in Topological
Lattices: Experimental Characterization at Finite Frequen-
cies, Phys. Rev. Lett. 121, 094301 (2018).

[30] B. G. G. Chen, N. Upadhyaya, and V. Vitelli, Nonlin-
ear conduction via solitons in a topological mechanical
insulator, Proc. Natl. Acad. Sci. U. S. A. 111, 13004
(2014).

[31] B. G. G. Chen, B. Liu, A. A. Evans, J. Paulose, I. Cohen,
V. Vitelli, and C. D. Santangelo, Topological Mechanics
of Origami and Kirigami, Phys. Rev. Lett. 116, 135501
(2016).

044034-6


https://doi.org/10.1038/s41535-018-0092-5
https://doi.org/10.1121/1.1916372
https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/10.1038/nphys3801
https://doi.org/10.1002/adma.201700540
https://doi.org/10.1038/nature14543
https://doi.org/10.1002/anie.201006464
https://doi.org/10.1126/science.aab0129
https://doi.org/10.1002/adma.201802560
https://doi.org/10.1038/s41563-018-0084-7
https://doi.org/10.1038/nature21044
https://doi.org/10.1039/C7NR07651G
https://doi.org/10.1038/ncomms9682
https://doi.org/10.1038/s41467-018-03830-8
https://doi.org/10.1038/nphys2835
https://doi.org/10.1146/annurev-conmatphys-033117-054235
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1073/pnas.1119941109
https://doi.org/10.1038/nphys3185
https://doi.org/10.1038/ncomms14201
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1103/PhysRevApplied.9.014001
https://doi.org/10.1038/s41598-017-18394-8
https://doi.org/10.1103/PhysRevLett.121.094301
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1103/PhysRevLett.116.135501

SOFT TOPOLOGICAL METAMATERIALS WITH POLAR...

PHYS. REV. APPLIED 14, 044034 (2020)

[32] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke,
Flexible mechanical metamaterials, Nat. Rev. Mater. 2, 1
(2017).

[33] C. Coulais, E. Teomy, K. de Reus, Y. Shokef, and [37]
M. van Hecke, Combinatorial design of textured mechan-
ical metamaterials, Nature 535, 529 (2016).

[34] B. Florijn, C. Coulais, and M. van Hecke, Programmable [38]
Mechanical Metamaterials, Phys. Rev. Lett. 113, 175503
(2014).

[35] C. Coulais, J. T. B. Overvelde, L. A. Lubbers, K. Bertoldi,
and M. van Hecke, Discontinuous Buckling of Wide Beams [39]
and Metabeams, Phys. Rev. Lett. 115, 044301 (2015).

[36] See Supplemental Material at http://link.aps.org/supplemen
tal/10.1103/PhysRevApplied.14.044034 for a description

044034-7

of the experiments, details of finite-element modeling,
and further discussion on supporting modeling results and
movies.

P. Vuyk and R. L. Harne, Collapse characterization and
shock mitigation by elastomeric metastructures, Extreme
Mech. Lett. 37, 100682 (2020).

S. Cui and R. L. Harne, Characterizing the nonlin-
ear response of elastomeric material systems under crit-
ical point constraints, Int. J. Solids Struct. 135, 197
(2018).

D. Solav, K. M. Moerman, A. M. Jaeger, K. Genovese, and
H. M. Herr, MultiDIC: An open-source toolbox for multi-
view 3D digital image correlation, I[EEE Access 6, 30520
(2018).


https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1038/nature18960
https://doi.org/10.1103/PhysRevLett.113.175503
https://doi.org/10.1103/PhysRevLett.115.044301
http://link.aps.org/supplemental/10.1103/PhysRevApplied.14.044034
https://doi.org/10.1016/j.eml.2020.100682
https://doi.org/10.1016/j.ijsolstr.2017.11.020
https://doi.org/10.1109/ACCESS.2018.2843725

Supplemental Material: Soft topological metamaterials with pronounced polar elasticity

in mechanical and dynamic behaviors

Maya Pishvar and Ryan L. Harne*

Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA

* Correspondence to: harne.3@osu.edu

1 Experimental and modeling details
1.1 Metamaterial fabrication process

The metamaterial samples are fabricated by casting 15A Durometer silicone rubber (Smooth-On Mold Star
15S) in 3D-printed (FlashForge Creator Pro) acrylonitrile butadiene styrene (ABS) molds having negative
shapes of the desired geometries. The depth of metamaterial cross-sections is 33.00 mm, which is the same
depth as the constant cross-section molds. After curing at room temperature, the samples are demolded.
The geometric notations of the metamaterial samples are shown in Figure S1. As can be seen in Figure S1,
two adjacent triangles form an underlying kagome lattice. To generate the cross-section geometry of the
metamaterial, an offset dimension from the triangles is used. The offset dimension ¢ is the distance away
from the nominal unit cell triangles that the material extends. Thus, the ligaments of material that interface
adjacent triangles in the metamaterials are approximately 2¢ in thickness. The design parameters are listed
in Table S1.

Figure S1. Geometric notations of the metamaterial samples.

Table S1. Geometric parameters of the unit cells for metamaterial samples S1, S2, S3, and S4.

Sample | a; (mm) | a; (mm) | by (mm) | b; (mm) | t (mm) | « B ¢
(degrees) | (degrees) | (degrees)
S1 6.00 6.00 6.00 6.00 0.20 60 60 120




S2 6.00 4.38 6.00 6.00 0.20 46 60 120
S3 6.00 441 6.00 6.00 0.20 46 60 146
S4 6.00 4.17 6.00 6.00 0.20 43 60 168

1.2 Characterization of mechanical properties

Mechanical properties of the metamaterials are characterized by uniaxial compression experiments
performed using a load frame (ADMET eXpert 5600 load frame, PCB 1102-05A load cell, Micro-Epsilon
ILD 1700-200 laser displacement sensor) at a crosshead speed of 0.5 mm/min. The experimental set-up is
shown in Figure S2. Because of the lattice geometries, it is necessary to test samples S3 and S4 on an
inclined plane, with angle of inclination that matches the lattice structure inclination. Accordingly, samples
S3 and S4 are placed on 3D-printed inclined planes with angles of 13° and 24°, respectively. It is noted that
samples S3 and S4 could alternatively be cut so that the top surface remains horizontal, although this
technique requires that different samples are needed for Down and Up Force characterizations. Samples S1
and S2 are evaluated in the load frame on a flat plate since there are no rotations between unit cell
constituents in the geometries for S1 and S2. During the experiments, a uniaxial compressive "Down"
directed force is applied with a 3D-printed triangle-shaped indenter that interfaces with a top center edge
triangle of metamaterial sample through the whole triangle cross-section. The metamaterial is rotated 180°
in order to test "Up" directed forces. The measurements of mechanical properties are collected 2 times per
sample to confirm repeatability. Repeatability of the mechanical behavior is obtained for all samples
evaluated.

Inclined plane

Figure S2. Experimental set-up for measurement of uniaxial mechanical properties, shown as an example for sample S4

1.3 Finite element modeling of mechanical properties

The finite element (FE) software COMSOL Multiphysics is used to predict the linear uniaxial mechanical
properties and to confirm trends observed in the experimental characterization of mechanical properties.



The FE model boundary conditions correspond to experimental conditions where one side of the
metamaterial sample is fixed, while the top center edge triangle on an opposite side of the sample displaces
vertically. An isotropic linear elastic material model is employed with Young’s modulus of 700 kPa,
Poisson’s ratio of 0.49, and density of 1145 kg/m®. The material properties are derived from Ref. [1] that
characterized the silicone rubber employed here. Minor discrepancies are observed between the
measurements and model predictions in Figure 2(a) and (b) in the main text. The discrepancies may be
associated with the partial displacement constraint in the experiments for the non-loaded sample side, so
that small lateral sliding of the sample may occur. Yet, the salient trends and overall quantitative values

measured experimentally remain similar to the FE model predictions.
1.4 Characterization of wave propagation

Digital image correlation is used to measure the dynamic behavior of the metamaterial samples subjected
to impact at the same locations as those used for force application in the mechanical properties
characterization. For high-speed video imaging, a speckle pattern is created on the metamaterial surface by
randomly distributing carbon black microparticles (BOS Essential Activated Charcoal Powder) on the
metamaterial surface. The metamaterial samples are placed on a flat plate. The top center edge triangle of
metamaterial sample is struck with an impact hammer (PCB 086C03, Depew, NY). The same process is
repeated for the opposite edge after rotating the sample by 180°. The images are recorded before and during
deformation using a high-speed camera (Photron FastCam SA-X2) at an imaging rate of 20,000 frames per
second. The experimental set-up is presented in Figure S3. Two LED lights (Neweer CN-216) are used to
provide sufficient illumination for the recording. To post-process the high-speed video recordings, a
MultiDIC open source toolbox for digital image correlation is used [2]. The MultiDIC takes advantage of
the speckle pattern and correlates the subsets in the deformed image to the undeformed subset to provide
the displacement magnitudes of sample during deformation. See corresponding videos in Supplemental
Material, showing the propagation of waves in both metamaterial samples S2 and S3. The measurements
of wave propagation induced by impact are collected multiple times per sample to confirm repeatability.

Repeatability of the dynamic behavior is obtained for all samples evaluated.




Figure S3. Experimental set-up to characterize propagation of elastic waves in metamaterial samples when subjected to
impact. A speckled metamaterial sample S1, high-speed camera, and lighting apparatus are shown. The inset shows a
detailed photograph of sample S1, speckled for the high-speed video recording.

2 Supporting results

The uniaxial mechanical stiffness values and polar elasticity coefficient PEC for metamaterial samples S1,
S2, S3 and S4 are listed in Table S2. The qualitative trends between the experimental and simulation results
are in agreement. It is observed that the PEC for the experimental samples S2, S3, and S4 are less than those
computed via the simulations. The differences may be associated with the boundary conditions in the
experiments that may permit small lateral motion on the bottom plate whereas the nominal boundary
condition in the model is a fixed edge. The differences may also be due to minor inevitable imperfections
in fabrication associated with the rubber casting process. Nevertheless, the agreement between simulated
and experimental results indicates that the directional dependence in mechanical behavior predicted through
the FE studies may be realized in the laboratory.

Table S2. Uniaxial mechanical stiffness values as well as polar elasticity coefficient PEC of metamaterial samples S1, S2,
S3, and S4 determined by experiments and FE simulation.

Sample Force Uniaxial mechanical stiffness Polar elasticity coefficient
(N/mm) PEC
Experiment Simulation Experiment Simulation
S1 Down Force 0.69 0.54
1.05 1.02
Up Force 0.66 0.53
S2 Down Force 0.20 0.31
0.38 0.60
Up Force 0.52 0.52
S3 Down Force 0.16 0.37
0.52 0.82
Up Force 0.31 0.45
S4 Down Force 0.43 0.42
1.08 2.00
Up Force 0.40 0.21

For the kagome lattice-based metamaterials studied in this research, axial (normal) and tangential (shear)
stress components are coupled by the axial and bending deformations of the lattice unit cell geometries.
This behavior, in turn, governs uniaxial mechanical stiffnesses observed at the metamaterial edges. As an
example of such influences, Figure S4(a) presents simulation results of uniaxial mechanical properties of
the opposite edges of metamaterial sample S2 as a function of oblique angle 0. Blue curves correspond to
force applied downward from the top edge, while red curves correspond to force applied upward from the



bottom edge. The linear color gradients for the red and blue curves correspond to change in oblique angle
0 from -90° to 90° by steps of 5° as the color gradation varies from the solid hue to light shading.
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Figure S4. Finite-element simulation results of uniaxial mechanical properties of the opposite edges of metamaterial samples
as a function of oblique angle 0. (a) Mechanical responses of metamaterial sample S2. (b) Uniaxial mechanical stiffnesses of
regular (S1), deformed (S2), and twisted deformed (S3 and S4) kagome metamaterials. (c) Uniaxial mechanical stiffnesses

of deformed kagome metamaterials T1, T2, T3, and T4, created with relative translations of the vertex of a unit cell triangle.

The slope of a line tangent to the mechanical properties characterization near the origin is considered to be
the linear elastic, uniaxial mechanical stiffness of the metamaterial. Accordingly, Figs. S4(b) and (c) present
the mechanical stiffnesses for the metamaterials considered in this work. As can be seen in Figs. S4(b) and
(c), in general the minimum stiffness occurs when force is applied close to grazing incidence (8 =-90° and
90°). Sample S4 differs in this trend for upward directed force so that a minimum mechanical stiffness
occurs around 0 = 30°, Fig. S4(b). By contrast, the angle where the stiffness is maximum depends on the
stress transfer mechanisms distinct to each metamaterial sample cross-section geometry. For example, as
observed in Fig. S4(b) in the regular kagome lattice metamaterial sample S1 the maximum stiffnesses occur
for normally applied force 8 = 0°. For each deformed kagome lattice metamaterial samples S2, S3, and S4,
the maximum stiffnesses occur for oblique force application angles that gradually deviate from normal

incidence.

Fig. S4(c) compares the mechanical stiffnesses of the top and bottom edges for the deformed metamaterial
samples T1, T2, T3, and T4 as a function of oblique angle. As the vertex of deformed unit cell triangle is
shifted from symmetric conditions T1 to the cases of T2, T3, and T4, the maximum stiffness corresponding

to downward directed force occurs for increasing oblique angle from 6 = 0° to 6 = -20°.

These findings demonstrate that the twisting and deformation of unit cell geometry governs the magnitude
and orientation of peak mechanical stiffness exhibited by the metamaterial samples. On the other hand, the
horizontal translation of one triangle node in the unit cell geometry primarily influences the oblique angle
at which uniaxial mechanical stiffness is maximized when force is applied downward. The polar elasticity
coefficient or PEC, presented in Figure 3 in the main text, is determined by calculating the ratio between
the stiffness of the top and bottom edges (or Down Force/Up Force), obtained from Fig. S4.



3 Descriptions of supplemental videos

Video_S1. DIC results of displacement magnitudes of metamaterial sample S2 subjected to low-
amplitude impact loading from opposite edges. In Video_S1 Left, the top center edge of metamaterial is
struck with an input force of amplitude around 98 N and the video is played back at a rate of 1 s for 377 s
of real-time. In Video_S1 Right, the bottom center edge of metamaterial is struck with an input force of
amplitude around 94 N and the video is played back at a rate of 1 s for 687 s of real-time. Although the
force applied on bottom edge is slightly less than the force applied on top edge, it is clear that from the
bottom edge the shock wave propagates further inside the sample. This confirms that wave transmits more
easily from the stiff edge (bottom edge of sample S2) while attenuates more from the floppy edge (top edge
of sample S2). Also, the wave, starting from top edge, propagates more to the left directions, while the
wave, starting from bottom edge, propagates more to the right direction. Overall, strong asymmetric edge

wave transmission in topological sample S2 is found when struck from opposite edges.

Video_S2. DIC results of displacement magnitudes of metamaterial sample S2 subjected to high-
amplitude impact loading from opposite edges. In Video_S2 Left, the top center edge of metamaterial is
struck with an input force of amplitude around 217 N and the video is played back at a rate of 1 s for 317 s
of real-time. In Video_S2 Right, the bottom center edge of metamaterial is struck with an input force of
amplitude around 251 N and the video is played back at a rate of 1 s for 465 s of real-time. Unlike video
S1, the force applied on bottom edge is higher than the force applied on top edge, and as a result, the wave
propagation from the bottom (stiff) edge is significantly more than that of top (soft) edge. Accordingly, the

asymmetric edge wave transmission between opposite edges becomes more pronounced.

Video_S3. DIC results of displacement magnitudes of metamaterial sample S3 subjected to low-
amplitude impact loading from opposite edges. In Video_S3 Left, the top center edge of metamaterial is
struck with an input force of amplitude around 85 N and the video is played back at a rate of 1 s for 348 s
of real-time. In Video_S3 Right, the bottom center edge of metamaterial is struck with an input force of
amplitude around 63 N and the video is played back at a rate of 1 s for 326 s of real-time. Similar to sample
S2, although amplitude of the force applied on bottom edge is less than that of top edge, the shock wave
propagates further from the bottom than top edge. The reason is that, again, in sample S3, the top edge is
floppy which causes more attenuation of shock waves and bottom edge is stiff, leading to more wave
propagation. Also, the wave, propagates more to the left directions if top edge is struck, while the wave

propagates more to the right direction if the bottom edge is struck.

Video_S4. DIC results of displacement magnitudes of metamaterial sample S3 subjected to high-
amplitude impact loading from opposite edges. In Video_S4 Left, the top center edge of metamaterial is
struck with an input force of amplitude around 145 N and the video is played back at a rate of 1 s for 336 s
of real-time. In Video_S4 Right, the bottom center edge of metamaterial is struck with an input force of
amplitude around 159 N and the video is played back at a rate of 1 s for 434 s of real-time. At a higher
applied force from bottom edge than that of top edge, the wave propagation from the bottom (stiff) edge is
significantly more than that of top (soft) edge and thus, the asymmetric edge wave transmission between
opposite edges becomes more pronounced.
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