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Abstract. In this expository paper, we survey some recent works on the Atiyah class and
other characteristic classes of dg manifolds. In particular, we describe a Kontsevich—Duflo type
theorem for dg manifolds: For every finite-dimensional dg manifold (M, @), the composition
hkr o (td(a,0))"/? is an isomorphism of Gerstenhaber algebras from H*®(tote (Tpoty (M), Q)) to
H* (tot(Dpory(M)), dsw + Q) — the square root of the Todd class of the dg manifold td(lj/fl’Q) €
Hk>0 H*((Q¥(M))*, Q) acts on H®(tote(Tpoly(M)), Q), by contraction. The Duflo theorem
of Lie theory and the Kontsevich theorem regarding the Hochschild cohomology of complex
manifolds can both be derived as special cases of this Kontsevich-Duflo type theorem for dg

manifolds. The paper ends with a discussion of extensions of this theorem.
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1. Introduction. The aim of this expository paper is to give an overview of the authors’
recent work jointly with several collaborators — mainly Hsuan-Yi Liao — on the Atiyah
class and Kontsevich—Duflo type theorems.

In 1997, Kontsevich revolutionized the field of deformation quantization [7] with
his formality theorem [59]. See also [21, 24, 22, 26, 116, 119, 117, 130, 129] and ref-
erences therein for further developments. Beyond deformation quantization, Kontsevich’s
formality construction found other important applications in several different areas of
mathematics. One of them is the extension of the classical Duflo theorem. Given a
finite-dimensional Lie algebra g, the Poincaré-Birkhoff-Witt symmetrization map pbw :
S(g) =N U(g) is an isomorphism of g-modules. It induces an isomorphism pbw : S(g)*? =N
U(g)*? between subspaces of g-invariants. This isomorphism fails to intertwine the obvious
multiplications on S(g)® and U(g)®. Nevertheless, it can be modified so as to become an
isomorphism of associative algebras. The Duflo element J € S (gVv) is the formal power
series on g defined by J(z) = det(%ﬁd“), for all + € g. Considered as a for-
mal linear differential operator on gV with constant coefficients, the square root of the
Duflo element defines a transformation J'/2 : S(g) — S(g). A remarkable theorem due to
Duflo [37] asserts that the composition pbw oJ/? : S(g)® — U(g)? is an isomorphism of
associative algebras. Duflo’s theorem generalizes a fundamental result of Harish-Chandra
regarding the center of the universal enveloping algebra of a semi-simple Lie algebra. As
an application of his formality construction, Kontsevich proposed a new proof of Duflo’s
theorem by means of the associative algebra structure carried by the tangent cohomology
at a Maurer—Cartan element. Indeed, Kontsevich’s approach [59] led to an extension of
Duflo’s theorem: for every finite-dimensional Lie algebra g, the map

pbwoJ Y2 : Hep(g,S(a)) = Heg(s,U(g))

is an isomorphism of graded associative algebras. The classical Duflo theorem is simply
the isomorphism between the cohomology groups of degree 0. A detailed proof of the
above extended Duflo theorem was given by Pevzner—Torossian [95] — see also [81, 82].
Furthermore, Kontsevich discovered a similar phenomenon in complex geometry [59]. Re-
call that the Hochschild cohomology groups HH®(X) of a complex manifold X are defined
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as the groups Extg,  (Oa,Oa). Gerstenhaber-Schack [41] derived an isomorphism of

cohomology groups hkr : H3_ (X, ATx) — HH*(X) from the classical Hochschild—
Kostant-Rosenberg map. This isomorphism fails to intertwine the multiplications on the
two cohomologies but can be tweaked so as to produce an isomorphism of associative al-
gebras. More precisely, Kontsevich [59] obtained the following theorem: the composition

hkr o(td e 701)"/? : Hy (X,ATx) = HH*(X),

sheaf

where th)C( /T denotes the Todd class of the Lie pair (TE,T%I) associated to a com-
plex manifold X, is an isomorphism of associative algebras. The multiplications on
HS ..:(X,ATx) and HH®*(X) are respectively the wedge product and the Yoneda prod-
uct. For a detailed proof of Kontsevich’s theorem, see the work [17] by Calaque—Van den
Bergh, who showed additionally that the map hkr o(th)C( /T;J(,l)l/ 2 actually respects the
Gerstenhaber algebra structures carried by the two cohomologies — see also [19, 18].
A related result was also proved by Dolgushev—Tamarkin—Tsygan [36, 35]. Note that,
when X is a compact Kéhler manifold, then the Todd class th)c( /T of the Lie pair

(TS, T") coincides with the usual Todd class of X.

Thus, Kontsevich’s formality construction revealed a hidden connection between com-
plex geometry and Lie theory. Naturally, one would wonder whether a general framework
encompassing both Lie algebras and complex manifolds as special cases could be devel-
oped in which a Kontsevich—Duflo type theorem would hold. This can indeed be achieved
by considering differential graded (dg) manifolds.

By a dg manifold, we mean a Z-graded manifold endowed with a homological vector
field, i.e. a vector field @ of degree 41 satisfying [@, Q] = 0. Homological vector fields
first appeared in physics under the guise of BRST operators used to describe gauge
symmetries. Since then, dg manifolds (a.k.a. @-manifolds) have appeared frequently in
the mathematical physics literature, e.g. in the AKSZ formalism [1, 105]. They also arise
naturally in many situations in geometry, Lie theory, and mathematical physics. Standard
examples of dg manifolds are:

(i) Lie algebras — Given a finite-dimensional Lie algebra g, we write g[1] to denote the
dg manifold having C*(g[1]) = A®g" as its algebra of functions and the Chevalley—
Eilenberg differential Q = dcg as its homological vector field.

(ii) Complex manifolds — Given a complex manifold X, we write T [1] to denote the dg
manifold having C'*° (T;)(’1 [1]) = Q%*(X) as its algebra of functions and the Dolbeault
operator Q = 9 as its homological vector field.

In 1998, Shoikhet [111] proposed a conjecture, known as Kontsevich—Shoikhet conjec-
ture, stating that a Kontsevich—Duflo type formula should hold for all finite-dimensional
smooth dg manifolds. This conjecture was proved by the authors jointly with Liao [67] —
see Theorem 4.6. Applying Theorem 4.6 to the classes of dg manifolds (i) and (ii) men-
tioned earlier, we recover the Kontsevich-Duflo theorem for Lie algebras (Theorem 4.12)
and Kontsevich’s theorem for complex manifolds (Theorem 4.16), respectively. Thus we
fulfill our stated goal of conceiving a unified framework in which these two important
theorems can be understood as one and the same phenomenon.
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A key ingredient of the Kontsevich—-Duflo type theorem for dg manifolds is the notion
of Atiyah class of a dg manifold. As in the classical case of complex manifolds studied by
Kapranov [55], the Atiyah 1-cocycle of a dg manifold is the binary bracket of an Lo [1]
algebra. Indeed, following Kapranov [55], one constructs a dg manifold (Tn¢, DY), which
can be considered as the ‘formal neighborhood A of the diagonal A’ of the product dg
manifold (M, Q) x (M, Q) [86]. The construction relies on the ‘formal exponential map’
(introduced in [65]) identifying T to a ‘formal neighborhood of the diagonal’ of M x M
seen as Z-graded manifolds. The homological vector field DV on Ty, is then obtained by
pullback of the vector field (Q, Q) on M x M through the formal exponential map [86].
See [32, 106] for some further developments.

A comparison of the present work with that of Calaque-Rossi [16] is in order. In the
introduction of their book [16], Calaque-Rossi claimed “These lecture notes provide a
self-contained proof of the Duflo isomorphism and its complex geometric analogue in a
unified framework, and gives in particular a unifying explanation of the reason why the
series j(x) and its inverse appear.” Let us briefly summarize the actual content of [16]
relevant to this matter. First, Calaque—Rossi gave a detailed proof — outlined earlier
by Shoikhet in [113, 111] — of a Kontsevich-Duflo type theorem for ‘Q-spaces’ [16,
Theorem 5.3]. A Q-space, according to [16], is a Zs-graded vector space endowed with a
homological vector field. Next, following Shoikhet, they applied this result to the @Q-space
(g[1],dcE) so as to recover the Kontsevich-Duflo theorem for a finite-dimensional Lie
algebra g (Theorem 4.12) — see [113, Section 1.1.1.1] for a clean outline of the argument.
(Shoikhet’s paper [113] also investigates further properties of the Duflo map in terms of
the cup-product property for Tsygan formality [118, 112].) On the complex geometry side
of the story, given a complex manifold X, Calaque—Rossi constructed Fedosov ‘resolutions’
of the complexes Q%*(X), Q%*(X, 170y ), and Q0% (X, D, 1y) as introduced in [15]. Then
they applied [16, Theorem 5.3] ‘fiberwise’ to these ‘resolutions. Beyond that, however,
further additional steps involving substantial work are required in order to complete the
proof of the Kontsevich-Duflo theorem for complex manifolds (Theorem 4.16). Although
Calaque—Rossi made use of the same result ([16, Theorem 5.3], the Kontsevich-Duflo
type theorem for ‘Q-spaces’) to prove the two results for Lie algebras and for complex
manifolds, they did mot obtain these two results as special cases of a single generalized
Kontsevich—Duflo theorem. Here, however, we describe a unified Kontsevich—Duflo type
theorem (Theorem 4.6) valid for all finite-dimensional smooth dg manifolds. Then we
specialize this result to two important classes of dg manifolds: (g[1], dcg) and (T%'[1], ).

Kontsevich’s theorem regarding the Hochschild cohomology of complex manifolds is
closely related to homological mirror symmetry [58, 6]. It is natural to expect that The-
orem 4.6 will have applications in mirror symmetry, for instance in matrix factorization
[57, 38, 69, 96]. This will be investigated somewhere else.

We conclude the paper with an extension of our Kontsevich-Duflo type theorem for dg
manifolds to the more general context of dg Lie algebroids and discuss several applications
including a specialization of the theorem to Lie pairs. However, the reader only interested
in the dg manifold case is encouraged to skip all sections pertaining to ‘-oids.
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Notation. Some remarks concerning notation are necessary.

By default, in this paper, ‘graded’ means Z-graded.

Given a module 9 over a ring, the symbol S (9M) denotes the m-adic completion of
the symmetric algebra S(91), where m is the ideal of S(91) generated by 9.

Let M be a finite-dimensional graded manifold, let (2;);c(1,....n) be a set of local
coordinates on M and let (y;)jeq1,....ny be the induced local frame of T regarded as
fiberwise linear functions on 4.

We use the symbol N to denote the set of positive integers and the symbol Ny for the
set of nonnegative integers. Given a multi-index I = (41,142, ...,i,) € N, we adopt the
following multi-index notation:

I =ilin) - iy
(I =iy +io+ ...+ iy
yh = ()" (g2) - (yn)'™
O =0, 0..00;, 000, ®...00,O...00,, O...00,,

i1 factors i factors in factors
I
<8_$ =03, 0...00;, ©0z, 1 ©...00, ;©...00,4 O...0 0,
—_———
in factors in_1 factors i1 factors

We use the symbol ej to denote the multi-index all of whose components are equal to 0
except for the k-th which is equal to 1. Thus 9% = 0, .
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The de Rham exterior differential d is an operator of degree +1 while the interior
product ix with a homogeneous vector field X of degree |X| is an operator of degree
—1 — | X]|. The element

0
J
dmil/\.../\dxip®y GT/Q

of QP(M, SII(TY,) @ Ti) is of degree
p n
DO+l + 7 Te ol = lual
k=1 k=1

where |zj| (resp. |y,|) denotes the degree of the coordinate function zy (resp. yq)-

2. Dg manifolds and dg vector bundles

2.1. Z-graded manifolds. We use the symbol K to denote either of the fields R or C.
For a smooth manifold M, denote by Oy, the sheaf of K-valued C'*°-functions over M.
A Z-graded manifold M consists of a smooth manifold M (called the support of the
graded manifold) and a sheaf A of Z-graded commutative O)-algebras over M such that
there exists a Z-graded vector space V over K and a covering of M by open submanifolds
U C M, and for every U in the covering, we have

Aly = C®(U,K) @k S(VY),

where S (V) denotes the K-algebra of formal power series on V. We say that the graded
manifold M is finite-dimensional if dim M and dim V' are both finite. We use the no-
tation C*°(M) to denote the Z-graded K-algebra I'(M,.A) of global sections of (M, .A).
Let Z denote the sheaf of ideals of the Oys-algebra A characterized by the property
Ily = C=(U,K) @x §21(V) for sufficiently small open subsets U of M. We refer the
reader to [84, Chapter 2] and [21, 27] for a short introduction to Z-graded manifolds and
relevant references. For supermanifolds, see [121]. The word ‘graded’ means ‘Z-graded’
and, unless otherwise stated, the notation |—| denotes the total degree of its argument.

A morphism ¢ : M — N from a Z-graded manifold M := (M, A) to a Z-graded
manifold N := (N,B) consists of a differentiable map f : M — N together with a
morphism of sheaves of Z-graded algebras v : f*B — A continuous with respect to the
T-adic topology. We also use the notation i := ¢*. It is clear that a morphism of Z-graded
manifolds ¢ : M — N induces a morphism of Z-graded algebras ¢* : C°(N) — C®°(M)
on global sections.

This defines the category of Z-graded manifolds.

Any Z-graded vector bundle over M determines a Z-graded manifold in a natural
way. Let

E=E"®..0E" (1)
be a Z-graded vector bundle over M. Then (M, A), where A|y = T'(U, S(EY)) for all open

submanifolds U C M, is a Z-graded manifold. It is clear that Z-graded vector bundles
and morphisms of Z-graded vector bundles form a category.
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We have a functor
(Z-graded vector bundles) — (Z-graded manifolds) (2)
(M, E) +— (M, Aly = T(U,S(EV)).
PROPOSITION 2.1. The functor (2) is an equivalence of categories.

In the supermanifold (i.e. Zo-graded) case, Proposition 2.1 is known as Batchelor’s
theorem — see [21, 33].

DEFINITION 2.2. A dg manifold is a Z-graded manifold M endowed with a homological
vector field, i.e. a degree +1 derivation @ on C'*°(M) satisfying [@Q, Q] = 0.

A dg manifold (M, @) is said to be of amplitude [—m, n] if M is the Z-graded manifold
associated with a graded vector bundle (1) concentrated in degrees —m to n under the
functor (2).

Homological vector fields first appeared in physics under the guise of BRST operators
used to describe gauge symmetries. Since then, dg manifolds (a.k.a. Q-manifolds) have
appeared frequently in the mathematical physics literature, e.g. in the AKSZ formalism
[1, 27].

Let us describe three classes of standard examples of dg manifolds:

EXAMPLE 2.3. Given a finite-dimensional Lie algebra g, we write g[1] to denote the dg
manifold having C*(g[1]) = A®g" as its algebra of functions and the Chevalley-Eilenberg
differential () = dcg as its homological vector field. This construction admits an ‘up to
homotopy’ version: Given a Z-graded finite-dimensional vector space g = €, 8, the
graded manifold g[1] is a dg manifold, i.e. admits a homological vector field, if and only
if the graded vector space g admits a structure of curved L., algebra.

EXAMPLE 2.4. Given a smooth manifold M, we write Ths[1] to denote the dg manifold
having C*°(Ty[1]) = Q*(M) as its algebra of functions and the de Rham differential
@ = dgr as its homological vector field. Likewise, given a complex manifold X, we
write Ty [1] to denote the dg manifold having C>°(T¥'[1]) = Q0*(X) as its algebra of
functions and the Dolbeault operator Q = d as its homological vector field.

EXAMPLE 2.5. Given a smooth section s of a vector bundle E — M, we write E[—1]
to denote the dg manifold having C*°(FE[—1]) = T'(A™*E") as algebra of functions and
@ = s, the interior product with s, as homological vector field. This dg manifold can
be thought of as a smooth model for the (possibly singular) intersection of s with the
zero section of the vector bundle F, and is often called a ‘derived intersection’; or a
quasi-smooth derived manifold [8].

Both situations in Example 2.4 are special instances of Lie algebroids.

According to a theorem of Vaintrob [120], given a K-vector bundle A over a smooth
manifold M, the homological vector fields on A[l] are in one-one correspondence with
the Lie algebroid structures on A. Indeed, the homological vector field on A[1] is the
Chevalley-Eilenberg differential d : T'(A*AY) — T'(A*t1AV). In other words, we have
the following
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PROPOSITION 2.6 ([120]). Dg manifolds of amplitude [—1, —1] are in one-one correspon-
dence with Lie algebroids.

More generally, the dg manifolds of amplitude [—n,—1] can be thought of as Lie
n-algebroids [125, 127, 107, 43, 11, 51, 104, 54] and [109, Letters 7 and 8]. They can be
considered as the infinitesimal counterparts of higher groupoids — see [42, 47, 3, 63, 108,
87, 110]. On the other hand, dg manifolds of amplitude [1,n]| are derived manifolds [8].
Hence a general dg manifold of amplitude [—m,n| can encode both stacky and derived
singularities in differential geometry.

A morphism of dg manifolds from (M,Q) to (M’, Q") is a morphism of Z-graded
manifolds ¢ : M — M’ such that the induced map on global sections ¢* : C°(M’) —
C*°(M) is a morphism of differential graded algebras, i.e. ¢* 0 Q' = Q o ¢*.

DEFINITION 2.7. A morphism of dg manifolds ¢ : (M,Q) — (M',Q’) is said to be
a quasi-isomorphism if the induced morphism of differential graded algebras of global
sections

¢ (CF(M), Q) = (C*(M), Q)
is a quasi-isomorphism.
2.2. Formal exponential map

DEFINITION 2.8. Let £ — M be a vector bundle in the category of Z-graded manifolds.
A connection on £ - M is a K-linear map

V:T(Tw)@T(E) = T(€)
of degree 0 such that
VixS=fVxS,
Vx(f8) = X(N)S+ (- fvs,
for all f € C®(M), X € T'(Tn) and S € I'(€).
The covariant differential associated to a connection V is the map
d¥ :Q*(M,E) — Q*TH(M,€E)

of degree +1 satisfying
VxS =1x(dVS),

for all X € T'(T\) and S € T'(€), and
dV(a-8) =da-S+ (-1)*la-dVs,
for all homogeneous a € Q(M) and S € Q(M,E).
The curvature of a connection V is the 2-form RY € Q%(M,End(€)) defined by
RY(X,Y) = (_1)|Y‘_1{VXVY — ()M, vy — Vix.y]}s

for all homogeneous X,Y € I'(T) so that (dV)? = RV.
A connection on Ty is called an affine connection on M. The torsion of an affine
connection V is the (1,2)-tensor TV : T ® Taqy — Tq of degree 0 defined by

TV(X,Y)=VxY — (-)XIVIvy X — [X, Y],
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for all homogeneous X,Y € I'(Tn). Given any affine connection, one can define its
opposite affine connection V°P, given by

VRY = VxY - T(X,Y) = [X,Y] + (-1)*IVIvy X, (3)

The average %(V + V°P) is a torsion-free affine connection. This shows that torsion-free
affine connections always exist on Z-graded manifolds.
For an ordinary manifold M, an affine connection V determines an exponential map

expY : Tay — M x M, (4)

which is a local diffeomorphism of fiber bundles

expV
TM — M x M

Wl lprl (5)

M —a M
from a neighborhood of the zero section of Tj; to a neighborhood of the diagonal A
in M x M. The space of fiberwise distributions on the vector bundle 7 : Thy — M
with support the zero section can be identified, as a C'°°(M)-coalgebra, to T'(S(Tar)),
while the space of fiberwise distributions on the fiber bundle pr; : M x M — M with
support the diagonal A can be identified, as a C°°(M)-coalgebra, to D(M). Pushing
distributions forward through the exponential map (4), we obtain an isomorphism of
C>°(M)-coalgebras
pbw" : T(STar) — D(M),
which we call Poincaré—Birkhoff-Witt map. In other words, pbw" is the fiberwise co-order
jet (along the zero section) of the exponential map exp" : Ty — M x M associated to
the connection V — whence the terminology ‘formal exponential map.
More precisely, we have

_d d
Codtoy dti|, T dtk
for all Xo, X1,..., X € T(Ty) and f € C°(M).

pva(Xo ®...0 Xk)(f) f(eXp(toXo + thl + ...+ thk))

0

REMARK 2.9. The inverse map (pbw" )~! : D(M) — T'(STh) is also known as a complete

symbol map. It plays an important role in quantizing the cotangent symplectic manifold
Ty [46].

It turns out that the map pbw" admits a nice recursive characterization [61, 62],
which can be described in a purely algebraic way:

THEOREM 2.10 ([61, 62]). The map pbw® is entirely determined by the identities
pbw"¥ (1) = 1, pbw" (X) = X, and pbw" (X"t1) = X -pbw" (X") —pbw" (Vx(X™)), for
all X € I'(Tyr) and n € N, where X™ stands for the symmetric product X © X ©...0 X
of n copies of X.

Such a purely algebraic description extends readily to the context of Z-graded mani-
folds.
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DEFINITION 2.11 ([65]). Let M be a Z-graded manifold and let D(M) denote its algebra
of differential operators. The formal exponential map associated to an affine connection
V on M is the morphism of left C'°°(M)-modules

pbw" : T(STy) — D(M), (6)
inductively defined by the relations
pbw¥(f)=f, V[feC™®M)
pbwV(X) =X, VX eT(Tn),

and, for all n € N and any homogeneous elements Xo, ..., X,, of I'(T\),

n

> (X pbw T () — pbu (T, (X))}, (1)
k=0

pbwV (X0 ®...0X,) =

where €, = (71)‘X’“|(|X0|+“'+‘X’“—1|) and XIF' = X0 0...0X,_1 0 Xpr1 ©... 0 X,.

The algebra D(M) of differential operators on M admits a natural filtration by the
order of the differential operators — see [102, 88, 93]. It is straightforward to prove by
induction on n that

pbwV (X1 0...0 X,) € DS*(M),

for all n € N and X,,...,X,, € I'(Tx). In other words, the map pbw" respects the
natural filtrations on I'(STh) and D(M). By Gr, we denote the functor which takes
a filtered vector space

o CASFTL S g SEL oL

to the associated graded vector space

<k

Gr(d):@w.

k

It is well known [102] that the symmetrization map

sym : I'(S*(Th)) — Gr*(D(M)),

defined by
1
X10...0X,— — Z (05 X) Xo1y* Xo(n),
oeSy,
for all homogeneous Xj,..., X, € I'(Ta), is an isomorphism of graded vector spaces.

Here, €(o; X) denotes the Koszul sign of the permutation o of the homogeneous elements
X1,..., X, € T(Tam). It is clear that

Cr(pbw") = sym.

Note that both T'(STr) and D(M) are coalgebras over R := C*°(M).
The comultiplication

A : D(M) — D(M) ®x D(M) (8)



ATIYAH CLASSES AND KONTSEVICH-DUFLO TYPE THEOREM 73

is characterized by the identities

A1) =1 1;
AX)=10X+X®1, VX el (Ty);
AU-V)=AU)-A(V), YU,V € DM), (9)

and is compatible with the natural filtration of D(M). Here the symbol ®@x in (8) denotes
the tensor product of left R-modules, the symbol 1 denotes the constant function 1, and
the symbol - denotes the multiplication in D(M). See [131, equation (15) and the remark
following Definition 3.1] for the precise meaning of equation (9).

More explicitly, for all homogeneous elements X, ..., Xy € T'(Th), we have

AL Xi) =16 (X1 Xp) + (X1 Xp) @1

+ D D 05 X) (Xoy X)) © (Xotprn) -+ Xor)

p+q=k ccS}
p,qEN

where &7 denotes the space of (p, g)-shuffles.
Similarly, the comultiplication

is given by
AX10..0Xp) =13 (X10...0X)+ (X1 0...0Xp) ®r 1

+ Z Z e(o; X) (Xg(l) ®...0 Xg(p)) QR (Xa(p+1) ®...0 Xa(k))~

pta=koce&]
p,qEN

The symbol ® denotes the symmetric product in T'(ST).
THEOREM 2.12 ([65]).

e The formal exponential map (6) is a well-defined isomorphism of filtered left C*°(M)-
modules.
e [t is also an isomorphism of filtered coalgebras over C°°(M).

REMARK 2.13. The formal exponential map (6) induces a deformation quantization of
the Z-graded symplectic manifold TY,. Since pbw" is a morphism of C'® (M)-modules,
it is also called normal ordering quantization map. Many quantization maps I'(STh) —
D(M) have appeared in the literature — for instance, see [45] and references therein. The
significant feature of the map (6) appearing in Definition 2.11 is that it can be computed
explicitly by iteration. This is crucial in the discussion that follows.

2.3. Fedosov dg manifolds. Theorem 2.12 has a number of important applications
in graded geometry. First, we describe its application in the construction of Fedosov dg
manifolds. Fedosov dg manifolds are closely related to formal geometry [40]. Intuitively,
given a Z-graded manifold M, a Fedosov dg manifold ‘for M’ is a dg manifold of the
form (T\[1] ® Trq, D) which encodes the formal neighborhood of ‘each point of M’ and
whose algebra of functions is a resolution of C*°(M).
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Let M be a finite-dimensional Z-graded manifold with support M. Choose an affine
connection V on M. Let pbw" : T'(ST) — D(M) be the corresponding formal exponen-
tial map, i.e. the PBW map associated to V, as defined in Definition 2.11. Multiplication
in D(M) from the left by elements of I'(T'h) defines an infinitesimal action of T4 on the
C°(M)-coalgebra D(M) by coderivations. Pulling back this infinitesimal action through
pbw", we obtain an infinitesimal Ty-action on I'(S(Tv)) by coderivations. The latter
defines a flat connection V¢ on S(T):

VS = (pbw") (X - pbw 7 (S)) (10)

for all X € I'(T\) and S € T'(STa). This in turn induces a flat connection on the
dual bundle S(Ty,), denoted by the same symbol V#. We denote the corresponding
Chevalley—Eilenberg differential by

D=d"" :Q°(M,S5(TY,) = Q" (M, S(TY,)). (11)
Since the covariant derivative
Vi i T(STam) — T(STam)
is a coderivation of T'(ST) for all X € I'(T\q), the covariant derivative
Vi D(S(TX) = D(S(TH)

~

is a derivation of the completed symmetric algebra I'(S(T'Y;)). Therefore D is a derivation
of Q*(M, §(TX/[)) of degree (+1) satisfying D? = 0. Therefore it is a homological vector
field on Tam[1] B Taq- In other words, (Taq[1]® T, D) is a dg manifold (with support M).
Note that, by construction, the homological vector field D depends on the choice of an
affine connection V on M.

Alternatively, the homological vector field D can be constructed explicitly by way of
Fedosov’s iterative method. We need to introduce some notation.

Let (2i)ief1,....ny be a set of local coordinates on M and let (y;);eq1,....n} be the
induced local frame of T, regarded as fiberwise linear functions on ). Define

51 QP(M,SITY) — QP (M, S11TY))
and
7L QP(M, SITY,) — QP~H (M, STTITY))
by

0= dr; @ — and §l=—— Lo /9z; D Y;

or, more precisely,

n

d
— _1\10/0yil|w] )
S(we f) ;( 1) dxﬂ\w@ayi(f)
and
1 n i
N we f) = —— S ()l o w @y f
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for all homogeneous w € QP(M) and for all f € T'(SITY,). It is not difficult to check
that the operators § and 6~ ' are well defined, i.e. independent of the choice of local
coordinates, and can be extended to 2*(M, End(§(TXA))) The operator ¢ has degree +1
while the operator 6! has degree —1. Note that the operators § and 6! are not inverse
of each other.

PROPOSITION 2.14 ([65]). Let M be a finite-dimensional Z-graded manifold, and V a
torsion-free affine connection on M. The homological vector field D of equation (11)
decomposes as the sum

D=—-6+dvV+XV,

where

is an element of degree (+1) in Ql(M,§>2(TXA) ® Tra) satisfying 60~1(XY) = 0. This
element XV can be thought of as a 1-form on M valued in fiberwise formal vector fields
on Ta and hence acts by derivation on Q'(M,g(TXA)), the differential forms on M
valued in fiberwise formal functions on Thy. Indeed, XV is a vector field on Ty [1] ® T.

REMARK 2.15. The vector field XV on Th[1] @ T can also be constructed explicitly
[106] by way of an iterative method due to Fedosov [40]. Fedosov’s iterative method is
a standard and very effective procedure for assembling global objects out of local build-
ing blocks. The version of Fedosov’s method relevant to our purpose is the one which
is applicable to arbitrary ordinary smooth manifolds and was developed by Emmrich—
Weinstein [39] and later refined by Dolgushev [34]. Given an (ordinary) smooth mani-
fold M, Dolgushev obtained resolutions of C*°(M), T3, (M) and D, (M), which he
employed to globalize Kontsevich’s formality theorem from R? to M. The construction
relies on the choice of a torsion-free affine connection on M.

REMARK 2.16. An analogue, in the context of Z-graded manifolds, of Dolgushev—Fedosov
resolution can also be found in Cattaneo—Felder [23, Appendix]. However, rather than
resolving the entire algebra of functions on the graded manifold at hand, Cattaneo—Felder
consider the underlying Z-graded manifold as a Z-graded vector bundle over an ordinary
smooth manifold M, and resolve only the subalgebra of functions on the base manifold M.

Consider the linear map o : Q°*(M, §(TX4)) — C°°(M) of degree 0 characterized by
the relations

o(f®1)=f Vel (M)
clway’)=0, YweQ' (M), VJe N (12)
o(fey’)=0, VfecQ’M), VJe Ny such that |J| > 1.
LEMMA 2.17. There exists a unique map
F: O®(M) = Q°(M, S(TY))

of degree 0 satisfying o o ¥ = idgee(p) and Do 7 = 0.
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One can easily check that 7 is a morphism of algebras. Obviously, 7 is a chain map
from C°°(M) seen as a complex concentrated in degree 0 to (2*(M, S(TY,)), D).

PROPOSITION 2.18 ([65]). The chain map 7 defines a quasi-isomorphism of dg manifolds
from (Tm[1] ® Tr, D) to (M,0).

As in the case for the operator D, the map 7 may also be obtained directly from the
formal exponential map pbwv.

PROPOSITION 2.19 ([65]). Let (2;)jeq1,2,....n} be a set of local coordinates on M and let

(Y5)jef1,2,..n}y be the induced local frame of T\, regarded as fiberwise linear functions
on Ta. For all f € C*°(M), we have

. 1
()= mu @pbw’ (%) (1),
! -
IeNy
where
(a_;:amn OO0, @0, ©...00, | ©...00, ®...0 0,
—_—
in factors in—1 factors i1 factors

fOTI: (il,i27...,in) S Ng

2.4. Dg vector bundles. A dg-vector bundle is a vector bundle in the category of dg
manifolds. We refer the reader to [85, 60] for details on dg vector bundles.

Many familiar notions in geometry and representation theory can be interpreted in
terms of dg manifolds in a unified way.

ExaMpPLE 2.20. Consider Example 2.3. Let g be a finite-dimensional Lie algebra and
let V' be a finite-dimensional vector space. A structure of g-module on V is equivalent
to a structure of dg vector bundle on g[1] x V' — g[1]. Similarly, given an L., algebra
g = @,z 9i, saying that a Z-graded vector space V = P, .,
is equivalent to saying that g[1] x V' — g[1] is a dg vector bundle.

V; is an L., module over g

ExXAMPLE 2.21. Consider Example 2.4. Let X be a complex manifold, let £ — X be a
complex vector bundle, and let 7*E denote the pullback of the complex vector bundle
E — X through the canonical projection 7 : T'[1] = X. Then E — X is a holomorphic
vector bundle if and only if 7*F — T%l[l] is a dg vector bundle. Similarly, given a
complex of holomorphic vector bundles over X of finite length

0—E™ .. .5 E" 'S FE S5 EF 5 5 E" 0, (13)

the pullback 7 E — T¥'[1] of E = @ E’ through 7 is a dg vector bundle. However,
note that a dg vector bundle structure on the pullback 7*E — Ty'[1] of a finite-length
complex (13) of vector bundles over C is not necessarily equivalent to a structure of
complex of holomorphic vector bundles. It is related to Quillen’s flat superconnections

[99, 10]. For more details on this, see [52].

EXAMPLE 2.22 ([60]). Let A — M be a gauge Lie algebroid with anchor p. Then A[l] —
Typ[1] is a dg vector bundle with the Chevalley—Eilenberg differentials as homological
vector fields on A[1] and Tas[1].
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Example 2.22 is a special case of a general fact [85]: LA-vector bundles give rise to
dg vector bundles. An LA-vector bundle [73, 74, 77] (a.k.a. VB-algebroid [44]) is a vector
bundle in the category of Lie algebroids. More precisely, an LA-vector bundle is a double
vector bundle

D—-B

ir (14)

e

in which the vector bundles D % B and A % M carry Lie algebroid structures and the
‘vertical projections’ [ and r realize a morphism of Lie algebroids from D L BtoA S M.
The notion of LA-vector bundle was introduced by Mackenzie in his extensive study of
‘double structures’ [73, 74, 77]. It was later reformulated by Gracia-Saz and Mehta in
terms of VB-algebroids [44].

PROPOSITION 2.23 ([44]). The double vector bundle (14) is an LA-vector bundle if and
only if D[1] 4 A[1] is a dg vector bundle.

Going back to Example 2.22, a gauge Lie algebroid A — M with anchor p yields an
LA-vector bundle
A——sM

TM4>M

and thence, according to Proposition 2.23, a dg vector bundle A[1] — Tps[1].

Given a vector bundle object £ =+ M in the category of Z-graded manifolds, its space
of sections T'(€) is defined to be the direct sum @; ., T'(€)’, where T'(E)’ denotes the
space of degree preserving maps s € Hom(M, £[—j]) such that (7[—j]) o s = idaq. Here
w[—j] : €[—j] = M is the natural map induced by 7 : & - M — see [85] for more
details. When & — M is a dg vector bundle, the homological vector fields on £ and M
naturally induce an operator @ of degree (+1) on I'(£), making I'(€) a dg module over
C*°(M). Since C*°(M) and the space I'(£Y) of linear functions on £ together generate
the algebra C'*°(€), the converse is also true: the homological vector field on M and the
operator Q on I'(£) determine a dg structure on £.

LEMMA 2.24 ([86]). Let M be a Z-graded manifold endowed with a homological vector
field Q. Given a vector bundle object £ — M in the category of Z-graded manifolds,
& admits a dg manifold structure making € — M into a dg vector bundle if and only if the
space of sections T'(E) admits a structure of dg module over the dg algebra (C*°(M), Q).
Indeed, the category of dg vector bundles over the dg manifold (M, Q) is equivalent to the
category of locally free dg modules over the dg algebra (C*°(M), Q).

Given a dg vector bundle £ — M, the induced operator Q on I'(£) is the coboundary
operator of a cochain complex

Lo TE)TEETE) B TE)T

whose cohomology group will be denoted H*(I'(£), Q).
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In particular, the space X(M) of vector fields on a dg manifold (M, Q) (i.e. graded
derivations of C°°(M)), which can be regarded as the space of sections I'(Tx¢), is natu-
rally a dg module over the dg algebra (C°°(M), @) with the Lie derivative

Lo X(M) = X(M)

playing the role of the operator Q. As a consequence, T\ is naturally a dg manifold and
Ty — M a dg vector bundle according to Lemma 2.24.

DEFINITION 2.25. Given a dg manifold (M, @), the homological vector field on T
corresponding to the operator @ = L on I'(T)\) is called the complete lift of Q (it was
called the tangent lift in [86]).

See [132] for an analogue of the complete lift of vector fields in classical differential
geometry.

3. Atiyah class and characteristic classes of a dg vector bundle

3.1. Dg Lie algebroids. Dg Lie algebroids are Lie algebroid objects in the category of
dg manifolds. Below, we briefly recall their precise definition. For more details, we refer
the reader to [85], where dg Lie algebroids are called Q-algebroids.

A Lie algebroid object in the category of Z-graded manifolds consists of a vector
bundle object A — M in the category of Z-graded manifolds together with a bundle
map p : A — Ty of degree 0, called anchor, and a structure of graded Lie algebra on
I'(A) with Lie bracket satisfying

[X, Y] = p(X)(NY + ()X, Y]
for all homogeneous X,Y € I'(A) and f € C*°(M).
DEFINITION 3.1 ([85]). A dg Lie algebroid is a dg vector bundle A — M endowed with

an additional structure of Lie algebroid object in the category of Z-graded manifolds such
that the dg and the Lie structures are compatible in the following sense:

[da, Q] =0, (15)

where d 4 is the Chevalley—Eilenberg differential corresponding to the Lie algebroid struc-
ture on A — M seen as a homological vector field on .A[1], while the symbol Q denotes
the homological vector field on A[1] induced by the homological vector field Q4 on A
which is part of the dg vector bundle structure on A — M. Here, the bracket (15) stands
for the Lie bracket on X(A[1]).

The compatibility condition (15) is equivalent to the requirement that the Chevalley—
Eilenberg differential
dg:T(AAY) — T(A*TTAY)
of the Lie algebroid A — M commute with the differential (of internal degree (+1))
Q:T(A*AY) = T(A*AY)
induced by the dg vector bundle structure on A — M. As a consequence, the pair of
differentials d4 and Q make the algebra T'(A®*AY) — which is double-graded by the
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‘e-degree’ and the ‘internal’ degree — a double complex. According to Mehta [85], the
total cohomology of this double complex is the dg Lie algebroid cohomology of A — M.

ExAMPLE 3.2. Let A — M be a Lie algebroid object in the category of Z-graded mani-
folds with anchor map p : A — Ty and let s € I'(A) be a section of degree +1 satisfying
[s,8] = 0. Then A — M admits a structure of dg Lie algebroid: the homological vector
field on M is p(s) while the operator of degree +1 on I'(A) is [s, —].

One important class of dg Lie algebroids arise from Mackenzie’s double Lie alge-
broids [73], the infinitesimal counterparts of double Lie groupoids [72, 75, 74]. The fol-
lowing is essentially due to Ted Voronov [126].

THEOREM 3.3 ([126]). A double vector bundle structure
D——2B
i l (16)
A——sM

can be upgraded to a double Lie algebroid in the sense of Mackenzie [73, 72, 75, 74] if and
only if D[1] — A[1] is a dg Lie algebroid. Here D[1] and A[1] denote the graded manifolds
obtained by shifting the degree of the fiberwisely linear functions on the total spaces D
and A of the vector bundles D — B and A — M.

DEFINITION 3.4 ([89, 78]). Two K-Lie algebroids A and B over the same base manifold M
and with respective anchors p4 and pp are said to form a matched pair if there exists an
action V of A on B and an action A of B on A such that the identities

pa(X), pB(Y)] = —pa(LyX) + pp(VxY),
Vx¥1,Ys] = [VxY1,Ys] + [Y1, VxYa] + VAYQ)(Yl - VAleYg,

Ly [X1, Xo] = [Ay X1, Xo] + [X1, Ly Xo] + LAvy,v X1 — Ay, v Xo,
hold for all X1, X5, X € T'(A) and Y1,Y,,Y € I'(B).

LEMMA 3.5 ([89, 78]). Given a matched pair (A, B) of Lie algebroids, there is a Lie
algebroid structure A<t B on the direct sum vector bundle A & B, with anchor

XaY = pa(X)+pp(Y)
and bracket
XioY1, XodYs] = ([X1, Xo] + Ay, Xo — Dy, Xi) & ([Y1,Y2] + Vi, Yo — Vi, 7).

Conversely, if A@® B carries a Lie algebroid structure for which A®0 and 0® B are Lie
subalgebroids, then the representations V and A defined by

[X®0,00Y]=-LyXPVxY
endow the couple (A, B) with a structure of matched pair.

In fact, the representation V (resp. A) can be identified with the Bott representation
of A (resp. B) on L/A = B (resp. L/B = A). See (52).
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EXAMPLE 3.6 (matched pair of Lie algebroids). Let (A, B) be a matched pair of Lie
algebroids. Then
A< B—— B

|

A———M

is a double Lie algebroid and, according to Theorem 3.3, (A[1] ® B, d3°") is a dg Lie
algebroid over (A[1],d4). Here d5°* denotes the Chevalley-Eilenberg differential of the
Lie algebroid A corresponding to the Bott representation V of A on B.

ExAMPLE 3.7 (Lie bialgebroid). Let (A, AY) be a Lie bialgebroid [79]. Then
TVAZTVAY) —— AY

A M

is a double Lie algebroid and, according to Theorem 3.3, TVAY[1] — A[l] is a dg Lie
algebroid.

Differential graded foliations constitute another important class of examples of dg Lie
algebroids.

PROPOSITION 3.8. Let (M, Q) be a dg manifold.

e Then T is a dg manifold with the complete lift of QQ as homological vector field.

o Furthermore, Thy — M is a dg Lie algebroid.

e More generally, if D C Trq is an integrable distribution on M and T'(D) is stable
under Lg, then D — M is a dg Lie algebroid with the inclusion D — Trq as its
anchor map. We say that D is a dg foliation of M.

An example of dg foliation in the sense of Proposition 3.8 is Fedosov dg Lie algebroids.

ExXAMPLE 3.9 (Fedosov dg foliation [67]). Let M be a Z-graded manifold and, as in
Section 2.3, let (N = Tm[1] @ Tp, D) be a Fedosov dg manifold for M. Consider the
pullback F — N of the vector bundle Thy — M through the canonical projection
N — M. It is a vector bundle in the category of Z-graded manifolds whose total space
F is a graded manifold with support M. Its space of sections T'(N; F) is the C*°(N)-
module C(N) ©r X(M) = Q*(M, S(TY,) @ Tp). It can be identified canonically to a
C°(N)-submodule of X(N) as follows. Let 9y,...,0y, and x1,..., Xm denote the dual
local frames for Ty and T'Y; arising from a choice of local coordinates (21, ..., zm) on M.
To 1@ € C®(N)@r X(M) = T'(NV; F) we associate the (graded) derivation of C*°(N)
mapping x; € Q%(M,SH(TY,)) C C®(N) to &k, and w € QP (M, S°(TY,)) C C®(N)
to 0. Thus F — N is a vector subbundle of Ty — N. One can check that F is indeed
a dg foliation of the dg manifold (A, D). Hence F — N is a dg Lie algebroid, which we
elect to call a Fedosov dg Lie algebroid.

Fedosov dg Lie algebroids play an important role in the globalization to dg manifolds
of Kontsevich’s formality theorem for RY. The Fedosov dg Lie algebroid F — N of
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Example 3.9 arising from a Z-graded manifold M is somehow ‘homotopy equivalent’ to
the tangent Lie algebroid Ty — M. Given a homological vector field @) on the Z-graded
manifold M, one can modify the dg structure on F — N so as to take the homological
vector field @ on M into consideration in such a way that the resulting (modified) Fedosov
dg Lie algebroid F — N is ‘homotopy equivalent’ to the dg Lie algebroid Ty — M of
the dg manifold (M, Q). See [67] for more details.

3.2. Dg Lie algebroids associated with Lie algebroid morphisms. This subsec-
tion outlines a work in progress [115].

Let A and L be K-Lie algebroids over the same base manifold M, and ¢ : A — L a Lie
algebroid morphism. There exists a double Lie algebroid due to Jotz Lean and Mackenzie
[53] (see also [115]), called a comma double Lie algebroid. In the case that K is R, any Lie
algebroid morphism arises from a morphism of local Lie groupoids. A comma double Lie
algebroid is the infinitesimal of the comma double Lie groupoid associated to a morphism
of Lie groupoids with the same base manifolds due to Brown—Mackenzie [13, Example 1.8]
(see also [72, Example 2.5] and [115]).

We recall its construction briefly below. Let D = T'A xrar,, L. Then D i A is
naturally a Lie algebroid, the pullback Lie algebroid — see [76] — of L = M through
the surjective submersion 7 : A — M.

On the other hand, D inherits a second Lie algebroid structure over L, the transforma-
tion Lie algebroid, corresponding to the action of the tangent Lie algebroid TA — T'M on
pr : L — TM. To define the action, note that T'(TM,TA) is generated, over C*°(TM),
by two types of sections: core sections X and tangent sections TX, for all X € I'(A)
[79, 80]. Indeed their brackets completely determine the Lie bracket on I'(T'M, T A) [79,
equation (27)]:

[TX,TY]=T(X,Y]), [TX,Y]=0, [X,Y]=0,
for X,Y € I'(A). Recall that the core section X € T'(TM,TA), for any X € ['(A) is
defined as a map [79, 80|
X:TM = TA, X(vp)=0vm+X|m € TnM & Al,, =Ty, A, Vv, €T, M.
For any section X € T'(A4), there also associates two vector fields on A, the vertical
lift vector field X1 and the morphic vector field X, defined respectively by [80]
XT(fOﬂ'):O7 XT(lf) = <§?X>O7T’ (17)
X(fom) =pa(X)(f)om, X(le) =Ly, (18)
for f € C®(M), £ € T'(A*). Here £ € C*°(A) is the fiberwise linear function determined
by &.
Define & : I'(TM,TA) — X(L) by
O(TX) = ¢(X),  (X)=o(X)! (19)

for any X € I'(A).
One proves that (19) defines uniquely an action of the tangent Lie algebroid TA —
TM on pr, : L — TM [53]. Thus one can form the transformation Lie algebroid D =

TA xrap, L L.
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PROPOSITION 3.10 ([53]). D is a double Lie algebroid

DL>L

gk -

Therefore, according to the Voronov theorem [126]: Theorem 3.3, T'aj1) X1, L — A[1]
is a dg Lie algebroid, where the Lie algebroid is the pull-back Lie algebroid of L — M
through the surjective submersion 7 : A[1] — M. To describe the dg structure, note that

a general section of T'a;1) X1y, L Rl A[1] consists of a pair (X,v), where X € X(A[1]) is a
vector field on A[l] and v is a map A[1] — L satisfying
meoX =prov: All] = Ty. (21)

Let

o= (da,p), p:Al]—ASL. (22)
If one thinks of A % L as a bundle of two term complex over M, then u: A[l] — L is
the same one by assigning A with degree —1 and L degree 0. One proves that [115] s4 is
indeed a degree +1 section of Tp) x1,, L = A[1] satisfying

[s4,84] = 0.
PROPOSITION 3.11 ([115]). Let ¢ : A — L be a Lie algebroid morphism. Then
TA[1] X T L — A[l}
is a dg Lie algebroid. As a (Z-graded) Lie algebroid, it is the pull-back (in the Lie algebroid
sense) of the Lie algebroid L — M through the surjective submersion A[l] — M. On the

other hand, the dg structure arises, as in Example 3.2, from the section sy of degree +1
defined by equation (22).

3.3. Characteristic classes of a dg vector bundle relative to a dg Lie algebroid.
Let £ - M be a dg vector bundle and let A — M be a dg Lie algebroid with anchor
p: A= T

An A-connection on € is a degree 0 map V : I'(A) x I'(§) — I'(€) satisfying the pair
of relations

Vixs= fVxs,
Vx(fs) = px(f)s+ (D)X v ys,

for all homogeneous elements f € C®°(M), X € T'(A), and s € T'(£). Such connections
always exist since the standard partition of unity argument holds in the context of graded
manifolds. Given a dg vector bundle £ and an A-connection V on it, we can consider the
bundle map Atg AR E — £ of degree +1 defined by

AtY (X, s) = Q(Vxs) — Vorxys — (-1)IXIVx(Q(s)), VX eD(A), seT(&£).

The bundle map AtgV can be regarded as a section of degree +1 of AY @ End £, and hence
as a l-cochain in the cochain complex (I'(AY ® End £)*, Q).



ATIYAH CLASSES AND KONTSEVICH-DUFLO TYPE THEOREM 83

LEMMA 3.12 ([86]). The 1-cochain Aty is a cocycle: Q(AtY) = 0. Its cohomology class
is independent of the choice of the connection V.

The cohomology class ag := [Aty] in H'(T'(AY ® End&)®, Q) is called the Atiyah
class of the dg vector bundle & — M relative to the dg Lie algebroid A — M [86].

The Todd cocycle and A cocycle of the dg vector bundle £ associated with the 4-con-
nection V are the elements Tdy and Ay of Hk>O(F(AkAV))k defined, respectively, by

Atv ~ Atv
v _ £ vV _ I
ng = Ber(l_e_Atg> and AE = Ber<€(1/2) Atgv _ 6_(1/2) Atg )7

where Ber denotes the Berezinian [9, 21] and A*AY denotes the dg vector bundle
Sk(AY[-1])[k] = M. Both Tdy and @ are cocycles: Q(Tdy) =0= Q(Ay) Note that
every element of (I'(A¥.AY))* is a finite sum S a3 A ... Ay with aq,...,a, € T(AY)
homogeneous and satisfying the degree condition |ay| + ...+ |ax| = k. The cohomology
classes tde and Ag in [0 H*((T(AFAY))*, Q) of the cocycles Tdy and 21? are inde-
pendent of the choice of the connection V and are respectively called the Todd class and
A class of the dg vector bundle £ relative to the dg Lie algebroid A. Hence, the Todd class
and the A class of a dg vector bundle £ relative to a dg Lie algebroid A are respectively
the elements

tde = Ber<1 — ag> and  Ag = Ber(eu/z) s — =1/ ag> (23)

in [T;50 H*(D(AAY)®, Q).

Both tdg and Ag can be expressed in terms of the scalar Atiyah classes
_ 1
TR

Here str : End(€) — C>°(M) denotes the supertrace. Note that str(af) € T'(A*AY) since
o € T(AFAY) ®coo(aq) T(End(£)). For details, see [86].

Cl

Ny
(2271-) str(ak) € H¥(T(A*AY)*, Q).

3.4. Characteristic classes of a dg manifold. Let (M, Q) be a finite-dimensional
dg manifold. According to Proposition 3.8, its tangent bundle Ty — M is naturally a
dg Lie algebroid. By definition, the Atiyah class of the dg manifold (M, Q) is the Atiyah
class of the dg vector bundle T\ relative to the dg Lie algebroid T'r¢. More precisely,
given a dg manifold (M, Q) and an affine connection V on M, the degree +1 section of
Ty, ® End(T'r) corresponding to the bundle map At(VMQ) 2Ty ® Tay — T'aq defined by

Atfug)(X,Y) = Lo(VxY) = VegY — ()M Vx(Lo(Y)), VXY €T(Tm),
is a cocycle whose cohomology class
am,q) = [Atdu.g)) € HH(T(TY ® End T)*, Q)

is independent of the choice of the connection V and is called the Atiyah class of the dg
manifold (M, Q).

The Atiyah class of a dg manifold is the obstruction to the existence of connections
compatible with the homological vector field. It was first investigated by Shoikhet [111]
in relation with Kontsevich’s formality theorem and Duflo’s formula.
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The Todd cocycle and the A cocycle of the dg manifold (M, Q) associated with the
affine connection V are the elements

TdY, = Ber 7AtVM i) and AY, = Ber At(VM’Q)
(M,Q) — 1— e Mo (M,Q) — /DA o) _ — (/2 AT o)

of TTj5o (CAPTY))* = [Tjso (2" (M))F.

Their respective cohomology classes td(ay,g) and .Z(M,Q) in [Ti>0 HE((QF (M), Q)
are independent of the choice of the connection V and will be referred to as the Todd
class and the A class of the dg manifold (M, Q), respectively.

Given a finite-dimensional Lie algebra g, consider the dg manifold (M, @), where
M = g[1] and @ is the Chevalley—FEilenberg differential dcg. The following result can be
easily verified using the canonical trivialization Ty = g[1] X g[1].

LEMMA 3.13 ([86]). Let (M,Q) = (g[1],dcr) be the dg manifold arising from a finite-
dimensional Lie algebra g. There are canonical isomorphisms

H*(D(Ty, ® End Th)*, Q) = Hp'(9,9” © 0¥ @ g)
and
HE(QMM)*, Q) = (S*(g"))".
Recall that the Duflo element J € (S(g"))® of a Lie algebra g is the invariant formal

power series on g defined by
1—e ade
J(z) =det| ———
(@) =der 225 )

PROPOSITION 3.14 ([86]). Let (M, Q) = (g[1],dcr) be the dg manifold arising from a
finite-dimensional Lie algebra g.

for all x € g.

o [ts Atiyah class cg(1),dey) 18 precisely the Lie bracket of g regarded as an element of
(6" @0" ©0)" = Hop(o,0" © 0" @) = H (D(TY © End Ta)*, Q).
o Consequently, the isomorphism

[T H @ m)*, Q) = (S(g¥))*
k

maps the Todd class tdg],qcy) onto the Duflo element J € (§(gv))‘3 of g.

EXAMPLE 3.15. Let (21,...,Zm;Tm+1 " Tmtn) be coordinate functions on R™" and
let Q =5, Q Ba be a homological vector field on R™™. The Atlyah 1-cocycle of the

dg manifold (le”, Q) associated with the trivial connection V54, 55— = 0 is then

d 0 0*Qx 3
\L\-H%l _—
At(Rm‘ Q) (&T 8:@) Z Ox;0xj Oxy, (24)

The Atiyah 1-cocycle At(va‘an) captures the components of the homological vector
field @ of second and higher orders. See [106] for more details.
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REMARK 3.16. The Atiyah class of a dg manifold was introduced independently by
Lyakhovich-Mosman—Sharapov [71, footnote 6]. Furthermore, characteristic classes for
tangent bundles of dg manifolds were studied in [92, 71, 70]. It would be interesting to
explore the relation between these characteristic classes and those introduced earlier in
the present paper.

3.5. Example: Atiyah class and dg manifolds associated with integrable distri-
butions. Consider a regular foliation F on a smooth manifold M. The tangent bundle
of F is a subbundle of T, denoted T'x, whose sections are closed under the Lie bracket
of vector fields. Then T C Ty is an integrable distribution and (Tx[1],dr,) is a dg
manifold according to Proposition 2.6. In what follows, we compute the Atiyah class and
Todd class of this dg manifold.

First, let us recall the construction of the Molino class of a foliation F, i.e. the Atiyah
class of the Lie (algebroid) pair (T, Tr) — see [29].

Denote the normal bundle Ty /T to the foliation F by Nx and the conormal bundle
(Ta/Tx)Y by N¥ or T#. The Bott flat Tx-connection on N is defined by

Va'a(l) = q(la,1])), VaeT(TF), L € X(M),

where q : Thy — Tar/Tx denotes the canonical projection. The Chevalley—Eilenberg Lie
algebroid cohomology H&g(T7, M) with coeflicients in a Tr-module 9 coincides exactly
with the leafwise de Rham cohomology H3y (F,9) of the foliation F with coefficients in
the module 9.

Let us choose a splitting j : Nx — T of the short exact sequence of vector bundles
(over M)

%

0 Tr

and a Ths-connection V on Nx extending the Bott Tx-connection on Nz. The associated
Atiyah 1-cocycle
RY € I(M;T# ® T# ® End(NF))

is defined by the relation
RY(X, V)W = VxV;nW = Vi) VxW = Vix oy W,

for all X € I'(Tr) and V,W € I'(Ng). It is simple to check that RV € I'(TY ®
T# ® End(Nz)) is a leafwise de Rham closed 1-form with values in the Tx-module
T# ® End(Nx). Its cohomology class

ATy /TF = [Rv] € H&R(]:a T]-L' ® End(N]:))

does not depend on the choice of j and V. We call it the Molino class of the foliation F or
the Atiyah class of the Lie pair (Tar, Tx) — see [90, 91, 29]. This generalization of Atiyah’s
class for holomorphic vector bundles [2] to the context of connections ‘transverse to a
foliation” was introduced by Molino in [90, 91]. Molino’s class measures the obstruction to
the ‘projectability’ of connections ‘transverse to a foliation,’ i.e. whether the connection
is stable under the parallel transport along any path tangent to the foliation.
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The Todd class of the Lie pair (T, TF) is the cohomology class

ATy /Tx kL
td = det (F,A"T%). 25
Ty /TF € (1 — eXp(_aTM/T_r ) é}o dR ) .7-') ( )

PROPOSITION 3.17 ([30]). Let (M, Q) = (T#[1],dr,) be the dg manifold arising from the
foliation F of the manifold M. Then there exist canonical isomorphisms, for all k > 0
andl > 0,

R H(D((Tm)®F @ (TX)®Y), Q) = Hp (F, (N£)®F @ (N)®!) (26)
such that

L @2 () = 01y /155
2. 2% (td(m,) = tdry, /7 -

It is well known that a complex manifold can be considered as a kind of ‘C-foliation’
of the underlying real smooth manifold. More precisely, given a complex manifold X,
the subbundle ngl of the complexified tangent bundle T% = Tx ® C is an integrable
distribution, and (T%, Ty'") is a Lie algebroid pair (over C) [29]. The Atiyah class of this
Lie pair is precisely the Atiyah class of the holomorphic tangent bundle Tx defined by
Atiyah in [2]. B

Consider the canonical flat T)()(’l—connection V9 on T)I(’0 induced by the holomorphic
vector bundle structure on Tx: a local section of T;(’0 is V%-horizontal if and only if
it is holomorphic. Since TG = T)0<’1 @ T)l(’o, picking any T)lgo—connection V0 on T)l(’0
and adding it to V2, one obtains a T$-connection V = V? + V1.0 on Ty°. The Atiyah
1-cocycle

RY € QY 1(( Ve End( ) (27)

of the complex Lie pair (TS, T)Og ) associated with the connection V is defined by
RY(Z, V)W =VzVyW = Vy VW = V7, W,
for all Z € I‘(T)O(’l) and V,W € F(T)lgo). Its cohomology class
=[RY] € H" (X, End(Tx)) & HY oar(X, Q' @ End(Tx))

does not depend on the choice of VY and is called the Atiyah class of the holomorphic
tangent bundle Tx [2, 55]. Here H>!(X,End(Tx)) denotes the degree (1,1) Dolbeault
cohomology of the holomorphic vector bundle End(Tx) [49, 128]. The Atiyah class of a
holomorphic vector bundle was introduced by Atiyah as the cohomological obstruction
to the existence of a global holomorphic connection [2].

The Todd class of the Lie pair (T, T)O(’l) is the cohomology class

thg/T;I - det(OZTX) @Hk k @Hsheaf X Qk (28)
k>0 k>0

PROPOSITION 3.18 ([30]). Let (M, Q) = (Ty'[1],d) be the dg manifold arising from a
complex manifold X as in Example 2.4. Then there exist canonical isomorphisms, for all

k>0,1>0,
O HO ((D(Tn)®* © (TX0) "), Q) = Hifear (X, (Tx)®* © (1)) (29)
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such that

1. @1’2(04(/\/1,@)) = ary,
2. CI)O”(td(M}Q)) = th)c(/T)O(,l.

REMARK 3.19. Given a compact Kdhler manifold X, we have an isomorphism

@ et (X, Q%) = @H%oc C).

This isomorphism maps the Todd class thc /T of the Lie pair (TX, T ) to the ordinary
Todd class tdx of X. Note that the Kihler condition is crucial here. For an arbitrary
complex manifold, the Todd class tha; /T of the Lie pair (TX, TX’ ) may depend on the
complex structures on X, while the Todd class td x of X is a purely topological invariant
[10, 48].

3.6. Atiyah class and homotopy Lie algebras. A celebrated theorem of Kapranov
states that for a complex manifold X, the complex of sheaves T'x[—1] is a Lie algebra
object in the derived category D(X) of coherent sheaves on X with the Atiyah class ary
playing the role of the Lie bracket [55, 103, 100]. If X is Kahler, Kapranov proved an
even stronger result by describing explicitly an L. [1] algebra structure on the Dolbeault
complex (207‘(T)1(’0). Let us recall it briefly below.

If X is a Kahler manifold, the Levi-Civita connection V*C induces a T;(’O—connection
Vi on T )1(’0 as follows. First, extend the Levi-Civita connection C-linearly to a 7'%-
connection V on T}C(. Since X is Kéhler, the almost complex structure J on X is parallel
and V restricts to a T%-connection on T;(’O. It is easy to check that the induced Tg’l—
connection on T)lgo is the canonical flat connection V? encoding the holomorphic vector
bundle structure on T'x while the induced T;{’O—connection V10 on T;(’O is flat and torsion-
free. Thus V = V2 + V10, Since V0 is torsmn—free, the Dolbeault representative RV of
the Atiyah 1-cocycle belongs to Q01 (S2(Ty 0) ® Ty") — see equation (27).

Let

Ry = RY € Q¥ (S*(T1%)" @ L)
and, for k > 2
Ri1 = d¥' "Ry € QO (SFH(TLY) © TLO).

THEOREM 3.20 ([55, Theorem 2.6]). Given a Kdhler manifold X, the Dolbeault complex
0o ( ) admits a structure of Lo [ | algebra whose unary bracket Ay is the Dolbeault
operator 9 : Q%9 (T°) — QUIHY(TYY) and whose k-th multibracket Ny, for k > 2 is the
composition of the wedge product

QT @ ... 0 QI (TR) — Qe (1))

with the map
Sz j g ’!Y ) Sl \J ceitIn /l 3
07]1+ +]k(( )®k) 0]1+ +3 +]( )

induced by
Ry € Q01 (SH(TX)” © TE") € 00 (Hom((TX)%, 73))

In [62], Theorem 3.20 was extended to all complex manifolds.
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THEOREM 3.21 ([62, Theorem 5.24]). Given a complex manifold X, each torsion-free
T)lgo-connectz'on V0 on T)l{’0 determines an Loo[1] algebra structure on the Dolbeault
complex Q0*(T") such that

o the unary bracket A\ is the Dolbeault operator
9: Q%(Ty") — QU (TR0
e the binary bracket \o is the map
Ao 1 Q01 (T)l(,o) ® Q02 (T)l(,o) N QO,J’1+J’2+1(T)1(,0)
induced by the Dolbeault Ry := RY representative of the Atiyah 1-cocycle;
o for every k > 3, the k-th multibracket \i is the composition of the wedge product
Q01 (T;(’O) Q... QOn (T)l(,o) —y Otk ((T)l(,o)ebk)

0,714+...+7 1,0 0,51 +...+jn+1 1,0
Q sJ1 Jk((/l )®k) 5 Q J1 J ( l )

induced by an element Ry, of QOJ(S”“(T;(’O)v @Ty") C QO (Hom((T5°)®*, Tx")) aris-
ing as an algebraic function of Ry, the curvature of VY0, their higher covariant deriva-
tives, and compositions thereof.

In what follows, following Kapranov [55], we show that the Atiyah 1-cocycle of a dg
manifold gives rise to an interesting homotopy Lie algebra in a similar fashion.

Let (M, Q) be a dg manifold and let V be an affine connection on M.

The Lie derivative along the homological vector field @ is a coderivation of degree +1
of the coalgebra D(M) of differential operators on M:

Lo(Xi-Xn) = Z(_l)IXIH'”HXk’l‘Xl o X[ Q X X1 -+ Xin. (30)
k=1
Transferring Lo from D(M) to I'(S(Tm)) by way of the isomorphism of coalgebras
pbw" — see equation (6), we obtain a coderivation 6V of degree +1 of T'(S(T)):
6V := (pbw"¥) o Lg opbw". (31)
Finally, dualizing 6V, we obtain an operator
DY : T(S(TH)) = T(S(THy))
on
L(S(T%y)) = Homeo (my (C(S(Tm)), C>(M)).
THEOREM 3.22 ([86]). Let (M,Q) be a dg manifold and let V be a torsion-free affine
connection on M.
1. The operator DV, dual to (pbwv)*1 oLgo pbw", is a derivation of degree +1 of the
graded algebra T(S(TY,)) satisfying (DV)* = 0.
2. There exists a sequence (Ri)k>2 of homomorphisms Ry € Hom(S*Tx, Tam[—1]),
whose first term Ry is precisely the Atiyah 1-cocycle At(va\/LQ) and the operator DY
is the sum DV = Lo+ > 1o, Ry, where Ry denotes the C*(M)-linear operator on

~

I'(S(TY,)) induced by Ry,.
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REMARK 3.23. One proves that all R, k > 3, arise as algebraic functions of At(VMQ),
the curvature of V, their higher covariant derivatives, and compositions thereof [106].

As an immediate consequence of Theorem 3.22; we have

COROLLARY 3.24 ([86]). Let (M, Q) be a dg-manifold and let V be a torsion-free affine
connection on M. There exists a sequence (\,)k>2 of maps Ay € Hom(S*(Ta), Tam[—1])
starting with Ag = At(VM’Q) € Hom(S?(Tnm), Ta[—1]) which, together with Ay = Lg :
XE(M) = X(M), satisfy the Loo[1] algebra axioms. As a consequence, the space of vector
fields X(M) on a dg manifold (M, Q) admits an Lo[1] algebra structure with the Lie
derivative Lg as unary bracket A1 and the Atiyah cocycle AtZWQ) as binary bracket \o.

REMARK 3.25. It follows from Theorem 3.22 that DV can be considered as a homological
vector field on T and, therefore, (T, DY) is a dg manifold. Indeed, one should con-
sider (T, DY) as the ‘formal neighborhood’ A(*®) of the diagonal A of the product dg
manifold (M x M, (Q,Q)): the PBW map pbw" is by construction a formal exponential
map identifying T to a ‘formal neighborhood of the diagonal’ of M x M as Z-graded
manifolds and equation (31) asserts that DV is the homological vector field obtained
on T by pullback of the vector field (@, Q) on M x M through this formal exponential
map. The readers are invited to compare Theorem 3.22 with [55, Theorem 2.8.2]. In fact,
the construction in Theorem 3.22 was very much inspired by Kapranov’s construction
[55, Theorem 2.8.2].

We can prove the following

THEOREM 3.26 ([106]). The Atiyah class apm,q) of a dg manifold (M, Q) vanishes if
and only if there exists a torsion-free affine connection V on M such that

pbw" : T(S(Th)) — D(M)

is an isomorphism of dg coalgebras over C*°(M).

4. Kontsevich—Duflo type theorems

4.1. Polyvector fields and polydifferential operators. Let M be a Z-graded man-
ifold over K. We use the symbol (7., (M))? to denote the space of smooth functions
of degree ¢ on M and the symbol (77, (M))? to denote the space (I'(APTx))? =
L (SP (T Pl])[p])q of p-vector fields of degree ¢ on M.! In other words, an element in
(T2 (M) is a finite sum 35 X1 A... A X, where X1, ..., X}, € I'(T) are homogeneous

vector fields on M with |X:|+ ...+ |X,| = ¢. The bigraded left R-module
(Tooty M) = D (T2, (M))*

P,qEZL
p=0

'Note that the symbols (Taoiy(M))? and (D}, (M))? in this paper mean something slightly
different than in [67]. Essentially, there is a degree shift between the conventions used in the two

papers.
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is called the space of polyvector fields on M. We are most interested in the graded left
R-module tot§, (Tpory(M)) defined by

t0t5 (Tpoty (M) = €D (T3, (M)

p+g=n

When endowed with the graded commutator [—,—], the space (7, (M))* =
(Der(R))® of graded derivations of R is a graded Lie algebra. This Lie bracket can be
extended to the space ( (M))® of graded polyvector fields on M in such a way that

the triple

(]
poly

(tOté(%Oly(M))v [_a _]7 /\)
becomes a Gerstenhaber algebra:

[€,m Ana) = [€,m] Ao+ (=1)IS=DImlpn, A e ],

for £ € (Tq,(M))®, m € (T, (M), m2 € (T, (M))* so that [§] = po + go and

|m| = p1 + ¢1. This extended bracket is called Schouten bracket. Note that, under our

degree convention, tot (Tpoly (M))[1] is a graded Lie algebra under the Schouten bracket.
Finally, throwing in the zero differential

0 : tot% (Tpoty (M) — tots (Tpoly (M),
we obtain the dg Gerstenhaber algebra
(tOté(%OIY(M))a 07 [77 7]a /\)

A linear differential operator of degree ¢ on M is a K-linear endomorphism of R that
can be obtained as a finite sum Y X; o... 0 X} of compositions of graded derivations
Xi1,..., X of R with | X1| + ...+ | Xk| = g. We use the symbol (D(M))? to denote the
space of linear differential operators of degree ¢ on M.

The space D, (M) of p-differential operators on M admits a canonical identification

poly
with the tensor product of p copies of the left R-module D(M)[—1]. We use the symbol

(D} 1y (M))? to denote the subspace of Df | (M) consisting of elements of degree p + .
The bigraded left R-module (D}, (M))® = Dp,qez(Dhyy, (M))? is called the space
>0

p/
of polydifferential operators on M. We are most interested in the graded left R-module
totd, (Dpoly (M)) defined by

t0t5 (Dpoty (M) = ) (Db, (M))7.

ptHq=n

As in the classical case, endowing the space of polydifferential operators tot& (Dpoly (M))
with the Gerstenhaber bracket [—, —] and the Hochschild differential

dye = [m, =] : (Dpoyy (M))? = (Dpayy (M))*

poly poly
makes totg, (Dpoly (M))[1] into a differential graded Lie algebra (dgla in short). The tensor
product of left R-modules determines a cup product

(DP (M))T x (P, (M))? =5 (DPEE (M))a+e,

poly poly poly
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which descends to Hochschild cohomology. When endowed with the cup product and the
Gerstenhaber bracket, the cohomology of the cochain complex (tot& (Dpory(M)), d)
becomes a Gerstenhaber algebra [23, Appendix].

For more details, the reader might wish to consult [67, 21, 119].

4.2. Formality and Kontsevich—Duflo type theorem for dg manifolds. Let
(M, Q) be a finite-dimensional dg manifold. Since @ is a homological vector field of
degree +1, it is a Maurer—Cartan element in the dgla of polyvector fields

(tot& (Tpory (M))[1], 0, [, =])-

Therefore, we can consider the tangent dgla at the homological vector field @:

(ot (Tpoty (M))[H) @ = (t0tG (Tpory (M)A, [Q, =], [= —))-

The associated (shifted) cohomology H®(totg(Tpoly(M)), Q) is again a Gerstenhaber
algebra with the associative multiplication induced by the wedge product. Here, by abuse
of notation, we denote the differential [@Q), —] by Q.

PROPOSITION 4.1 ([30]). Let (M, Q) = (Tx[1],dr,) be the dg manifold arising from a
foliation F of the manifold M. Then the isomorphisms ®*° defined in (26) induce an
isomorphism

H* (t0t g, (Tpoly (M)), Q) — Hig (F,ANF). (32)

REMARK 4.2. The hypercohomology group Hg (F, ANx) should be understood as the
space of polyvector fields on the leaf space of the foliation F or the space of transversal
polyvector fields. A priori, it is not obvious whether Hj (F, ANr) admits a Gerstenhaber
algebra structure. However, it turns out that the obvious Gerstenhaber algebra structure
carried by H*®(totg(Tpoy(M)), Q) can be transferred to Hiy (F,ANr) by way of the
isomorphism (32). For more details, see [30, 122, 124, 123, 4] and also [5], where use is
made of Fedosov dg Lie algebroids.

PROPOSITION 4.3 ([30]). Let (M,Q) = (T%'[1],9) be the dg manifold arising from a
complex manifold X as in Evample 2.4. Then the isomorphisms ®*° defined in (29)
induce an isomorphism of Gerstenhaber algebras

H* (tot g (Tpoly (M), Q) =+ HEpear (X, AT).

Likewise, we can consider the tangent dgla at the Maurer—Cartan element () of the
dgla totg, (Dpoty(M))[1] of polydifferential operators:

(tot (Dpoty (M))[1])q = (t0t3 (Ppoty (M))[1], dor + [Q, =], [, ])-

The associated (shifted) cohomology H*®(tot g (Dpoly(M)), ds + Q) is a Gerstenhaber al-
gebra with the cup product as associative multiplication. Again, to simplify the notation,
we denote the differential [Q, —] by Q.

The Hochschild-Kostant-Rosenberg map hkr is the natural inclusion of (7.3, (M))*
into (D}, (M))*® defined by skew-symmetrization:

1
hkr(Xi A... A X)) = o D E(0) Xo) ® .. ® Xo(p),
T oEeS,
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for all homogeneous vector fields X1,..., X, € (T,,,(M))* — the skew Koszul sign

#(0) is the scalar defined by the relation X3 A ... A X}, = k(o) Xoa) A ... A Xp(p). The
Hochschild-Kostant—Rosenberg map is a morphism of double complexes

hkr : (( p.oly(M)).a()? Q) - (( ;.)oly(M)).vd%7 Q) (33)
The following Hochschild—Kostant—Rosenberg theorem for dg manifolds follows from the

HKR theorem for graded manifolds [23, Lemma A.2] and a spectral sequence argument.

PROPOSITION 4.4 ([67]). Let (M, Q) be a finite-dimensional dg manifold. The Hoch-
schild-Kostant—Rosenberg map (33) induces an isomorphism of vector spaces
hkr : H* (totg (Tpoty (M), Q) = H* (totg (Dpoty(M)), dr + Q)
on the cohomology level.
REMARK 4.5. Proposition 4.4 holds for direct sum total cohomology. The analogous

assertion for direct product total cohomology is false; a counterexample can be found
in [25].
The next theorem was conjectured by Shoikhet [111] and was known as the Kontse-

vich—Shoikhet conjecture.

THEOREM 4.6 (Kontsevich-Duflo type theorem for dg manifolds [67]). For any finite-
dimensional dg manifold (M, Q), the composition
bikr o(td ) /2  H(tot, (Tpory (M), Q) =5 H* (t0t 5 Doty (M), dore + Q)

of (i) the action of (td(a1,0))"/? € [0 H*((QF(M))®, Q) on H*(totg(Tpory(M)), Q),
by contraction, with (ii) the Hochschild-Kostant—Rosenberg map (on cohomology) is an
isomorphism of Gerstenhaber algebras.

We also have

THEOREM 4.7 (formality theorem for dg manifolds [67]). Let (M, Q) be a finite-dimen-
stonal dg manifold. Given a torsion-free affine connection V on M, there exists an Ly
quasi-isomorphism of dglas
T : (t0tg (Tpoly (M))[1])@ ~ (t0t (Ppory (M))[1])
with first Taylor coefficient
T; = hkro(Td{, o))" : tot® (Tpety (M))[1] — tots (Dpory (M))[1],

where

(Tdfvg)"? € TTTAMTY))* = TT (@ (M)

k>0 k>0
acts on totg (Tpory (M))[1] by contraction.

A formality theorem for Z-graded manifolds was obtained by Cattaneo—Felder [23],
who applied to the quantization of coisotropic submanifolds of Poisson manifolds.

REMARK 4.8. Given a pair of torsion-free affine connections V and V' on (M, Q) with
corresponding Todd cocycles Td(VM’Q) and Td(VM,Q), there exists an L., automorphism

of the dgla (tot& (Tpoly(M))[1])@ having the operator (Td(VM’Q))_l/2 o (Td(vj\l,l’Q))l/2 as
first Taylor coefficient.
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Theorem 4.7 can be used to study deformation quantization of (0-shifted) derived
Poisson manifolds or P..-manifolds [94, 23, 4].

4.3. Application of the Kontsevich—-Duflo type theorem. Theorem 4.6 can be
specialized to various geometric situations. In particular, we can recover the Kontsevich—
Duflo theorem for Lie algebras [37, 59, 95] and the Kontsevich theorem for complex
manifolds [59, 17] and unify them in a common framework by considering two special
classes of dg manifolds.

4.3.1. Kontsevich—-Duflo theorem for Lie algebras. Let (M, Q) be the dg manifold
(g[1], dck) arising from a finite-dimensional Lie algebra g. By definition,

H*(t0tg, (Dpoty(M)), doe + Q) = HHS(Ag", Ag¥) (34)
is the direct sum Hochschild cohomology of the commutative differential graded algebra
(cdga in short) (AgY,dcg). Following a similar method of Shoikhet [114] using Keller

dg category, or more precisely Keller admissible triple [56], one constructs a canonical
isomorphism of Gerstenhaber algebras [64]

HH?,(Ag", Ag") = HH"(U(s),U(0)). (35)
According to the Cartan—Eilenberg theorem [20, Theorem 5.1],
HH* U(9),U(9)) = Hew(9,U(0)), (36)

as associative algebras where the g-action on U(g) is induced by the adjoint action of g
on g. Thus, by composing isomorphisms (34)—(36), one obtains an isomorphism of asso-
ciative algebras

¢ : H*(totg (Dpory (M), dow + Q) — Heg(e,U(g))- (37)
REMARK 4.9. An explicit chain map from the cochain complex computing
HH3,(Ag¥, AgY) to the cochain complex computing Hep (g, (g)) was constructed in [16,
Theorem 4.10 or indeed Lemma 4.12]. It is however not clear whether the isomorphism

in cohomology induced by the map in [16] and the isomorphism (37) are the same iso-
morphism or not.

PROPOSITION 4.10 ([64]). Let (M, Q) := (g[1],dcr) be the dg manifold corresponding to
a finite-dimensional Lie algebra g. Then the diagrams

H* (t0tg,(Tpoty (M), Q) == H* (tote,(Dpely (M)), de + Q)

ml ¢ |

Heg(g,5(9))

and

H* (tOt@(%oly(M))v Q) — H* (tOtEB(,];’OIY(M))V Q)

Nl lN

Heg(g,5(9)) Heg(g,5(9))

commute and the two vertical maps are isomorphisms of associative algebras.

gi/2
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COROLLARY 4.11 ([64]). Let (M, Q) := (g[1],dcg) be the dg manifold corresponding to
a finite-dimensional Lie algebra g. Then the diagram

1/2

hkrotd(MyQ)

H* (tot (Tooiy (M), Q) H* (tot g (Dyoty (M), dore + Q)

:l l: (38)

Heg(g,5(9)) Heg(g,U(g))

pbw oJ1/2
commutes and its two vertical maps are isomorphisms of associative algebras.
Theorem 4.6, together with Corollary 4.11, thus implies

THEOREM 4.12 (Kontsevich-Duflo theorem for Lie algebras [59, 95]). For every finite-
dimensional Lie algebra g, the map

pbwoJ'/? : Hep(g,5(9)) — Hep(e,U(a))
is an isomorphism of associative algebras.

Restriction of this isomorphism to the subalgebras consisting solely of the cohomology
groups of degree 0 yields the classical Duflo theorem [37]: the composition pbw oJ'/? :
S(g)® — U(g)? is an isomorphism of associative algebras. Duflo’s theorem generalizes a
fundamental result of Harish-Chandra regarding the center of the universal enveloping
algebra of a semi-simple Lie algebra.

REMARK 4.13. Theorem 4.12 is due to Kontsevich [59]. See Pevzner—Torossian [95] for a
detailed proof. (See also Manchon—Torossian [81, 82].) The approach followed in [59, 95]
relies on the formality quasi-isomorphism Tpory (g%)[1] ~> Dpory(g¥)[1] for the dual of a Lie
algebra g and its tangent map at myv, the Lie-Poisson bivector on g¥ seen as a Maurer—
Cartan element of Tpory(gY)[1]. In the present survey, however, we follow Shoikhet’s ap-
proach [111, 113].

4.3.2. Kontsevich theorem for complex manifolds. Let (M,Q) be the dg manifold
(ngl[l],g) arising from a complex manifold X as in Example 2.4. Recall that the
Hochschild cohomology groups HH®*(X) of the complex manifold X are defined as the
groups Extg,  (Oa,0a) [41, 19, 18, 58, 6, 83, 100, 101]. In fact, the Hochschild co-
homology is indeed a Gerstenhaber algebra: its associative multiplication is the Yoneda
product while its Lie bracket is the Gerstenhaber bracket. From the classical Hochschild—
Kostant—Rosenberg map, Gerstenhaber—Schack [41] derived an isomorphism of cohomol-
0gy groups
hkr : HY,..0(X, ATx) — HH*(X).

PROPOSITION 4.14 ([30, 31]). Let (M, Q) = (Tg’l[l},é) be the dg manifold arising from
a complex manifold X. Then the diagrams

H* (totg,(Tpoty (M), Q) === H* (totg,(Dyery (M)), de + Q)

:l lg

H;heaf (X7 ATX) HH® (X)

hkr
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and
1/2
(M,Q)
—

H* (totg (Tpoty(M)), Q) H* (totg (Tpory(M)), Q)

ul lu

H:‘heaf (X7 ATX) /2 H;heaf (X7 ATX)
¢ /Tyt
commute and the two vertical maps are isomorphisms of associative algebras (and indeed
isomorphisms of Gerstenhaber algebras).

COROLLARY 4.15 ([31]). Let (M,Q) = (T%'[1],0) be the dg manifold arising from a
complex manifold X. Then the diagram

hkr o td /2

H* (ot (Tyory (M), Q) S H* (0t (Dpoty (M), de + Q)
y o
H::heaf (Xv ATX) HH. (X)
hkr o tle/Cz/Tm

commutes and its two vertical maps are isomorphisms of associative algebras (and indeed
isomorphisms of Gerstenhaber algebras).

Combining Theorem 4.6 with Corollary 4.15, we recover

THEOREM 4.16 (Kontsevich-Duflo theorem for complex manifolds [59, 17, 67, 68]). For
every complex manifold X, the composition

hkr o(tdype /70.0)"/? : Hijpea (X, ATx) = HH®(X)

is an isomorphism of associative algebras. It is understood that the square root of the
Todd class
k,k ~ k k
th§/T§=1 € @H H(X) = @Hsheaf(xa Q%)
k=0 k=0
acts on HY .¢(X, ATx) by contraction.

REMARK 4.17. The Kontsevich theorem for complex manifolds is due to Kontsevich [59]
— the theorem pertains to the associative algebra structures only. A detailed proof ap-
peared later in [17], where the additional Gerstenhaber algebra structures were also ad-
dressed. The approach followed in the present survey yields a different proof in terms of
dg manifolds [67, 31].

4.4. Kontsevich—Duflo type theorem for dg Lie algebroids. The same way Lie
algebroids can be seen as generalizations of tangent bundles, dg Lie algebroids can be
considered as generalizations of the tangent bundle Ty — M of a dg manifold (M, Q).
In particular, one can make sense of ‘polyvector fields’ and ‘polydifferential operators’ for
dg Lie algebroids just as one does for dg manifolds.

More precisely, a k-vector field on a dg Lie algebroid £ — M is a section of the vector
bundle A¥L — M, while a k-differential operator is an element of (sU(£))®*, the tensor
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product (as left C°°(M)-modules) of k copies of the shifted universal enveloping algebra
sU(L) := U(L)[-1]. Denote by totg, (Fpoly (L)) the graded left R-module defined by

tot (Fpay (L)) = €D (T(APL))Y,
ptg=n

where (I'(APL))? is the space of p-vector fields on £ of degree ¢. Similarly, denote by
totd (Zpoty (L)) the graded left R-module defined by

808 (Zpory (L)) = €D ((sU(L)*P)",
p+g=n
where ((sU(L))®P)4 is understood as the space of p-differential operators on £ of degree g.
It is clear that the differential Q : T'(£) — T'(£) and the homological vector field @
on M extend naturally to a differential
Q: (I'(A*L))* — (D(AFL))*H
of degree (41) and the Lie algebroid structure on £ yields a Schouten bracket
[, =] : T(A“L) @ T(A"L) — T(A“T~1L).
The universal enveloping algebra U(L) of a dg Lie algebroid £ — M is a (left) dg
coalgebra over the differential graded algebra R := C*°(M) [131]. Its comultiplication
A:UL) = UL)RRUL)
is characterized by the identities
Al)=1®1;
AbD)=1®b+b®1, VbeI(L);
Alu-v) = Au) - A(v), Yu,veld(L),
where the symbol - denotes the multiplication in U(L). We refer the reader to [131,

equation (15) and the remark following Definition 3.1] for the precise meaning of the last
equation above. Explicitly, we have

A(by by by) =1@ (by -ba---by)

+ Y Y oy ba) (bo(a) - bo(p) @ (Baprn) -~ bamy) + (b1 by -by) @1,

P+g=ncec&}
p,q€EN

forallby,...,b, € I'(L). Here e(o; by, . .., b,) denotes the Koszul sign of the permutation o
of the homogeneous elements by, ..., b, € I'(£) and & denotes the space of (p, g)-shuffles.
The differential Q : T'(£) — I'(£) and the homological vector field @ : C>*°(M) —
C*°(M) naturally induces a differential Q : U(L) — U(L) of degree (+1), which is
compatible with both the algebra and coalgebra structures on U (L). Indeed, U(L) is a dg
Hopf algebroid over the cdga R := C*°(M). As a consequence, we obtain a differential

Q: (sUL)®F)* — (sU(L)®F)**H
of degree (41) for all k¥ > 0. A Hochschild coboundary differential
dy : sSUL)P* = sU(L)®FH
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and a Gerstenhaber bracket
—] : sUL)P* @ sUL)E” — sUL)Z T (40)

can be defined by the following explicit algebraic expressions:

dyp(u1 ®...0u) = (E)1Qu .. ®uk+z g ® ... @A) ® ... ® up

+(H)n®...0u, 1, (41)
and
[6,9] = dx = (£)ex & € sUL) T, (42)
where ¢ x 1 € U(L)®“T ! is defined by

¢*7JJ=Z(ﬂ:)dl®...®dk,1®(3“_1dk)~w®dk+1®...®du

if p =dy---d, for some dy,...,d, € sU(L). Here A SU(L) = sU(L) @r sU(L) is the
map induced by the coproduct A on U(L).

Again we refer the reader to [131, equation (15) and the remark following Definition
3.1] for the precise meaning of the product (A'=ldy) - in sU(L£)®" appearing in the
last equation above.

PROPOSITION 4.18. Let L be a dg Lie algebroid over M.

o When endowed with the wedge product and the Schouten bracket, the cohomology
H*(totg (Fpoy (L)), Q) is a Gerstenhaber algebra.

o When endowed with the cup product (i.e. the tensor product ®cs(aq)) and the Ger-
stenhaber bracket, the Hochschild cohomology H® (totg(Zpoly (L)), dsw + Q), is a Ger-
stenhaber algebra.

The Kontsevich-Duflo type theorem for dg manifolds (Theorem 4.6) can be extended
to this general context. It suffices to adapt the proof outlined in [67].
Define the Hochschild-Kostant—Rosenberg map

hkr : (T(APL))? — (sU(L)®P)1
by skew-symmetrization:
hkr(X1 A A X)) = = Z o(1) ® - ® Xo(p)
p ocESy

for all homogeneous vector fields X71,..., X, € (I['(A*£))® — the skew Koszul sign (o) is
the scalar defined by the relation X3 A...A X, = k(0)X51)A... A X5 (). The Hochschild—
Kostant—Rosenberg map is a morphism of double complexes

hkr : ((T(A®L))%,0,Q) — ((sU(L)®*)*, dsw, Q). (43)
Therefore it induces a chain map between total complexes

hkr : (t0t68 (Fpoly (£)), Q) = (t0tG (Zpory (£)), do + Q). (44)
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We have the following Kontsevich—-Duflo type theorem for dg Lie algebroids.
THEOREM 4.19. For every dg Lie algebroid L, the composition
hkro(td,)/? : H* (totg (Fpory (L)), Q) = H* (totg(Zpoly (L)), dw + Q)
is an isomorphism of Gerstenhaber algebras. It is understood that
(tde)'/? e [T HM(@(A*LY))*. Q)
k>0
acts on H*(toty(Fholy (L)), Q) by contraction.

REMARK 4.20. While Theorem 4.19 looks similar to [17, Corollary 1.4], it is a very
different result. Theorem 4.19 pertains to dg Lie algebroids, while [17, Corollary 1.4]
applies to Lie algebroids understood as sheaves of Lie-Rinehart algebras — standard
Lie-Rinehart algebras rather than dg Lie-Rinehart algebras.

4.5. Kontsevich—Duflo type theorem for matched pairs. Let (A, B) be a matched
pair of Lie algebroids over K. According to Example 3.6, A[1] & B — A[1] is a dg Lie
algebroid. Denote by (£, Q) the dg manifold (A[1] & B, d3°*). The space of sections of
L — A[1] can be naturally identified with I'(A*AY ® B). The bracket on I'(A®*AY ® B) is
defined in terms of the Bott B-connection on AAY by

(61 ®b1, 6 @ba] = &1 A& ® [br,ba] + & A (V&) @by — (V2™ &) A& @by (45)

for all £;,& € T(A®AY) and by, by € T'(B), while the anchor map I'(A*AY @ B) &
Der(A®AY) is defined by

pesn(n) =€ AV, (46)
for all £, € T(A®*AY) and b € T'(B). Finally, the induced differential Q on the space
of sections of £ — A[1] is the Chevalley—Eilenberg differential d3°* : T(A®*AY ® B) —
['(A*T1AY ® B) corresponding to the Bott A-connection on B. It is clear that

toth (Fpary(£)) = €D T(AYAY ® APB).
ptg=n

Hence the induced differential on tot§ (7,01, (L)), the space of polyvector fields for the
dg Lie algebroid £ — A[1], is the Chevalley—Eilenberg differential

dBot . D(APAY @ APB) — D(ATAY @ APB) (47)

corresponding to the Bott A-connection on AB and the Lie bracket on tot& (Zoly(£))
is the Schouten bracket of the dg Lie algebroid £ — A[1] — essentially the extension of
equations (45) and (46) by the graded Leibniz rule. Hence we obtain the following

LEMMA 4.21 ([5]). Let (A, B) be a matched pair of Lie algebroids, and let L := A[1]® B be
the corresponding dg Lie algebroid over (A[l],da). When endowed with the wedge product
and the Schouten bracket, the cohomology He (A, AB) is a Gerstenhaber algebra, and
we have an isomorphism of Gerstenhaber algebras

H® (totg (Fpory (£)), Q) = Heg (A, AB). (48)

Next, consider the universal enveloping algebra U(L) of the dg Lie algebroid £ — A[1],
which is a dg Hopf algebroid over (I'(A®*AY),d4). It is clear that U (L) 2 T'(A*AY)Q@gU(B)
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and sU(L)®P X T(A*AY) @R U(B)®P, where R = C*°(M). Under this identification, the
differential Q : sU(L)®P — sU(L)®P becomes the Chevalley—Eilenberg differential

d4 - T(A®AY) @rU(B)®? - T(A*T1AY) @ p U(B)®P. (49)
Here the A-module structure on U(B) follows from the canonical identification of U(B)
with % — the Lie algebroid A acts on the latter by multiplication in ¢/ (L) from the

left — and extends to an A-module structure on U(B)®? in the natural way. Moreover,
we have the isomorphism

t0t% (Zpaty(£) = (P T(ATAY) @pU(B)". (50)
p+q=n
Under the isomorphism (50), the total differential Q+d» on tot§,(Zpoly (L)) corresponds
to d4 +id®@dy on @, ,_,T(AIAY) @ U(B)®P, where dy : U(B)®* — U(B)®F ! is
the Hochschild differential for the Lie algebroid B defined by equation (41). Recall that,
the degree of the operator d s being 41, the usual sign convention for the tensor product
of linear maps in the presence of gradings dictates that
(d®@dz)(w@u) = (-1)1w @ dyp(u), Ywecl(AAY), YuclU(B)®".
The cohomology of the total complex
(D r(aY) orU(B),d +idedy )
ptq=e
will be denoted by
B (4, UB)™ 5 U(B)*H).
Summarizing the discussion above, we have the following
LEMMA 4.22 ([5]). Let (A, B) be a matched pair of Lie algebroids, and let £ := A[l]@® B
be the corresponding dg Lie algebroid over (A[l],da). When endowed with the cup prod-
uct and the Gerstenhaber bracket, the Hochschild hypercohomology He.g (A, Z/l(B)®<> LEN

U(B)®°+1) is a Gerstenhaber algebra, and we have an isomorphism of Gerstenhaber al-
gebras

H (10t (Zpory (L)), dow + Q) = Hey (A, U(B)®* 225 1(B)®°TH). (51)

REMARK 4.23. Note that the Gerstenhaber bracket on P, ,,_, ['(A7AY) ®@r U(B)*P
is not the obvious extension of the Gerstenhaber bracket on U(B)®® obtained by ten-
soring with the commutative associative algebra T'(A®*AY). The explicit formula for the
Gerstenhaber bracket is quite complicated and involves the Bott representation of B on
T(A®AY).

PROPOSITION 4.24. Let (A, B) be a matched pair of Lie algebroids, and let L := A[l]® B
be the corresponding dg Lie algebroid over (A[l],da). The diagrams

H* (t0t g, (Fpoty (£)), Q) ——= H* (t0te, (Zpary (L)), de + Q)

| -

Hep (A, AB) ——= Hey (A, U(B)®* 5 u(B)** ")
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and

)2
H* (t0t e (Fpoiy (£)), Q) — 22— H (t0t g (Zpory (L)), dore + Q)

| -

He,;,(A, AB) He g (A, U(B)®° 225 1(B)®°H),

(tdapam a)'/?

commute and the two vertical maps are isomorphisms of Gerstenhaber algebras. Here
tdasn/a € Do HEL (A, A*BY) denotes the Todd class of the matched pair (A, B), i.e.
the Todd class of the Lie pair (A<t B, A) — see equation (54) below.

Combining Theorem 4.19 with Proposition 4.24, we obtain

THEOREM 4.25 (Kontsevich-Duflo type theorem for matched pairs [68]). For every
matched pair of Lie algebroids (A, B), the composition

hkr o(td apap/a) /2 : Heg(A, AB) =5 Heg (A, U(B)®° 22 1(B)®H)

where (td appa)t/? € Di>o HEL(A,A*BY) acts on Hey(A, AB) by contraction, is an
isomorphism of Gerstenhaber algebras.

As an example of matched pair of Lie algebroids, consider a smooth manifold M
(with algebra of smooth functions R := C°°(M)) endowed with an infinitesimal ac-
tion g  a — a € X(M) of a finite-dimensional Lie algebra g, i.e. a g-manifold. Then
(A:=gx M,B:=T)) is a matched pair of Lie algebroids. Its Atiyah class

an/g € Hig(A, BY @ End B) = Hlp (g, T(T); ® End Thy))
is the cohomology class of the Atiyah 1-cocycle
At/ 8 X X(M) = Endg X(M)
corresponding to any affine connection V on M, which is defined by the relation
At]Y/[/g(a,X) =LyoVx —VxoLl;—Vg,x,
for all @ € g and X € X(M). Its Todd class is

OM/g ) k k
td = det € Hig(g, Q% (M)).
M/g <l—exp(—a /g) ;.i CE( ( ))
Note that the Hochschild cochain complex

.= DE (M) 2 DR (M) L

poly poly

of the g-manifold M is a complex of g-modules.
Applying Theorem 4.25 to matched pairs of the type (g x M,Ts), we obtain

THEOREM 4.26 (Kontsevich-Duflo type theorem for g-manifolds [66, 68]). Given a
g-manifold M, the map

hkrotd™? : Hey(g, 7T,

o . d
M/g poly(M)) - HCE (Q,Dgoly(M) i) DO+1 (M))

poly

is an isomorphism of Gerstenhaber algebras. It is understood that the square Toot td}vﬁg of

the Todd class tdyr/y € By_o Hég(g, Q¥ (M)) acts on He g (9: Tpory (M) by contraction.
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4.6. Kontsevich—Duflo type theorem for Lie pairs. In this section, we extend the
Kontsevich-Duflo type theorem for matched pairs (Theorem 4.25) to arbitrary Lie pairs
(L, A), i.e. inclusions ¢ : A — L of Lie algebroids over the same base manifold M.
Though A[1] ® L/A — AJ1] is no longer a dg Lie algebroid in this case, it is still an L
algebroid [4]. Hence, we cannot apply Theorem 4.19 directly to A[1] & L/A — A[l1] as in
the case of a matched pair, but we must first replace the Lo, algebroid A[1]&L/A — A[1]
by a ‘homotopy equivalent’ dg Lie algebroid. The dg Lie algebroid Tapj x1,, L — A[1]
associated to the Lie algebroid morphism ¢ : A — L as described in Section 3.2 is a
natural candidate.

Denoting the algebra of smooth functions on M by R, we set 7. O1y(L/A) =T(A*(L/A))
for £ > 0, and L/A) = B, pOly(L/A) The Bott flat A-connection on L/A is
defined by [29]

poly(

Ve*a(l) = q(la,1]), YaeT(A), L €T(L/A), (52)

where ¢ : L — L/A denotes the canonical projection. The Bott A-connection on L/A
makes every 7%, (L/A) an A-module. We can thus consider the complex of A-modules
with trivial differential

0 ——= T (L/A) —= TL (L/A) —— T2, (L/A) ——= T3, (L/A) ——

oly

The Chevalley-Eilenberg hypercohomology Hgg (A, 7., (L/A)) of the Lie algebroid A
with coefficients in this complex of A-modules is the cohomology of the cochain complex

(tot(D(A®AY) @ Ty (L/A)), d3°).
Similarly, we set D3\ (L/A) = @,_, Dk, (L/A), where

poly oly oly

U(L)
L/A L/A —
poly( / ) 7 poly( / ) M(L)F(A)v
and D’goly(L/A) with & > 1 is the tensor product D} (L/A) ®g ... ®r Dy, (L/A)

of k copies of the left R-module Déo1y(L/A)~ Multiplication in Z/{(L) from the left by
elements of T'(A) induces an A-module structure on the quotient %. This action

oflA on Déoly(L /A) extends naturally to an action of A on ’Dpoly(L /A) for each k. In fact,
D

oty (L/A) is a cocommutative coassociative coalgebra over R whose comultiplication
A D (L/A) - Dpoly(L/A) QR Dpoly(L/A)

is a morphism of A-modules. Therefore the Hochschild complex

poly

doe d
0—— Dpoly(L/A) 4> Déoly(L/A) 4‘%> poly(L/A) 4> poly(L/A) —
determined by the comultiplication A : D} (L/A) — D, (L/A) ®@r D}, (L/A) is a

complex of A-modules. The Chevalley—Eilenberg hypercohomology
Hew (A, Dyory (L/A) 25 Dy} (L/A))

poly poly

*Note that the symbols Tyt (L/A) and D, (L/A) in this paper mean something slightly
different than in [68]. Essentially, there is a degree shift between the conventions used in the two
papers.
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of the Lie algebroid A with coefficients in this complex of A-modules is the cohomology
of the cochain complex
(tot(T(A®AY) ®p Doy (L/A)), d4 +id @d.z ).
We elect to call it the Hochschild cohomology of the Lie pair (L, A).
It is simple to see that Hgg (A, 7, (L/A)) and Hey (A, Dy (L/A) == LEN ngl;(L/A))
are graded commutative associative algebras under the wedge and the cup product, re-
. d
oty (L/A)) nor He(A, Dy, (L/A) =

ngli,(L /A)) has an obvious graded Lie algebra structure. Nevertheless, we prove

PROPOSITION 4.27 ([5]). For any Lie pairs (L, A) both
Hep(A, Toorg (L/A)  and  Heg(A, Doy (L/A) 225 DIEL(L/A))
admit canonical Gerstenhaber algebra structures.

The natural inclusion I'(L/A) — D1

spectively. However, at priori, neither Hg (A, 7;

poly ( poly (

(L/A) extends to a morphism of complexes of

poly
A-modules
hkr : poly(L/A) - Dpoly (L/A)
by skew—symmetrization'
hkr(by A .. Z o)) @bo@) @ . @byny,  Vbi,...,b, € T(L/A).
€S,
The map
id@hkr : (T(A*AY) @g Ty (L/A), d3°",0) = (T(A*AY) @ Dpyy (L/A), d4, +id @d )

is a morphism of double complexes and therefore induces a morphism of hypercohomology
groups

hkr : Hgg (A, L/A)) — Hgg(A, D L/A) = LEN D;;;(L/A)). (53)

The Atiyah class and the Todd class of a Lie pair (L, A) are defined similarly to the
Molino class and the Todd class of a foliation F — see Section 3.5 and [29, 62, 50, 28].

Let us choose a splitting j : L/A — L of the short exact sequence of vector bundles
over M

poly( poly(

q

0 A>T L/A 0

and an L-connection V on L/A extending the Bott A-connection. The associated Atiyah
1-cocycle
RY € T(M; AV @ A @ End(L/A)),

where At = (L/A)V, is defined by
RY(V,Z)W = VvV, (W) = V2 Vv(W) = Viv,z) (W),
for all V € T'(A) and Z,W € T'(L/A). Tt is easily seen that it does not actually depend
on the choice of the splitting j. The cohomology class
arja = [RY] € Hig(A, AT @ End(L/A))

does not depend on the choice of the connection V and is called the Atiyah class of the
Lie pair (L, A) [29]. See also [62, 50].
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The Todd class of the Lie pair (L, A) is the cohomology class

@L/A k kgL
tdpa = det ——LA ) @) HEg (A, AFAL). 54
b= et () €D bl (54)

PROPOSITION 4.28. Let (L, A) be a Lie pair, and let L — M, with £ = Ty X1,, L and
M = A[l], be the dg Lie algebroid associated with the Lie algebroid morphism i: A — L
as in Proposition 3.11. The diagrams

H* (t0tg,(Fpory (L)), Q) — > H*(t0te,(Zpoly (L)), dor + Q)

ui |~

(L/A)) —— Hap(A, Dy, (L/A) 25 DIGL(L/A))

poly

.
HCE(A poly poly

and
(tdp)t/?

H* (totg (Tpoty (£)), Q) —— H*(totg (Fpary(£)), Q)

:i lz

poly(L/A)) — H. (A7 7;)

Hep (4, o e

L/A))

commute and both vertical maps are isomorphisms of Gerstenhaber algebras.
Combining Proposition 4.28 with Theorem 4.19, we obtain

THEOREM 4.29 (Kontsevich-Duflo type theorem for Lie pairs [68]). Given a Lie pair
(L, A), the map
L/A) % Dyl (L/A))

poly

hkrotd!/?, : Heg(A,

L/A* L/A)) = Hgg(A, D

POI}’( poly(

is an isomorphism of Gerstenhaber algebras — the square root of the Todd class tdL/A €

D)o HER (A, AFAL) acts on HEy (A, Tooty(L/A)) by contraction.

REMARK 4.30. Theorem 4.29 was proved in [68] without resorting to the dg Lie algebroid
L — M (with £ = Tapy x1,, L) appearing in Proposition 4.28.

Below we consider two important examples of Lie pairs.

Let F be a regular foliation of a smooth manifold M. Consider the Lie pair (T, Tx).
Let Nz = Ty /T be the normal bundle to the foliation F, and Ny or T }- the conormal
bundle (Tas/Tx)". Then T3, (N7) = Dj=o I'(A¥Nz) can be considered as the space
of polyvector fields transversal to the foliation F [122, 124]. Similarly, D}, (Nr) =
&b k>0 D’;Oly(N 7) can be considered as the space of polydifferential operators transversal
to F. Here DO 1y (N7) denotes the algebra R of smooth functions on the manifold M,

D!y (Nx) denotes the left R-module 77 (?F()T}-) ¥ 5 £§¥()T ; of ‘transverse differential
operators,” and D’;OIY(N}-) denotes the tensor product Dpoly(N]-‘) ®Rr ... QR Dpoly(Nf)

of k copies of the left R-module Dpoly(N 7). (Should there exist a foliatlon F' transverse
to F, the space Dpoly(N 7) would be isomorphic to the space U(T'x ) of leafwise differential
operators in the direction of F'.)
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Theorem 4.29 implies

THEOREM 4.31 (Kontsevich-Duflo type theorem for foliations [68]). Given a regular fo-
liation F on a smooth manifold M, the map

1/2 ° = ° dy
hkrothi\/[/T]: :HdR("T:a 7;)oly(N]:)) - HdR("T:a Dgoly(Nf) = DEZE;(NF))
d1/2

Tyv /TF
(NF)) by con-

is an isomorphism of Gerstenhaber algebras. It is understood that the square root t
of the Todd class tdr,, /7, € @y_o Hig(F, A*Tx) acts on Hyg(F, T,
traction.

oly

Next we consider a Lie algebra pair (g,b), i.e., a Lie algebra g and a Lie subalgebra
i:bh — g. A g-connection on g/h is simply a bilinear map V : g x g/h — g/bh. Let V
be a g-connection on g/h which extends the Bott h-connection: VE°tq(l) = ¢([a,[]), for
all a € h and | € g. Here the map ¢ : g — g/b is the canonical projection. The Atiyah
cocycle associated with V is the bilinear map

RY :h®g/h — End(g/h)
defined by
Rv(a; q(l)) =V,V;-VV, - v[a,l], Vae€ ha le g.
Then the element RY € hY ® h @ End(g/h) is a Chevalley—Eilenberg 1-cocycle for
the Lie algebra b with values in the h-module b+ ® End(g/h). Its cohomology class
Qg/p € Hlp(h, bt ® End(g/h)) is independent of the choice of g-connection V and is
called the Atiyah class of the Lie algebra pair (g, ) [12, 14, 29]. The Todd class of the
Lie algebra pair (g, b) is the corresponding Chevalley—Eilenberg cohomology class
!
td :det<’3”’) € D Hex(h, A" ph).
o/b 1 — exp(—ag/p) g CE
The Bott bh-connection on g/h extends by the Leibniz rule to an h-action on
ooty (8/0) = @y A(g/h). Let gt = APHY @ A4(g/h) — APTHY @ A(g/h) be the
corresponding Chevalley—Eilenberg differential. According to Proposition 4.27, its hy-
percohomology Hey(h, 7,01, (9/h)) is a Gerstenhaber algebra. Similarly, the Lie alge-

bra b acts on D;o1y(9/b) = ubég?h by left multiplication and henceforth it acts on
D[.)oly(g /h) = @k>0(ubé$_)h)®k as well. The Chevalley—Eilenberg differential associated

with this action is denoted by
& APV @ DY, (g/h) — APT'RY © DY (g/h).

Meanwhile, the Hochschild differential d e : D2 (g/h) — DL (g/h) extends to

poly poly

Vet APHY @ DY (g/h) — APhY @ DL (g/b)

poly poly
by graded linearity. According to Proposition 4.27, the corresponding hypercohomology
He., (b, DS, (8/b) dor, potl (g/b)) is a Gerstenhaber algebra.

poly poly
The natural map induced by skew-symmetrization

hkr : tot(A*hY @ A®(g/h)) — tot <A°hv ® <ub({g()g.)h>®.)

is a quasi-isomorphism of cochain complexes.
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Theorem 4.29 implies

THEOREM 4.32 (Kontsevich-Duflo type theorem for Lie algebra pairs [68]). Given a Lie
algebra pair (g,b), the map

hkrotd!e : Heg(h, oo (0/0)) = Heg (b, Digry (9/h) 22 DL (a/b))

is an isomorphism of Gerstenhaber algebras. It is understood that the square root td;ﬁ
of the Todd class tdg/, € @),y Hég (b, A¥(g/h)Y) acts on Heg(h, Tyory (8/)) by contrac-

tion.
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