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GrHDP Solution for Optimal Consensus Control
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Abstract—This paper develops a new online learning consensus
control scheme for multiagent discrete-time systems by goal
representation heuristic dynamic programming (GrHDP) tech-
niques. The agents in the whole system are interacted with
each other through a communication graph structure. Therefore,
each agent can only receive the information from itself and its
neighbors. Our goal is to design the GrHDP method to achieve
consensus control which makes all the agents track the desired
dynamics and simultaneously makes the performance indices
reach Nash equilibrium. The new local internal reinforcement
signals and local performance indices are provided for each agent
and the corresponding distributed control laws are designed.
Then, GrHDP algorithm is developed to solve the multiagent
consensus control problem with the proof of convergence. It is
shown that the designed local internal reinforcement signals are
bounded signals and the local performance indices can mono-
tonically converge to their optimal values. Moreover, the desired
distributed control laws can also achieve optimal. Two simula-
tion studies, including one with four agents and another with ten
agents, are applied to validate the theoretical analysis and also
demonstrate the effectiveness of the proposed method.

Index Terms—Adaptive dynamic programming (ADP), con-
sensus control, goal representation, multiagent systems online
learning, neural networks.

I. INTRODUCTION

CONSENSUS control problems of multiagent systems
has attracted increasing significant attention in recent

years [1]–[5], especially in sensor networks [6], [7], unmanned
aerial vehicles [8], flocking [9], among others. Multiagent
systems [10]–[12] are a group of autonomous systems,
interacting with each other through communication or sens-
ing networks. Such systems can perform certain challenge
tasks which cannot be accomplished by a single agent. In [13],
a distributed secure consensus tracking control problem was
investigated for multiagent systems. The authors established
a hybrid stochastic secure control framework to design a dis-
tributed secure control law. In [14], a networked multiagent
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predictive control scheme was provided for multiagent systems
to achieve output consensus and also compensate for the com-
munication delays and data loss actively. A fully distributed
integrated solution was presented in [15] for multiarea topol-
ogy identification and state estimation problems of power
systems. So far, many of the studies of multiagent systems
focus on solving the optimal consensus control problem based
on accurate system functions and/or models. However, in many
real-world applications, the likelihood to access the complete
knowledge of system functions is either infeasible or very diffi-
cult to obtain. To solve the problem, a learning-based method,
adaptive dynamic programming (ADP), was integrated into
the multiagent systems control designs to approximate the
solution of coupled Hamilton–Jacobi–Bellman (HJB) equa-
tion [16]–[20]. In the literature, the exact information of the
system models was not required and only the input/output data
were used to estimate the optimal solution.
In recent years, ADP techniques have witnessed extensive

studies from both theoretical research and real-world applica-
tions [21]–[26]. Because ADP method is totally data-driven,
which means it can solve the optimal control problems with-
out the information of system functions, this method has been
widely recognized as one of the “core methodologies” to
achieve optimal control for intelligent systems in a general
case [27], [28]. Usually, ADP can be categorized into three
typical schemes: 1) heuristic dynamic programming (HDP);
2) dual HDP (DHP); and 3) globalized DHP (GDHP).
Specifically, the HDP method develops an action network
to approximate the control law and a critic network to
estimate the corresponding performance index or total cost-
to-go in Bellman equation. In [29], the neural-network-based
implementation process of HDP was provided with explicit
backpropagation rules for both action and critic networks.
The authors further analyzed the stability of this method. It
was shown that the estimation errors of the neural network
weights were uniformly ultimately bounded by Lyapunov sta-
bility construct. Many other researches and publications of
HDP design from both theoretical and application studies
were also provided and demonstrated in [22] and [30]–[35].
Later, Werbos went beyond the critic network approximat-
ing just the performance index and further developed two
new schemes: DHP and GDHP. The core idea of DHP is
to design the critic network estimating the derivatives of the
performance index, which have the high quality comparing
with the performance index itself. Moreover, GDHP method
combines the advantage of both HDP and DHP methods and
approximates the performance index and its derivatives at the
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same time. The differences of the learning processes for the
HDP, DHP, and GDHP methods were provided in [21]. The
GDHP method was developed in [36] and [37] for a class of
unknown discrete-time nonlinear systems. The authors also
compared the performance of the HDP, DHP, and GDHP
controller to show that the GDHP method can achieve bet-
ter control performance. Various versions of ADP have been
developed based on these three typical schemes, such as the
action-dependent version and model-dependent version.
Generally, in the traditional ADP method, it is assumed

that the agent knows what the immediate reinforcement sig-
nal is or how the immediate reinforcement signal is computed
as the function of the system states and actions. Recently,
by considering the general-propose reinforcement signals with
the capability of adaptive learning overtime, a series of goal
representation HDP (GrHDP) design was developed to facil-
itate the learning process [38]–[40]. The authors integrated
an additional neural network, goal/reference network, into the
traditional ADP design to generate an internal reinforcement
signal. Reference [41] further proved this designed internal
reinforcement signal could give the agent more information
by considering more distant lookahead. So far, the proposed
GrHDP architecture has been applied to various realistic
and complex control problems, for instance, tracking prob-
lems [42], maze navigation [43], [44], power systems [45],
among others. Furthermore, this idea of goal representation has
been later integrated into the DHP and GDHP design. In [46],
it was shown that the GrDHP method can improve the control
performance on certain nonlinear examples, including power
system examples. The goal representation GDHP (Gr-GDHP)
method was proposed in [47] and the control performance
had been compared with the GrHDP, GrDHP, and GDHP
methods. Moreover, many researchers also followed this trend
and applied the three-network HDP framework from different
aspects [48], [49].
In this paper, motivated by the literature research, we

develop a data-driven GrHDP method to solve the optimal con-
sensus control problem for a class of unknown discrete-time
multiagent systems. In the proposed method, the agent can
only receive the information from itself and its neighbors. The
goal is to make all the follower agents track the desired dynam-
ics (leader). We include the neighbors’ control signals into the
external reinforcement signals for each agent to closely con-
nect the agent with its neighbors. Moreover, we design the
internal reinforcement signals based on the external reinforce-
ment signals to facilitate the learning process. It is shown
that the designed internal reinforcement signals have more
information and therefore they are more effective. The major
contributions of this paper can be summarized as follows. First,
we extend the single-agent GrHDP method to the multiagent
consensus control problems. New local internal reinforcement
signals and local performance indices are designed in con-
sideration of the information from the agent itself and its
neighbors. This is, to our best knowledge, the first time of
designing GrHDP method for multiagent consensus control
problems. Second, Nash equilibrium solution of the proposed
GrHDP method is analyzed. It is proved that the designed new
local performance indices can reach Nash equilibrium. Third,

we develop the iterative GrHDP algorithm for multiagent
systems under communication network structure. The conver-
gence proof of the proposed algorithm is also provided. It is
shown that the designed local internal reinforcement signals
are bounded. The local performance indices and the designed
distributed control laws can converge to the optimal values,
respectively. Forth, we compare our results with the tradi-
tional HDP method. From the comparison, we observe that our
proposed GrHDP method can achieve better performance in
the consensus control process. Neural network techniques are
applied to implement the proposed method. The goal, critic,
and action networks are designed for each agent to estimate
the internal reinforcement signals, performance indices, and
distributed control laws, respectively. The simulation results
show the effectiveness of the proposed method.
The rest of this paper is organized as follows. In Section II,

we define the error dynamics in multiagent consensus con-
trol problems. The relationship between the synchronization
error and the overall tracking error is also provided. The
local internal reinforcement signals and performance indices
are defined and discussed in Section III for the prepara-
tion of the analysis conducted next. The Nash equilibrium
of the designed performance indices is also proved in this
section. The proposed GrHDP algorithm is presented in
Section IV with explicit convergence proof. Then, Section V
develops the neural-network-based implementation process
of the proposed GrHDP design. The simulation results
are presented in Section VI to demonstrate the effec-
tiveness of this method. Finally, Section VII concludes
this paper.

II. SYNCHRONIZATION OF MULTIAGENT

DISCRETE-TIME SYSTEMS

A. Preliminary

Let F = {V, E,A} be a directed graph which is composed
of a nonempty finite set of N vertices V = {v1, v2, . . . , vN},
a set of edge E = {pij = (vi, vj)} ⊆ V × V , and a weighted
adjacency matrix A = [pij] with non-negative adjacency ele-
ments pij ≥ 0. If and only if pij = (vi, vj) ∈ E , then pij > 0,
which means node i can receive information from node j;
otherwise, pij = 0. The set of neighbors of a node vi is
Ni = {vj : (vj, vi) ∈ E}. The in-degree matrix D is defined
as a diagonal matrix D = diag{di} with di =

∑
j∈Ni

pij the
weighted in-degree of node i. Then, the graph Lapalacian
matrix L = D − A. A directed path from node vi to node vr
is described as a sequence of edges vi, vi+1, . . . , vr, such that
(vj, vj+1) ∈ E , j ∈ {i, i+1, . . . , r}. If there is a node v0, called
the leader, such that the directed paths from the leader to any
other nodes are in the graph, we call the graph as a spanning
tree.

B. Synchronization and Node Error Dynamics

Consider the multiagent discrete-time systems with N agents
distributed on communication graph F

xi(k + 1) = Axi(k)+ Biui(k), i = 1, 2, . . . ,N (1)
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where xi(k) ∈ Rn is the state of agent i and ui(k) ∈ Rmi is its
control input. The system matrices A ∈ Rn×n and Bi ∈ Rn×mi

are considered unknown in this paper.
The leader system, which has command generator dynam-

ics, is defined as

x0(k + 1) = Ax0(k) (2)

where x0(k) ∈ Rn is the consensus objective state. Usually, the
leader is only directly connected to a small percentage of the
systems in the multiagent graph.
Our goal is to design the distributed control laws ui(k) for

each agent i using the information only from the agent itself
and its neighbor agents, such that all agent states synchronize
to the leader state, which is limk→∞ ||xi(k)− x0(k)|| = 0, ∀i.

In order to investigate the consensus control problem on
directed graphs, we define the local neighborhood tracking
error as

δi(k) =
∑

j∈Ni

pij
(
xi(k) − xj(k)

)
+ qi(xi(k) − x0(k)) (3)

where qi ≥ 0 is the pining gain of agent i. We have qi > 0 if
agent i is coupled to the leader x0, otherwise, qi = 0.

The overall tracking error vector for the entire multiagent
systems [17], [20] is given by

δ(k) = (L ⊗ In)x(k) − (L ⊗ In)x̄0(k)+ (B ⊗ In)

× (x(k) − x̄0(k))

= ((L+ B) ⊗ In)(x(k) − x̄0(k)) (4)

where L = [lij] ∈ RN×N is the Laplacian matrix, B = [qij] ∈
RN×N is a diagonal matrix with the diagonal elements qii = qi,
⊗ denotes the Kronecker product operator, x̄0(k) = I ⊗ x0
with I = 1 ⊗ In, In is an n × n identity matrix, and 1 is an
N-dimensional vector of ones.
Equation (4) can be further rewritten as

δ(k) = ((L+ B) ⊗ In)η(k) (5)

where

η(k) = x(k) − x̄0(k) (6)

is the global disagreement vector or the synchronization error
vector. Note that if the graph contains a spanning tree and
qi += 0 for a leader node, then (L+ B) is nonsingular.

Now, consider (4) and (6), we can summarize the relation-
ship between the synchronization error η(k) and the overall
tracking error δ(k) in Lemma 1.
Lemma 1 [16]: Let (L + B) be nonsingular. Then the

synchronization error is bounded by

η(k) ≤ ‖δ(k)‖
λmin(L+ B)

(7)

where λmin(L+B) is the minimum singular value of (L+B).
From Lemma 1, we know when ‖δ(k)‖ → 0, ||η(k)|| → 0.

This means the synchronization error can be made arbi-
trarily small by making the neighborhood tracking errors
small.

The dynamics of the local neighborhood tracking error for
agent i are defined as

δi(k + 1) =
∑

j∈Ni

pij
(
xi(k + 1) − xj(k + 1)

)

+ qi(xi(k + 1) − x0(k + 1)). (8)

It can be further rewritten as

δi(k + 1) = Aδi(k)+ (di + qi)Biui(k) −
∑

j∈Ni

pijBjuj(k) (9)

where di = ∑
j∈Ni

pij. These tacking error dynamics are
interacting dynamical systems driven by the control action of
agent i itself and all of its neighbors. Our goal is to minimize
the local neighborhood tracking error δi(k), which according
to Lemma 1 will guarantee approximate synchronization.

III. NASH EQUILIBRIUM SOLUTION

ON GRHDP TECHNIQUE

In this section, GrHDP method is designed to solve the
consensus control problem. Based on the error dynamics (9),
we define the local internal reinforcement signals, local
performance indices, and distributed control laws for each
agent. Then, Nash equilibrium is discussed and the designed
control laws are proved to provide Nash equilibrium solution
for the multiagent dynamic systems.

A. Bellman Equation of GrHDP Method Under
Communication Graphs

In the GrHDP method, we design the internal reinforcement
signals to help the systems achieve their goals. Here, we define
the local internal reinforcement signals [38], [39], [41] as

si(δi(k)) =
∞∑

m=k

αm−kri(δi(m), ui(m), u−i(m))

= ri(δi(k), ui(k), u−i(k))+ αsi(δi(k + 1)) (10)

where u−i(k) = {uj(k)|j ∈ Ni} is the control actions from
the neighbors of agent i, 0 < α < 1 is the discount factor,
and ri(δi(k), ui(k), u−i(k)) = δTi (k)Qiiδi(k) + uTi (k)Riiui(k) +∑

j∈Ni
uTj Rijuj(k) is the external reinforcement signal with

Qii > 0, Rii > 0, and Rij > 0, which are all positive symmetric
weighting matrices.
It can be observed that the designed local internal reinforce-

ment signals si(δi(k)) contain the information of future exter-
nal reinforcement signals ri(k + 1), ri(k + 2), . . . Comparing
with the traditional HDP method which only provides one sin-
gle external reinforcement signal to the agent, these designed
internal reinforcement signals can give us more information by
considering more distant lookahead. This means the internal
reinforcement signals look forward in time to the future infor-
mation for each state visited and therefore these signals are
more effective.
Then, the local performance indices are given by

Ji(δi(k)) = si(δi(k))+ γ Ji(δi(k + 1)) (11)

where 0 < γ < 1 is the discount factor.
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From (10) and (11), we notice that both local internal
reinforcement signals and local performance indices use the
information only from agent i itself and its neighbors. Our
goal is to design the optimal distributed control laws to mini-
mize the local performance indices (11) to make all the agents
achieve consensus with the target state x0.

Definition 1 [22]: The control laws ui(k) for ∀i are said to
be admissible if they do not only stabilize the systems (9), but
also guarantee that performance indices (11) are finite.
Based on Bellman optimality principle, the optimal local

performance indices J∗
i (δi(k)) satisfy the coupled discrete-time

HJB equation

J∗
i (δi(k)) = min

ui(k)

{
si(δi(k))+ γ J∗

i (δi(k + 1))
}

(12)

where

si(δi(k)) = ri(δi(k), ui(k), u−i(k))+ αsi(δi(k + 1)) (13)

are the local internal reinforcement signals.
Therefore, the local optimal distributed control laws can be

described as

u∗
i (k) = argmin

ui(k)

{
si(δi(k))+ γ J∗

i (δi(k + 1))
}
. (14)

Note that, from (12), the designed distributed control law
decides what is the best strategy to combine the local internal
reinforcement signals, which contain the information of future
external reinforcement signals. Assume that an agent i is
standing on a given state, first calculating the local internal
reinforcement signals si(k) for all the possible local distributed
control actions to provide the adaptive and effective informa-
tion, then determining which is the optimal control action
according to the discounted cumulative local internal rein-
forcement signals, which is the local performance index Ji(k).

B. Nash Equilibrium Analysis

Definition 2: A sequence of N control laws {u∗
1, u

∗
2, . . . , u

∗
N}

is refer to as a global Nash equilibrium solution for an N
multiagent system, if for all i ∈ N

J∗
i ! Ji

(
u∗
i , u

∗
ī

)
" Ji

(
ui, u∗

ī

)
(15)

where uī denote the actions of all the other agents in the
graph excluding i, namely uī = {uj|j ∈ N, j += i}. The N-
tuple {J∗

1 , J
∗
2 , . . . , J

∗
N} is called the Nash equilibrium of the

N-player game.
According to Definition 2, the coupled discrete-time HJB

equation can be expressed as

J∗
i (δi(k)) = si

(
δi(k), u∗

i (k), u
∗
−i(k)

)
+ γ J∗

i (δi(k + 1)) (16)

where

si
(
δi(k), u∗

i (k), u
∗
−i(k)

)
= ri

(
δi(k), u∗

i (k), u
∗
−i(k)

)

+ αsi
(
δi(k + 1), u∗

i (k + 1), u∗
−i(k + 1)

)
.

(17)

Now, we will prove that the designed control laws which
are given in terms of the solutions of (16) provide Nash
equilibrium solution for the multiagent systems.

Theorem 1: Let the graph contains a spanning tree with at
least one nonzero pining gain. For ∀i, if J∗(δi(k)) is a solu-
tion of the coupled discrete-time HJB equation (16) with the
local internal reinforcement signals (17), and the optimal dis-
tributed control laws u∗

i (k) in (14), then all agents are in Nash
equilibrium.
Proof: We can further rewrite (11) and (16) as

Ji(δi(k)) = si(δi(k), ui(k), u−i(k))+ γ Ji(δi(k + 1))

=
∞∑

l=k

γ l−ksi(δi(l), ui(l), u−i(l)) (18)

and

J∗
i (δi(k)) = si

(
δi(k), u∗

i (k), u
∗
−i(k)

)
+ γ J∗

i (δi(k + 1))

=
∞∑

l=k

γ l−ksi
(
δi(l), u∗

i (l), u
∗
−i(l)

)
. (19)

Subtract (18) from (19), it follows:

J∗
i (δi(k)) − Ji(δi(k)) =

∞∑

l=k

γ l−ksi
(
δi(l), u∗

i (l), u
∗
−i(l)

)

−
∞∑

l=k

γ l−ksi(δi(l), ui(l), u−i(l)).

(20)

Since the optimal local performance index for each agent
is the minimal value, such that J∗

i (δi(k)) − Ji(δi(k)) ≤ 0.
Therefore, we have
∞∑

l=k

γ l−ksi
(
δi(l), u∗

i (l), u
∗
−i(l)

)
−

∞∑

l=k

γ l−ksi(δi(l), ui(l), u−i(l)) ≤ 0.

(21)

This means

Ji
(
u∗
i , u

∗
ī

)
" Ji

(
ui, u∗

ī

)
. (22)

According to Definition 2, all the agents are in Nash equilib-
rium, which completes the proof. #

IV. GRHDP-BASED OPTIMAL CONSENSUS CONTROL

In this section, GrHDP algorithm for multiagent systems is
first provided to estimate si(δi(k)), Ji(δi(k)), and ui(k), respec-
tively. Then, the convergence proof of the proposed algorithm
is also presented. It is an extension from the single-agent HDP
algorithm to the multiagent dynamic systems.

A. GrHDP Algorithm for Multiagent Systems

Step 1: Start with arbitrary initial admissible control laws
u0i (k).

Step 2: Once the iterative control laws uli(k), ∀i, are deter-
mined, solve for sl+1

i (δ(k)) by using the following equation:

sl+1
i (δi(k)) = ri

(
δi(k), uli(k), u

l
−i(k)

)
+ αsli(δi(k + 1))).

(23)

Step 3: Then, the iterative performance indices are solved by

Jl+1
i (δi(k)) = sl+1

i (δi(k))+ γ Jli(δi(k + 1)). (24)
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Step 4: Update the control laws as

ul+1
i (k) = argmin

ui(k)

{
si(δi(k))+ γ Jli(δi(k + 1))

}
. (25)

Step 5: On convergence of ‖Jl+1
i (δi(k)) − Jli(δi(k))‖ end.

Else, let l = l+ 1 and go back to step 2.
Note that, the proposed GrHDP algorithm is an incremental

optimization process which is implemented forward in time
and online. The following section provides the convergence
of this GrHDP algorithm.

B. Convergence Analysis of GrHDP Algorithm

Theorem 2: Assume there exist admissible control laws
ui, ∀i. Let the local internal reinforcement signals sli(δi(k)),
performance indices Jli(δi(k)), and distributed control laws
uli(k) for all the agents be updated by (23)–(25), respectively.
Then:
1) the sequence Jli(δi(k)) for each agent is monotonic

convergence;
2) there exist finite upper bounds M and U for sequences

sli(δi(k)) and Jli(δi(k)), i.e., 0 ≤ sli(δi(k)) ≤ M and 0 ≤
Jli(δi(k)) ≤ U.

Proof: For ∀i and ∀l, consider the sequence which is
given by

& l+1
i (δi(k)) = τ l+1

i (δi(k))+ γ& l
i (δi(k + 1)) (26)

where

τ l+1
i (δi(k)) = ri

(
δi(k), µl

i(k), µ
l
−i(k)

)
+ ατ li (δi(k + 1)))

(27)

in which µl
i(k) and µl

−i(k) are the given arbitrary stabiliz-
ing and admissible control laws for agent i and its neighbors,
ri(δi(k), µl

i(k), µ
l
−1(k)) = δTi (k)Qiiδi(k) + µT

i (k)Riiµi(k) +∑
j∈Ni

µT
j Rijµj(k).

Notice that, uli(k) is any stabilizing and admissible con-
trol sequence and minimizes the right-hand side of (24).
Hence, by setting τ 0i = s0i = 0, &0

i = J0i = 0, we have
0 ≤ Jli(δi(k)) ≤ & l

i (δi(k)). In the following part, we will show
that Jl+1

i (δi(k)) ≥ & l
i (δi(k)) by mathematical induction.

Starting with l = 0 and setting τ 0i = s0i = 0, &0
i = J0i = 0,

it yields

J1i (δi(k)) − &0
i (δi(k)) = s1i (δi(k))

= ri
(
δi(k), u0i (k), u

0
−i(k)

)

≥ 0 (28)

which means J1i (δi(k)) ≥ &0
i (δi(k)).

Now, assume that there exists Jli(δi(k)) ≥ & l−1
i (δi(k)) for

the (l−1)th iteration step. Then, by setting the stabilizing and
admissible control law µl−1

i = uli(k) and the summation of

external reinforcement signal τ li (k + 1) = sli(δi(k)). We have

& l
i (δi(k)) = ri

(
δi(k), uli(k), u

l
−i(k)

)

+ αsli(δi(k + 1))+ γ& l−1
i (δi(k + 1)). (29)

Consider (23) and (24), it follows:

Jl+1
i (δi(k)) = ri

(
δi(k), uli(k), u

l
−i(k)

)

+ αsli(δi(k + 1))+ γ Jli(δi(k + 1)). (30)

Hence, by subtracting (29) from (30), we obtain

Jl+1
i (δi(k)) − & l

i (δi(k))

= γ
(
Jli(δi(k + 1)) − & l−1

i (δi(k + 1))
)

≥ 0. (31)

This indicates that Jl+1
i (δi(k)) ≥ & l

i (δi(k)), ∀i. Combining
with the conclusion that 0 ≤ Jli(δi(k)) ≤ & l

i (δi(k)), we
obtain 0 ≤ Jli(δi(k)) ≤ & l

i (δi(k)) ≤ Jl+1
i (δi(k)), namely,

0 ≤ Jli(δi(k)) ≤ Jl+1
i (δi(k)). Hence, the sequence Jli(δi(k)) is

a monotonically nondecreasing sequence. This completes the
proof of part (1).
Notice that the sequence Jli(δi(k)) is positive and monoton-

ically nondecreasing. Hence, we can conclude that

0 ≤ Jli(δi(k)) ≤ J∞
i (δi(k)). (32)

Set σi(k) and σ−i(k) be any stabilizing and admissible con-
trol laws for agent i and its neighbors. A new sequence φ is
defined as

φl+1
i (δi(k)) = ri(δi(k), σi(k), σ−i(k))+ αφl

i(δi(k + 1)).

(33)

We can further rewrite (33) as

φl+1
i (δi(k)) = ri(δi(k), σi(k), σ−i(k))+ αφl

i(δi(k + 1))

= ri(δi(k), σi(k), σ−i(k))

+ αri(δi(k + 1), σi(k + 1), σ−i(k + 1))

+ α2φl−1
i (δi(k + 2))

...

= ri(δi(k), σi(k), σ−i(k))

+ αri(δi(k + 1), σi(k + 1), σ−i(k + 1))

+ . . .+ αlri(δi(k + i), σi(k + i), σ−i(k + i))

+ αl+iφ0
i (δi(k + i+ 1)) (34)

with φ0
i (δi(k + i+ 1)) = 0.

Therefore,

φl+1
i (δi(k)) =

l∑

m=0

αmri(δi(k + m), σi(k + m), σ−i(k + m))

=
i+k∑

m=k

αm−kri(δi(m), σi(m), σ−i(m))

≤
∞∑

m=k

αm−kri(δi(m), σi(m), σ−i(m)). (35)
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Then ∀l, we have

φl+1
i (δi(k)) ≤

∞∑

m=k

αm−kri(δi(m), σi(m), σ−i(m)). (36)

By setting σ l
i (k) = uli(k), σ l

−i(k) = ul−i(k), φl
i(δi(k + 1)) =

sli(δi(k + 1)), we have

sl+1(δi(k)) ≤
∞∑

m=k

αm−kri(δi(m), σi(m), σ−i(m)). (37)

Define M = ∑∞
m=k αm−kri(δi(m), σi(m), σ−i(m)), and hence

sli(δi(k)) ≤ M. Because sequence sli(δi(k)) is positive definite,
then 0 ≤ sli(δi(k)) ≤ M, which completes the conclusion that
M is the upper bound of sequence sli(δi(k)).

Now, we will show there also exists an upper bound for
sequence Jli(δi(k)). Rewrite (24) as

Jl+1
i (δi(k)) = sl+1

i (δi(k))+ γ Jli(δi(k + 1))

= sl+1
i (δi(k))+ γ sli(δi(k + 1))+ γ 2Jl−1

i (δi(k + 2))
...

= sl+1
i (δi(k))+ γ sli(δi(k + 1))

+ · · · + γ lsii(δi(k + i))+ γ i+1J0i (δi(k + i+ 1))

=
k+i∑

m=k

γm−ksl+k−m
i (k). (38)

Because sli(δi(k)) ≤ M, it yields that

Jl+1
i (δi(k)) ≤

∞∑

m=k

γm−kM. (39)

Define U = ∑∞
m=k γm−kM, such that 0 ≤ Jli(δi(k)) ≤ U.

Note that both M and U are determined by the admissible and
stabilizing control laws σi(k) and σ−i(k). This means when
l → ∞, it follows δi(k) → 0, σi(k) → 0, σ−i(k) → 0.
Therefore limk→∞ ri(δi(k), σi(k), σ−i(k)) = 0, indicating that
M and U are finite values. Therefore, the proof of part (2)
is completed. #
Theorem 2 proves that both internal reinforcement signal

sequence sli(δi(k)) and performance index sequence Jli(δi(k))
exist upper bounds. Furthermore, the local performance index
sequence Jli(δi(k)) is also monotonically nondecreasing. This
means sli(δi(k)) and Jli(δi(k)) cannot go infinity. Next theorem
proves that sequences Jli(δi(k)) and uli(k) will converge to their
optimal values, respectively, when l → ∞.
Theorem 3: For ∀i and ∀l, let sequences sli(δi(k)) and

Jli(δi(k)) be computed as (23) and (24). The arbitrary admis-
sible control laws are given as (25). Then, as l → ∞,
Jli(δi(k)) and uli(k) will converge to their optimal values,
namely, Jli(δi(k)) → J∗

i (δi(k)) and uli(k) → u∗
i (k).

Proof: Define another new performance index sequence
*l

i(δi(k)) as

*l+1
i (δi(k)) = φl+1

i (δi(k))+ γ*l
i(δi(k + 1)) (40)

where φl+1
i (δi(k)) is defined in (33). According

to (26) and (27), we know Jli(δi(k)) ≤ *l
i(δi(k)) by

setting τ li (δi(k)) = φl
i(δi(k)) and & l

i (δi(k)) = *l
i(δi(k)). We

further obtain

Jl+1
i (δi(k))

≤ φl+1
i (δi(k))+ γφl

i(δi(k + 1))+ γ 2φl−1
i (δi(k + 2))+ . . .

=
l∑

t=0

γ t+k

(
l−k∑

m=k

αm−kri(δi(m+ k), σi(m+ k), σ−i(m+ k))

)

.

(41)

Let l → ∞, it yields

J∞
i (δi(k))

≤
∞∑

t=0

γ t+k

( ∞∑

m=k

αm−kri(δi(m+ k), σi(m+ k), σ−i(m+ k))

)

= G(δi(k), σi(k), σ−i(k)). (42)

Let σi(k) = u∗
i (k), σ−i(k) = u∗

−i(k), then

J∞
i (δi(k)) ≤ G

(
δi(k), u∗

i (k), u
∗
−i(k)

)
= J∗

i (δi(k)). (43)

On the other hand, since J∗
i (δi(k)) is the optimal

performance index and the sequences Jli(δi(k)) is monotoni-
cally nondecreasing, we can also attain

J∗
i (δi(k)) ≤ J∞

i (δi(k)). (44)

Combining (43) and (44), it follows:

J∗
i (δi(k)) = lim

l→∞
Jli(δi(k)) = J∞

i (δi(k)). (45)

Now let us consider the convergence of the control law.
Based on (25), we have

u∞
i (k) = argmin

ui(k)

{
si(δi(k))+ γ J∞

i (δi(k + 1))
}

(46)

u∗
i (k) = argmin

ui(k)

{
si(δi(k))+ γ J∗

i (δi(k + 1))
}
. (47)

Therefore, we can obtain that limi→∞ uli(k) = u∗
i (k) if (45)

holds. This completes the conclusion. #
Theorem 3 shows that the sequence Jli(δi(k)) can mono-

tonically converge to the optimal solution, which means this
algorithm can be used to solve the discrete-time HJB equa-
tion (12). Furthermore, the designed control law sequence
uli(k) can also converge to the optimal value. This means the
error dynamics δi(k) in (9) can be driven to the optimal state,
which is zero in this paper. According to Lemma 1, we also
have η(k) → 0 as δ(k) → 0, which means all the agents will
synchronize to the leader dynamics (2). In the next section,
the neural-network-based GrHDP implementation is explicitly
developed.

V. NEURAL-NETWORK-BASED IMPLEMENTATION

FOR MULTIAGENT SYSTEMS

This section provides the neural-network-based implemen-
tation process of the GrHDP algorithm. Comparing with the
traditional adaptive critic design [21], [29], [50], an additional
neural network, goal network, is integrated to facilitate the
learning process. Hence, the proposed architecture contains
three neural networks for each agent, namely action network,
critic network, and goal network. The action network is
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designed to approximate the optimal control laws. Its structure
is kept as the same as in [21], [29], and [50]. The goal network
is developed to generate the internal reinforcement signals
si(δi(k)), which have the information of future external rein-
forcement signals. To closely connect the goal network with
the critic network, we also set si(δi(k)) to be included within
the input of the critic network to help estimate the correspond-
ing performance indices. All the neural networks designed in
this paper are three-layer neural networks. Furthermore, to
avoid using the model network, one step is set backward in the
implementation. The following sections provide the explicit
learning rules of these three neural networks.

A. Goal Network Design

In the traditional HDP design, an instant reward signal is
assigned from the environment which, in this paper, is called
the external reinforcement signal. In this paper, a goal network
is integrated into the traditional HDP design to generate an
internal reinforcement signal. According to the online algo-
rithm in [38] and [41] for single-agent system, we define the
local internal reinforcement signals for multiagent systems as

si(δi(k)) = Y
(
ωT
g2i(k) · Y

(
ωT
g1i(k) · Zgi(k)

))
(48)

where Zgi(k) is the goal network input of agent i and it is a vec-
tor of the information from δi(k), ui(k), and u−i(k), and ωg1i(k)
and ωg2i(k) denote the input-to-hidden and hidden-to-output
layer weights, respectively, of the goal network. Moreover, Y
is a sigmoid function with the definition as

Y(x) = 1 − e−x

1+ e−x . (49)

Note that the purpose of the sigmoid function is to constrain
the output into [−1, 1]. In the goal network, we apply the
sigmoid function on both hidden and output layer nodes.
The error function of goal network for agent i is denoted as

egi(k) = αsi(δi(k)) −
[
si(δi(k − 1))

− ri(δi(k − 1), ui(k − 1), u−i(k − 1))
]
.

(50)

To update the neural network weights is to minimize the
following objective function:

Egi(k) =
1
2
eTgi(k)egi(k). (51)

Gradient descent method is adopted to minimize (51). Then,
we obtain the goal network weights updating rules for agent
i as

ωl+1
gi (k) = ωl

gi(k) − βgi

(
∂Egi(k)
∂ωgi(k)

)
(52)

where 0 < βgi < 1 is the goal network learning rate. Here,
we apply ωgi(k) to represent both ωg1i(k) and ωg2i(k). Based
on the chain-backpropagation rules, we derive that

∂Egi(k)
∂ωgi(k)

= ∂Egi(k)
∂si(δi(k))

∂si(δi(k))
∂ωgi(k)

= α · egi(k) ·
∂si(δi(k))
∂ωgi(k)

. (53)

Notice that, in the implementation process, (52) needs to be
calculated in a component-by-component fashion.
We can further drive the term ∂si(δi(k))/∂ωgi(k) for the

weights between the hidden and output layers as

∂si(δi(k))
∂ωg2i(k)

= 1
2

(
1 − s2i (δi(k))

)
Ygi (54)

and for the weights between the input and hidden layers as

∂si(δi(k))
∂ωg1i(k)

= 1
2

(
1 − s2i (δi(k))

)
ωT
g2i(k) ·

1
2

(
1 − Y2

gi

)
Zgi(k)

(55)

where Ygi = Y(ωT
g1i(k) · Zgi(k)).

B. Critic Network Design

The local performance index Ji(δi(k)) for each agent is
estimated by the critic network. Set the input-to-hidden layer
weights as ωc1i(k) and the hidden-to-output layer weights as
ωc2i(k), then

Ji(δi(k)) = ωT
c2i(k)Y

(
ωT
c1i(k) · Zci(k)

)
(56)

where Zci(k) is the input of the critic network and it is a vector
of δi(k), ui(k), u−i(k), and si(δi(k)). Note that we include the
local internal reinforcement signal si(δi(k)) into the input of
the critic network to closely connect the goal network and the
critic network.
The objective function of the critic network can be

described as

eci(k) = γ Ji(δi(k)) − [Ji(δi(k − 1)) − si(δi(k − 1)] (57)

Eci(k) =
1
2
eTci(k)eci(k). (58)

We notice that it is the internal reinforcement signal si(δi(k))
applied to the critic network rather than the (external) rein-
forcement signal ri(δi(k), ui(k), u−i(k)) in literature. Based
on the graduate decent rules, we update the critic network
weights as

ωl+1
ci (k) = ωl

ci(k) − βci

(
∂Eci(k)
∂ωci(k)

)

= ωl
ci(k) − βci

(
∂Eci(k)

∂Ji(δi(k))
∂Ji(δi(k))
∂ωci(k)

)
(59)

where 0 < βci < 1 is the critic network learning rate. Here,
ωci(k) is applied to express both ωc1i(k) and ωc2i(k).

The term ∂Eci(k)/∂Ji(δi(k)) in (59) can be directly obtained
as γ eci(k). Then, term ∂Ji(δi(k))/∂ωci(k) is derived as follows:
for hidden-to-output layer

∂Ji(δi(k))
∂ωc2i(k)

= Yci (60)

and input-to-hidden layer

∂Ji(δi(k))
∂ωc1i(k)

= 1
2
ωT
c2i(k)

(
1 − Y2

ci

)
Zci(k) (61)

where Yci = Y(ωT
c1i(k) · Zci(k)).
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C. Action Network Design

The distributed control laws are approximated by the action
network as

ui(k) = Y
(
ωT
a2i(k) · Y

(
ωT
a1i(k) · δi(k)

))
(62)

where δi(k) is the local tracking error and is also the action
network input for each agent, ωa1i are the action network
weights from the input to the hidden layer, and ωa2i(k) are the
action network weights from the hidden to the output layer.
The sigmoid function is applied to both hidden and output
layer.
Realize that the goal of the control laws are to minimize

the performance index. Therefore, we set the error function
as the difference between Ji(δi(k)) and the desired ultimate
cost-to-go objective

eai(k) = Ji(δi(k)) − Uc (63)

where Uc is the ultimate utility function. Here, since at the
optimal equilibrium, both tracking errors δi(k) and control
signals ui(k) will be drive to zero, we assume Uc = 0.

The objective function of the action network can be there-
fore denoted as

Eai(k) =
1
2
eTai(k)eai(k). (64)

The weights updating rule is derived based on the gradient
descent method as

ωl+1
ai (k) = ωl

ai(k) − βai

(
∂Eai(k)
∂ωai(k)

)

= ωl
ai(k) − βai

(
∂Eai(k)

∂Ji(δi(k))
∂Ji(δi(k))

∂ui(k)
∂ui(k)
∂ωai(k)

)

= ωl
ai(k) − βai · eai(k) ·

1
2

(
1 − Y2

ci

)
ωc1i,u(k)

∂ui(k)
∂ωai(k)

(65)

where 0 < βai < 1 is the action network learning rate and
ωc1i,u(k) is the input-to-hidden layer weights of the critic
network corresponding to input ui(k). ωai(k) represents both
ωa1i(k) and ωa2i(k). We have ∂ui(k)/∂ωa2i(k) = 1/2(1 −
u2i (k))Yai for hidden-to-output layer, and ∂ui(k)/∂ωa1i(k) =
1/2(1−u2i (k))ω

T
a2i ·1/2(1−Y2

ai)δi(k), where Yai = Y(ωT
a1i(k) ·

δi(k)).
In this GrHDP design, the training process is in the order of

the goal network, the critic network, and the action network.
Specifically, for each agent i, after the weights ωg1i and ωg2i of
the goal network are learned, we fix them thereafter and start
to train the weights ωc1i and ωc2i of the critic network. Then,
we fix ωc1i and ωc2i and start to train the weights ωa1i and ωa2i
of the action network. In this learning process, the informa-
tion of the explicit system functions are not required. There
is also no any identification scheme needed. Only the state
and control input data of the current and past time steps are
used. This is important since the exact information of system
functions are difficult to obtain in many practical situations.
Furthermore, this learning process is conducted online with
adaptive capability, so that the optimal control laws can still
be determined when the system parameters are changed. In
the next section, simulations have shown the effectiveness of
this method.

Fig. 1. Communication network structure of four-agent dynamic system.

Fig. 2. Dynamics of the leader and follower agents.

VI. SIMULATION STUDY

A. Four-Agent System

First, we consider a four-agent system with the communi-
cation network structure shown in Fig. 1. The plant and input
matrices for each agent are provided as

A =
[
0.9801 −0.1987
0.1987 0.9801

]

B1 =
[
1
1

]
, B2 =

[
1
0.9

]

B3 =
[

0
0.8

]
, B4 =

[
0.5
0.5

]
.

The pining gains are chosen as q1 = 1 and q2 = q3 = q4 =
0, and the edge weights are given by p21 = 1, p32 = 1,
p13 = 1, and p43 = 1. Furthermore, define the matrices in
the performance indices as Q11 = Q22 = Q33 = Q44 = I2×2,
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Fig. 3. 3-D phase plane plot of the states in four-agent system.

R11 = R22 = R33 = R44 = 1, and R21 = R32 = R13 =
R43 = 1.

The developed GrHDP method is applied to solve this
multiagent problem. Three-layer neural networks are designed
for each agent as the goal, the critic, and the action network.
The learning rates are chosen as βgi = βci = βai = 0.005, i =
1, 2, 3, 4. The discount factors for the local internal reinforce-
ment signals and local performance indices are chosen as
α = γ = 0.95. Let the initial states of each agent in the
system be

x1(0) =
[
1
1

]
, x2(0) =

[−1
2

]

x3(0) =
[−0.5

1.5

]
x4(0) =

[
1

−2

]
.

The dynamics of the leader and all the follower agents
are provided in Fig. 2. It is shown that all the agents start
from different initial states and can synchronize to the leader
dynamics after a few time steps. Fig. 3 shows the phase
plane plot of these four agents. All the trajectories converge
to the desired dynamics (leader). In this learning process,
the designed control laws for these four agents are presented
in Fig. 4. The iterative trajectories of performance index for
each agent at k = 1 are provided in Fig. 5. Furthermore, in
order to show the effectiveness of our developed method, we
compare our results with the traditional HDP method. Define
xei = xi − x0, i = 1, 2, 3, 4, which is the tracking error
between each follower agent and the leader. Fig. 6 shows the
comparison of the tracking errors for both GrHDP and HDP
methods. We can observe our developed method can quickly
push the tracking errors vanish in the learning process. This
means our GrHDP method can achieve better performance in
the consensus control process.

B. Ten-Agent System

In this section, a ten-agent system is considered to show
the effectiveness of our proposed method. The designed

Fig. 4. Evolution of control laws for each follower agent.

Fig. 5. Trajectories of performance indices when k = 1 for each agent.

communication network digraph is present in Fig. 7. Agent
0 is the leader with the system function as

x0(k + 1) = Ax0(k) (66)

where A =
[

0.995 −0.09983
0.09983 0.995

]
. Agent 1 can receive

the information from the leader, while other agents 2–10 can
only receive the information from itself and its neighbors. For
instance, agent 2 can receive the information from itself and
its neighbors agents 1 and 4. The system functions for agents
1–10 can be described as

xi(k + 1) = Axi(k)+ Biui(k), i = 1, 2, . . . , 10 (67)

where

B1 =
[
0
1

]
,B2 =

[
0
0.9

]
,B3 =

[
0
0.8

]
,B4 =

[
0.25
0.27

]

B5 =
[
0.8
0.2

]
,B6 =

[
1
1

]
,B7 =

[
0
1

]
,B8 =

[
0
0.5

]

B9 =
[

0
−0.5

]
,B10 =

[
0.199
1

]
.

According to the communication network provided in Fig. 7,
we define the pining gain as q1 = 1 and qi = 0, i =
2, 3, . . . , 10, and the edge weights p21 = 1, p24 = 1, p32 = 1,
p43 = 1, p54 = 1, p5,10 = 1, p65 = 1, p76 = 1, p87 = 1,
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Fig. 6. Tracking error comparisons between the GrHDP method and HDP method.

p98 = 1, and p10,9 = 1. The weighting matrices in the
performance indices are chosen as Qii = I2×2, Rii = 1, for
i = 1, 2, . . . , 10, R21 = R24 = R32 = R43 = R54 = R5,10 =
R65 = R76 = R87 = R98 = R10,9 = 1.

The GrHDP method is applied to control system (67). The
goal, critic, and action networks are designed for each agent.
Choose the learning rates as βgi = βci = βai = 0.005, i =
1, . . . , 10. Set the discount factors as α = γ = 0.95 for local
internal reinforcement signals and local performance indices,
respectively. Let the initial states of each agent be

x1(0) =
[
0.5
0.5

]
, x2(0) =

[
0.2
0.2

]
, x3(0) =

[
0.9
0.9

]

x4(0) =
[
0.5
0.5

]
, x5(0) =

[
0.8
0.5

]
, x6(0) =

[
0.6
0.8

]

x7(0) =
[
1
1

]
, x8(0) =

[
0.5

−0.5

]
, x9(0) =

[
0
0.8

]

x10(0) =
[
0
0
,

]
x0(0) =

[
1
1

]
.

Fig. 7. Communication network structure of ten-agent dynamic system.

Figs. 8 and 9 show the dynamics of the system states. The
corresponding three-dimensional (3-D) phase plane plot of all
the agents are provided in Fig. 10. We can observe that the
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Fig. 8. Dynamics xi1 of the leader and follower agents.

Fig. 9. Dynamics xi2 of the leader and follower agents.

Fig. 10. 3-D phase plane plot of the states in ten-agent system.

proposed method can make the follower agent states track the
desired state trajectories. Furthermore, Figs. 11 and 12 show
that the tracking errors xei between the follower agents and the
leader system are vanish after about 120 time steps. All the

Fig. 11. Tracking errors xei1 of ten agents.

Fig. 12. Tracking errors xei2 of ten agents.

simulation results establish that the designed GrHDP method
is effective in consensus control problem.

VII. CONCLUSION

In this paper, we investigated a class of multiagent discrete-
time dynamic systems and designed a new online consensus
control method by GrHDP techniques. The proposed method
only required the current and past data rather than the explicit
information of system models. The theoretical analysis of the
proposed method was developed to demonstrate the conver-
gence of the local performance indices and the boundedness
of local internal reinforcement signals. Two simulation exam-
ples were provided to show the effectiveness of the proposed
method.
Although, in this paper, we improved the performance of

learning-based consensus control problem, there still exist a
number of ongoing challenges for multiagent systems in a dis-
tributed environment. For instance, in this paper, we assume
the data is public and available for other agents at any time.
Autonomous systems, however, usually encapsulate personal
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information describing their principle, and therefore commu-
nication and learning among the various autonomous agents
involve dealing with privacy and security issues [51], [52].
We are interested to research the data privacy in multiagent
systems. In addition, we are extending the learning-based
multiagent consensus control design in disturbance environ-
ment to research the robustness of this method.
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