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Abstract. In this expository paper, we survey some recent works on the Atiyah class and
other characteristic classes of dg manifolds. In particular, we describe a Kontsevich–Duflo type
theorem for dg manifolds: For every finite-dimensional dg manifold (M, Q), the composition
hkr ◦ (td(M,Q))1/2 is an isomorphism of Gerstenhaber algebras from H•(tot⊕(Tpoly(M), Q)) to
H•(tot(Dpoly(M)), dH + Q) — the square root of the Todd class of the dg manifold td1/2

(M,Q)
∈∏

k>0
Hk((Ωk(M))•, Q) acts on H•(tot⊕(Tpoly(M)), Q), by contraction. The Duflo theorem

of Lie theory and the Kontsevich theorem regarding the Hochschild cohomology of complex
manifolds can both be derived as special cases of this Kontsevich–Duflo type theorem for dg
manifolds. The paper ends with a discussion of extensions of this theorem.
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1. Introduction. The aim of this expository paper is to give an overview of the authors’
recent work jointly with several collaborators — mainly Hsuan-Yi Liao — on the Atiyah
class and Kontsevich–Duflo type theorems.

In 1997, Kontsevich revolutionized the field of deformation quantization [7] with
his formality theorem [59]. See also [21, 24, 22, 26, 116, 119, 117, 130, 129] and ref-
erences therein for further developments. Beyond deformation quantization, Kontsevich’s
formality construction found other important applications in several different areas of
mathematics. One of them is the extension of the classical Duflo theorem. Given a
finite-dimensional Lie algebra g, the Poincaré–Birkhoff–Witt symmetrization map pbw :
S(g)

∼=
−→ U(g) is an isomorphism of g-modules. It induces an isomorphism pbw : S(g)g

∼=
−→

U(g)g between subspaces of g-invariants. This isomorphism fails to intertwine the obvious
multiplications on S(g)g and U(g)g. Nevertheless, it can be modified so as to become an
isomorphism of associative algebras. The Duflo element J ∈ Ŝ(g∨) is the formal power
series on g defined by J(x) = det

( 1−exp(− adx)
adx

)
, for all x ∈ g. Considered as a for-

mal linear differential operator on g∨ with constant coefficients, the square root of the
Duflo element defines a transformation J1/2 : S(g)→ S(g). A remarkable theorem due to
Duflo [37] asserts that the composition pbw ◦J1/2 : S(g)g → U(g)g is an isomorphism of
associative algebras. Duflo’s theorem generalizes a fundamental result of Harish-Chandra
regarding the center of the universal enveloping algebra of a semi-simple Lie algebra. As
an application of his formality construction, Kontsevich proposed a new proof of Duflo’s
theorem by means of the associative algebra structure carried by the tangent cohomology
at a Maurer–Cartan element. Indeed, Kontsevich’s approach [59] led to an extension of
Duflo’s theorem: for every finite-dimensional Lie algebra g, the map

pbw ◦J1/2 : H•
CE(g, S(g))

∼=
−→ H•

CE(g,U(g))

is an isomorphism of graded associative algebras. The classical Duflo theorem is simply
the isomorphism between the cohomology groups of degree 0. A detailed proof of the
above extended Duflo theorem was given by Pevzner–Torossian [95] — see also [81, 82].
Furthermore, Kontsevich discovered a similar phenomenon in complex geometry [59]. Re-
call that the Hochschild cohomology groups HH•(X) of a complex manifold X are defined
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as the groups Ext•
OX×X

(O∆,O∆). Gerstenhaber–Schack [41] derived an isomorphism of

cohomology groups hkr : H•
sheaf(X,ΛTX)

∼=
−→ HH•(X) from the classical Hochschild–

Kostant–Rosenberg map. This isomorphism fails to intertwine the multiplications on the
two cohomologies but can be tweaked so as to produce an isomorphism of associative al-
gebras. More precisely, Kontsevich [59] obtained the following theorem: the composition

hkr ◦(tdTC

X
/T 0,1

X
)1/2 : H•

sheaf(X,ΛTX)
∼=
−→ HH•(X),

where tdTC

X
/T 0,1

X
denotes the Todd class of the Lie pair (TC

X , T
0,1
X ) associated to a com-

plex manifold X, is an isomorphism of associative algebras. The multiplications on
H•

sheaf(X,ΛTX) and HH•(X) are respectively the wedge product and the Yoneda prod-
uct. For a detailed proof of Kontsevich’s theorem, see the work [17] by Calaque–Van den
Bergh, who showed additionally that the map hkr ◦(tdTC

X
/T 0,1

X
)1/2 actually respects the

Gerstenhaber algebra structures carried by the two cohomologies — see also [19, 18].
A related result was also proved by Dolgushev–Tamarkin–Tsygan [36, 35]. Note that,
when X is a compact Kähler manifold, then the Todd class tdTC

X
/T 0,1

X
of the Lie pair

(TC

X , T
0,1
X ) coincides with the usual Todd class of X.

Thus, Kontsevich’s formality construction revealed a hidden connection between com-
plex geometry and Lie theory. Naturally, one would wonder whether a general framework
encompassing both Lie algebras and complex manifolds as special cases could be devel-
oped in which a Kontsevich–Duflo type theorem would hold. This can indeed be achieved
by considering differential graded (dg) manifolds.

By a dg manifold, we mean a Z-graded manifold endowed with a homological vector
field, i.e. a vector field Q of degree +1 satisfying [Q,Q] = 0. Homological vector fields
first appeared in physics under the guise of BRST operators used to describe gauge
symmetries. Since then, dg manifolds (a.k.a. Q-manifolds) have appeared frequently in
the mathematical physics literature, e.g. in the AKSZ formalism [1, 105]. They also arise
naturally in many situations in geometry, Lie theory, and mathematical physics. Standard
examples of dg manifolds are:

(i) Lie algebras — Given a finite-dimensional Lie algebra g, we write g[1] to denote the
dg manifold having C∞(g[1]) = Λ•g∨ as its algebra of functions and the Chevalley–
Eilenberg differential Q = dCE as its homological vector field.

(ii) Complex manifolds — Given a complex manifold X, we write T 0,1
X [1] to denote the dg

manifold having C∞(T 0,1
X [1]) = Ω0,•(X) as its algebra of functions and the Dolbeault

operator Q = ∂̄ as its homological vector field.

In 1998, Shoikhet [111] proposed a conjecture, known as Kontsevich–Shoikhet conjec-

ture, stating that a Kontsevich–Duflo type formula should hold for all finite-dimensional
smooth dg manifolds. This conjecture was proved by the authors jointly with Liao [67] —
see Theorem 4.6. Applying Theorem 4.6 to the classes of dg manifolds (i) and (ii) men-
tioned earlier, we recover the Kontsevich–Duflo theorem for Lie algebras (Theorem 4.12)
and Kontsevich’s theorem for complex manifolds (Theorem 4.16), respectively. Thus we
fulfill our stated goal of conceiving a unified framework in which these two important
theorems can be understood as one and the same phenomenon.
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A key ingredient of the Kontsevich–Duflo type theorem for dg manifolds is the notion
of Atiyah class of a dg manifold. As in the classical case of complex manifolds studied by
Kapranov [55], the Atiyah 1-cocycle of a dg manifold is the binary bracket of an L∞[1]
algebra. Indeed, following Kapranov [55], one constructs a dg manifold (TM, D∇), which
can be considered as the ‘formal neighborhood ∆∞ of the diagonal ∆’ of the product dg
manifold (M, Q)× (M, Q) [86]. The construction relies on the ‘formal exponential map’
(introduced in [65]) identifying TM to a ‘formal neighborhood of the diagonal’ ofM×M
seen as Z-graded manifolds. The homological vector field D∇ on TM is then obtained by
pullback of the vector field (Q,Q) on M×M through the formal exponential map [86].
See [32, 106] for some further developments.

A comparison of the present work with that of Calaque–Rossi [16] is in order. In the
introduction of their book [16], Calaque–Rossi claimed “These lecture notes provide a

self-contained proof of the Duflo isomorphism and its complex geometric analogue in a

unified framework, and gives in particular a unifying explanation of the reason why the

series j(x) and its inverse appear.” Let us briefly summarize the actual content of [16]
relevant to this matter. First, Calaque–Rossi gave a detailed proof — outlined earlier
by Shoikhet in [113, 111] — of a Kontsevich–Duflo type theorem for ‘Q-spaces’ [16,
Theorem 5.3]. A Q-space, according to [16], is a Z2-graded vector space endowed with a
homological vector field. Next, following Shoikhet, they applied this result to the Q-space
(g[1], dCE) so as to recover the Kontsevich–Duflo theorem for a finite-dimensional Lie
algebra g (Theorem 4.12) — see [113, Section 1.1.1.1] for a clean outline of the argument.
(Shoikhet’s paper [113] also investigates further properties of the Duflo map in terms of
the cup-product property for Tsygan formality [118, 112].) On the complex geometry side
of the story, given a complex manifoldX, Calaque–Rossi constructed Fedosov ‘resolutions’
of the complexes Ω0,•(X), Ω0,•(X,T ′

poly), and Ω0,•(X,D′
poly) as introduced in [15]. Then

they applied [16, Theorem 5.3] ‘fiberwise’ to these ‘resolutions.’ Beyond that, however,
further additional steps involving substantial work are required in order to complete the
proof of the Kontsevich–Duflo theorem for complex manifolds (Theorem 4.16). Although
Calaque–Rossi made use of the same result ([16, Theorem 5.3], the Kontsevich–Duflo
type theorem for ‘Q-spaces’) to prove the two results for Lie algebras and for complex
manifolds, they did not obtain these two results as special cases of a single generalized
Kontsevich–Duflo theorem. Here, however, we describe a unified Kontsevich–Duflo type

theorem (Theorem 4.6) valid for all finite-dimensional smooth dg manifolds. Then we
specialize this result to two important classes of dg manifolds: (g[1], dCE) and (T 0,1

X [1], ∂̄).

Kontsevich’s theorem regarding the Hochschild cohomology of complex manifolds is
closely related to homological mirror symmetry [58, 6]. It is natural to expect that The-
orem 4.6 will have applications in mirror symmetry, for instance in matrix factorization
[57, 38, 69, 96]. This will be investigated somewhere else.

We conclude the paper with an extension of our Kontsevich–Duflo type theorem for dg
manifolds to the more general context of dg Lie algebroids and discuss several applications
including a specialization of the theorem to Lie pairs. However, the reader only interested
in the dg manifold case is encouraged to skip all sections pertaining to ‘-oids.’
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Notation. Some remarks concerning notation are necessary.
By default, in this paper, ‘graded’ means Z-graded.
Given a module M over a ring, the symbol Ŝ(M) denotes the m-adic completion of

the symmetric algebra S(M), where m is the ideal of S(M) generated by M.
Let M be a finite-dimensional graded manifold, let (xi)i∈{1,...,n} be a set of local

coordinates on M and let (yj)j∈{1,...,n} be the induced local frame of T∨
M regarded as

fiberwise linear functions on TM.
We use the symbol N to denote the set of positive integers and the symbol N0 for the

set of nonnegative integers. Given a multi-index I = (i1, i2, . . . , in) ∈ Nn
0 , we adopt the

following multi-index notation:

I! = i1!i2! · · · in!

|I| = i1 + i2 + . . .+ in

yI = (y1)i1(y2)i2 · · · (yn)in

∂I
x = ∂x1

⊙ . . .⊙ ∂x1︸ ︷︷ ︸
i1 factors

⊙ ∂x2
⊙ . . .⊙ ∂x2︸ ︷︷ ︸
i2 factors

⊙ . . .⊙ ∂xn
⊙ . . .⊙ ∂xn︸ ︷︷ ︸
in factors

∂I
x←−

= ∂xn ⊙ . . .⊙ ∂xn︸ ︷︷ ︸
in factors

⊙ ∂xn−1 ⊙ . . .⊙ ∂xn−1︸ ︷︷ ︸
in−1 factors

⊙ . . .⊙ ∂x1 ⊙ . . .⊙ ∂x1︸ ︷︷ ︸
i1 factors

We use the symbol ek to denote the multi-index all of whose components are equal to 0
except for the k-th which is equal to 1. Thus ∂ek

x = ∂xk
.
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The de Rham exterior differential d is an operator of degree +1 while the interior
product iX with a homogeneous vector field X of degree |X| is an operator of degree
−1− |X|. The element

dxi1 ∧ . . . ∧ dxip ⊗ y
J ∂

∂yq

of Ωp(M, S|J|(T∨
M)⊗ TM) is of degree

p∑

k=1

(1 + |xik
|) +

n∑

k=1

Jk |yk| − |yq| ,

where |xk| (resp. |yq|) denotes the degree of the coordinate function xk (resp. yq).

2. Dg manifolds and dg vector bundles

2.1. Z-graded manifolds. We use the symbol K to denote either of the fields R or C.
For a smooth manifold M , denote by OM , the sheaf of K-valued C∞-functions over M .
A Z-graded manifold M consists of a smooth manifold M (called the support of the
graded manifold) and a sheaf A of Z-graded commutative OM -algebras over M such that
there exists a Z-graded vector space V over K and a covering of M by open submanifolds
U ⊂M , and for every U in the covering, we have

A|U ∼= C∞(U,K)⊗K Ŝ(V ∨),

where Ŝ(V ∨) denotes the K-algebra of formal power series on V . We say that the graded
manifold M is finite-dimensional if dimM and dimV are both finite. We use the no-
tation C∞(M) to denote the Z-graded K-algebra Γ(M,A) of global sections of (M,A).
Let I denote the sheaf of ideals of the OM -algebra A characterized by the property
I|U ∼= C∞(U,K) ⊗K Ŝ

>1(V ) for sufficiently small open subsets U of M . We refer the
reader to [84, Chapter 2] and [21, 27] for a short introduction to Z-graded manifolds and
relevant references. For supermanifolds, see [121]. The word ‘graded’ means ‘Z-graded’
and, unless otherwise stated, the notation |−| denotes the total degree of its argument.

A morphism φ : M → N from a Z-graded manifold M := (M,A) to a Z-graded
manifold N := (N,B) consists of a differentiable map f : M → N together with a
morphism of sheaves of Z-graded algebras ψ : f∗B → A continuous with respect to the
I-adic topology. We also use the notation ψ := φ∗. It is clear that a morphism of Z-graded
manifolds φ :M→N induces a morphism of Z-graded algebras φ∗ : C∞(N )→ C∞(M)
on global sections.

This defines the category of Z-graded manifolds.
Any Z-graded vector bundle over M determines a Z-graded manifold in a natural

way. Let

E = E−m ⊕ . . .⊕ En (1)

be a Z-graded vector bundle over M . Then (M,A), where A|U = Γ(U, Ŝ(E∨)) for all open
submanifolds U ⊆ M , is a Z-graded manifold. It is clear that Z-graded vector bundles
and morphisms of Z-graded vector bundles form a category.
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We have a functor

(Z-graded vector bundles) −→ (Z-graded manifolds) (2)

(M,E) 7−→ (M,A|U = Γ(U, Ŝ(E∨)) .

Proposition 2.1. The functor (2) is an equivalence of categories.

In the supermanifold (i.e. Z2-graded) case, Proposition 2.1 is known as Batchelor’s
theorem — see [21, 33].

Definition 2.2. A dg manifold is a Z-graded manifold M endowed with a homological
vector field, i.e. a degree +1 derivation Q on C∞(M) satisfying [Q,Q] = 0.

A dg manifold (M, Q) is said to be of amplitude [−m,n] ifM is the Z-graded manifold
associated with a graded vector bundle (1) concentrated in degrees −m to n under the
functor (2).

Homological vector fields first appeared in physics under the guise of BRST operators
used to describe gauge symmetries. Since then, dg manifolds (a.k.a. Q-manifolds) have
appeared frequently in the mathematical physics literature, e.g. in the AKSZ formalism
[1, 27].

Let us describe three classes of standard examples of dg manifolds:

Example 2.3. Given a finite-dimensional Lie algebra g, we write g[1] to denote the dg
manifold having C∞(g[1]) = Λ•g∨ as its algebra of functions and the Chevalley–Eilenberg
differential Q = dCE as its homological vector field. This construction admits an ‘up to
homotopy’ version: Given a Z-graded finite-dimensional vector space g =

⊕
i∈Z

gi, the
graded manifold g[1] is a dg manifold, i.e. admits a homological vector field, if and only
if the graded vector space g admits a structure of curved L∞ algebra.

Example 2.4. Given a smooth manifold M , we write TM [1] to denote the dg manifold
having C∞(TM [1]) = Ω•(M) as its algebra of functions and the de Rham differential
Q = ddR as its homological vector field. Likewise, given a complex manifold X, we
write T 0,1

X [1] to denote the dg manifold having C∞(T 0,1
X [1]) = Ω0,•(X) as its algebra of

functions and the Dolbeault operator Q = ∂̄ as its homological vector field.

Example 2.5. Given a smooth section s of a vector bundle E → M , we write E[−1]

to denote the dg manifold having C∞(E[−1]) = Γ(Λ−•E∨) as algebra of functions and
Q = ιs, the interior product with s, as homological vector field. This dg manifold can
be thought of as a smooth model for the (possibly singular) intersection of s with the
zero section of the vector bundle E, and is often called a ‘derived intersection’, or a
quasi-smooth derived manifold [8].

Both situations in Example 2.4 are special instances of Lie algebroids.
According to a theorem of Văıntrob [120], given a K-vector bundle A over a smooth

manifold M , the homological vector fields on A[1] are in one-one correspondence with
the Lie algebroid structures on A. Indeed, the homological vector field on A[1] is the
Chevalley–Eilenberg differential dA : Γ(Λ•A∨) → Γ(Λ•+1A∨). In other words, we have
the following
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Proposition 2.6 ([120]). Dg manifolds of amplitude [−1,−1] are in one-one correspon-

dence with Lie algebroids.

More generally, the dg manifolds of amplitude [−n,−1] can be thought of as Lie

n-algebroids [125, 127, 107, 43, 11, 51, 104, 54] and [109, Letters 7 and 8]. They can be
considered as the infinitesimal counterparts of higher groupoids — see [42, 47, 3, 63, 108,
87, 110]. On the other hand, dg manifolds of amplitude [1, n] are derived manifolds [8].
Hence a general dg manifold of amplitude [−m,n] can encode both stacky and derived
singularities in differential geometry.

A morphism of dg manifolds from (M, Q) to (M′, Q′) is a morphism of Z-graded
manifolds φ : M →M′ such that the induced map on global sections φ∗ : C∞(M′) →
C∞(M) is a morphism of differential graded algebras, i.e. φ∗ ◦Q′ = Q ◦ φ∗.

Definition 2.7. A morphism of dg manifolds φ : (M, Q) → (M′, Q′) is said to be
a quasi-isomorphism if the induced morphism of differential graded algebras of global
sections

φ∗ : (C∞(M′), Q′)→ (C∞(M), Q)

is a quasi-isomorphism.

2.2. Formal exponential map

Definition 2.8. Let E →M be a vector bundle in the category of Z-graded manifolds.
A connection on E →M is a K-linear map

∇ : Γ(TM)⊗ Γ(E)→ Γ(E)

of degree 0 such that

∇fXS = f∇XS,

∇X(fS) = X(f)S + (−1)|X||f |f∇XS,

for all f ∈ C∞(M), X ∈ Γ(TM) and S ∈ Γ(E).

The covariant differential associated to a connection ∇ is the map

d∇ : Ω•(M, E)→ Ω•+1(M, E)

of degree +1 satisfying
∇XS = ιX(d∇S),

for all X ∈ Γ(TM) and S ∈ Γ(E), and

d∇(α · S) = dα · S + (−1)|α|α · d∇S,

for all homogeneous α ∈ Ω(M) and S ∈ Ω(M, E).
The curvature of a connection ∇ is the 2-form R∇ ∈ Ω2(M,End(E)) defined by

R∇(X,Y ) = (−1)|Y |−1{
∇X∇Y − (−1)|X||Y |∇Y∇X −∇[X,Y ]

}
,

for all homogeneous X,Y ∈ Γ(TM) so that (d∇)2 = R∇.
A connection on TM is called an affine connection on M. The torsion of an affine

connection ∇ is the (1,2)-tensor T∇ : TM ⊗ TM → TM of degree 0 defined by

T∇(X,Y ) = ∇XY − (−1)|X||Y |∇Y X − [X,Y ],
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for all homogeneous X,Y ∈ Γ(TM). Given any affine connection, one can define its
opposite affine connection ∇op, given by

∇op
X Y = ∇XY − T (X,Y ) = [X,Y ] + (−1)|X||Y |∇Y X. (3)

The average 1
2 (∇+∇op) is a torsion-free affine connection. This shows that torsion-free

affine connections always exist on Z-graded manifolds.
For an ordinary manifold M , an affine connection ∇ determines an exponential map

exp∇ : TM →M ×M, (4)

which is a local diffeomorphism of fiber bundles

TM
exp∇

//

π

��

M ×M

pr1

��
M

id
// M

(5)

from a neighborhood of the zero section of TM to a neighborhood of the diagonal ∆
in M × M . The space of fiberwise distributions on the vector bundle π : TM → M

with support the zero section can be identified, as a C∞(M)-coalgebra, to Γ(S(TM )),
while the space of fiberwise distributions on the fiber bundle pr1 : M ×M → M with
support the diagonal ∆ can be identified, as a C∞(M)-coalgebra, to D(M). Pushing
distributions forward through the exponential map (4), we obtain an isomorphism of
C∞(M)-coalgebras

pbw∇ : Γ(STM )→ D(M),

which we call Poincaré–Birkhoff–Witt map. In other words, pbw∇ is the fiberwise∞-order
jet (along the zero section) of the exponential map exp∇ : TM → M ×M associated to
the connection ∇ — whence the terminology ‘formal exponential map.’

More precisely, we have

pbw∇(X0 ⊙ . . .⊙Xk)(f) =
d

dt0

∣∣∣∣
0

d

dt1

∣∣∣∣
0
. . .

d

dtk

∣∣∣∣
0
f(exp(t0X0 + t1X1 + . . .+ tkXk))

for all X0, X1, . . . , Xk ∈ Γ(TM ) and f ∈ C∞(M).

Remark 2.9. The inverse map (pbw∇)−1 : D(M)→ Γ(STM ) is also known as a complete
symbol map. It plays an important role in quantizing the cotangent symplectic manifold
T∨

M [46].

It turns out that the map pbw∇ admits a nice recursive characterization [61, 62],
which can be described in a purely algebraic way:

Theorem 2.10 ([61, 62]). The map pbw∇ is entirely determined by the identities

pbw∇(1) = 1, pbw∇(X) = X, and pbw∇(Xn+1) = X ·pbw∇(Xn)−pbw∇(∇X(Xn)), for

all X ∈ Γ(TM ) and n ∈ N, where Xn stands for the symmetric product X ⊙X ⊙ . . .⊙X

of n copies of X.

Such a purely algebraic description extends readily to the context of Z-graded mani-
folds.
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Definition 2.11 ([65]). LetM be a Z-graded manifold and let D(M) denote its algebra
of differential operators. The formal exponential map associated to an affine connection
∇ on M is the morphism of left C∞(M)-modules

pbw∇ : Γ(STM)→ D(M), (6)

inductively defined by the relations

pbw∇(f) = f, ∀ f ∈ C∞(M)

pbw∇(X) = X, ∀X ∈ Γ(TM),

and, for all n ∈ N and any homogeneous elements X0, . . . , Xn of Γ(TM),

pbw∇(X0 ⊙ . . .⊙Xn) =
1

n+ 1

n∑

k=0

ǫk
{
Xk · pbw∇(X{k})− pbw∇(∇Xk

(X{k}))
}
, (7)

where ǫk = (−1)|Xk|(|X0|+...+|Xk−1|) and X{k} = X0 ⊙ . . .⊙Xk−1 ⊙Xk+1 ⊙ . . .⊙Xn.

The algebra D(M) of differential operators on M admits a natural filtration by the
order of the differential operators — see [102, 88, 93]. It is straightforward to prove by
induction on n that

pbw∇(X1 ⊙ . . .⊙Xn) ∈ D6n(M),

for all n ∈ N and X1, . . . , Xn ∈ Γ(TM). In other words, the map pbw∇ respects the
natural filtrations on Γ(STM) and D(M). By Gr, we denote the functor which takes
a filtered vector space

. . . ⊂ A
6k−1 ⊂ A

6k ⊂ A
6k+1 ⊂ . . .

to the associated graded vector space

Gr(A ) =
⊕

k

A 6k

A 6k−1 .

It is well known [102] that the symmetrization map

sym : Γ(S•(TM))→ Gr•(D(M)),

defined by

X1 ⊙ . . .⊙Xn 7→
1
n!

∑

σ∈Sn

ǫ(σ;X) Xσ(1) · · ·Xσ(n),

for all homogeneous X1, . . . , Xn ∈ Γ(TM), is an isomorphism of graded vector spaces.
Here, ǫ(σ;X) denotes the Koszul sign of the permutation σ of the homogeneous elements
X1, . . . , Xk ∈ Γ(TM). It is clear that

Gr(pbw∇) = sym .

Note that both Γ(STM) and D(M) are coalgebras over R := C∞(M).
The comultiplication

∆ : D(M)→ D(M)⊗R D(M) (8)
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is characterized by the identities

∆(1) = 1⊗ 1;

∆(X) = 1⊗X +X ⊗ 1, ∀X ∈ Γ(TM);

∆(U · V ) = ∆(U) ·∆(V ), ∀U, V ∈ D(M), (9)

and is compatible with the natural filtration of D(M). Here the symbol ⊗R in (8) denotes
the tensor product of left R-modules, the symbol 1 denotes the constant function 1, and
the symbol · denotes the multiplication in D(M). See [131, equation (15) and the remark
following Definition 3.1] for the precise meaning of equation (9).

More explicitly, for all homogeneous elements X1, . . . , Xk ∈ Γ(TM), we have

∆(X1 · · ·Xk) = 1⊗ (X1 · · ·Xk) + (X1 · · ·Xk)⊗ 1

+
∑

p+q=k
p,q∈N

∑

σ∈S
q
p

ǫ(σ;X) (Xσ(1) · · ·Xσ(p))⊗ (Xσ(p+1) · · ·Xσ(k))

where Sq
p denotes the space of (p, q)-shuffles.

Similarly, the comultiplication

∆ : Γ(STM)→ Γ(STM)⊗R Γ(STM)

is given by

∆(X1 ⊙ . . .⊙Xk) = 1⊗R (X1 ⊙ . . .⊙Xk) + (X1 ⊙ . . .⊙Xk)⊗R 1

+
∑

p+q=k
p,q∈N

∑

σ∈S
q
p

ǫ(σ;X) (Xσ(1) ⊙ . . .⊙Xσ(p))⊗R (Xσ(p+1) ⊙ . . .⊙Xσ(k)).

The symbol ⊙ denotes the symmetric product in Γ(STM).

Theorem 2.12 ([65]).

• The formal exponential map (6) is a well-defined isomorphism of filtered left C∞(M)-
modules.

• It is also an isomorphism of filtered coalgebras over C∞(M).

Remark 2.13. The formal exponential map (6) induces a deformation quantization of
the Z-graded symplectic manifold T∨

M. Since pbw∇ is a morphism of C∞(M)-modules,
it is also called normal ordering quantization map. Many quantization maps Γ(STM)→
D(M) have appeared in the literature — for instance, see [45] and references therein. The
significant feature of the map (6) appearing in Definition 2.11 is that it can be computed
explicitly by iteration. This is crucial in the discussion that follows.

2.3. Fedosov dg manifolds. Theorem 2.12 has a number of important applications
in graded geometry. First, we describe its application in the construction of Fedosov dg
manifolds. Fedosov dg manifolds are closely related to formal geometry [40]. Intuitively,
given a Z-graded manifold M, a Fedosov dg manifold ‘for M’ is a dg manifold of the
form (TM[1]⊕ TM, D) which encodes the formal neighborhood of ‘each point ofM’ and
whose algebra of functions is a resolution of C∞(M).
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Let M be a finite-dimensional Z-graded manifold with support M . Choose an affine
connection∇ onM. Let pbw∇ : Γ(STM)→ D(M) be the corresponding formal exponen-
tial map, i.e. the PBW map associated to ∇, as defined in Definition 2.11. Multiplication
in D(M) from the left by elements of Γ(TM) defines an infinitesimal action of TM on the
C∞(M)-coalgebra D(M) by coderivations. Pulling back this infinitesimal action through
pbw∇, we obtain an infinitesimal TM-action on Γ(S(TM)) by coderivations. The latter
defines a flat connection ∇ on S(TM):

∇ XS := (pbw∇)−1(X · pbw∇(S)) (10)

for all X ∈ Γ(TM) and S ∈ Γ(STM). This in turn induces a flat connection on the
dual bundle Ŝ(T∨

M), denoted by the same symbol ∇ . We denote the corresponding
Chevalley–Eilenberg differential by

D = d∇ 

: Ω•(M, Ŝ(T∨
M))→ Ω•+1(M, Ŝ(T∨

M)). (11)

Since the covariant derivative

∇ X : Γ(STM)→ Γ(STM)

is a coderivation of Γ(STM) for all X ∈ Γ(TM), the covariant derivative

∇ X : Γ(Ŝ(T∨
M))→ Γ(Ŝ(T∨

M))

is a derivation of the completed symmetric algebra Γ(Ŝ(T∨
M)). Therefore D is a derivation

of Ω•(M, Ŝ(T∨
M)) of degree (+1) satisfying D2 = 0. Therefore it is a homological vector

field on TM[1]⊕TM. In other words, (TM[1]⊕TM, D) is a dg manifold (with support M).
Note that, by construction, the homological vector field D depends on the choice of an
affine connection ∇ on M.

Alternatively, the homological vector field D can be constructed explicitly by way of
Fedosov’s iterative method. We need to introduce some notation.

Let (xi)i∈{1,...,n} be a set of local coordinates on M and let (yj)j∈{1,...,n} be the
induced local frame of T∨

M regarded as fiberwise linear functions on TM. Define

δ : Ωp(M, SqT∨
M)→ Ωp+1(M, Sq−1T∨

M)

and

δ−1 : Ωp(M, SqT∨
M)→ Ωp−1(M, Sq+1T∨

M)

by

δ =
n∑

i=1

dxi ⊗
∂

∂yi
and δ−1 =

1
p+ q

n∑

i=1

ι∂/∂xi
⊗ yi

or, more precisely,

δ(ω ⊗ f) =
n∑

i=1

(−1)|∂/∂yi||ω| dxi ∧ ω ⊗
∂

∂yi
(f)

and

δ−1(ω ⊗ f) =
1

p+ q

n∑

i=1

(−1)|y
i||ω|ι∂/∂xi

ω ⊗ yi · f
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for all homogeneous ω ∈ Ωp(M) and for all f ∈ Γ(SqT∨
M). It is not difficult to check

that the operators δ and δ−1 are well defined, i.e. independent of the choice of local
coordinates, and can be extended to Ω•(M,End(Ŝ(T∨

M))). The operator δ has degree +1
while the operator δ−1 has degree −1. Note that the operators δ and δ−1 are not inverse
of each other.

Proposition 2.14 ([65]). Let M be a finite-dimensional Z-graded manifold, and ∇ a

torsion-free affine connection on M. The homological vector field D of equation (11)
decomposes as the sum

D = −δ + d∇ +X∇,

where

X∇ =
n∑

i=1

∑

J∈N
n
0

|J|>2

n∑

k=1

Xi
J,k dxi ⊗ y

J ∂

∂yk

is an element of degree (+1) in Ω1(M, Ŝ>2(T∨
M) ⊗ TM) satisfying δ−1(X∇) = 0. This

element X∇ can be thought of as a 1-form on M valued in fiberwise formal vector fields

on TM and hence acts by derivation on Ω•(M, Ŝ(T∨
M)), the differential forms on M

valued in fiberwise formal functions on TM. Indeed, X∇ is a vector field on TM[1]⊕TM.

Remark 2.15. The vector field X∇ on TM[1] ⊕ TM can also be constructed explicitly
[106] by way of an iterative method due to Fedosov [40]. Fedosov’s iterative method is
a standard and very effective procedure for assembling global objects out of local build-
ing blocks. The version of Fedosov’s method relevant to our purpose is the one which
is applicable to arbitrary ordinary smooth manifolds and was developed by Emmrich–
Weinstein [39] and later refined by Dolgushev [34]. Given an (ordinary) smooth mani-
fold M , Dolgushev obtained resolutions of C∞(M), T •

poly(M) and D•
poly(M), which he

employed to globalize Kontsevich’s formality theorem from Rd to M . The construction
relies on the choice of a torsion-free affine connection on M .

Remark 2.16. An analogue, in the context of Z-graded manifolds, of Dolgushev–Fedosov
resolution can also be found in Cattaneo–Felder [23, Appendix]. However, rather than
resolving the entire algebra of functions on the graded manifold at hand, Cattaneo–Felder
consider the underlying Z-graded manifold as a Z-graded vector bundle over an ordinary
smooth manifold M , and resolve only the subalgebra of functions on the base manifold M .

Consider the linear map σ : Ω•(M, Ŝ(T∨
M)) → C∞(M) of degree 0 characterized by

the relations

σ(f ⊗ 1) = f, ∀ f ∈ C∞(M);

σ(ω ⊗ yJ) = 0, ∀ω ∈ Ω>1(M), ∀J ∈ Nn
0 ;

σ(f ⊗ yJ) = 0, ∀ f ∈ Ω0(M), ∀J ∈ Nn
0 such that |J | > 1.

(12)

Lemma 2.17. There exists a unique map

τ̆ : C∞(M)→ Ω0(M, Ŝ(T∨
M))

of degree 0 satisfying σ ◦ τ̆ = idC∞(M) and D ◦ τ̆ = 0.
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One can easily check that τ̆ is a morphism of algebras. Obviously, τ̆ is a chain map
from C∞(M) seen as a complex concentrated in degree 0 to (Ω•(M, Ŝ(T∨

M)), D).

Proposition 2.18 ([65]). The chain map τ̆ defines a quasi-isomorphism of dg manifolds

from (TM[1]⊕ TM, D) to (M, 0).

As in the case for the operator D, the map τ̆ may also be obtained directly from the
formal exponential map pbw∇.

Proposition 2.19 ([65]). Let (xj)j∈{1,2,...,n} be a set of local coordinates on M and let

(yj)j∈{1,2,...,n} be the induced local frame of T∨
M regarded as fiberwise linear functions

on TM. For all f ∈ C∞(M), we have

τ̆(f) =
∑

I∈Nn
0

1

I!
yI ⊗ pbw∇

(
∂I

x←−

)
(f),

where

∂I
x←−

= ∂xn ⊙ . . .⊙ ∂xn︸ ︷︷ ︸
in factors

⊙ ∂xn−1 ⊙ . . .⊙ ∂xn−1︸ ︷︷ ︸
in−1 factors

⊙ . . .⊙ ∂x1 ⊙ . . .⊙ ∂x1︸ ︷︷ ︸
i1 factors

for I = (i1, i2, . . . , in) ∈ Nn
0 .

2.4. Dg vector bundles. A dg-vector bundle is a vector bundle in the category of dg
manifolds. We refer the reader to [85, 60] for details on dg vector bundles.

Many familiar notions in geometry and representation theory can be interpreted in
terms of dg manifolds in a unified way.

Example 2.20. Consider Example 2.3. Let g be a finite-dimensional Lie algebra and
let V be a finite-dimensional vector space. A structure of g-module on V is equivalent
to a structure of dg vector bundle on g[1] × V → g[1]. Similarly, given an L∞ algebra
g =

⊕
i∈Z

gi, saying that a Z-graded vector space V =
⊕

i∈Z
Vi is an L∞ module over g

is equivalent to saying that g[1]× V → g[1] is a dg vector bundle.

Example 2.21. Consider Example 2.4. Let X be a complex manifold, let E → X be a
complex vector bundle, and let π∗E denote the pullback of the complex vector bundle
E → X through the canonical projection π : T 0,1

X [1]→ X. Then E → X is a holomorphic
vector bundle if and only if π∗E → T 0,1

X [1] is a dg vector bundle. Similarly, given a
complex of holomorphic vector bundles over X of finite length

0→ E−m → . . .→ Ei−1 → Ei → Ei+1 → . . .→ En → 0, (13)

the pullback π∗E → T 0,1
X [1] of E =

⊕n
i=−m Ei through π is a dg vector bundle. However,

note that a dg vector bundle structure on the pullback π∗E → T 0,1
X [1] of a finite-length

complex (13) of vector bundles over C is not necessarily equivalent to a structure of
complex of holomorphic vector bundles. It is related to Quillen’s flat superconnections
[99, 10]. For more details on this, see [52].

Example 2.22 ([60]). Let A→M be a gauge Lie algebroid with anchor ρ. Then A[1]→

TM [1] is a dg vector bundle with the Chevalley–Eilenberg differentials as homological
vector fields on A[1] and TM [1].
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Example 2.22 is a special case of a general fact [85]: LA-vector bundles give rise to
dg vector bundles. An LA-vector bundle [73, 74, 77] (a.k.a. VB-algebroid [44]) is a vector
bundle in the category of Lie algebroids. More precisely, an LA-vector bundle is a double
vector bundle

D
t //

l
��

B

r

��
A

b
// M

(14)

in which the vector bundles D t
−→ B and A

b
−→ M carry Lie algebroid structures and the

‘vertical projections’ l and r realize a morphism of Lie algebroids from D
t
−→ B to A b

−→M .
The notion of LA-vector bundle was introduced by Mackenzie in his extensive study of
‘double structures’ [73, 74, 77]. It was later reformulated by Gracia-Saz and Mehta in
terms of VB-algebroids [44].

Proposition 2.23 ([44]). The double vector bundle (14) is an LA-vector bundle if and

only if D[1] l
−→ A[1] is a dg vector bundle.

Going back to Example 2.22, a gauge Lie algebroid A → M with anchor ρ yields an
LA-vector bundle

A //

ρ

��

M

id
��

TM
// M

and thence, according to Proposition 2.23, a dg vector bundle A[1]→ TM [1].
Given a vector bundle object E π

−→M in the category of Z-graded manifolds, its space
of sections Γ(E) is defined to be the direct sum

⊕
j∈Z

Γ(E)j , where Γ(E)j denotes the
space of degree preserving maps s ∈ Hom(M, E [−j]) such that (π[−j]) ◦ s = idM. Here
π[−j] : E [−j] → M is the natural map induced by π : E → M — see [85] for more
details. When E → M is a dg vector bundle, the homological vector fields on E and M
naturally induce an operator Q of degree (+1) on Γ(E), making Γ(E) a dg module over
C∞(M). Since C∞(M) and the space Γ(E∨) of linear functions on E together generate
the algebra C∞(E), the converse is also true: the homological vector field on M and the
operator Q on Γ(E) determine a dg structure on E .

Lemma 2.24 ([86]). Let M be a Z-graded manifold endowed with a homological vector

field Q. Given a vector bundle object E → M in the category of Z-graded manifolds,

E admits a dg manifold structure making E →M into a dg vector bundle if and only if the

space of sections Γ(E) admits a structure of dg module over the dg algebra (C∞(M), Q).
Indeed, the category of dg vector bundles over the dg manifold (M, Q) is equivalent to the

category of locally free dg modules over the dg algebra (C∞(M), Q).

Given a dg vector bundle E →M, the induced operator Q on Γ(E) is the coboundary
operator of a cochain complex

. . .→ Γ(E)i−1 Q
−→ Γ(E)i Q

−→ Γ(E)i+1 → . . . ,

whose cohomology group will be denoted H•(Γ(E),Q).
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In particular, the space X(M) of vector fields on a dg manifold (M, Q) (i.e. graded
derivations of C∞(M)), which can be regarded as the space of sections Γ(TM), is natu-
rally a dg module over the dg algebra (C∞(M), Q) with the Lie derivative

LQ : X(M)→ X(M)

playing the role of the operator Q. As a consequence, TM is naturally a dg manifold and
TM →M a dg vector bundle according to Lemma 2.24.

Definition 2.25. Given a dg manifold (M, Q), the homological vector field on TM

corresponding to the operator Q = LQ on Γ(TM) is called the complete lift of Q (it was
called the tangent lift in [86]).

See [132] for an analogue of the complete lift of vector fields in classical differential
geometry.

3. Atiyah class and characteristic classes of a dg vector bundle

3.1. Dg Lie algebroids. Dg Lie algebroids are Lie algebroid objects in the category of
dg manifolds. Below, we briefly recall their precise definition. For more details, we refer
the reader to [85], where dg Lie algebroids are called Q-algebroids.

A Lie algebroid object in the category of Z-graded manifolds consists of a vector
bundle object A → M in the category of Z-graded manifolds together with a bundle
map ρ : A → TM of degree 0, called anchor, and a structure of graded Lie algebra on
Γ(A) with Lie bracket satisfying

[X, fY ] = ρ(X)(f)Y + (−1)|X||f |f [X,Y ]

for all homogeneous X,Y ∈ Γ(A) and f ∈ C∞(M).

Definition 3.1 ([85]). A dg Lie algebroid is a dg vector bundle A →M endowed with
an additional structure of Lie algebroid object in the category of Z-graded manifolds such
that the dg and the Lie structures are compatible in the following sense:

[dA,Q] = 0, (15)

where dA is the Chevalley–Eilenberg differential corresponding to the Lie algebroid struc-
ture on A →M seen as a homological vector field on A[1], while the symbol Q denotes
the homological vector field on A[1] induced by the homological vector field Q(A) on A
which is part of the dg vector bundle structure on A →M. Here, the bracket (15) stands
for the Lie bracket on X(A[1]).

The compatibility condition (15) is equivalent to the requirement that the Chevalley–
Eilenberg differential

dA : Γ(Λ•A∨)→ Γ(Λ•+1A∨)

of the Lie algebroid A →M commute with the differential (of internal degree (+1))

Q : Γ(Λ•A∨)→ Γ(Λ•A∨)

induced by the dg vector bundle structure on A → M. As a consequence, the pair of
differentials dA and Q make the algebra Γ(Λ•A∨) — which is double-graded by the
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‘•-degree’ and the ‘internal’ degree — a double complex. According to Mehta [85], the
total cohomology of this double complex is the dg Lie algebroid cohomology of A →M.

Example 3.2. Let A →M be a Lie algebroid object in the category of Z-graded mani-
folds with anchor map ρ : A → TM and let s ∈ Γ(A) be a section of degree +1 satisfying
[s, s] = 0. Then A → M admits a structure of dg Lie algebroid: the homological vector
field on M is ρ(s) while the operator of degree +1 on Γ(A) is [s,−].

One important class of dg Lie algebroids arise from Mackenzie’s double Lie alge-

broids [73], the infinitesimal counterparts of double Lie groupoids [72, 75, 74]. The fol-
lowing is essentially due to Ted Voronov [126].

Theorem 3.3 ([126]). A double vector bundle structure

D //

��

B

��
A // M

(16)

can be upgraded to a double Lie algebroid in the sense of Mackenzie [73, 72, 75, 74] if and

only if D[1]→ A[1] is a dg Lie algebroid. Here D[1] and A[1] denote the graded manifolds

obtained by shifting the degree of the fiberwisely linear functions on the total spaces D

and A of the vector bundles D → B and A→M .

Definition 3.4 ([89, 78]). Two K-Lie algebroids A and B over the same base manifold M
and with respective anchors ρA and ρB are said to form a matched pair if there exists an
action ∇ of A on B and an action

∇
of B on A such that the identities

[ρA(X), ρB(Y )] = −ρA(
∇

Y X) + ρB(∇XY ),

∇X [Y1, Y2] = [∇XY1, Y2] + [Y1,∇XY2] +∇∇
Y2 XY1 −∇∇

Y1 XY2,
∇

Y [X1, X2] = [
∇

Y X1, X2] + [X1,
∇

Y X2] +
∇

∇X2 Y X1 −
∇

∇X1 Y X2,

hold for all X1, X2, X ∈ Γ(A) and Y1, Y2, Y ∈ Γ(B).

Lemma 3.5 ([89, 78]). Given a matched pair (A,B) of Lie algebroids, there is a Lie

algebroid structure A ⊲⊳ B on the direct sum vector bundle A⊕B, with anchor

X ⊕ Y 7→ ρA(X) + ρB(Y )

and bracket

[X1 ⊕ Y1, X2 ⊕ Y2] = ([X1, X2] +
∇

Y1
X2 −

∇
Y2
X1)⊕ ([Y1, Y2] +∇X1

Y2 −∇X2
Y1).

Conversely, if A⊕B carries a Lie algebroid structure for which A⊕ 0 and 0⊕B are Lie

subalgebroids, then the representations ∇ and
∇

defined by

[X ⊕ 0, 0⊕ Y ] = −
∇

Y X ⊕∇XY

endow the couple (A,B) with a structure of matched pair.

In fact, the representation ∇ (resp.
∇

) can be identified with the Bott representation
of A (resp. B) on L/A ∼= B (resp. L/B ∼= A). See (52).
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Example 3.6 (matched pair of Lie algebroids). Let (A,B) be a matched pair of Lie
algebroids. Then

A ⊲⊳ B //

��

B

��
A // M

is a double Lie algebroid and, according to Theorem 3.3, (A[1] ⊕ B, dBott
A ) is a dg Lie

algebroid over (A[1], dA). Here dBott
A denotes the Chevalley–Eilenberg differential of the

Lie algebroid A corresponding to the Bott representation ∇ of A on B.

Example 3.7 (Lie bialgebroid). Let (A,A∨) be a Lie bialgebroid [79]. Then

T∨A(∼= T∨A∨) //

��

A∨

��
A // M

is a double Lie algebroid and, according to Theorem 3.3, T∨A∨[1] → A[1] is a dg Lie
algebroid.

Differential graded foliations constitute another important class of examples of dg Lie
algebroids.

Proposition 3.8. Let (M, Q) be a dg manifold.

• Then TM is a dg manifold with the complete lift of Q as homological vector field.

• Furthermore, TM →M is a dg Lie algebroid.

• More generally, if D ⊂ TM is an integrable distribution on M and Γ(D) is stable

under LQ, then D → M is a dg Lie algebroid with the inclusion D →֒ TM as its

anchor map. We say that D is a dg foliation of M.

An example of dg foliation in the sense of Proposition 3.8 is Fedosov dg Lie algebroids.

Example 3.9 (Fedosov dg foliation [67]). Let M be a Z-graded manifold and, as in
Section 2.3, let (N = TM[1] ⊕ TM, D) be a Fedosov dg manifold for M. Consider the
pullback F → N of the vector bundle TM → M through the canonical projection
N → M. It is a vector bundle in the category of Z-graded manifolds whose total space
F is a graded manifold with support M . Its space of sections Γ(N ;F) is the C∞(N )-
module C∞(N )⊗R X(M) = Ω•(M, Ŝ(T∨

M)⊗ TM). It can be identified canonically to a
C∞(N )-submodule of X(N ) as follows. Let ∂1, . . . , ∂m and χ1, . . . , χm denote the dual
local frames for TM and T∨

M arising from a choice of local coordinates (x1, . . . , xm) onM.
To 1⊗∂k ∈ C

∞(N )⊗RX(M) = Γ(N ;F) we associate the (graded) derivation of C∞(N )
mapping χj ∈ Ω0(M, S1(T∨

M)) ⊂ C∞(N ) to δk,j and ω ∈ Ωp(M, S0(T∨
M)) ⊂ C∞(N )

to 0. Thus F → N is a vector subbundle of TN → N . One can check that F is indeed
a dg foliation of the dg manifold (N , D). Hence F → N is a dg Lie algebroid, which we
elect to call a Fedosov dg Lie algebroid.

Fedosov dg Lie algebroids play an important role in the globalization to dg manifolds
of Kontsevich’s formality theorem for Rd. The Fedosov dg Lie algebroid F → N of
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Example 3.9 arising from a Z-graded manifold M is somehow ‘homotopy equivalent’ to
the tangent Lie algebroid TM →M. Given a homological vector field Q on the Z-graded
manifold M, one can modify the dg structure on F → N so as to take the homological
vector field Q onM into consideration in such a way that the resulting (modified) Fedosov
dg Lie algebroid F → N is ‘homotopy equivalent’ to the dg Lie algebroid TM → M of
the dg manifold (M, Q). See [67] for more details.

3.2. Dg Lie algebroids associated with Lie algebroid morphisms. This subsec-
tion outlines a work in progress [115].

Let A and L be K-Lie algebroids over the same base manifold M , and φ : A→ L a Lie
algebroid morphism. There exists a double Lie algebroid due to Jotz Lean and Mackenzie
[53] (see also [115]), called a comma double Lie algebroid. In the case that K is R, any Lie
algebroid morphism arises from a morphism of local Lie groupoids. A comma double Lie
algebroid is the infinitesimal of the comma double Lie groupoid associated to a morphism
of Lie groupoids with the same base manifolds due to Brown–Mackenzie [13, Example 1.8]
(see also [72, Example 2.5] and [115]).

We recall its construction briefly below. Let D = TA ×T M,ρL
L. Then D

˘̟
−→ A is

naturally a Lie algebroid, the pullback Lie algebroid — see [76] — of L ̟
−→ M through

the surjective submersion π : A→M .
On the other hand, D inherits a second Lie algebroid structure over L, the transforma-

tion Lie algebroid, corresponding to the action of the tangent Lie algebroid TA→ TM on
ρL : L → TM . To define the action, note that Γ(TM, TA) is generated, over C∞(TM),
by two types of sections: core sections X̂ and tangent sections TX, for all X ∈ Γ(A)
[79, 80]. Indeed their brackets completely determine the Lie bracket on Γ(TM, TA) [79,
equation (27)]:

[TX, TY ] = T ([X,Y ]), [TX, Ŷ ] = 0, [X̂, Ŷ ] = 0,

for X,Y ∈ Γ(A). Recall that the core section X̂ ∈ Γ(TM, TA), for any X ∈ Γ(A) is
defined as a map [79, 80]

X̂ : TM → TA, X̂(vm) = vm +X|m ∈ TmM ⊕A|m ∼= T0m
A, ∀ vm ∈ TmM.

For any section X ∈ Γ(A), there also associates two vector fields on A, the vertical
lift vector field X↑ and the morphic vector field X̃, defined respectively by [80]

X↑(f ◦ π) = 0, X↑(lξ) = 〈ξ,X〉 ◦ π, (17)

X̃(f ◦ π) = ρA(X)(f) ◦ π, X̃(ℓξ) = ℓLX (ξ), (18)

for f ∈ C∞(M), ξ ∈ Γ(A∗). Here ℓξ ∈ C
∞(A) is the fiberwise linear function determined

by ξ.
Define Φ : Γ(TM, TA)→ X(L) by

Φ(TX) = φ̃(X), Φ(X̂) = φ(X)↑ (19)

for any X ∈ Γ(A).
One proves that (19) defines uniquely an action of the tangent Lie algebroid TA →

TM on ρL : L → TM [53]. Thus one can form the transformation Lie algebroid D =

TA×T M,ρL
L

π̆
−→ L.
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Proposition 3.10 ([53]). D is a double Lie algebroid

D
π̆ //

˘̟
��

L

̟

��
A

π
// M.

(20)

Therefore, according to the Voronov theorem [126]: Theorem 3.3, TA[1]×TM
L→ A[1]

is a dg Lie algebroid, where the Lie algebroid is the pull-back Lie algebroid of L → M

through the surjective submersion π : A[1]→M . To describe the dg structure, note that

a general section of TA[1] ×TM
L

˘̟
→ A[1] consists of a pair (X, ν), where X ∈ X(A[1]) is a

vector field on A[1] and ν is a map A[1]→ L satisfying

π∗ ◦X = ρL ◦ ν : A[1]→ TM . (21)

Let
sφ = (dA, µ), µ : A[1]→ A

φ
−→ L. (22)

If one thinks of A
φ
−→ L as a bundle of two term complex over M , then µ : A[1] → L is

the same one by assigning A with degree −1 and L degree 0. One proves that [115] sφ is

indeed a degree +1 section of TA[1] ×TM
L

˘̟
→ A[1] satisfying

[sφ, sφ] = 0.

Proposition 3.11 ([115]). Let φ : A→ L be a Lie algebroid morphism. Then

TA[1] ×TM
L→ A[1]

is a dg Lie algebroid. As a (Z-graded) Lie algebroid, it is the pull-back (in the Lie algebroid

sense) of the Lie algebroid L→M through the surjective submersion A[1]→M . On the

other hand, the dg structure arises, as in Example 3.2, from the section sφ of degree +1
defined by equation (22).

3.3. Characteristic classes of a dg vector bundle relative to a dg Lie algebroid.

Let E → M be a dg vector bundle and let A → M be a dg Lie algebroid with anchor
ρ : A → TM.

An A-connection on E is a degree 0 map ∇ : Γ(A)× Γ(E)→ Γ(E) satisfying the pair
of relations

∇fXs = f∇Xs,

∇X(fs) = ρX(f)s+ (−1)|X||f |f∇Xs,

for all homogeneous elements f ∈ C∞(M), X ∈ Γ(A), and s ∈ Γ(E). Such connections
always exist since the standard partition of unity argument holds in the context of graded
manifolds. Given a dg vector bundle E and an A-connection ∇ on it, we can consider the
bundle map At∇

E : A⊗ E → E of degree +1 defined by

At∇
E (X, s) = Q(∇Xs)−∇Q(X)s− (−1)|X|∇X(Q(s)), ∀X ∈ Γ(A), s ∈ Γ(E).

The bundle map At∇
E can be regarded as a section of degree +1 of A∨⊗End E , and hence

as a 1-cochain in the cochain complex (Γ(A∨ ⊗ End E)•,Q).
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Lemma 3.12 ([86]). The 1-cochain At∇
E is a cocycle: Q(At∇

E ) = 0. Its cohomology class

is independent of the choice of the connection ∇.

The cohomology class αE := [At∇
E ] in H1(Γ(A∨ ⊗ End E)•,Q) is called the Atiyah

class of the dg vector bundle E →M relative to the dg Lie algebroid A →M [86].
The Todd cocycle and Â cocycle of the dg vector bundle E associated with the A-con-

nection ∇ are the elements Td∇
E and Â∇

E of
∏

k>0(Γ(ΛkA∨))k defined, respectively, by

Td∇
E = Ber

(
At∇

E

1− e− At∇
E

)
and Â∇

E = Ber
(

At∇
E

e(1/2) At∇
E − e−(1/2) At∇

E

)
,

where Ber denotes the Berezinian [9, 21] and ΛkA∨ denotes the dg vector bundle
Sk(A∨[−1])[k]→M. Both Td∇

E and Â∇
E are cocycles: Q(Td∇

E ) = 0 = Q(Â∇
E ). Note that

every element of (Γ(ΛkA∨))k is a finite sum
∑
α1 ∧ . . . ∧ αk with α1, . . . , αk ∈ Γ(A∨)

homogeneous and satisfying the degree condition |α1|+ . . .+ |αk| = k. The cohomology
classes tdE and ÂE in

∏
k>0 H

k((Γ(ΛkA∨))•,Q) of the cocycles Td∇
E and Â∇

E are inde-
pendent of the choice of the connection ∇ and are respectively called the Todd class and
Â class of the dg vector bundle E relative to the dg Lie algebroid A. Hence, the Todd class
and the Â class of a dg vector bundle E relative to a dg Lie algebroid A are respectively
the elements

tdE = Ber
(

αE

1− e− αE

)
and ÂE = Ber

(
αE

e(1/2) αE − e−(1/2) αE

)
(23)

in
∏

k>0 H
k(Γ(ΛkA∨)•,Q).

Both tdE and ÂE can be expressed in terms of the scalar Atiyah classes

ck =
1
k!

(
i

2π

)k

str(αk
E) ∈ Hk(Γ(ΛkA∨)•,Q).

Here str : End(E)→ C∞(M) denotes the supertrace. Note that str(αk
E) ∈ Γ(ΛkA∨) since

αk
E ∈ Γ(ΛkA∨)⊗C∞(M) Γ(End(E)). For details, see [86].

3.4. Characteristic classes of a dg manifold. Let (M, Q) be a finite-dimensional
dg manifold. According to Proposition 3.8, its tangent bundle TM → M is naturally a
dg Lie algebroid. By definition, the Atiyah class of the dg manifold (M, Q) is the Atiyah
class of the dg vector bundle TM relative to the dg Lie algebroid TM. More precisely,
given a dg manifold (M, Q) and an affine connection ∇ on M, the degree +1 section of
T∨

M⊗End(TM) corresponding to the bundle map At∇
(M,Q) : TM⊗TM → TM defined by

At∇
(M,Q)(X,Y ) = LQ(∇XY )−∇LQ(X)Y − (−1)|X|∇X(LQ(Y )), ∀X,Y ∈ Γ(TM),

is a cocycle whose cohomology class

α(M,Q) = [At∇
(M,Q)] ∈ H

1(Γ(T∨
M ⊗ EndTM)•,Q)

is independent of the choice of the connection ∇ and is called the Atiyah class of the dg
manifold (M, Q).

The Atiyah class of a dg manifold is the obstruction to the existence of connections
compatible with the homological vector field. It was first investigated by Shoikhet [111]
in relation with Kontsevich’s formality theorem and Duflo’s formula.



84 M. STIÉNON AND P. XU

The Todd cocycle and the Â cocycle of the dg manifold (M, Q) associated with the
affine connection ∇ are the elements

Td∇
(M,Q) = Ber

(
At∇

(M,Q)

1− e− At∇
(M,Q)

)
and Â∇

(M,Q) = Ber
(

At∇
(M,Q)

e
(1/2) At∇

(M,Q) − e
−(1/2) At∇

(M,Q)

)

of
∏

k>0(Γ(ΛkT∨
M))k ∼=

∏
k>0(Ωk(M))k.

Their respective cohomology classes td(M,Q) and Â(M,Q) in
∏

k>0 H
k((Ωk(M))•,Q)

are independent of the choice of the connection ∇ and will be referred to as the Todd

class and the Â class of the dg manifold (M, Q), respectively.
Given a finite-dimensional Lie algebra g, consider the dg manifold (M, Q), where

M = g[1] and Q is the Chevalley–Eilenberg differential dCE. The following result can be
easily verified using the canonical trivialization TM

∼= g[1]× g[1].

Lemma 3.13 ([86]). Let (M, Q) = (g[1], dCE) be the dg manifold arising from a finite-

dimensional Lie algebra g. There are canonical isomorphisms

Hk(Γ(T∨
M ⊗ EndTM)•,Q) ∼= Hk−1

CE (g, g∨ ⊗ g∨ ⊗ g)

and

Hk(Ωk(M)•,Q) ∼= (Sk(g∨))g.

Recall that the Duflo element J ∈ (Ŝ(g∨))g of a Lie algebra g is the invariant formal
power series on g defined by

J(x) = det
(

1− e− adx

adx

)

for all x ∈ g.

Proposition 3.14 ([86]). Let (M, Q) = (g[1], dCE) be the dg manifold arising from a

finite-dimensional Lie algebra g.

• Its Atiyah class α(g[1],dCE) is precisely the Lie bracket of g regarded as an element of

(g∨ ⊗ g∨ ⊗ g)g ∼= H0
CE(g, g∨ ⊗ g∨ ⊗ g) ∼= H1(Γ(T∨

M ⊗ EndTM)•,Q).

• Consequently, the isomorphism
∏

k

Hk(Ωk(M)•,Q)
∼=
−→ (Ŝ(g∨))g

maps the Todd class td(g[1],dCE) onto the Duflo element J ∈ (Ŝ(g∨))g of g.

Example 3.15. Let (x1, . . . , xm;xm+1 · · ·xm+n) be coordinate functions on Rm|n and
let Q =

∑
k Qk

∂
∂xk

be a homological vector field on Rm|n. The Atiyah 1-cocycle of the
dg manifold (Rm|n, Q) associated with the trivial connection ∇∂/∂xi

∂
∂xj

= 0 is then

At∇
(Rm|n,Q)

(
∂

∂xi
,
∂

∂xj

)
= (−1)|xi|+|xj |

∑

k

∂2Qk

∂xi∂xj

∂

∂xk
. (24)

The Atiyah 1-cocycle At∇
(Rm|n,Q) captures the components of the homological vector

field Q of second and higher orders. See [106] for more details.
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Remark 3.16. The Atiyah class of a dg manifold was introduced independently by
Lyakhovich–Mosman–Sharapov [71, footnote 6]. Furthermore, characteristic classes for
tangent bundles of dg manifolds were studied in [92, 71, 70]. It would be interesting to
explore the relation between these characteristic classes and those introduced earlier in
the present paper.

3.5. Example: Atiyah class and dg manifolds associated with integrable distri-

butions. Consider a regular foliation F on a smooth manifold M . The tangent bundle
of F is a subbundle of TM , denoted TF , whose sections are closed under the Lie bracket
of vector fields. Then TF ⊆ TM is an integrable distribution and (TF [1], dTF

) is a dg
manifold according to Proposition 2.6. In what follows, we compute the Atiyah class and
Todd class of this dg manifold.

First, let us recall the construction of the Molino class of a foliation F , i.e. the Atiyah
class of the Lie (algebroid) pair (TM , TF ) — see [29].

Denote the normal bundle TM/TF to the foliation F by NF and the conormal bundle
(TM/TF )∨ by N∨

F or T⊥
F . The Bott flat TF -connection on NF is defined by

∇Bott
a q(l) = q([a, l]), ∀ a ∈ Γ(TF ), l ∈ X(M),

where q : TM → TM/TF denotes the canonical projection. The Chevalley–Eilenberg Lie
algebroid cohomology H•

CE(TF ,M) with coefficients in a TF -module M coincides exactly
with the leafwise de Rham cohomology H•

dR(F ,M) of the foliation F with coefficients in
the module M.

Let us choose a splitting j : NF → TM of the short exact sequence of vector bundles
(over M)

0 // TF
i // TM

q // NF
//

j

gg 0

and a TM -connection ∇ on NF extending the Bott TF -connection on NF . The associated
Atiyah 1-cocycle

R∇ ∈ Γ(M ;T∨
F ⊗ T

⊥
F ⊗ End(NF ))

is defined by the relation

R∇(X,V )W = ∇X∇j(V )W −∇j(V )∇XW −∇[X,j(V )]W,

for all X ∈ Γ(TF ) and V,W ∈ Γ(NF ). It is simple to check that R∇ ∈ Γ(T∨
F ⊗

T⊥
F ⊗ End(NF )) is a leafwise de Rham closed 1-form with values in the TF -module
T⊥

F ⊗ End(NF ). Its cohomology class

αTM /TF
= [R∇] ∈ H1

dR(F , T⊥
F ⊗ End(NF ))

does not depend on the choice of j and ∇. We call it the Molino class of the foliation F or
the Atiyah class of the Lie pair (TM , TF ) — see [90, 91, 29]. This generalization of Atiyah’s
class for holomorphic vector bundles [2] to the context of connections ‘transverse to a
foliation’ was introduced by Molino in [90, 91]. Molino’s class measures the obstruction to
the ‘projectability’ of connections ‘transverse to a foliation,’ i.e. whether the connection
is stable under the parallel transport along any path tangent to the foliation.
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The Todd class of the Lie pair (TM , TF ) is the cohomology class

tdTM /TF
= det

(
αTM /TF

1− exp(−αTM /TF
)

)
∈

⊕

k>0

Hk
dR(F ,ΛkT⊥

F ). (25)

Proposition 3.17 ([30]). Let (M, Q) = (TF [1], dTF
) be the dg manifold arising from the

foliation F of the manifold M . Then there exist canonical isomorphisms, for all k ≥ 0
and l ≥ 0,

Φk,l : H•
(
Γ((TM)⊗k ⊗ (T∨

M)⊗l),Q
) ∼=
−→ H•

dR

(
F , (NF )⊗k ⊗ (N∨

F )⊗l
)

(26)

such that

1. Φ1,2(α(M,Q)) = αTM /TF
,

2. Φ0,•(td(M,Q)) = tdTM /TF
.

It is well known that a complex manifold can be considered as a kind of ‘C-foliation’
of the underlying real smooth manifold. More precisely, given a complex manifold X,
the subbundle T 0,1

X of the complexified tangent bundle TC

X = TX ⊗ C is an integrable
distribution, and (TC

X , T
0,1
X ) is a Lie algebroid pair (over C) [29]. The Atiyah class of this

Lie pair is precisely the Atiyah class of the holomorphic tangent bundle TX defined by
Atiyah in [2].

Consider the canonical flat T 0,1
X -connection ∇∂ on T 1,0

X induced by the holomorphic
vector bundle structure on TX : a local section of T 1,0

X is ∇∂-horizontal if and only if
it is holomorphic. Since TC

X
∼= T 0,1

X ⊕ T 1,0
X , picking any T 1,0

X -connection ∇1,0 on T 1,0
X

and adding it to ∇∂ , one obtains a TC

X -connection ∇ = ∇∂ +∇1,0 on T 1,0
X . The Atiyah

1-cocycle
R∇ ∈ Ω0,1((T 1,0

X )∨ ⊗ End(T 1,0
X )) (27)

of the complex Lie pair (TC

X , T
0,1
X ) associated with the connection ∇ is defined by

R∇(Z, V )W = ∇Z∇V W −∇V∇ZW −∇[Z,V ]W,

for all Z ∈ Γ(T 0,1
X ) and V,W ∈ Γ(T 1,0

X ). Its cohomology class

αTX
= [R∇] ∈ H1,1(X,End(TX)) ∼= H1

sheaf(X,Ω
1 ⊗ End(TX))

does not depend on the choice of ∇1,0 and is called the Atiyah class of the holomorphic
tangent bundle TX [2, 55]. Here H1,1(X,End(TX)) denotes the degree (1, 1) Dolbeault
cohomology of the holomorphic vector bundle End(TX) [49, 128]. The Atiyah class of a
holomorphic vector bundle was introduced by Atiyah as the cohomological obstruction
to the existence of a global holomorphic connection [2].

The Todd class of the Lie pair (TC

X , T
0,1
X ) is the cohomology class

tdTC

X
/T 0,1

X
= det

(
αTX

1− exp(−αTX
)

)
∈

⊕

k>0

Hk,k(X) ∼=
⊕

k>0

Hk
sheaf(X,Ω

k). (28)

Proposition 3.18 ([30]). Let (M, Q) = (T 0,1
X [1], ∂̄) be the dg manifold arising from a

complex manifold X as in Example 2.4. Then there exist canonical isomorphisms, for all

k ≥ 0, l ≥ 0,

Φk,l : H•
(
(Γ(TM)⊗k ⊗ (T∨

M)⊗l),Q
) ∼=
−→ H•

sheaf

(
X, (TX)⊗k ⊗ (T∨

X)⊗l
)

(29)
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such that

1. Φ1,2(α(M,Q)) = αTX
,

2. Φ0,•(td(M,Q)) = tdTC

X
/T 0,1

X
.

Remark 3.19. Given a compact Kähler manifold X, we have an isomorphism
⊕

k

Hk
sheaf(X,Ω

k
X)

∼=
−→

⊕

k

H2k(X,C).

This isomorphism maps the Todd class tdTC

X
/T 0,1

X
of the Lie pair (TC

X , T
0,1
X ) to the ordinary

Todd class tdX of X. Note that the Kähler condition is crucial here. For an arbitrary
complex manifold, the Todd class tdTC

X
/T 0,1

X
of the Lie pair (TC

X , T
0,1
X ) may depend on the

complex structures on X, while the Todd class tdX of X is a purely topological invariant
[10, 48].

3.6. Atiyah class and homotopy Lie algebras. A celebrated theorem of Kapranov
states that for a complex manifold X, the complex of sheaves TX [−1] is a Lie algebra
object in the derived category D(X) of coherent sheaves on X with the Atiyah class αTX

playing the role of the Lie bracket [55, 103, 100]. If X is Kähler, Kapranov proved an
even stronger result by describing explicitly an L∞[1] algebra structure on the Dolbeault
complex Ω0,•(T 1,0

X ). Let us recall it briefly below.
If X is a Kähler manifold, the Levi-Civita connection ∇LC induces a T 1,0

X -connection
∇1,0 on T 1,0

X as follows. First, extend the Levi-Civita connection C-linearly to a TC

X -
connection ∇ on TC

X . Since X is Kähler, the almost complex structure J on X is parallel
and ∇ restricts to a TC

X -connection on T 1,0
X . It is easy to check that the induced T 0,1

X -
connection on T 1,0

X is the canonical flat connection ∇∂ encoding the holomorphic vector
bundle structure on TX while the induced T 1,0

X -connection ∇1,0 on T 1,0
X is flat and torsion-

free. Thus ∇ = ∇∂ +∇1,0. Since ∇1,0 is torsion-free, the Dolbeault representative R∇ of
the Atiyah 1-cocycle belongs to Ω0,1(S2(T 1,0

X )
∨
⊗ T 1,0

X ) — see equation (27).
Let

R2 = R∇ ∈ Ω0,1(S2(T 1,0
X )

∨
⊗ T 1,0

X )

and, for k > 2,
Rk+1 = d∇1,0

Rk ∈ Ω0,1(Sk+1(T 1,0
X )

∨
⊗ T 1,0

X ).

Theorem 3.20 ([55, Theorem 2.6]). Given a Kähler manifold X, the Dolbeault complex

Ω0,•(T 1,0
X ) admits a structure of L∞[1] algebra whose unary bracket λ1 is the Dolbeault

operator ∂ : Ω0,j(T 1,0
X ) → Ω0,j+1(T 1,0

X ) and whose k-th multibracket λk for k > 2 is the

composition of the wedge product

Ω0,j1(T 1,0
X )⊗ . . .⊗ Ω0,jn(T 1,0

X )→ Ω0,j1+...+jk ((T 1,0
X )⊗k)

with the map

Ω0,j1+...+jk ((T 1,0
X )⊗k)→ Ω0,j1+...+jn+1(T 1,0

X )

induced by

Rk ∈ Ω0,1(Sk(T 1,0
X )

∨
⊗ T 1,0

X ) ⊂ Ω0,1(Hom((T 1,0
X )⊗k, T 1,0

X )).

In [62], Theorem 3.20 was extended to all complex manifolds.
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Theorem 3.21 ([62, Theorem 5.24]). Given a complex manifold X, each torsion-free

T 1,0
X -connection ∇1,0 on T 1,0

X determines an L∞[1] algebra structure on the Dolbeault

complex Ω0,•(T 1,0
X ) such that

• the unary bracket λ1 is the Dolbeault operator

∂ : Ω0,j(T 1,0
X )→ Ω0,j+1(T 1,0

X );

• the binary bracket λ2 is the map

λ2 : Ω0,j1(T 1,0
X )⊗ Ω0,j2(T 1,0

X )→ Ω0,j1+j2+1(T 1,0
X )

induced by the Dolbeault R2 := R∇ representative of the Atiyah 1-cocycle;
• for every k > 3, the k-th multibracket λk is the composition of the wedge product

Ω0,j1(T 1,0
X )⊗ . . .⊗ Ω0,jn(T 1,0

X )→ Ω0,j1+...+jk ((T 1,0
X )⊗k)

with the map

Ω0,j1+...+jk ((T 1,0
X )⊗k)→ Ω0,j1+...+jn+1(T 1,0

X )

induced by an element Rk of Ω0,1(Sk(T 1,0
X )

∨
⊗T 1,0

X ) ⊂ Ω0,1(Hom((T 1,0
X )⊗k, T 1,0

X )) aris-

ing as an algebraic function of R2, the curvature of ∇1,0, their higher covariant deriva-

tives, and compositions thereof.

In what follows, following Kapranov [55], we show that the Atiyah 1-cocycle of a dg
manifold gives rise to an interesting homotopy Lie algebra in a similar fashion.

Let (M, Q) be a dg manifold and let ∇ be an affine connection on M.
The Lie derivative along the homological vector field Q is a coderivation of degree +1

of the coalgebra D(M) of differential operators on M:

LQ(X1 · · ·Xn) =
n∑

k=1

(−1)|X1|+...+|Xk−1|X1 · · ·Xk−1[Q,Xk]Xk+1 · · ·Xn. (30)

Transferring LQ from D(M) to Γ(S(TM)) by way of the isomorphism of coalgebras
pbw∇ — see equation (6), we obtain a coderivation δ∇ of degree +1 of Γ(S(TM)):

δ∇ := (pbw∇)−1 ◦ LQ ◦ pbw∇. (31)

Finally, dualizing δ∇, we obtain an operator

D∇ : Γ(Ŝ(T∨
M))→ Γ(Ŝ(T∨

M))

on
Γ(Ŝ(T∨

M)) ∼= HomC∞(M)(Γ(S(TM)), C∞(M)).

Theorem 3.22 ([86]). Let (M, Q) be a dg manifold and let ∇ be a torsion-free affine

connection on M.

1. The operator D∇, dual to (pbw∇)−1 ◦ LQ ◦ pbw∇, is a derivation of degree +1 of the

graded algebra Γ(Ŝ(T∨
M)) satisfying (D∇)2 = 0.

2. There exists a sequence (Rk)k>2 of homomorphisms Rk ∈ Hom(SkTM, TM[−1]),
whose first term R2 is precisely the Atiyah 1-cocycle At∇

(M,Q) and the operator D∇

is the sum D∇ = LQ +
∑∞

k=2 R̃k, where R̃k denotes the C∞(M)-linear operator on

Γ(Ŝ(T∨
M)) induced by Rk.



ATIYAH CLASSES AND KONTSEVICH–DUFLO TYPE THEOREM 89

Remark 3.23. One proves that all Rk, k ≥ 3, arise as algebraic functions of At∇
(M,Q),

the curvature of ∇, their higher covariant derivatives, and compositions thereof [106].

As an immediate consequence of Theorem 3.22, we have

Corollary 3.24 ([86]). Let (M, Q) be a dg-manifold and let ∇ be a torsion-free affine

connection on M. There exists a sequence (λk)k>2 of maps λk ∈ Hom(Sk(TM), TM[−1])
starting with λ2 := At∇

(M,Q) ∈ Hom(S2(TM), TM[−1]) which, together with λ1 := LQ :
X(M)→ X(M), satisfy the L∞[1] algebra axioms. As a consequence, the space of vector

fields X(M) on a dg manifold (M, Q) admits an L∞[1] algebra structure with the Lie

derivative LQ as unary bracket λ1 and the Atiyah cocycle At∇
(M,Q) as binary bracket λ2.

Remark 3.25. It follows from Theorem 3.22 that D∇ can be considered as a homological
vector field on TM and, therefore, (TM, D∇) is a dg manifold. Indeed, one should con-
sider (TM, D∇) as the ‘formal neighborhood’ ∆(∞) of the diagonal ∆ of the product dg
manifold (M×M, (Q,Q)): the PBW map pbw∇ is by construction a formal exponential
map identifying TM to a ‘formal neighborhood of the diagonal’ of M×M as Z-graded
manifolds and equation (31) asserts that D∇ is the homological vector field obtained
on TM by pullback of the vector field (Q,Q) onM×M through this formal exponential
map. The readers are invited to compare Theorem 3.22 with [55, Theorem 2.8.2]. In fact,
the construction in Theorem 3.22 was very much inspired by Kapranov’s construction
[55, Theorem 2.8.2].

We can prove the following

Theorem 3.26 ([106]). The Atiyah class α(M,Q) of a dg manifold (M, Q) vanishes if

and only if there exists a torsion-free affine connection ∇ on M such that

pbw∇ : Γ(S(TM))→ D(M)

is an isomorphism of dg coalgebras over C∞(M).

4. Kontsevich–Duflo type theorems

4.1. Polyvector fields and polydifferential operators. LetM be a Z-graded man-
ifold over K. We use the symbol (T 0

poly(M))q to denote the space of smooth functions
of degree q on M and the symbol (T p

poly(M))q to denote the space (Γ(ΛpTM))q =
Γ

(
Sp(TM[−1])[p]

)q
of p-vector fields of degree q on M.1 In other words, an element in

(T p
poly(M))q is a finite sum

∑
X1∧ . . .∧Xp, where X1, . . . , Xp ∈ Γ(TM) are homogeneous

vector fields on M with |X1|+ . . .+ |Xp| = q. The bigraded left R-module

(T •
poly(M))• =

⊕

p,q∈Z

p>0

(T p
poly(M))q

1Note that the symbols (T p
poly(M))q and (Dp

poly(M))q in this paper mean something slightly
different than in [67]. Essentially, there is a degree shift between the conventions used in the two
papers.
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is called the space of polyvector fields on M. We are most interested in the graded left
R-module tot•

⊕(Tpoly(M)) defined by

totn
⊕(Tpoly(M)) =

⊕

p+q=n

(T p
poly(M))q.

When endowed with the graded commutator [−,−], the space (T 1
poly(M))• =

(Der(R))• of graded derivations of R is a graded Lie algebra. This Lie bracket can be
extended to the space (T •

poly(M))• of graded polyvector fields on M in such a way that
the triple

(tot•
⊕(Tpoly(M)), [−,−],∧)

becomes a Gerstenhaber algebra:

[ξ, η1 ∧ η2] = [ξ, η1] ∧ η2 + (−1)(|ξ|−1)|η1|η1 ∧ [ξ, η2],

for ξ ∈ (T p0

poly(M))q0 , η1 ∈ (T p1

poly(M))q1 , η2 ∈ (T •
poly(M))• so that |ξ| = p0 + q0 and

|η1| = p1 + q1. This extended bracket is called Schouten bracket. Note that, under our
degree convention, tot•

⊕(Tpoly(M))[1] is a graded Lie algebra under the Schouten bracket.
Finally, throwing in the zero differential

0 : tot•
⊕(Tpoly(M))→ tot•+1

⊕ (Tpoly(M)),

we obtain the dg Gerstenhaber algebra

(tot•
⊕(Tpoly(M)), 0, [−,−],∧).

A linear differential operator of degree q onM is a K-linear endomorphism of R that
can be obtained as a finite sum

∑
X1 ◦ . . . ◦ Xk of compositions of graded derivations

X1, . . . , Xk of R with |X1|+ . . .+ |Xk| = q. We use the symbol (D(M))q to denote the
space of linear differential operators of degree q on M.

The space Dp
poly(M) of p-differential operators onM admits a canonical identification

with the tensor product of p copies of the left R-module D(M)[−1]. We use the symbol
(Dp

poly(M))q to denote the subspace of Dp
poly(M) consisting of elements of degree p+ q.

The bigraded left R-module (D•
poly(M))• =

⊕
p,q∈Z

p>0
(Dp

poly(M))q is called the space

of polydifferential operators on M. We are most interested in the graded left R-module
tot•

⊕(Dpoly(M)) defined by

totn
⊕(Dpoly(M)) =

⊕

p+q=n

(Dp
poly(M))q.

As in the classical case, endowing the space of polydifferential operators tot•
⊕(Dpoly(M))

with the Gerstenhaber bracket J−,−K and the Hochschild differential

dH := Jm,−K : (Dp
poly(M))q → (Dp+1

poly(M))q

makes tot•
⊕(Dpoly(M))[1] into a differential graded Lie algebra (dgla in short). The tensor

product of left R-modules determines a cup product

(Dp
poly(M))q × (Dp′

poly(M))q′ ⌣
−→ (Dp+p′

poly (M))q+q′

,
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which descends to Hochschild cohomology. When endowed with the cup product and the
Gerstenhaber bracket, the cohomology of the cochain complex (tot•

⊕(Dpoly(M)), dH )
becomes a Gerstenhaber algebra [23, Appendix].

For more details, the reader might wish to consult [67, 21, 119].

4.2. Formality and Kontsevich–Duflo type theorem for dg manifolds. Let
(M, Q) be a finite-dimensional dg manifold. Since Q is a homological vector field of
degree +1, it is a Maurer–Cartan element in the dgla of polyvector fields

(tot•
⊕(Tpoly(M))[1], 0, [−,−]).

Therefore, we can consider the tangent dgla at the homological vector field Q:

(tot•
⊕(Tpoly(M))[1])Q := (tot•

⊕(Tpoly(M))[1], [Q,−], [−,−]).

The associated (shifted) cohomology H•(tot⊕(Tpoly(M)),Q) is again a Gerstenhaber
algebra with the associative multiplication induced by the wedge product. Here, by abuse
of notation, we denote the differential [Q,−] by Q.

Proposition 4.1 ([30]). Let (M, Q) = (TF [1], dTF
) be the dg manifold arising from a

foliation F of the manifold M . Then the isomorphisms Φ•,0 defined in (26) induce an

isomorphism

H•(tot⊕(Tpoly(M)),Q)
∼=
−→ H•

dR(F ,ΛNF ). (32)

Remark 4.2. The hypercohomology group H•
dR(F ,ΛNF ) should be understood as the

space of polyvector fields on the leaf space of the foliation F or the space of transversal

polyvector fields. A priori, it is not obvious whether H•
dR(F ,ΛNF ) admits a Gerstenhaber

algebra structure. However, it turns out that the obvious Gerstenhaber algebra structure
carried by H•(tot⊕(Tpoly(M)),Q) can be transferred to H•

dR(F ,ΛNF ) by way of the
isomorphism (32). For more details, see [30, 122, 124, 123, 4] and also [5], where use is
made of Fedosov dg Lie algebroids.

Proposition 4.3 ([30]). Let (M, Q) = (T 0,1
X [1], ∂̄) be the dg manifold arising from a

complex manifold X as in Example 2.4. Then the isomorphisms Φ•,0 defined in (29)
induce an isomorphism of Gerstenhaber algebras

H•(tot⊕(Tpoly(M)),Q)
∼=
−→ H•

sheaf(X,ΛTX).

Likewise, we can consider the tangent dgla at the Maurer–Cartan element Q of the
dgla tot•

⊕(Dpoly(M))[1] of polydifferential operators:

(tot•
⊕(Dpoly(M))[1])Q :=

(
tot•

⊕(Dpoly(M))[1], dH + JQ,−K, J−,−K
)
.

The associated (shifted) cohomology H•(tot⊕(Dpoly(M)), dH +Q) is a Gerstenhaber al-
gebra with the cup product as associative multiplication. Again, to simplify the notation,
we denote the differential JQ,−K by Q.

The Hochschild–Kostant–Rosenberg map hkr is the natural inclusion of (T •
poly(M))•

into (D•
poly(M))• defined by skew-symmetrization:

hkr(X1 ∧ . . . ∧Xp) =
1

p!

∑

σ∈Sp

κ(σ) Xσ(1) ⊗ . . .⊗Xσ(p),
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for all homogeneous vector fields X1, . . . , Xp ∈ (T 1
poly(M))• — the skew Koszul sign

κ(σ) is the scalar defined by the relation X1 ∧ . . . ∧Xp = κ(σ) Xσ(1) ∧ . . . ∧Xσ(p). The
Hochschild–Kostant–Rosenberg map is a morphism of double complexes

hkr : ((T •
poly(M))•, 0,Q)→ ((D•

poly(M))•, dH ,Q). (33)

The following Hochschild–Kostant–Rosenberg theorem for dg manifolds follows from the
HKR theorem for graded manifolds [23, Lemma A.2] and a spectral sequence argument.

Proposition 4.4 ([67]). Let (M, Q) be a finite-dimensional dg manifold. The Hoch-

schild–Kostant–Rosenberg map (33) induces an isomorphism of vector spaces

hkr : H•(tot⊕(Tpoly(M)),Q)
∼=
−→ H•(tot⊕(Dpoly(M)), dH +Q)

on the cohomology level.

Remark 4.5. Proposition 4.4 holds for direct sum total cohomology. The analogous
assertion for direct product total cohomology is false; a counterexample can be found
in [25].

The next theorem was conjectured by Shoikhet [111] and was known as the Kontse-

vich–Shoikhet conjecture.

Theorem 4.6 (Kontsevich–Duflo type theorem for dg manifolds [67]). For any finite-

dimensional dg manifold (M, Q), the composition

hkr ◦(td(M,Q))
1/2 : H•(tot⊕(Tpoly(M)),Q)

∼=
−→ H•(tot⊕(Dpoly(M)), dH +Q)

of (i) the action of (td(M,Q))1/2 ∈
∏

k>0 H
k((Ωk(M))•,Q) on H•(tot⊕(Tpoly(M)),Q),

by contraction, with (ii) the Hochschild–Kostant–Rosenberg map (on cohomology) is an

isomorphism of Gerstenhaber algebras.

We also have

Theorem 4.7 (formality theorem for dg manifolds [67]). Let (M, Q) be a finite-dimen-

sional dg manifold. Given a torsion-free affine connection ∇ on M, there exists an L∞

quasi-isomorphism of dglas

I : (tot•
⊕(Tpoly(M))[1])Q  (tot•

⊕(Dpoly(M))[1])Q

with first Taylor coefficient

I1 = hkr ◦(Td∇
(M,Q))

1/2 : tot•
⊕(Tpoly(M))[1]→ tot•

⊕(Dpoly(M))[1],

where

(Td∇
(M,Q))

1/2 ∈
∏

k>0

(Γ(ΛkT∨
M))k ∼=

∏

k>0

(Ωk(M))k

acts on tot•
⊕(Tpoly(M))[1] by contraction.

A formality theorem for Z-graded manifolds was obtained by Cattaneo–Felder [23],
who applied to the quantization of coisotropic submanifolds of Poisson manifolds.

Remark 4.8. Given a pair of torsion-free affine connections ∇ and ∇′ on (M, Q) with
corresponding Todd cocycles Td∇

(M,Q) and Td∇′

(M,Q), there exists an L∞ automorphism

of the dgla (tot•
⊕(Tpoly(M))[1])Q having the operator (Td∇

(M,Q))
−1/2 ◦ (Td∇′

(M,Q))
1/2 as

first Taylor coefficient.
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Theorem 4.7 can be used to study deformation quantization of (0-shifted) derived
Poisson manifolds or P∞-manifolds [94, 23, 4].

4.3. Application of the Kontsevich–Duflo type theorem. Theorem 4.6 can be
specialized to various geometric situations. In particular, we can recover the Kontsevich–
Duflo theorem for Lie algebras [37, 59, 95] and the Kontsevich theorem for complex
manifolds [59, 17] and unify them in a common framework by considering two special
classes of dg manifolds.

4.3.1. Kontsevich–Duflo theorem for Lie algebras. Let (M, Q) be the dg manifold
(g[1], dCE) arising from a finite-dimensional Lie algebra g. By definition,

H•(tot⊕(Dpoly(M)), dH +Q)
∼=
−→ HH•

⊕(Λg∨,Λg∨) (34)

is the direct sum Hochschild cohomology of the commutative differential graded algebra
(cdga in short) (Λg∨, dCE). Following a similar method of Shoikhet [114] using Keller
dg category, or more precisely Keller admissible triple [56], one constructs a canonical
isomorphism of Gerstenhaber algebras [64]

HH•
⊕(Λg∨,Λg∨)

∼=
−→ HH•(U(g),U(g)). (35)

According to the Cartan–Eilenberg theorem [20, Theorem 5.1],

HH•(U(g),U(g))
∼=
−→ H•

CE(g,U(g)), (36)

as associative algebras where the g-action on U(g) is induced by the adjoint action of g
on g. Thus, by composing isomorphisms (34)–(36), one obtains an isomorphism of asso-
ciative algebras

φ : H•(tot⊕(Dpoly(M)), dH +Q)
∼=
−→ H•

CE(g,U(g)). (37)

Remark 4.9. An explicit chain map from the cochain complex computing
HH•

⊕(Λg∨,Λg∨) to the cochain complex computing H•
CE(g,U(g)) was constructed in [16,

Theorem 4.10 or indeed Lemma 4.12]. It is however not clear whether the isomorphism
in cohomology induced by the map in [16] and the isomorphism (37) are the same iso-
morphism or not.

Proposition 4.10 ([64]). Let (M, Q) := (g[1], dCE) be the dg manifold corresponding to

a finite-dimensional Lie algebra g. Then the diagrams

H•(tot⊕(Tpoly(M)),Q) hkr //

∼=
��

H•(tot⊕(Dpoly(M)), dH +Q)

φ ∼=
��

H•
CE(g, S(g))

pbw
// H•

CE(g,U(g))

and

H•(tot⊕(Tpoly(M)),Q)
td1/2

(M,Q)//

∼=
��

H•(tot⊕(Tpoly(M)),Q)

∼=
��

H•
CE(g, S(g))

J1/2

// H•
CE(g, S(g))

commute and the two vertical maps are isomorphisms of associative algebras.
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Corollary 4.11 ([64]). Let (M, Q) := (g[1], dCE) be the dg manifold corresponding to

a finite-dimensional Lie algebra g. Then the diagram

H•(tot⊕(Tpoly(M)),Q)
hkr ◦ td1/2

(M,Q) //

∼=
��

H•(tot⊕(Dpoly(M)), dH +Q)

∼=
��

H•
CE(g, S(g))

pbw ◦J1/2

// H•
CE(g,U(g))

(38)

commutes and its two vertical maps are isomorphisms of associative algebras.

Theorem 4.6, together with Corollary 4.11, thus implies

Theorem 4.12 (Kontsevich–Duflo theorem for Lie algebras [59, 95]). For every finite-

dimensional Lie algebra g, the map

pbw ◦J1/2 : H•
CE(g, S(g))

∼=
−→ H•

CE(g,U(g))

is an isomorphism of associative algebras.

Restriction of this isomorphism to the subalgebras consisting solely of the cohomology
groups of degree 0 yields the classical Duflo theorem [37]: the composition pbw ◦J1/2 :
S(g)g → U(g)g is an isomorphism of associative algebras. Duflo’s theorem generalizes a
fundamental result of Harish-Chandra regarding the center of the universal enveloping
algebra of a semi-simple Lie algebra.

Remark 4.13. Theorem 4.12 is due to Kontsevich [59]. See Pevzner–Torossian [95] for a
detailed proof. (See also Manchon–Torossian [81, 82].) The approach followed in [59, 95]
relies on the formality quasi-isomorphism Tpoly(g∨)[1] Dpoly(g∨)[1] for the dual of a Lie
algebra g and its tangent map at πg∨ , the Lie–Poisson bivector on g∨ seen as a Maurer–
Cartan element of Tpoly(g∨)[1]. In the present survey, however, we follow Shoikhet’s ap-
proach [111, 113].

4.3.2. Kontsevich theorem for complex manifolds. Let (M, Q) be the dg manifold
(T 0,1

X [1], ∂̄) arising from a complex manifold X as in Example 2.4. Recall that the
Hochschild cohomology groups HH•(X) of the complex manifold X are defined as the
groups Ext•

OX×X
(O∆,O∆) [41, 19, 18, 58, 6, 83, 100, 101]. In fact, the Hochschild co-

homology is indeed a Gerstenhaber algebra: its associative multiplication is the Yoneda
product while its Lie bracket is the Gerstenhaber bracket. From the classical Hochschild–
Kostant–Rosenberg map, Gerstenhaber–Schack [41] derived an isomorphism of cohomol-
ogy groups

hkr : H•
sheaf(X,ΛTX)

∼=
−→ HH•(X).

Proposition 4.14 ([30, 31]). Let (M, Q) = (T 0,1
X [1], ∂̄) be the dg manifold arising from

a complex manifold X. Then the diagrams

H•(tot⊕(Tpoly(M)),Q)
hkr //

∼=
��

H•(tot⊕(Dpoly(M)), dH +Q)

∼=
��

H•
sheaf(X,ΛTX)

hkr
// HH•(X)
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and

H•(tot⊕(Tpoly(M)),Q)
td1/2

(M,Q)//

∼=
��

H•(tot⊕(Tpoly(M)),Q)

∼=
��

H•
sheaf(X,ΛTX)

td1/2

TC

X
/T

0,1
X

// H•
sheaf(X,ΛTX)

commute and the two vertical maps are isomorphisms of associative algebras (and indeed

isomorphisms of Gerstenhaber algebras).

Corollary 4.15 ([31]). Let (M, Q) := (T 0,1
X [1], ∂̄) be the dg manifold arising from a

complex manifold X. Then the diagram

H•(tot⊕(Tpoly(M)),Q)
hkr ◦ td1/2

(M,Q) //

∼=
��

H•(tot⊕(Dpoly(M)), dH +Q)

∼=
��

H•
sheaf(X,ΛTX)

hkr ◦ td1/2

TC

X
/T

0,1
X

// HH•(X)

(39)

commutes and its two vertical maps are isomorphisms of associative algebras (and indeed

isomorphisms of Gerstenhaber algebras).

Combining Theorem 4.6 with Corollary 4.15, we recover

Theorem 4.16 (Kontsevich–Duflo theorem for complex manifolds [59, 17, 67, 68]). For

every complex manifold X, the composition

hkr ◦(tdTC

X
/T 0,1

X
)1/2 : H•

sheaf(X,ΛTX)
∼=
−→ HH•(X)

is an isomorphism of associative algebras. It is understood that the square root of the

Todd class

tdTC

X
/T 0,1

X
∈

⊕

k=0

Hk,k(X) ∼=
⊕

k=0

Hk
sheaf(X,Ω

k
X)

acts on H•
sheaf(X,ΛTX) by contraction.

Remark 4.17. The Kontsevich theorem for complex manifolds is due to Kontsevich [59]
— the theorem pertains to the associative algebra structures only. A detailed proof ap-
peared later in [17], where the additional Gerstenhaber algebra structures were also ad-
dressed. The approach followed in the present survey yields a different proof in terms of
dg manifolds [67, 31].

4.4. Kontsevich–Duflo type theorem for dg Lie algebroids. The same way Lie
algebroids can be seen as generalizations of tangent bundles, dg Lie algebroids can be
considered as generalizations of the tangent bundle TM →M of a dg manifold (M, Q).
In particular, one can make sense of ‘polyvector fields’ and ‘polydifferential operators’ for
dg Lie algebroids just as one does for dg manifolds.

More precisely, a k-vector field on a dg Lie algebroid L →M is a section of the vector
bundle ΛkL →M, while a k-differential operator is an element of (sU(L))⊗k, the tensor
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product (as left C∞(M)-modules) of k copies of the shifted universal enveloping algebra

sU(L) := U(L)[−1]. Denote by tot•
⊕(Tpoly(L)) the graded left R-module defined by

totn
⊕(Tpoly(L)) =

⊕

p+q=n

(Γ(ΛpL))q,

where (Γ(ΛpL))q is the space of p-vector fields on L of degree q. Similarly, denote by

tot•
⊕(Dpoly(L)) the graded left R-module defined by

totn
⊕(Dpoly(L)) =

⊕

p+q=n

((sU(L))⊗p)q,

where ((sU(L))⊗p)q is understood as the space of p-differential operators on L of degree q.

It is clear that the differential Q : Γ(L) → Γ(L) and the homological vector field Q

on M extend naturally to a differential

Q : (Γ(ΛkL))• → (Γ(ΛkL))•+1

of degree (+1) and the Lie algebroid structure on L yields a Schouten bracket

[−,−] : Γ(ΛuL)⊗ Γ(ΛvL)→ Γ(Λu+v−1L).

The universal enveloping algebra U(L) of a dg Lie algebroid L → M is a (left) dg

coalgebra over the differential graded algebra R := C∞(M) [131]. Its comultiplication

∆ : U(L)→ U(L)⊗R U(L)

is characterized by the identities

∆(1) = 1⊗ 1;

∆(b) = 1⊗ b+ b⊗ 1, ∀ b ∈ Γ(L);

∆(u · v) = ∆(u) ·∆(v), ∀u, v ∈ U(L),

where the symbol · denotes the multiplication in U(L). We refer the reader to [131,

equation (15) and the remark following Definition 3.1] for the precise meaning of the last

equation above. Explicitly, we have

∆(b1 · b2 · · · bn) = 1⊗ (b1 · b2 · · · bn)

+
∑

p+q=n
p,q∈N

∑

σ∈S
q
p

ǫ(σ; b1, . . . , bn)(bσ(1) · · · bσ(p))⊗ (bσ(p+1) · · · bσ(n)) + (b1 · b2 · · · bn)⊗ 1,

for all b1, . . . , bn ∈ Γ(L). Here ǫ(σ; b1, . . . , bn) denotes the Koszul sign of the permutation σ

of the homogeneous elements b1, . . . , bn ∈ Γ(L) and Sq
p denotes the space of (p, q)-shuffles.

The differential Q : Γ(L) → Γ(L) and the homological vector field Q : C∞(M) →

C∞(M) naturally induces a differential Q : U(L) → U(L) of degree (+1), which is

compatible with both the algebra and coalgebra structures on U(L). Indeed, U(L) is a dg

Hopf algebroid over the cdga R := C∞(M). As a consequence, we obtain a differential

Q : (sU(L)⊗k)• → (sU(L)⊗k)•+1

of degree (+1) for all k > 0. A Hochschild coboundary differential

dH : sU(L)⊗k → sU(L)⊗k+1
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and a Gerstenhaber bracket

J−,−K : sU(L)
⊗u ⊗ sU(L)

⊗v → sU(L)
⊗u+v−1

(40)

can be defined by the following explicit algebraic expressions:

dH (u1 ⊗ . . .⊗ uk) = (±)1⊗ u1 ⊗ . . .⊗ uk +

k∑

i=1

(±)u1 ⊗ . . .⊗ ∆̂(ui)⊗ . . .⊗ uk

+ (±)u1 ⊗ . . .⊗ uk ⊗ 1, (41)

and

Jφ, ψK = φ ⋆ ψ − (±)ψ ⋆ φ ∈ sU(L)
⊗u+v−1

, (42)

where φ ⋆ ψ ∈ U(L)
⊗u+v−1

is defined by

φ ⋆ ψ =

u∑

k=0

(±)d1 ⊗ . . .⊗ dk−1 ⊗ (∆̂v−1dk) · ψ ⊗ dk+1 ⊗ . . .⊗ du

if φ = d1 · · · du for some d1, . . . , du ∈ sU(L). Here ∆̂ : sU(L)→ sU(L)⊗R sU(L) is the

map induced by the coproduct ∆ on U(L).

Again we refer the reader to [131, equation (15) and the remark following Definition

3.1] for the precise meaning of the product (∆̂v−1dk) · ψ in sU(L)
⊗v

appearing in the

last equation above.

Proposition 4.18. Let L be a dg Lie algebroid over M.

• When endowed with the wedge product and the Schouten bracket, the cohomology

H•(tot⊕(Tpoly(L)),Q) is a Gerstenhaber algebra.

• When endowed with the cup product (i.e. the tensor product ⊗C∞(M)) and the Ger-

stenhaber bracket, the Hochschild cohomology H•(tot⊕(Dpoly(L)), dH +Q), is a Ger-

stenhaber algebra.

The Kontsevich–Duflo type theorem for dg manifolds (Theorem 4.6) can be extended

to this general context. It suffices to adapt the proof outlined in [67].

Define the Hochschild–Kostant–Rosenberg map

hkr : (Γ(ΛpL))q →֒ (sU(L)⊗p)q

by skew-symmetrization:

hkr(X1 ∧ . . . ∧Xp) =
1

p!

∑

σ∈Sp

κ(σ) Xσ(1) ⊗ . . .⊗Xσ(p)

for all homogeneous vector fields X1, . . . , Xp ∈ (Γ(Λ1L))• — the skew Koszul sign κ(σ) is
the scalar defined by the relation X1∧ . . .∧Xp = κ(σ)Xσ(1)∧ . . .∧Xσ(p). The Hochschild–
Kostant–Rosenberg map is a morphism of double complexes

hkr : ((Γ(Λ•L))•, 0,Q)→ ((sU(L)⊗•)•, dH ,Q). (43)

Therefore it induces a chain map between total complexes

hkr : (tot•
⊕(Tpoly(L)),Q)→ (tot•

⊕(Dpoly(L)), dH +Q). (44)
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We have the following Kontsevich–Duflo type theorem for dg Lie algebroids.

Theorem 4.19. For every dg Lie algebroid L, the composition

hkr ◦(tdL)1/2 : H•(tot⊕(Tpoly(L)),Q)
∼=
−→ H•(tot⊕(Dpoly(L)), dH +Q)

is an isomorphism of Gerstenhaber algebras. It is understood that

(tdL)1/2 ∈
∏

k>0

Hk((Γ(ΛkL∨))•,Q)

acts on H•(tot⊕(Tpoly(L)),Q) by contraction.

Remark 4.20. While Theorem 4.19 looks similar to [17, Corollary 1.4], it is a very

different result. Theorem 4.19 pertains to dg Lie algebroids, while [17, Corollary 1.4]

applies to Lie algebroids understood as sheaves of Lie–Rinehart algebras — standard
Lie–Rinehart algebras rather than dg Lie–Rinehart algebras.

4.5. Kontsevich–Duflo type theorem for matched pairs. Let (A,B) be a matched
pair of Lie algebroids over K. According to Example 3.6, A[1] ⊕ B → A[1] is a dg Lie
algebroid. Denote by (L, Q) the dg manifold (A[1] ⊕ B, dBott

A ). The space of sections of
L → A[1] can be naturally identified with Γ(Λ•A∨⊗B). The bracket on Γ(Λ•A∨⊗B) is
defined in terms of the Bott B-connection on ΛA∨ by

[ξ1 ⊗ b1, ξ2 ⊗ b2] = ξ1 ∧ ξ2 ⊗ [b1, b2] + ξ1 ∧ (∇Bott
b1

ξ2)⊗ b2 − (∇Bott
b2

ξ1) ∧ ξ2 ⊗ b1 (45)

for all ξ1, ξ2 ∈ Γ(Λ•A∨) and b1, b2 ∈ Γ(B), while the anchor map Γ(Λ•A∨ ⊗ B)
ρ̄
−→

Der(Λ•A∨) is defined by
ρ̄ξ⊗b(η) = ξ ∧∇Bott

b η, (46)

for all ξ, η ∈ Γ(Λ•A∨) and b ∈ Γ(B). Finally, the induced differential Q on the space
of sections of L → A[1] is the Chevalley–Eilenberg differential dBott

A : Γ(Λ•A∨ ⊗ B) →

Γ(Λ•+1A∨ ⊗B) corresponding to the Bott A-connection on B. It is clear that

totn
⊕(Tpoly(L)) ∼=

⊕

p+q=n

Γ(ΛqA∨ ⊗ ΛpB).

Hence the induced differential on tot•
⊕(Tpoly(L)), the space of polyvector fields for the

dg Lie algebroid L → A[1], is the Chevalley–Eilenberg differential

dBott
A : Γ(ΛqA∨ ⊗ ΛpB)→ Γ(Λq+1A∨ ⊗ ΛpB) (47)

corresponding to the Bott A-connection on ΛB and the Lie bracket on tot•
⊕(Tpoly(L))

is the Schouten bracket of the dg Lie algebroid L → A[1] — essentially the extension of
equations (45) and (46) by the graded Leibniz rule. Hence we obtain the following

Lemma 4.21 ([5]). Let (A,B) be a matched pair of Lie algebroids, and let L := A[1]⊕B be

the corresponding dg Lie algebroid over (A[1], dA). When endowed with the wedge product

and the Schouten bracket, the cohomology H•
CE(A,ΛB) is a Gerstenhaber algebra, and

we have an isomorphism of Gerstenhaber algebras

H•(tot⊕(Tpoly(L)),Q) ∼= H•
CE(A,ΛB). (48)

Next, consider the universal enveloping algebra U(L) of the dg Lie algebroid L → A[1],
which is a dg Hopf algebroid over (Γ(Λ•A∨), dA). It is clear that U(L) ∼= Γ(Λ•A∨)⊗RU(B)
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and sU(L)⊗p ∼= Γ(Λ•A∨)⊗R U(B)⊗p, where R = C∞(M). Under this identification, the

differential Q : sU(L)⊗p → sU(L)⊗p becomes the Chevalley–Eilenberg differential

dU
A : Γ(Λ•A∨)⊗R U(B)⊗p → Γ(Λ•+1A∨)⊗R U(B)⊗p. (49)

Here the A-module structure on U(B) follows from the canonical identification of U(B)

with U(L)
U(L)Γ(A) — the Lie algebroid A acts on the latter by multiplication in U(L) from the

left — and extends to an A-module structure on U(B)⊗p in the natural way. Moreover,
we have the isomorphism

totn
⊕(Dpoly(L)) ∼=

⊕

p+q=n

Γ(ΛqA∨)⊗R U(B)⊗p. (50)

Under the isomorphism (50), the total differential Q+dH on tot•
⊕(Dpoly(L)) corresponds

to dU
A + id⊗dH on

⊕
p+q=• Γ(ΛqA∨) ⊗R U(B)⊗p, where dH : U(B)⊗k → U(B)⊗k+1 is

the Hochschild differential for the Lie algebroid B defined by equation (41). Recall that,
the degree of the operator dH being +1, the usual sign convention for the tensor product
of linear maps in the presence of gradings dictates that

(id⊗dH )(ω ⊗ u) = (−1)qω ⊗ dH (u), ∀ω ∈ Γ(ΛqA∨), ∀u ∈ U(B)⊗p.

The cohomology of the total complex
( ⊕

p+q=•

Γ(ΛqA∨)⊗R U(B)⊗p, dU
A + id⊗dH

)

will be denoted by

H•
CE

(
A, U(B)

⊗⋄ dH−−→ U(B)
⊗⋄+1)

.

Summarizing the discussion above, we have the following

Lemma 4.22 ([5]). Let (A,B) be a matched pair of Lie algebroids, and let L := A[1]⊕B

be the corresponding dg Lie algebroid over (A[1], dA). When endowed with the cup prod-

uct and the Gerstenhaber bracket, the Hochschild hypercohomology H•
CE

(
A, U(B)

⊗⋄ dH−−→

U(B)
⊗⋄+1)

is a Gerstenhaber algebra, and we have an isomorphism of Gerstenhaber al-

gebras

H•(tot⊕(Dpoly(L)), dH +Q) ∼= H•
CE

(
A, U(B)

⊗⋄ dH−−→ U(B)
⊗⋄+1)

. (51)

Remark 4.23. Note that the Gerstenhaber bracket on
⊕

p+q=• Γ(ΛqA∨) ⊗R U(B)⊗p

is not the obvious extension of the Gerstenhaber bracket on U(B)⊗• obtained by ten-
soring with the commutative associative algebra Γ(Λ•A∨). The explicit formula for the
Gerstenhaber bracket is quite complicated and involves the Bott representation of B on
Γ(Λ•A∨).

Proposition 4.24. Let (A,B) be a matched pair of Lie algebroids, and let L := A[1]⊕B

be the corresponding dg Lie algebroid over (A[1], dA). The diagrams

H•(tot⊕(Tpoly(L)),Q)
hkr //

∼=

��

H•(tot⊕(Dpoly(L)), dH +Q)

∼=
��

H•
CE(A,ΛB)

hkr
// H•

CE

(
A, U(B)

⊗⋄ dH−−→ U(B)
⊗⋄+1)



100 M. STIÉNON AND P. XU

and

H•(tot⊕(Tpoly(L)),Q)
(tdL)1/2

//

∼=

��

H•(tot⊕(Dpoly(L)), dH +Q)

∼=
��

H•
CE(A,ΛB)

(tdA⊲⊳B/A)1/2

// H•
CE

(
A, U(B)

⊗⋄ dH−−→ U(B)
⊗⋄+1)

,

commute and the two vertical maps are isomorphisms of Gerstenhaber algebras. Here

tdA⊲⊳B/A ∈
⊕

k>0 H
k
CE(A,ΛkB∨) denotes the Todd class of the matched pair (A,B), i.e.

the Todd class of the Lie pair (A ⊲⊳ B,A) — see equation (54) below.

Combining Theorem 4.19 with Proposition 4.24, we obtain

Theorem 4.25 (Kontsevich–Duflo type theorem for matched pairs [68]). For every

matched pair of Lie algebroids (A,B), the composition

hkr ◦(tdA⊲⊳B/A)1/2 : H•
CE(A,ΛB)

∼=
−→ H•

CE

(
A, U(B)

⊗⋄ dH−−→ U(B)
⊗⋄+1)

where (tdA⊲⊳B/A)1/2 ∈
⊕

k>0 H
k
CE(A,ΛkB∨) acts on H•

CE(A,ΛB) by contraction, is an

isomorphism of Gerstenhaber algebras.

As an example of matched pair of Lie algebroids, consider a smooth manifold M

(with algebra of smooth functions R := C∞(M)) endowed with an infinitesimal ac-

tion g ∋ a 7→ â ∈ X(M) of a finite-dimensional Lie algebra g, i.e. a g-manifold. Then

(A := g⋉M,B := TM ) is a matched pair of Lie algebroids. Its Atiyah class

αM/g ∈ H
1
CE(A,B∨ ⊗ EndB) ∼= H1

CE(g,Γ(T∨
M ⊗ EndTM ))

is the cohomology class of the Atiyah 1-cocycle

At∇
M/g : g× X(M)→ EndR X(M)

corresponding to any affine connection ∇ on M , which is defined by the relation

At∇
M/g(a,X) = Lâ ◦ ∇X −∇X ◦ Lâ −∇LâX ,

for all a ∈ g and X ∈ X(M). Its Todd class is

tdM/g = det

(
αM/g

1− exp(−αM/g)

)
∈

⊕

k=0

Hk
CE(g,Ωk(M)).

Note that the Hochschild cochain complex

. . .→ Dk
poly(M)

dH−−→ Dk+1
poly(M)→ . . .

of the g-manifold M is a complex of g-modules.

Applying Theorem 4.25 to matched pairs of the type (g⋉M,TM ), we obtain

Theorem 4.26 (Kontsevich–Duflo type theorem for g-manifolds [66, 68]). Given a

g-manifold M , the map

hkr ◦ td
1/2
M/g : H•

CE(g, Tpoly(M))
∼=
−→ H•

CE

(
g,D⋄

poly(M)
dH−−→ D⋄+1

poly(M)
)

is an isomorphism of Gerstenhaber algebras. It is understood that the square root td
1/2
M/g of

the Todd class tdM/g ∈
⊕

k=0 H
k
CE(g,Ωk(M)) acts on H•

CE(g, Tpoly(M)) by contraction.
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4.6. Kontsevich–Duflo type theorem for Lie pairs. In this section, we extend the

Kontsevich–Duflo type theorem for matched pairs (Theorem 4.25) to arbitrary Lie pairs

(L,A), i.e. inclusions i : A → L of Lie algebroids over the same base manifold M .

Though A[1]⊕ L/A→ A[1] is no longer a dg Lie algebroid in this case, it is still an L∞

algebroid [4]. Hence, we cannot apply Theorem 4.19 directly to A[1]⊕ L/A→ A[1] as in

the case of a matched pair, but we must first replace the L∞ algebroid A[1]⊕L/A→ A[1]

by a ‘homotopy equivalent’ dg Lie algebroid. The dg Lie algebroid TA[1] ×TM
L → A[1]

associated to the Lie algebroid morphism i : A → L as described in Section 3.2 is a

natural candidate.

Denoting the algebra of smooth functions onM by R, we set T k
poly(L/A) = Γ(Λk(L/A))

for k > 0, and T •
poly(L/A) =

⊕∞
k=0 T

k
poly(L/A)2. The Bott flat A-connection on L/A is

defined by [29]

∇Bott
a q(l) = q([a, l]), ∀ a ∈ Γ(A), l ∈ Γ(L/A), (52)

where q : L → L/A denotes the canonical projection. The Bott A-connection on L/A

makes every T k
poly(L/A) an A-module. We can thus consider the complex of A-modules

with trivial differential

0 // T 0
poly(L/A)

0 // T 1
poly(L/A)

0 // T 2
poly(L/A)

0 // T 3
poly(L/A)

0 // . . .

The Chevalley–Eilenberg hypercohomology H•
CE(A, Tpoly(L/A)) of the Lie algebroid A

with coefficients in this complex of A-modules is the cohomology of the cochain complex
(
tot(Γ(Λ•A∨)⊗R T

•
poly(L/A)), dBott

A

)
.

Similarly, we set D•
poly(L/A) =

⊕∞
k=0D

k
poly(L/A), where

D0
poly(L/A) = R, D1

poly(L/A) =
U(L)

U(L)Γ(A)
,

and Dk
poly(L/A) with k > 1 is the tensor product D1

poly(L/A) ⊗R . . . ⊗R D
1
poly(L/A)

of k copies of the left R-module D1
poly(L/A). Multiplication in U(L) from the left by

elements of Γ(A) induces an A-module structure on the quotient U(L)
U(L)Γ(A) . This action

of A on D1
poly(L/A) extends naturally to an action of A on Dk

poly(L/A) for each k. In fact,

D1
poly(L/A) is a cocommutative coassociative coalgebra over R whose comultiplication

∆ : D1
poly(L/A)→ D1

poly(L/A)⊗R D
1
poly(L/A)

is a morphism of A-modules. Therefore the Hochschild complex

0 // D0
poly(L/A)

dH // D1
poly(L/A)

dH // D2
poly(L/A)

dH // D3
poly(L/A)

dH // . . .

determined by the comultiplication ∆ : D1
poly(L/A) → D1

poly(L/A) ⊗R D
1
poly(L/A) is a

complex of A-modules. The Chevalley–Eilenberg hypercohomology

H•
CE(A,D⋄

poly(L/A)
dH−−→ D⋄+1

poly(L/A))

2Note that the symbols T
k

poly(L/A) and D
k
poly(L/A) in this paper mean something slightly

different than in [68]. Essentially, there is a degree shift between the conventions used in the two
papers.
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of the Lie algebroid A with coefficients in this complex of A-modules is the cohomology

of the cochain complex
(
tot(Γ(Λ•A∨)⊗R D

•
poly(L/A)), dU

A + id⊗dH

)
.

We elect to call it the Hochschild cohomology of the Lie pair (L,A).

It is simple to see that H•
CE(A, Tpoly(L/A)) and H•

CE(A,D⋄
poly(L/A)

dH−−→ D⋄+1
poly(L/A))

are graded commutative associative algebras under the wedge and the cup product, re-

spectively. However, at priori, neither H•
CE(A, Tpoly(L/A)) nor H•

CE(A,D⋄
poly(L/A)

dH−−→

D⋄+1
poly(L/A)) has an obvious graded Lie algebra structure. Nevertheless, we prove

Proposition 4.27 ([5]). For any Lie pairs (L,A) both

H•
CE(A, Tpoly(L/A)) and H•

CE(A,D⋄
poly(L/A)

dH−−→ D⋄+1
poly(L/A))

admit canonical Gerstenhaber algebra structures.

The natural inclusion Γ(L/A) →֒ D1
poly(L/A) extends to a morphism of complexes of

A-modules

hkr : T •
poly(L/A)→ D•

poly(L/A)

by skew-symmetrization:

hkr(b1 ∧ . . . ∧ bn) =
1

n!

∑

σ∈Sn

sgn(σ)bσ(1) ⊗ bσ(2) ⊗ . . .⊗ bσ(n), ∀ b1, . . . , bn ∈ Γ(L/A).

The map

id⊗hkr : (Γ(Λ•A∨)⊗R T
•

poly(L/A), dBott
A , 0)→ (Γ(Λ•A∨)⊗R D

•
poly(L/A), dU

A,± id⊗dH )

is a morphism of double complexes and therefore induces a morphism of hypercohomology

groups

hkr : H•
CE(A, Tpoly(L/A))→ H•

CE(A,D⋄
poly(L/A)

dH−−→ D⋄+1
poly(L/A)). (53)

The Atiyah class and the Todd class of a Lie pair (L,A) are defined similarly to the

Molino class and the Todd class of a foliation F — see Section 3.5 and [29, 62, 50, 28].
Let us choose a splitting j : L/A → L of the short exact sequence of vector bundles

over M
0 // A

i // L
q // L/A // 0

and an L-connection ∇ on L/A extending the Bott A-connection. The associated Atiyah
1-cocycle

R∇ ∈ Γ(M ;A∨ ⊗A⊥ ⊗ End(L/A)),

where A⊥ = (L/A)∨, is defined by

R∇(V,Z)W = ∇V∇j(Z)(W )−∇j(Z)∇V (W )−∇[V,j(Z)](W ),

for all V ∈ Γ(A) and Z,W ∈ Γ(L/A). It is easily seen that it does not actually depend
on the choice of the splitting j. The cohomology class

αL/A = [R∇] ∈ H1
CE(A,A⊥ ⊗ End(L/A))

does not depend on the choice of the connection ∇ and is called the Atiyah class of the

Lie pair (L,A) [29]. See also [62, 50].
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The Todd class of the Lie pair (L,A) is the cohomology class

tdL/A = det

(
αL/A

1− exp(−αL/A)

)
∈

⊕

k>0

Hk
CE(A,ΛkA⊥). (54)

Proposition 4.28. Let (L,A) be a Lie pair, and let L →M, with L = TA[1]×TM
L and

M = A[1], be the dg Lie algebroid associated with the Lie algebroid morphism i : A→ L

as in Proposition 3.11. The diagrams

H•(tot⊕(Tpoly(L)),Q)
hkr //

∼=

��

H•(tot⊕(Dpoly(L)), dH +Q)

∼=
��

H•
CE(A, Tpoly(L/A))

hkr
// H•

CE(A,D⋄
poly(L/A)

dH−−→ D⋄+1
poly(L/A))

and

H•(tot⊕(Tpoly(L)),Q)
(tdL)1/2

//

∼=

��

H•(tot⊕(Tpoly(L)),Q)

∼=

��
H•

CE(A, Tpoly(L/A))
(tdL/A)1/2

// H•
CE(A, Tpoly(L/A))

commute and both vertical maps are isomorphisms of Gerstenhaber algebras.

Combining Proposition 4.28 with Theorem 4.19, we obtain

Theorem 4.29 (Kontsevich–Duflo type theorem for Lie pairs [68]). Given a Lie pair

(L,A), the map

hkr ◦ td
1/2
L/A : H•

CE(A, Tpoly(L/A))
∼=
−→ H•

CE(A,D⋄
poly(L/A)

dH−−→ D⋄+1
poly(L/A))

is an isomorphism of Gerstenhaber algebras — the square root of the Todd class td
1/2
L/A ∈⊕

k=0 H
k
CE(A,ΛkA⊥) acts on H•

CE(A, Tpoly(L/A)) by contraction.

Remark 4.30. Theorem 4.29 was proved in [68] without resorting to the dg Lie algebroid

L →M (with L = TA[1] ×TM
L) appearing in Proposition 4.28.

Below we consider two important examples of Lie pairs.

Let F be a regular foliation of a smooth manifold M . Consider the Lie pair (TM , TF ).

Let NF = TM/TF be the normal bundle to the foliation F , and N∨
F or T⊥

F the conormal

bundle (TM/TF )∨. Then T •
poly(NF ) =

⊕
k>0 Γ(ΛkNF ) can be considered as the space

of polyvector fields transversal to the foliation F [122, 124]. Similarly, D•
poly(NF ) =⊕

k>0D
k
poly(NF ) can be considered as the space of polydifferential operators transversal

to F . Here D0
poly(NF ) denotes the algebra R of smooth functions on the manifold M ,

D1
poly(NF ) denotes the left R-module U(TM )

U(TM )·Γ(TF )
∼=

D(M)
D(M)·Γ(TF ) of ‘transverse differential

operators,’ and Dk
poly(NF ) denotes the tensor product D1

poly(NF ) ⊗R . . . ⊗R D
1
poly(NF )

of k copies of the left R-module D1
poly(NF ). (Should there exist a foliation F ′ transverse

to F , the space D1
poly(NF ) would be isomorphic to the space U(TF ′) of leafwise differential

operators in the direction of F ′.)
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Theorem 4.29 implies

Theorem 4.31 (Kontsevich–Duflo type theorem for foliations [68]). Given a regular fo-

liation F on a smooth manifold M , the map

hkr ◦ td
1/2
TM /TF

: H•
dR(F , Tpoly(NF ))

∼=
−→ H•

dR

(
F ,D⋄

poly(NF )
dH−−→ D⋄+1

poly(NF )
)

is an isomorphism of Gerstenhaber algebras. It is understood that the square root td
1/2
TM /TF

of the Todd class tdTM /TF
∈

⊕
k=0 H

k
dR(F ,ΛkT⊥

F ) acts on H•
dR(F , Tpoly(NF )) by con-

traction.

Next we consider a Lie algebra pair (g, h), i.e., a Lie algebra g and a Lie subalgebra

i : h → g. A g-connection on g/h is simply a bilinear map ∇ : g × g/h → g/h. Let ∇

be a g-connection on g/h which extends the Bott h-connection: ∇Bott
a q(l) = q([a, l]), for

all a ∈ h and l ∈ g. Here the map q : g → g/h is the canonical projection. The Atiyah

cocycle associated with ∇ is the bilinear map

R∇ : h⊗ g/h→ End(g/h)

defined by

R∇(a; q(l)) = ∇a∇l −∇l∇a −∇[a,l], ∀ a ∈ h, l ∈ g.

Then the element R∇ ∈ h∨ ⊗ h⊥ ⊗ End(g/h) is a Chevalley–Eilenberg 1-cocycle for

the Lie algebra h with values in the h-module h⊥ ⊗ End(g/h). Its cohomology class

αg/h ∈ H1
CE(h, h⊥ ⊗ End(g/h)) is independent of the choice of g-connection ∇ and is

called the Atiyah class of the Lie algebra pair (g, h) [12, 14, 29]. The Todd class of the

Lie algebra pair (g, h) is the corresponding Chevalley–Eilenberg cohomology class

tdg/h = det

(
αg/h

1− exp(−αg/h)

)
∈

⊕

k=0

Hk
CE(h,Λkh⊥).

The Bott h-connection on g/h extends by the Leibniz rule to an h-action on

T •
poly(g/h) =

⊕
k>0 Λk(g/h). Let dBott

h : Λph∨ ⊗ Λq(g/h) → Λp+1h∨ ⊗ Λq(g/h) be the

corresponding Chevalley–Eilenberg differential. According to Proposition 4.27, its hy-

percohomology H•
CE(h, Tpoly(g/h)) is a Gerstenhaber algebra. Similarly, the Lie alge-

bra h acts on D1
poly(g/h) = U(g)

U(g)·h by left multiplication and henceforth it acts on

D•
poly(g/h) =

⊕
k>0

( U(g)
U(g)·h

)⊗k
as well. The Chevalley–Eilenberg differential associated

with this action is denoted by

dU
h : Λph∨ ⊗Dq

poly(g/h)→ Λp+1h∨ ⊗Dq
poly(g/h).

Meanwhile, the Hochschild differential dH : Dq
poly(g/h)→ Dq+1

poly(g/h) extends to

dH : Λph∨ ⊗Dq
poly(g/h)→ Λph∨ ⊗Dq+1

poly(g/h)

by graded linearity. According to Proposition 4.27, the corresponding hypercohomology

H•
CE(h,D⋄

poly(g/h)
dH−−→ D⋄+1

poly(g/h)) is a Gerstenhaber algebra.

The natural map induced by skew-symmetrization

hkr : tot(Λ•h∨ ⊗ Λ•(g/h))→ tot

(
Λ•h∨ ⊗

(
U(g)

U(g) · h

)⊗•)

is a quasi-isomorphism of cochain complexes.
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Theorem 4.29 implies

Theorem 4.32 (Kontsevich–Duflo type theorem for Lie algebra pairs [68]). Given a Lie

algebra pair (g, h), the map

hkr ◦ td
1/2
g/h : H•

CE(h, Tpoly(g/h))
∼=
−→ H•

CE(h,D⋄
poly(g/h)

dH−−→ D⋄+1
poly(g/h))

is an isomorphism of Gerstenhaber algebras. It is understood that the square root td
1/2
g/h

of the Todd class tdg/h ∈
⊕

k=0 H
k
CE(h,Λk(g/h)∨) acts on H•

CE(h, Tpoly(g/h)) by contrac-

tion.
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