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Induced-charge electro-osmotic (ICEO) flow caused by an alternating electric field applied around an
infinitely long, ideally polarizable, uncharged circular cylinder in a binary electrolyte with unequal cation
and anion diffusion coefficients is analyzed. The thin-Debye-layer and weak-field approximations are
invoked to compute the time-averaged, or rectified, quadrupolar ICEO flow around the cylinder. The
inequality of ionic diffusion coefficients leads to transient ion concentration gradients, or concentration
polarization, in the electroneutral bulk electrolyte outside the Debye layer. Consequently, the electric
potential in the bulk is non-harmonic. Further, the concentration polarization alters the electro-osmotic
slip at the surface of the cylinder and generates body forces in the bulk, both of which affect the rectified
ICEO flow. Predictions for the strength of the rectified flow for varying ratio of ionic diffusion coefficients
are in reasonable agreement with available experimental data. Our work highlights that an inequality in
ionic diffusion coefficients — which all electrolytes possess to some extent — is an important factor in
modeling ICEO flows.

1. Introduction

Induced-charge electro-osmosis (ICEO) refers to the fluid flow around a polarizable surface (e.g. a metal)
in an electrolyte solution under an external electric field (Squires & Bazant 2010). The basic mechanism
in ICEO is that the applied field induces an inhomogeneous distribution of polarization charges on the
surface, resulting in the formation of a volumetric distribution of ionic charge density adjacent to it. The
ions in this ‘Debye layer’ screen the polarization charge, such that the fluid elements at a distance of several
Debye lengths from the surface are essentially uncharged, or electro-neutral. In most practical situations
the Debye length is much smaller than the characteristic length scale of the surface, a scenario known
as the ‘thin-Debye-layer’ limit. The applied field exerts an electric stress on (charged) fluid elements in
the Debye layer, the component of which tangent to the local surface is compensated by a hydrodynamic
stress to maintain mechanical equilibrium; thus, an (electro-osmotic) fluid flow occurs. This flow appears
as a ‘slip velocity’ boundary condition at the length scale of the particle, which animates flow throughout
the electroneutral ‘bulk’ electrolyte. Since the external field induces the Debye layer and then promotes
the electric stress within it, the flow is nonlinear in the applied field strength, scaling as the square of
the field strength for sufficiently weak fields. Importantly, this means that time-averaged, or rectified,
flows can be driven by alternating (ac) external fields, which is attractive for pumping and mixing in
microfluidic devices (Squires & Bazant 2004a). ICEO is related to ac electro-osmosis (ACEO), in which
flows are also generated around polarizable surfaces, the prototypical scenario there being a pair of co-
planar electrodes addressed by an ac voltage (Ramos et al. 1999). In ACEO flow is animated atop the
driving electrodes, whereas in ICEO flow can be driven around an electrically isolated object, such as a
metal post.
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Interest in ICEO in the West was sparked just over fifteen years ago by the work of Squires and Bazant
(Squires & Bazant 2004a; Squires & Bazant 2004b). Those authors noted, however, that similar flows
had previously been studied, theoretically and experimentally, in the Russian literature (Gamayunov,
Murtsovkin & Dukhin 1986; Gamayunov, Mantrov & Murtsovkin 1992). Squires & Bazant (2004b) ana-
lyzed in detail the ICEO flow around an infinitely long, ideally polarizable circular cylinder in a binary,
symmetric electrolyte. Here, ‘ideally polarizable’ means that the cylinder cannot support electrochemi-
cal reactions at its surface; consequently, no current flows through it. The time-averaged ICEO flow is
quadrupolar and directed from the ‘polar’ axis of the cylinder that is parallel to the applied field to the
‘equatorial’ axis that is perpendicular to the field. Experiments by Levitan et al. (2005) confirmed this
flow pattern around a platinum wire in a KCl solution. An oppositely directed (equator-to-pole) flow
was observed around a spherical tin particle in distilled water by Gamayunov et al. 1992, which they
attributed to current flow across the particle surface; i.e. that particle was not ideally polarizable. Squires
& Bazant (2006) predicted that ‘breaking symmetries’ in ICEO — via inhomogeneous shape or surface
properties — implies net pumping of fluid past fixed objects or motion of freely suspended particles.
The former effect has been harnessed to fabricate ICEO ‘micropumps’ (Paustian et al. 2014). The latter
effect is termed induced-charge electrophoresis (ICEP) and was observed in experiments by Gangwal
et al. (2008) on (partially) gold-coated spheres of polystyrene latex in NaCl under ac fields.

In this article, we consider another ‘broken symmetry’ in ICEO; the symmetry of the cations and anions in
the electrolyte. Almost all theoretical works on ICEO have assumed a binary, symmetric electrolyte, where
the cations and anions have equal magnitude of valences and equal diffusion coefficients. An exception is
the recent work by Hashemi Amrei, Miller & Ristenpart (2020), of which more will be said later. Here,
we analyze ICEO in binary electrolytes with cations and anions of equal valence but unequal diffusion
coefficients, focusing on the prototypical case of a circular cylinder in the weak-field and thin-Debye-
layer limits. All electrolytes have unequal ionic diffusion coefficients to some extent: perhaps the closest
commonplace example of a symmetric electrolyte is KCl, for which the ratio of anion to cation diffusion
coefficients, which we shall denote by γ, equals 1.038 (Vanýsek 2012). Feng et al. (2017) observed ICEO
around a gold coated stainless steel cylinder in an ac field: in the weak-field regime at a frequency of 1.5
kHz and electrolyte concentration of 1 mM, the measured flow velocity in an NaCl (γ = 1.523) solution
was around twice as strong as in NaDS (sodium dodecyl sulfate, γ = 0.479), and about four times as
much as in measurements on KCl by Canpolat, Qian & Beskok (2013). Further, it has been shown that
an asymmetry in ion diffusion coefficients is a necessary ingredient, along with Faradaic reactions and the
presence of a Stern layer at the electrode surface, to predict flow reversals in ACEO over electrode arrays
addressed by a traveling-wave voltage (Garćıa-Sánchez et al. 2009; González et al. 2010). This provides
further motivation for the present study. We will find that an inequality in ionic diffusion coefficients
fundamentally changes the ‘standard model’ of ICEO outlined by Squires & Bazant (2004b): chiefly, for
γ 6= 1, gradients in ion concentration, or concentration polarization, arises in the bulk electrolyte in the
form of diffusive traveling waves. Whilst this concentration polarization has zero time-average, it alters
the rectified electro-osmotic slip velocity at the cylinder surface and drives rectified body forces in the
bulk fluid, thereby affecting the time-averaged flow around the cylinder. A similar effect of concentration
polarization was recently analyzed by Garćıa-Sánchez, Loucaides & Ramos (2017) for ACEO; specifically,
see their equation (36). A key finding of our study, then, is that for any real electrolyte one cannot predict
the rectified ICEO flow by only considering the flow due to electro-osmotic slip.

In § 2 the equations governing ICEO in an electrolyte with unequal diffusion coefficients are formulated
and then specialized to the weak-field and thin-Debye-layer limits. In § 3 the system is solved and our
results are compared against experimental studies. A conclusion is offered in § 4.
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2. Problem formulation

An infinitely long circular cylinder of cross-sectional radius a∗ is immersed in an unbounded binary
electrolyte solution containing fully dissociated ions. Above, and henceforth, dimensional variables will
be decorated with an asterisk superscript. The cations have valence +Z and diffusion coefficient D∗+, and
the anions have valence −Z and diffusion coefficient D∗−. The cylinder is an ideally polarizable conductor
that is initially uncharged. A spatially uniform, alternating electric field E∗ cos(ω∗t∗) is applied normal
to the axis of cylinder. Here, t∗ denotes time; ω∗ is angular frequency; and E∗ is a constant vector whose
magnitude, E∗, specifies the field strength. The applied field induces polarization charges on the surface
of the cylinder, which, in turn, are enveloped by a Debye layer of ions. The spatial extent of this layer is
characterized (for dilute electrolytes) by the Debye length

κ∗−1 =

√
ε∗k∗T ∗

2Z2e∗2n∗
, (2.1)

where ε∗ is the solution permittivity; k∗ is Boltzmann’s constant; T ∗ is the absolute temperature; e∗ is
charge on a proton; and n∗ is the equilibrium number concentration of cations and anions. We adopt the
standard electrokinetic equations for dilute electrolytes (Saville 1977). The ion concentrations satisfy the
conservation law

∂n∗±
∂t∗

+∇∗ ·j∗± = 0, (2.2)

where n∗± is the ion concentration, with the plus sign taken for cations, and the minus sign for anions.
The ionic flux density

j∗± = ∓
D∗±Ze∗

k∗T ∗
n∗±∇∗φ∗ −D∗±∇∗n∗± + u∗n∗±, (2.3)

which is a combination of electro-migration in a gradient of electric potential φ∗ (the first term); diffusion
(the second term); and advection with the fluid velocity u∗. The potential satisfies the Poisson equation

−ε∗∇∗2φ∗ = Ze∗(n∗+ − n∗−). (2.4)

The fluid flow is governed by the Stokes equations,

µ∗∇∗2u∗ −∇∗p∗ + ε∗(∇∗2φ∗)∇∗φ∗ = 0 and ∇∗ ·u∗ = 0, (2.5)

where p∗ is the dynamic pressure and µ∗ is the viscosity. In (2.5), the first equation is a momentum
balance on an inertialess fluid element accounting for an electric (Coulomb) body force, and the second
equation stipulates that the fluid is incompressible.

We introduce polar coordinates (r∗, θ, z∗), where r∗ is the distance from the axis of the cylinder; z∗ is the
distance along the axis; and θ is the angle from the direction of the applied field, measured anti-clockwise.
Thus, far from the cylinder

u∗ → 0, p∗ → 0, n∗± → n∗ and φ∗ → −E∗r∗ cos θ cos(ω∗t∗) as r∗ →∞. (2.6)

The first condition states that the velocity disturbance due to the (freely suspended) cylinder decays at
large distances. We are at liberty to assert that the pressure approaches zero since it is defined up to an
additive constant for an incompressible fluid. The remaining conditions state that the ion concentrations
approach their equilibrium value and the electric field approaches the applied field. At the surface of the
cylinder, r∗ = a∗, we impose

u∗ = 0, φ∗ = 0 and er ·j∗± = 0, (2.7)

where er is the unit normal vector along the r∗ direction. The first condition in (2.7) imposes no-slip
and no fluid penetration at the cylinder surface. The second condition represent continuity of potential,
where the conducting cylinder is an equipotential surface whose potential is chosen as zero. The third
condition asserts an ideally polarizable surface that cannot admit an ionic flux. Finally, Gauss’s law
requires q∗ = −ε∗er ·∇∗φ∗ at r∗ = 1 , where q∗ is the surface charge density. As noted by Schnitzer
& Yariv (2012), Gauss’s law does not represent an additional boundary condition; rather, it enables
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calculation of q∗ from knowledge of φ∗. Since the cylinder has no net charge the integral of q∗ over its
cross section is zero at all times.

The problem is now made dimensionless. We normalize distance with a∗; time by 1/ω∗; ion concentration
by n∗; and electrical potential by the ‘thermal voltage’ φ∗T = k∗T ∗/Ze∗, which is approximately 26mV at
T ∗ = 298K for a univalent electrolyte. Balancing electric and viscous stresses in (2.5) yields the velocity
and pressure scales ε∗φ∗2T /µ

∗a∗ and ε∗φ∗2T /a
∗2, respectively. Therefore, the conservation laws (2.2) along

with ionic fluxes (2.3) give the dimensionless equations

a∗2ω∗

D∗±

∂n±
∂t
∓∇·(n±∇φ)−∇2n± +m±u·∇n± = 0. (2.8)

Note, to derive (2.8) we have used the continuity condition. In (2.8), and henceforth, the lack of an
asterisk superscript on a variable indicates that it is the dimensionless counterpart of the appropriate
dimensional variable: for instance, the dimensionless time t = ω∗t∗. The quantities m± = ε∗φ∗2T /µ

∗D∗± are
dimensionless ionic drag coefficients with a value of around 0.5 for univalent aqueous electrolytes at room
temperature (Dukhin 1993; Schnitzer & Yariv 2012). The dimensionless version of Poisson’s equation
reads

δ2∇2φ = −1

2
(n+ − n−), (2.9)

in which δ = 1/(κ∗a∗) is the (small) ratio of the Debye length to cylinder radius. The dimensionless
Stokes equations are

∇2u−∇p+ (∇2φ)∇φ = 0 and ∇·u = 0. (2.10)

At large distances the dimensionless boundary conditions read

u→ 0, p→ 0, n± → 1 and φ→ −βr cos θ cos t as r →∞, (2.11)

where β = E∗a∗/φ∗T is the ratio of the applied voltage across the cylinder relative to the thermal voltage.
Using (2.3), the dimensionless boundary conditions at the surface of the cylinder are

u = 0, φ = 0 and er ·(∓n±∇φ−∇n±) = 0 at r = 1. (2.12)

The dimensionless version of Gauss’s law is q = −δer ·∇φ at r = 1, where the surface charge density has
been normalized with ε∗κ∗φ∗T .

The dimensionless groups a∗2ω∗/D∗± naturally emerge from the normalization process: these are ratios
of the ion diffusion times over the cross-sectional radius, a∗2/D∗±, to the time scale on which the field
oscillates, 1/ω∗. We define γ = D∗−/D

∗
+ as the ratio of the anion to cation diffusion coefficients and

α = a∗2ω∗/D∗−. Hence, a∗2ω∗/D∗+ = γα. Thus, the Debye-layer charging under the alternating field and,
consequently, the time-averaged ICEO flow, is governed by four dimensionless groups: α, β, γ, and δ.

It is useful to work with the dimensionless mean ‘salt’ concentration c = 1
2 (n+ + n−) and dimensionless

mean charge density ρ = 1
2 (n+ − n−). From (2.8) these quantities satisfy

α(γ + 1)

2

∂c

∂t
+
α(γ − 1)

2

∂ρ

∂t
−∇·(ρ∇φ)−∇2c+

m+ +m−
2

u·∇c+
m+ −m−

2
u·∇ρ = 0, (2.13a)

α(γ + 1)

2

∂ρ

∂t
+
α(γ − 1)

2

∂c

∂t
−∇·(c∇φ)−∇2ρ+

m+ +m−
2

u·∇ρ+
m+ −m−

2
u·∇c = 0. (2.13b)

In the far-field we require from (2.11)

c→ 1 and ρ→ 0 as r →∞, (2.14)

and at the surface of the cylinder from (2.12) we have

er ·(ρ∇φ+ ∇c) = 0 and er ·(c∇φ+ ∇ρ) = 0 at r = 1. (2.15)

Additionally, we define the dimensionless salt flux j = j+ + j−, where j+ and j− are the dimensionless
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flux of cations and anions normalized on n∗D+/a
∗. It is readily shown from (2.8) that

j = (γ − 1)c∇φ− (γ + 1)ρ∇φ− (γ + 1)∇c+ (γ − 1)∇ρ+ 2m+uc. (2.16)

Similarly, let i = j+ − j− denote the dimensionless current density, normalized by Ze∗D∗+n∗/a∗. From
(2.8) we have

i = −(γ + 1)c∇φ+ (γ − 1)ρ∇φ+ (γ − 1)∇c− (γ + 1)∇ρ+ 2m+uρ. (2.17)

The discussion in this section has furnished a mathematical model for ICEO around a cylinder for a
binary electrolyte with unequal ionic diffusivities. The governing equations are coupled and nonlinear; a
numerical solution must be sought in general. Moving forward we make assumptions to enable analytical
progress; importantly, these assumptions are experimentally relevant.

2.1. Thin-Debye-layer limit

Experiments are typically conducted with micron scale posts or particles in electrolytes at milli-molar
concentration, for which the thin-Debye-layer limit, δ � 1, is pertinent. In this situation, the electrolyte
can be conceptually partitioned into two regions: (i) a bulk region corresponding to r = O(1); and a thin
Debye layer with r− 1 = O(δ). From (2.9), the charge density ρ in the bulk electrolyte is zero to leading
order in δ; the bulk is electroneutral. Thus, from (2.13a) and (2.13b) the leading order bulk ion transport
equations are

α(γ + 1)

2

∂c

∂t
+
m+ +m−

2
u·∇c = ∇2c, (2.18a)

α(γ − 1)

2

∂c

∂t
+
m+ −m−

2
u·∇c = ∇·(c∇φ). (2.18b)

The bulk salt flux and current are from (2.16) and (2.17), respectively,

j = (γ − 1)c∇φ− (γ + 1)∇c+ 2m+uc, (2.19a)

i = −(γ + 1)c∇φ+ (γ − 1)∇c. (2.19b)

Evidently, in an electroneutral electrolyte with unequal ionic diffusion coefficients: (i) a gradient in salt
concentration drives bulk current; and (ii) an electric field drives a bulk salt flux. This does not happen
in a symmetric electrolyte.

The ion transport within the Debye layer can be analyzed by defining an inner radial coordinate R =
(r− 1)/δ with R = O(1) as δ → 0. Introducing this rescaling into (2.13a) and (2.13b), it is readily shown
that the ion concentrations vary in R, at leading order, according to a quasi-equilibrium Boltzmann
distribution provided that δ2α� 1. The restriction that δ2α� 1 suffices for anions and cations since γ is
typically O(1) for aqueous electrolytes. Since δ2α = ω∗/D∗−κ

∗2, this means that the Debye layer charges
quasi-steadily provided that the time period for variations in the field (1/ω∗) is much smaller than the
Debye relaxation time (1/D∗−κ

∗2). Again, this is indeed the case for ICEO experiments. The variation
of ion concentrations, electric potential, and fluid flow in a quasi-equilibrium Debye layer have been
analyzed thoroughly in several works: see e.g. Khair & Squires (2008); Olesen, Bazant & Bruus (2010);
and Schnitzer & Yariv (2012). Thus, we need not repeat such a discussion here. However, to proceed
we recall that the effect of the flow in the Debye layer on the bulk velocity field can be represented as
a ‘slip velocity’ boundary condition. Let u = uer + veθ denote the fluid velocity vector in cylindrical
coordinates, where eθ is a unit vector in the θ direction. For ICEO the dimensionless slip velocity is
(Schnitzer & Yariv 2012)

u = 0 and v = −φ∂φ
∂θ

+ 2 ln

[
1− tanh2

(
φ

4

)]
∂ ln c

∂θ
at r = 1. (2.20)

In (2.20) the location r = 1 should be interpreted as at the outer edge of the Debye layer, which is,
of course, indistinguishable from the actual surface of the cylinder on lengths r = O(1). Further, −φ
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represents the (spatially non-uniform) dimensionless zeta potential; hence, the first term in v is identified
as electro-osmosis and the second as diffusio-osmosis. Additionally, the Debye-layer analysis employed in
the above-mentioned works yields effective boundary conditions on the bulk salt and potential fields, to
be applied at r = 1. A discussion of these conditions is postponed until after the limit of a weak applied
field is invoked, which is done next.

2.2. Weak-field expansion

The bulk ion transport and flow equations are now considered in the weak-field regime, β � 1. The limit
β → 0 is regular, as opposed to the singular limit δ → 0; hence, there is no issue with taking the former
limit after the latter. We pose the expansions c = 1 + βc1, φ = βφ1, u = β2u1, and p = β2p1, where the
quadratic leading order scaling of velocity and pressure is obtained from the electro-osmotic contribution
to the slip velocity (2.20). Therefore, the linearized ion transport equations become from (2.18a) and
(2.18b)

∂c1
∂t

=
2

α(1 + γ)
∇2c1, (2.21a)

∇2φ1 =
α(γ − 1)

2

∂c1
∂t

. (2.21b)

From (2.10), the leading order bulk flow satisfies

∇2u1 −∇p1 +
α(γ − 1)

2

∂c1
∂t

∇φ1 = 0 and ∇·u1 = 0, (2.22)

where we have used (2.21b) in rewriting the Coulomb body force. The linearized equations are subject to

u1 → 0, p1 → 0, c1 → 0 and φ1 → −r cos θ cos t as r →∞. (2.23)

Using (2.20), the fluid velocity satisfies the slip condition

u1 = 0 and v1 = −φ1
∂φ1
∂θ

at r = 1. (2.24)

Evidently, the leading order, i.e. O(β2), slip is solely due to electro-osmosis; a diffusio-osmotic contribution
arises first at O(β3).

To complete the linearized bulk equations we need boundary conditions for (2.21a) and (2.21b) at r = 1.
This requires an analysis of ion accumulation within the Debye layer, driven by transport from (or to)
the bulk and transport along the layer. The latter effect, known as ‘surface conduction,’ is negligible for
ICEO provided δeβ � 1 (Schnitzer & Yariv 2012); this inequality is obviously satisfied in the weak-field
limit. Further, to first order in β the Debye layer behaves as a linear capacitor, i.e. with a capacitance
that is independent of the (local) zeta potential, for which the (local) dimensional surface charge density
q∗ = −ε∗κ∗φ∗Tβφ1 (Squires & Bazant 2004b). The time variation of q∗ arises due to the current supplied
by the bulk electrolyte; hence, we have from charge conservation ∂q∗/∂t∗ = i∗ ·er, where i∗ is the
dimensional bulk current density. From (2.19b),

i∗ =
Ze∗D∗+n∗

a∗
([(γ − 1)∇c1 − (γ + 1)∇φ1]β +O(β2) ) (2.25)

Hence, the linearized, dimensionless charge conservation condition yields

2γαδ
∂φ1
∂t

= (γ + 1)
∂φ1
∂r
− (γ − 1)

∂c1
∂r

at r = 1. (2.26)

A second consequence of the Debye layer acting as a linear capacitor is that it does not uptake a net
amount of ‘salt’ from the bulk. Said differently, at every station in θ the Debye layer expels as many
co-ions as it takes up counter-ions. Therefore, the linearized mean salt flux j must vanish at r = 1. Now,
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from (2.19a) we have

j = [(γ − 1)∇φ1 − (γ + 1)∇c1]β +O(β2), (2.27)

and requiring j to vanish at O(β) yields the boundary condition

∂c1
∂r

=
γ − 1

γ + 1

∂φ1
∂r

at r = 1. (2.28)

In summary, equations (2.21a), (2.21b), and (2.22), along with boundary conditions (2.23), (2.24), (2.26),
and (2.28), govern the weak-field ICEO around a cylinder in an electrolyte with unequal ionic diffusivities.
The fact that γ 6= 1 has two important consequences. First, the bulk ion concentration is non-uniform in an
alternating field, or any unsteady field, for that matter. This transient ‘concentration polarization’ occurs
to ensure there is no net salt uptake in the Debye layer during its charging. Second, the concentration
polarization results in a body force density in the bulk fluid; consequently, the bulk flow around the
cylinder is not solely animated by electro-osmotic slip (as it would be for a symmetric electrolyte).

The factor αδ = (a∗/D∗−κ
∗)/(1/ω∗) appearing in (2.26) represents the ratio of an ‘RC’ time, a∗/D∗−κ

∗, to
the time period of the alternating field. It is over this RC scale that the Debye layer charges. Consequently,
the concentration polarization varies on the RC time also, as opposed to the much longer bulk diffusion
time a∗2/D∗−. Indeed, for slow oscillations ω∗ ∼ 1/(a∗2/D∗−) we have αδ ∼ δ, implying that the left-
side of (2.26) is negligibly small. On dropping this term, the resulting system of equations admits a
solution with a uniform salt concentration, c1 = 0. Hence, there is negligible concentration polarization
under sufficiently slow oscillations, and, therefore, zero concentration polarization in a steady (dc) field.
Finally, our assumption of quasi-steady Stokes flow (2.5) requires that the momentum diffusion time
a∗2/ν∗, where ν∗ is the kinematic viscosity of the fluid, is much smaller than the RC time. This can
be invalidated in experiments on ICEO in ac fields (Canpolat et al. 2013); hence, a proper description
of the time-dependent flow would require the unsteady Stokes equations. However, our focus is on the
rectified flow for which (2.5) suffices, since the time-average of a periodic, unsteady Stokes flow solves the
quasi-steady Stokes equations under the time-averaged body force density.

3. Results and comparison to experiments

The system of equations developed in the preceding section is now solved. We first demonstrate that our
analysis recovers the standard picture of ICEO in a symmetric electrolyte (Squires & Bazant 2004b),
before moving to asymmetric electrolytes. Our interest is in describing the long-time ion transport and
fluid flow under ac forcing; we do not consider how this state is attained upon initiation of the field.

3.1. Symmetric electrolyte, γ = 1.

For a symmetric electrolyte (2.28) reduces to ∂c1/∂r = 0 at r = 1. Thus, the trivial solution c1 = 0 is
obtained; the salt concentration is not perturbed from its equilibrium value. Physically, for a symmetric
electrolyte the applied field does not generate a bulk salt flux, since the ions have equal mobilities;
consequently, a compensating salt gradient is not required to ensure that the Debye layer has no net
salt uptake. Since c1 = 0, the potential φ1 is a harmonic function. Prompted by the far-field boundary
condition on φ1 (2.23), we seek a solution of the form

φ1 =

[
−r cos t+

1

r
<(Deit)

]
cos θ, (3.1)

where < denotes the real part, and i =
√
−1. The applied field represents an oscillating dipole ‘at infinity,’

and the disturbance due to the cylinder is a dipole at the origin. Application of (2.26) yields the dipole
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strength

D =
αδi− 1

αδi + 1
. (3.2)

Hence, from (2.24) the slip velocity is

v1 = 2 sin(2θ)

[
<
(

eit

1 + αδi

)]2
at r = 1, (3.3)

which consists of frequency-doubled (relative to the ac forcing) and rectified components. The latter is
readily found as

〈v1〉 =
sin(2θ)

1 + (αδ)2
at r = 1, (3.4)

where 〈· · · 〉 denotes a time-average over one period of the field oscillation. The magnitude of the slip
velocity decreases with increasing frequency due to the insufficient time for the Debye layer to charge up
during the time period of the field oscillation. The rectified slip velocity animates a steady bulk flow that
is conveniently represented by a stream function 〈ψ〉, which is related to the velocity field components
via

〈u1〉 =
1

r

∂〈ψ〉
∂θ

and 〈v1〉 = −∂〈ψ〉
∂r

. (3.5)

The stream function satisfies the biharmonic equation ∇4〈ψ〉 = 0. A straightforward calculation using
(3.4) yields

〈ψ〉 =
1

2[1 + (αδ)2]

(
1

r2
− 1

)
sin(2θ). (3.6)

Equation (3.6) describes a quadrupolar flow, where the fluid velocity is directed toward the cylinder along
the polar axis (θ = 0) and away from the cylinder along the equatorial axis (θ = π/2). At large distances,
the flow appears as a (two-dimensional) stresslet, with a radial velocity decaying like 〈u1〉 ∼ 1/r. We
reiterate that the results in this subsection were derived by Squires & Bazant (2004b); the purpose of
this presentation is to serve as a contrast to the case of an asymmetric electrolyte, discussed next.

3.2. Asymmetric electrolyte, γ 6= 1.

The linearized salt perturbation satisfies the diffusion equation (2.21a), to which a solution c1 = <[f(r)eit] cos θ
is sought, corresponding to a dipolar salt distribution. Substituting this ansatz into (2.21a) yields

d2f

dr2
+

1

r

df

dr
−
[

1

r2
+m2

]
f = 0, (3.7)

where m =
√
α(1 + γ)i/2. The solutions of this equation are the first order modified Bessel functions

I1(mr) and K1(mr). The function I1(mr) diverges exponentially at large r and is thus discarded, whereas
K1(mr) decays exponentially. Thus, we have

c1 = <[AK1(mr)eit] cos θ, (3.8)

where A is a complex-valued constant. At distances |m|r � 1 (3.8) has the asymptotic form

c ∼ <
[
A

m1/2
ei(t−r/L)

]
e−r/L

( π

2r1/2

)
cos θ, (3.9)

which describes damped traveling waves of concentration polarization that propagate from the cylinder
with wavelength and attenuation distance L =

√
4/[α(1 + γ)]. The amplitude factor r−1/2 arises due to

the curvature of the cylinder. The equivalent dimensional length scale is L∗ = a∗L = (2D∗a/ω
∗)1/2, where

D∗a = 2D∗+D
∗
−/(D

∗
+ +D∗−) is the ambipolar diffusion coefficient of the electrolyte. The frequency scaling

L∗ ∼ ω∗−1/2 has been identified in several studies of Debye layers under ac forcing (Shilov & Dukhin 1970;
Chew & Sen 1982; DeLacey & White 1982; González et al. 2010; Garćıa-Sánchez et al. 2017; Hashemi
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Amrei et al. 2018). For oscillations at the ‘ambipolar RC’ frequency, ω∗ = O(κ∗D∗a/a
∗), we have L∗/a∗ =

O(δ1/2); this is a distinguished limit in which the concentration polarization is confined to a ‘diffusion
layer’ atop the Debye layer. The one-dimensional transport between planar, parallel electrodes under
strong ac forcing at such frequencies was analyzed by Olesen et al. (2010) for a symmetric electrolyte.

The potential is written as φ1 = φH1 + φP1 , where the harmonic homogenous solution, φH1 , is again (3.1),
although now the value of the dipole strength D is different, by virtue of the salt perturbation. Hence,
even though there is no diffusio-osmotic contribution to the slip velocity, the salt field still influences
the slip through its effect on D, which, in turn, affects the electro-osmotic slip. The particular solution
satisfies from (2.21b)

∇2φP1 =
α(γ − 1)

2
<[iAK1(mr)eit] cos θ. (3.10)

Hence, we pose φP1 = 1
2α(γ − 1)<[iAg(r)eit] cos θ. Substituting this ansatz into (3.10) yields

d2g

dr2
+

1

r

dg

dr
− g

r2
= K1(mr). (3.11)

The solution to this equation is found by variation of parameters as g = K1(mr)/m2. Therefore, the
potential is

φ1 =

[
−r cos t+

1

r
<(Deit) +

γ − 1

γ + 1
<[AK1(mr)eit]

]
cos θ. (3.12)

The constants A and D are found from the boundary conditions (2.26) and (2.28). Some straightforward,
but tedious, working returns

D =
iαδ(1−Q)− γ+1

2γ

iαδ(1 +Q) + γ+1
2γ

, (3.13)

where

Q =
(γ − 1)2

2γ

K1(m)

m[K0(m) +K2(m)]
, (3.14)

and K0(m) and K2(m) are zeroth and second order modified Bessel functions. Notice that D reduces to
(3.2) for γ = 1. The real and imaginary parts of D are plotted in figure 1 versus the rescaled frequency
δαa for KCl (δ = 1.038), NaOH (δ = 3.953), and HCl (δ = 0.218). The values of δ are obtained from
measurements of ionic diffusion coefficients at infinite dilution (Vanýsek 2012). Here αa = ω∗2a∗2/D∗a =
(1 + γ)α/2 is the oscillation frequency normalized on the ambipolar diffusion coefficient. This is the most
appropriate dimensionless frequency to use, since the value of D at fixed αa does not change under the
transformation γ → 1/γ; that is, it does not matter if the cations are more mobile than the anions, or vice
versa, as long as the ratio of the mobilities is constant. At high frequency (δαa � 1) the double layer does
not have time to charge and the bulk field lines look like those around a conducting cylinder, for which
<(D) = 1. In contrast, at low frequency the double layer almost completely charges; hence, the bulk
field does not penetrate the Debye layer and the field lines resemble those around an insulating cylinder,
for which <(D) = −1. The imaginary part of D decays at both extremes of frequency, like 1/(δαa)2,
where the Debye layer charging is essentially in phase with the applied field. The maximal out-of-phase
response is at δαa = O(1). The influence of a difference in diffusion coefficients is noticeable: for instance,
at δαa = 1 the sign of <(D) is positive for KCl but negative for NaOH and HCl. Finally, the constant A
is then

A =
(γ + 1)(γ − 1)

2γ

1 +D
m[K0(m) +K2(m)]

. (3.15)

Having determined the linearized potential and salt concentration, we now turn to the resulting fluid
flow. The rectified stream function is split as 〈ψ〉 = 〈ψH〉 + 〈ψP 〉 Here, from (2.22), the ‘homogenous
stream function’ satisfies the unforced Stokes equations with the slip condition (2.24), whereas the ‘par-
ticular stream function’ satisfies the Stokes equations with a body force density arising from transient
concentration polarization, and a zero velocity boundary condition at r = 1. We consider 〈ψH〉 first. To
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Figure 1. (a) Real and (b) Imaginary parts of the dipole strength D for three electrolytes versus δαa. The
number in parenthesis gives the value of δ for each electrolyte.

that end, using (3.12), the slip velocity is

vH1 =
1

2
sin(2θ)

[
<(Φ0eit)

]2
at r = 1, (3.16)

in which

Φ0 = −
γ+1
γ

iαδ(1 +Q) + γ+1
2γ

. (3.17)

The rectified slip velocity

〈vH1 〉 =
1

4

[
(<[Φ0])2 + (=[Φ0])2

]
sin(2θ) at r = 1, (3.18)

where = denotes the imaginary part. The variation of the magnitude of the slip velocity with frequency
δαa for KCl, NaOH, and HCl is shown in figure 2. The magnitude monotonically decreases with increasing
δαa, due to a diminished tangential component of the field with increasing δαa, since field lines are instead
drawn into the Debye layer to charge it. The decay in slip velocity is like 1/(δαa)2 at δαa � 1 for all
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three electrolytes. The slip animates a rectified flow represented by the stream function

〈ψH〉 =
1

8

[
(<[Φ0])2 + (=[Φ0])2

]( 1

r2
− 1

)
sin(2θ). (3.19)

Evidently, this flow is always directed from the pole to equator, regardless of the value of γ.

To determine 〈ψP 〉 we take the curl of (2.22) to obtain

∇2ωP1 = −α(γ − 1)

2

∂∇c1
∂t

∧∇φ1, (3.20)

where ωP1 = ∇∧uP1 is the vorticity of the velocity field, uP1 , generated by the body force density in (2.22).
This vorticity can also be written ωP1 = −∇2ψPez, where ψP is the stream function associated with uP1 ,
whose time average equals 〈ψP 〉. Here, ez is a unit vector along the axis of the cylinder. Therefore, from
(3.20), ψP satisfies the forced biharmonic equation

∇4ψP =
α(γ − 1)

2r

(
∂φ1
∂θ

∂2c1
∂t∂r

− ∂φ1
∂r

∂2c1
∂t∂θ

)
. (3.21)

From (3.8) we define ∂2c1/∂θ∂t = <[Φ1(r)eit] sin θ and ∂2c1/∂r∂t = <[Φ2(r)eit] cos θ, where

Φ1 = −iAK1(mr) and Φ2 = −m
2

iA[K0(mr) +K2(mr)]. (3.22)

From (3.12) we define ∂φ1/∂θ = <[Φ3(r)eit] sin θ and ∂φ1/∂r = <[Φ4(r)eit] cos θ, where

Φ3 = r − D
r
−Aγ − 1

γ + 1
K1(mr) and Φ4 = −1− D

r2
− m

2
Aγ − 1

γ + 1
[K0(mr) +K2(mr)]. (3.23)

Therefore, we have

∂φ1
∂θ

∂2c1
∂t∂r

− ∂φ1
∂r

∂2c1
∂t∂θ

=
sin(2θ)

2
[(<[Φ3] cos t−=[Φ3] sin t) (<[Φ2] cos t−=[Φ2] sin t)]

− (<[Φ4] cos t−=[Φ4] sin t) (<[Φ1] cos t−=[Φ1] sin t) , (3.24)

which is expanded out as

∂φ1
∂θ

∂2c1
∂t∂r

− ∂φ1
∂r

∂2c1
∂t∂θ

=
sin(2θ)

4
(<[Φ3]<[Φ2] + =[Φ3]=[Φ2]−<[Φ4]<[Φ1]−=[Φ4]=[Φ1]) + · · · ,(3.25)

where · · · indicates terms that average to zero over an oscillation cycle. Therefore, using (3.25) in (3.21)
yields

∇4〈ψP 〉 =
α(γ − 1)

8r
[<(Φ3)<(Φ2) + =(Φ3)=(Φ2)−<(Φ4)<(Φ1)−=(Φ4)=(Φ1)] sin(2θ), (3.26)

To proceed we let 〈ψP 〉 = 1
8α(γ − 1)Q(r) sin(2θ), and from (3.26) the function Q(r) satisfies

d4Q

dr4
+

2

r

d3Q

dr3
− 9

r2
d2Q

dr2
+

9

r3
dQ

dr
=

1

r
[<(Φ3)<(Φ2) + =(Φ3)=(Φ2)−<(Φ4)<(Φ1)−=(Φ4)=(Φ1)] , (3.27)

subject to

Q = 0,
dQ

dr
= 0 at r = 1, and

Q

r
→ 0,

dQ

dr
→ 0 as r →∞. (3.28)

The boundary conditions at r = 1 specify zero fluid velocity at the surface of the cylinder, and the
conditions as r →∞ specify attenuation of the velocity at large distances. The appropriate homogenous
solutions to (3.27) are 1/r2 and r0. Thus, we write Q(r) = c1 + c2/r

2 + QP (r), where c1 and c2 are
constants, and QP (r) is the particular solution to (3.27). Equation (3.27) is then solved numerically by
integrating back from a distance rout to r = 1 and choosing c1 and c2 to enforce the boundary conditions

there. The value of rout is chosen to be a distance of several L from r = 1. This gives c2 = 1
2
dQP

dr |r=1

and c1 = −c2 − QP |r=1, where the values of QP |r=1 and dQP

dr |r=1 are determined from the numerical
integration.
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T h e f or ci n g i n ( 3. 2 7) i s e x p o n e nti all y s m all at |m |r 1; h e n c e, t h e f ar- fi el d fl o w i s d o mi n at e d b y t h e
h o m o g e n o u s s ol uti o n a n d a s y m pt ot e s t o t h e Str e s sl et fi el d

u P
1 =

c 1 α (γ − 1)

4

c o s( 2 θ )

r
e r + O (r − 3 ) a s r → ∞ . ( 3. 2 9)

Li k e wi s e, t h e f ar- fi el d fl o w d u e t o t h e sli p v el o cit y i s r e a dil y c al c ul at e d fr o m ( 3. 1 9). T h u s, t h e t ot al f ar- fi el d
fl o w t a k e s t h e f or m u 1 ∼ S c o s( 2 θ )/ r , w h er e t h e Str e s sl et str e n gt h

S =
1

4
c 1 α (γ − 1) − ( [ Φ0 ])2 + ( [ Φ0 ])2 ( 3. 3 0)

pr o vi d e s a c o n v e ni e nt m e a s ur e of t h e fl o w m a g nit u d e a n d dir e cti o n. A fl o w dir e ct e d fr o m t h e p ol e t o
e q u at or r e q uir e s S < 0. T hi s i s n ot e vi d e nt fr o m ( 3. 3 0), a s t h e si g n of c 1 i s u k n o w n a p ri o ri ; h o w e v er, it i s
o b s er v e d t h at S < 0 fr o m o ur n u m eri c al c al c ul ati o n s ( fi g ur e 3). T h at i s, w e d o n ot fi n d t h at u n e q u al i o ni c
di ff u si o n c o e ffi ci e nt s al o n e l e a d t o l ar g e- s c al e fl o w r e v er s al, i. e. e q u at or-t o- p ol e fl o w. T hi s i s c o n si st e nt
wit h a n al y si s of A C E O i n t h e w e a k- fi el d r e gi m e, f or w hi c h fl o w r e v er s al r e q uir e s F ar a d ai c r e a cti o n s a n d
a St er n l a y er at t h e el e ctr o d e s i n a d diti o n t o u n e q u al di ff u si o n c o e ffi ci e nt s ( G o n z ál e z et al. 2 0 1 0).
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3.3. Comparison to experiments

Feng et al. (2017) measured the ICEO flow around a gold coated stainless steel cylinder with a cross
sectional radius of a = 175µm. Figure 5 in their paper reports the maximum flow velocity along the polar
axis of the cylinder as a function of field strength in NaCl (γ = 1.523), NaDS (γ = 0.479), KCl (γ = 1.038)
and CaCl2 at a frequency of 1.5 kHz and electrolyte concentration of 1 mM. Note, CaCl2 is an electrolyte
with unequal cationic and anionic valences and therefore outside the scope of the present work. The flow
velocity is observed to increase with the square of the field strength, as predicted in the weak-field limit.
Under these conditions, δ = 5.6 × 10−5 and α = 1.42 × 105 for NaCl and α = 4.51 × 105 for NaDS;
hence, δαa = 10.0 for NaCl and δαa = 18.7 for NaDS. The inset to their figure 5 shows that the ratio of
maximum flow velocity to the field strength squared in NaCl is approximately 9 × 103µm s−1/V2 cm−2

and approximately 4.5× 103µm s−1/V2 cm−2 in NaDS. That is, the maximum flow speed is about twice
as much in NaCl as compared to NaDS. In comparison, our theory predict a stresslet coefficient of
S = −0.011 for NaCl and S = −0.004 for NaDS; suggesting the far-field flow in NaCl is about 2.8
times larger than in NaDS. The ratio of maximum flow velocity to the field strength squared in KCl is
reported as approximately 2.5× 103µm s−1/V2 cm−2. This value is taken from experiments by Canpolat
et al. (2013) who measured ICEO around a gold coated stainless steel cylinder of a = 335µm (see figure
6 in that paper). Thus, for KCl we have δ = 2.9 × 10−5, α = 5.20 × 105 and δαa = 15.4, for which we
predict S = −0.004, i.e. the same value as in NaDS, whereas the experiments suggest a slower flow in
KCl than in NaDS. As noted by Feng et al. (2017), however, their measurements were conducted in a
microfluidic device with different dimensions to that of Canpolat et al. (2013), which could contribute to
the discrepancy with our theory, which, additionally, assumes an unbounded electrolyte. In summary, we
view our predictions as being in fair agreement with these measurements.

4. Conclusion

We considered ICEO around a cylinder subject to an ac electric field in a binary electrolyte with unequal
ionic diffusion coefficients. Our analysis was conducted in the limits of a weak applied field and thin
Debye layer. The inequality of the diffusion coefficients results in concentration polarization waves in
the bulk electrolyte, which alter the time-averaged fluid flow around the cylinder. The appropriate time
scale on which the Debye layer charges, and hence the flow develops, was identified as the ambipolar
RC time a∗/κ∗D∗a. The ambipolar diffusivity D∗a is weighted toward the ion with the lower diffusion
coefficient; hence, it is the slow ion that is the rate-limiting species for Debye layer charging, as expected.
The ‘standard model’ of ICEO in the weak-field and thin-Debye-layer limits assumes an Ohmic bulk
electrolyte with no concentration gradients, wherein the potential is a harmonic function, and the fluid
flow is solely animated by electro-osmotic slip (Squires & Bazant 2004b). These assumptions do not hold
for an electrolyte with unequal diffusion coefficients: concentration polarization results in a non-Ohmic
bulk in which Coulomb body forces contribute to the time-averaged flow. The standard model is valid
under a steady field, since the concentration polarization we predict is transient. However, note that
most experiments use ac fields, and, of course, all experiments use electrolytes with unequal diffusion
coefficients. Therefore, it may prove useful to summarize our findings in terms of an ‘extended standard
model’ for ICEO, valid for an arbitrary (fixed) geometry in the weak field and thin-Debye-layer limits.
To that end, recall that φ = βφ1 and c = 1 + βc1 are the dimensionless potential and salt concentration
to first order in field strength β. From (2.21a) and (2.21b) these quantities satisfy

αa
∂c1
∂t

= ∇2c1 and ∇2φ1 = αa
γ − 1

γ + 1

∂c1
∂t

, (4.1)

where, recall, αa = ω∗a∗2/D∗a. The leading order velocity and pressure, u = β2u1 and p = β2p1,
respectively, satisfy from (2.22)

∇2u1 −∇p1 + αa
γ − 1

γ + 1

∂c1
∂t

∇φ1 = 0 and ∇·u1 = 0. (4.2)
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At large distances c1, u1, and p1 all vanish, while φ1 approaches the imposed field. Let n denote the
outward unit normal vector to the surface. Then the Debye layer charging and zero salt flux conditions,
(2.26) and (2.28), respectively, generalize to

4γαaδ

1 + γ

∂φ1
∂t

= (γ + 1)n·∇φ1 − (γ − 1)n·∇c1, (4.3a)

n·∇c1 =
γ − 1

γ + 1
n·∇φ1. (4.3b)

Finally, the fluid velocity is subject to the electro-osmotic slip condition u = −φ1∇sφ1, where ∇s =
(I − nn)·∇ is the surface gradient operator, in which I is the identity tensor.

Recently, Hashemi Amrei et al. (2020) analyzed how unequal ionic diffusivities (and valences) affect ICEO
around a charged, conducting cylinder. They considered a scenario where the (electrically isolated and
hence fixed-charge) cylinder is located between two planar, parallel electrodes subject to an oscillatory
potential difference. The cylinder is assumed small enough that the ion transport between the electrodes
is not affected by its presence. As predicted in earlier numerical work from this group (Hashemi Amrei
et al. 2018), an inequality in the ionic diffusion coefficients results in a steady component to the electric
potential in the electrolyte, which persists to a distance from each electrode that varies with the inverse
square root of the field frequency (cf. our discussion of the diffusion layer in § 2). This was termed
as an ‘asymmetric rectified electric field’ or ‘AREF’ for short. The magnitude of the AREF affects the
time-averaged flow around the cylinder; notably, a flow reversal is seen under the transformation γ →
1/γ. Hashemi Amrei et al. (2020) used the standard model for ICEO, thereby neglecting concentration
polarization, which we have shown is inexorable in an electrolyte with unequal diffusion coefficients. It
would be interesting to see how concentration polarization affects the ICEO flow due to an AREF.

Finally, our work points to other interesting questions: for instance, how does a difference in diffusion
coefficients affect ICEP or ‘dipolophoresis’ (i.e. the combination of ICEP and dielectrophoresis) in ac
fields? What about multicomponent electrolytes with unequal valences, or other time varying fields (e.g.
a suddenly applied field)? It would also be interesting to relax the weak-field constraint; experiments
by Peng et al. (2014) have observed a time-averaged concentration polarization in ICEO flow around an
immobilized metal cylinder. Our calculations predict zero time-averaged concentration polarization; thus,
we expect that those observations are due to processes (e.g. surface conduction) that are operative at
larger field strengths. However, as noted by Schnitzer & Yariv (2012), going beyond the weak-field limit
would entail a complicated mathematical analysis, arising in part from the now nonlinear capacitance of
the Debye layer. For instance, this implies that the concentration polarization occurs at multiple frequency
overtones of the ac forcing, where the amplitude of each overtone is a nonlinear function of field strength.
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