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A B S T R A C T   

In the study of local-level food security, terms such as food variety, availability, accessibility and utilization represent quantitative metrics to describe one’s rela
tionship to the tangible and intangible food environment. Food availability entails how close one is located to the nearest food location. These locations could be 
healthy and fresh food as applied explicitly to the study food deserts, generally considered to be low-income areas that are far from healthy and fresh food. In the 
Geographic Information Systems (GIS) network model where travel times and distances are either calculated along a line network such as a series of roads or via more 
traditional techniques such as Manhattan or Euclidean distance, healthy and fresh food locations are defined as destinations. The places people are traveling from are 
referred to as sources. However, modeling source locations can be increasingly complex. In just measuring food availability between all residential parcels to the 
closest healthy food destination in Guilford County, North Carolina, it requires more than 177,000 route calculations, one for each of the residential parcels in 
Guilford County, North Carolina. Research (Zandbergen and Hart 2009; Fischer 2004; Sahar et al. 2019; Winn 2014) has highlighted the challenges in efficiently 
locating many addresses and calculating so many routes. In order to simplify the number of network calculations, this research explores ways to model, agglomerate 
or simplify source locations to decrease the sheer number of calculations while not degrading results when compared to calculations using all original 177,000 source 
locations. Studies in the field of food security have modeled source locations as census tract centroids, block group centroids, as well as random points and even 
fishnets or grids. In this paper, we explore the use of different techniques to simulate source locations in the study of food availability in Guilford County, North 
Carolina. These results are compared to calculations using all residential source locations in the county as a baseline. While all eleven techniques, which include 
random, stratified and systematic, as well as combinations of them, showed some level of agreement with baseline measurements, sources simulated as block 
centroids, population-weighted block group centroids and even a randomized-strata technique were strongest using t-tests of two means and equivalence tests for 
dissimilarity for both drive-distance and drive-time.   

1. Introduction 

It is difficult to quantitively explain the nexus at the spatial distri
bution of healthy food, spending patterns, health outcomes and 
explanatory factors behind them. The body of knowledge transcending 
studies in food deserts and the food environment entails a combination 
of qualitative methods, quantitative calculations and mixed methods, 
which collect and analyze both qualitative and quantitative data within 
the same study. Contemporary research has been trending in this di
rection (Brindle-Fitzpatrick, 2015; Chrisinger, 2016; Shannon, 2015) 
since they also take into account individual perceptions and descriptions 
of the food environment that can not be encapsulated using data 
agglomerated within enumerations units such as block groups, census 
tracts, zip codes and counties. Quantitative methods explore numerical 
relationships between food availability, food access, food utilization and 
explain it for a variety of metrics such as race/ethnicity, poverty status 

and access to transportation, among other things. These quantitative 
metrics are immune to the effects of opinion and perception, and help 
provide an impartial look at one’s relationship to the food environment. 

A Geographic Information System (GIS) serves as a powerful tool to 
examine quantitative spatial relationships that exist between and among 
the various agents within the food environment. These agents include 
source locations (where people are traveling from) and destinations 
(where people are traveling to) in order to procure all forms of food, 
both healthy and unhealthy. As applied to this study, the Food and 
Agriculture Organization of the United Nations (FAO) definition of food 
availability (FAO 2006) will be used, which measures how close one is 
located to the nearest food location. Food availability, sometimes 
referred to as proximity (Thornton et al., 2011), differs slightly from 
food access, which takes into account both availability and a trans
portation component (FAO 2006). While healthy food may be readily 
available, it may not be accessible if one does not have the means of 
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transportation to get to it. As with both of these metrics, both avail
ability and access can be qualified given the various modes of individ
ualized and non-individualized transportation available to some 
populations based purely on geography alone (i.e. proximity to bus 
routes or sidewalks) or rurality where a car is the only reasonable mode 
of transportation. 

Ways to measure this availability can be in absolute units such as 
minutes or miles which are self-explanatory. More recently, relative 
unitless metrics (Zenk et al., 2014; Clary et al., 2015; Mason et al., 2013) 
have been used as alternatives to absolute measures since a 10-min drive 
time to the nearest fresh food source in a downtown urban area means 
something much different than a 10-min drive to the nearest fresh food 
in a rural area. However, relative metrics have their challenges and 
potential for misuse much like their absolute measure counterparts. For 
example, the binary categorization of a food store as just ‘UNHEALTHY’ 
or ‘HEALTHY’ deemphasizes the relative importance of one individual 
store. A farmers’ market and a large supermarket both have the same 
value when applied in a ratio although the large supermarket is utilized 
by much more of the population than the farmers’ market. Furthermore, 
proportions which represent the percentage of healthy food outlets 
against a denominator can be misleading if the denominator includes 
only a limited classification of food outlets (healthy food + fast food 
outlets + convenience stores) versus a more comprehensive listing of all 
outlets where food can be purchased (Thornton et al., 2020) which may 
include bakeries, hardware stores, clothing outlets, gyms and even 
laundromats (Lucan et al., 2018). The use of weights to measure an 
outlet’s contribution to the overall quantitative assessment of the food 
environment (Thornton et al., 2012) or novel relative metrics (Wilkins 
et al., 2019) using various cohorts of the food environment (fast food, 
total outlets, restaurants, etc.) are being devised to make stronger as
sociations with health outcomes. Nonetheless, the use of either relative 
or absolute metrics require additional interpretation beyond the actual 
numbers yielded as a result of their calculations. 

A GIS is used to measure availability between these sources and 
destinations. This availability can be measured as Euclidean Distance 
(straight-line), Manhattan Distance (distance between two points at 
right angles), drive distance or even drive time between a source and 
destination. While Euclidean and Manhattan Distance are relatively easy 
and fast to compute within a GIS, the calculation of drive distance and 
drive time, which is more practical, requires more input parameters, is 
dependent upon high-quality data and is more resource-intensive. In 
other cases, the number and types of destinations within a source can be 
found within an area of interest (AOI) or multiple areas of interest. These 
AOIs are typically referred to as buffers. Methods have been used to 
measure how availability and access, whether via distance, drive times 
or grouped within buffers of varying lengths correlates to socio- 
economics and ultimately health outcomes. Studies (Pearce et al., 
2008, Winkler 2006; Wang et al., 2006) at different scales have found 
varying degrees of success finding associations between these factors, 
ranging from strong associations between socio-economic status (SES) 
and healthy food availability (Giang et al., 2008; Lewis et al., 2005; 
Morland & Filomena, 2007, Powell et al., 2007) to no relationship be
tween the two (Zenk et al., 2005; Morland et al., 2002). However, 
regardless of method used, most of the historical literature within the 
United States has cited that underrepresented communities (poor, mi
nority, rural or combinations thereof) are typically further and less 
accessible to healthy food, cost more and have less healthy options than 
their counterparts. 

Despite advances in GIS technologies, it is difficult to model all po
tential drive-time scenarios between a source and destination using 
desktop computing solutions in a timely manner. In the study area of 
Guilford County where the population exceeds 500,00 people, there 
exists 220,702 individual parcels of which 177,080 are residential par
cels. Using Dijkstra’s Shortest Path First (SPF) algorithm (1959) and a 
road network with more than 98,000 vertices, a best-case scenario for 
calculating just one path requires a minimum of 98,000 calculations and 

a worst-case scenario of more than 9 billion (98,0002) calculations for 
each of the 177,000 paths to be calculated (Mehlhorn 2008). This means 
there are literally trillions of possible calculations between these resi
dential parcels and potential destinations. While applications using 
Python, Stata (Huber & Rust, 2016) and R programming solutions make 
this process faster than Esri’s Network Analyst calculations using a GUI 
(Graphical User Interface), they are less intuitive for the average GIS 
user and still require billions of calculations. 

Research (Fischer, 2004; Sahar et al., 2019; Winn, 2014; Zandbergen 
& Hart, 2009) has highlighted the challenges in efficiently locating 
many addresses and calculating so many routes. Because of this, geog
raphers and GIS professionals have explored methods to simplify the 
number of potential source locations which would in turn decrease the 
number of calculations, while ensuring this decrease in source locations 
does not degrade results when compared to the entirety of source lo
cations. This simplification or sampling is an attempt to circumvent is
sues of scale and in this case size by reducing the number of potential 
source locations while not compromising results. Within many different 
applications, prior work has approximated possible source locations as 
both population and geometry-based centroids (Berke and Shi 2005), 
random points (Mulrooney, Beratan, et al., 2017), grid-based points 
(Economic Research Service 2019) and random points within a stratum 
(Hilson et al., 2015) as highlighted in Table 1. This paper explores a 
variety of sampling methods for potential source locations in the 
quantitative measure of food availability using Networking GIS tools 
and how these methods compare to measurements for all residential 
locations in Guilford County, North Carolina. 

1.1. Literature review 

The mapping and delineation of food-unavailable areas within the 
digital environment has been made exponentially easier with GIS tech
nologies. While originally used as an aesthetic tool to map study areas 
(Wrigley et al., 2002) or display underlying explanatory variables (Guy 
et al., 2004), GIS has since been used to measure distances, quantita
tively express availability and render this availability with statistical 
significance using a variety of analytical, geostatistical and cartographic 
techniques. Among the first to do this within the realm of the food 
environment were Donkin et al. (1999), Lovett et al. (2002) and Pearce 
(2006). 

Within the GIS data environment, ways to express quantitative di
mensions of the food environment vary from study to study. Prior 
research has expressed these measures as absolute linear units such as 
kilometers or miles (Jago et al., 2007), travel time in minutes (VerPloeg 
et al., 2009; Jiao et al., 2012) and densities such as the number of food 
options per square mile by census tract (Block et al., 2004), as well as 
derived metrics such as the cost to operate a car (Hallett & McDermott, 
2011). More recently, the aforementioned relative metrics have been 
implemented as complements to absolute metrics. The Retail Food 
Environmental Index (RFEI) and the Expanded RFEI (Cooksey-Stowers 
et al., 2017, Lucan et al., 2015) are examples of widely-accepted relative 
metrics, while others (Mulrooney, McGinn, et al., 2017; Rose et al., 
2009) have derived their own metrics and subsequent interpretations to 
define spatial extents of food deserts and food swamps using the RFEI, 
Expanded RFEI and Modified RFEI (mRFEI) developed by the Centers for 
Disease Control (2009) and Food Balance Metric (Gallagher, 2006) as 
guidelines. 

Nonetheless, food availability can be mapped at different scales or 
within different enumeration units such as those seen in Fig. 1 which 
highlight travel time to the nearest healthy food location using two 
different sized enumeration units, the census block group and the census 
tract. In the United States, counties are further divided into census 
tracts, census block groups and census blocks. While counties have been 
used as the basis for food environment research (California Center for 
Public Health Advocacy, 2007; Sisiopiku & Barbour, 2014), it is not at a 
scale that facilitates local-level interventions necessary to implement 
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practical policy. In North Carolina, there are exactly 100 counties. 
Within them, there exist 2174 census tracts and 6107 census block 
groups. Contemporary neighborhood-level research has used these units 
as a basis for research because they 1) are able to articulate 
sub-county/neighborhoods patterns and 2) explanatory data via the 
census, American Community Survey (ACS) or spending patterns are 
also available at that scale, which in turn make for easy comparison, 
correlation and associations. 

Food availability studies at the tract level by Baker et al. (2006), 
Block et al. (2004) and Zenk and Powell (2008) measure metrics such as 
clustering to supermarkets, density to fast food and density of conve
nience stores within for particular study areas, respectively, while the 
mRFEI (Centers for Disease Control and Prevention, 2011) measures 
relative food availability (ratio of healthy to unhealthy food) at the tract 
level across the entire United States. The gold standard for measuring 
food access in the United States, the United States Department of Agri
culture Food Access Atlas (Economic Research Service 2019) specifically 
measures food deserts (low income and limited access) as well as the 
individual components that make up this metric combined with ancil
lary measures such as income, vehicle access and high-density housing 
at the tract level. 

In this work, evaluating and displaying food availability at the 
household level becomes one issue, the scale at which to render results 
becomes another. Household-level results such as those highlighted in 
Fig. 2, while useful, require display at an extremely high scale. This 
becomes problematic when exploring and comparing counties, tracts 
and even block groups, as the 292 block groups in Guilford County 
average 680 households per block group. However, block group level 
analysis has been performed by Jiao et al. (2012), Sharkey and Horel 
(2008), Mulrooney, McGinn, et al. (2017) and Chen and Clark (2013). 
Other research such as Van Hoesen (2014) has used towns as enumer
ation units for a study in Vermont. Towns in Vermont are 
non-overlapping polygonal units that are smaller than census tracts, but 
larger than block groups. Some other states such as New Jersey, Penn
sylvania, Michigan and Ohio are divided into sub-county units such as 
townships, cities, towns and boroughs at which high-quality information 
is also collected. 

Using vector-based tools, network analysis and geoprocessing algo
rithms can compute availability between a destination location from a 
particular source. In some cases, these destination locations may be 
retail food and fast food (Wang et al., 2007), any location selling fruits 
and vegetables (Winkler 2006), fast food and convenience stores (Zenk 
& Powell, 2008) or a combination of supermarkets, grocery stores, 
convenience stores and fast good (Liu et al., 2007). As previously 
mentioned, this availability can be measured in different ways. While 
Wang et al. (2007) and Winkler (2006) measured this availability using 

Table 1 
Different sampling techniques used in this study.  

Number Method Explanation Total # 
Points 

Prior Work 

1 Guilford 
Residential 
Parcels 

The centroids of all 
Guilford County 
Residential parcels 
were extracted as 
centroids and used as 
source locations in 
Network Analyst 
model. Calculations 
were grouped into 
block groups and 
compared to other 
modeling techniques 
grouped at the BG 
level. 

177,080  

2 Block Group 
Centroid 

The centroids of all 
block groups in 
Guilford County were 
extracted as centroids 
and used as source 
locations. 

292 Berke and Shi 
2005 

3 Pop. 
Weighted BG 
Centroid 

The weighted 
centroids of all block 
groups, weighted by 
population at the block 
level, in Guilford 
County were extracted 
as centroids and used 
as source locations. 

291 Berke and Shi 
2005 

4 Block 
Centroid 

The centroids of all 
census blocks in 
Guilford County and 
were extracted as 
centroids. These blocks 
were grouped into the 
appropriate block 
group. 

8183 Berke and Shi 
2005 

5 Populated 
Block 
Centroid 

The centroids of all 
census blocks in 
Guilford County with a 
population 50 or more 
were extracted as 
centroids. These blocks 
were grouped into the 
appropriate block 
group. 

2745 Berke and Shi 
2005 

6 1/2 Mile 
Fishnet 

Source locations 
automatically placed 
at 1/2 mile increments 
and grouped into 
appropriate BG after 
Network Analyst 
calculation. 

2631 Economic 
Research 
Service 2019 

7 1/4 Mile 
Fishnet 

Source locations 
automatically placed 
at 1/4 mile increments 
and grouped into 
appropriate BG after 
Network Analyst 
calculation. 

10,520 Economic 
Research 
Service 2019 

8 Random 
Points 
(1,000) 

Random points 
randomly distributed 
throughout study area 
and grouped into 
appropriate BG after 
Network Analyst 
calculation. 

5000 Mulrooney, 
Beratan, et al. 
(2017) 

9 Random 
Points 
(5,000) 

Random points 
randomly distributed 
throughout study area 
and grouped into 
appropriate BG after 
Network Analyst 
calculation. 

1000 Mulrooney, 
Beratan, et al. 
(2017)  

Table 1 (continued ) 

Number Method Explanation Total # 
Points 

Prior Work 

10 Random 
Points (4 per 
BG) 

Area is split into strata 
(BGs) and each strata 
contains 4 points, 
randomly placed 
throughout BG. 

1168 Hilson et al., 
2015 

11 Stratified 
Random - 
Area (BG) 

Area is split into strata 
(BGs) and each strata 
contains proportional 
number of points based 
on the area of the BG, 
randomly placed 
throughout BG. 

5000 Hilson et al., 
2015 

12 Stratified 
Random - Pop 
(BG) 

Area is split into strata 
(BGs) and each strata 
contains proportional 
to the population of the 
BG, randomly placed 
throughout BG. 

5000 Hilson et al., 
2015  
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Euclidean distance, Zenk and Powell (2008) measured walking distance 
while Liu et al. (2007) and Chen and Clark (2013) used driving distance. 
Pearce et al. (2008) measured this availability as a function of drive 
time. 

While network-based (drive-time and drive-distance) measurements 
at the block group level serve as the foundation for this research, this 
paper focuses specifically on the representation of sources, whether it be 
schools (Austin et al., 2005), census blocks (Smoyer-Tomic et al., 2008), 
centroids of block groups (Gallagher, 2006), the actual addresses of 
households (Van Hoesen 2014; Bodor et al., 2008, Burdette et al., 2004) 
or even random points (Mulrooney, Beratan, et al., 2017) using Network 
Analyst tools as applied in the study of food availability. Using Network 
Analyst, one is able to determine the closest destination (fresh food) 
using a travel-time and distance impedance along a network from a 
source. The United States Department of Agriculture (USDA) Food Ac
cess Atlas uses the center of ½ km grids, or a fishnet, as their source in 
creating a continuous raster surface of access in concert with 

socio-economic data (access to transportation, poverty, etc.) rasterized 
at this scale from existing census data grouped at various scales (United 
States Department of Agriculture, 2020). In the case of schools and block 
groups where the number of sources is relatively small (in the dozens to 
perhaps hundreds), the calculations of these networks is relatively fast 
and comparable to non-network based calculations of Euclidean and 
Manhattan distance using tradition GIS geoprocessing tools. However, 
as the number of source locations increase, these calculations become 
more complex and longer to process. 

In field-based research revolving around quality assurance/quality 
control (QA/QC), geographical sampling presents a number of issues in 
trying to avoid non-probabilistic sampling techniques. For example, 
inaccessible sample points pose logistical challenges for those physically 
visiting these points that do not exist in the digital environment. In this 
case where sample points are simulated in a GIS environment in order to 
reduce the sheer number of calculations without degrading results, 
various methods exist to accomplish this. Where little is known about 

Fig. 1. Average drive-time to healthy food sources in Guilford County for 292 Block Groups (left) and 119 Tracts (right).  

Fig. 2. Example of household-level drive-time analysis.  
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the data, a random distribution of points may be preferable. In other 
cases where an equal distribution of points is required, a systematic 
approach such as a fishnet such as those used by the USDA Food Access 
Atlas can be used. Still in other cases where more data is known, a 
stratified sampling technique based on strata (block groups) may be 
used (Wood, 1955) to allow certain strata to be weighted more based on 
some variable (population or area). Various techniques which use or 
combine systematic, random and stratified techniques for various sam
ple sizes are highlighted in Table 1 and four of these methods are shown 
in Fig. 3 as well. 

1.2. Study area 

As part of a larger research project revolving around food insecurity 
in three different counties across North Carolina, we conducted this pilot 
study in Guilford County (Fig. 4). Located in the Piedmont Region of 
North Carolina, the city of Greensboro dominates the county and serves 
as the economic and cultural center of this county, which has an area of 
about 1700 km2 (658 mi2) and a population of approximately 502,000 
people. Besides Greensboro (population 294,000), Guilford County is 
also composed of other cities, municipalities and newly incorporated 
municipalities (NIMs) to include High Point (pop. 112,00), Stokesdale 
(pop. 5400 and incorporated in 1989), Summerfield (pop. 11,300 and 

incorporated 1996), Jamestown (pop. 4500), Sedalia (pop. 660 and 
incorporated in 1997), Oak Ridge (7000 and incorporated in 1998). 
Despite this, rural regions, using the definition provided by the United 
States Census (2010), are abundant in the southeastern, northeastern 
and northwestern portions of the county and represent 16.4% of the 
population and 55.3% of the land area within the study area. 

2. Methodology 

In order to test the usefulness of sampling algorithms to model travel 
time to the nearest healthy food locations, data related to healthy food 
locations (destinations), residential locations (sources) and a network 
connecting them (roads) were extracted from existing GIS data sources. 
The use of the terms source and destination align with their usage in 
technical applications (Environmental Systems Research Institute 2010) 
as used in Network Analyst calculations created in support of this 
research and reinforced by GIS literature (Abousaeidi, Fauzi, & Muha
mad, , Raja et al., 2008) which represent travel-time and travel-distance 
between two locations. Healthy food locations were derived from their 
NAICS (North American Industry Classification Standard) code, a 
multinational (United States, Canada and Mexico) standard which 
classifies business establishments by their primary economic activity. All 
businesses are provided as point locations by InfoUSA for the year 2018. 

Fig. 3. Examples of different techniques to model source locations in the GIS. They include using all residential parcels (upper left), randomly placed points (upper 
right), stratified random where number of points are proportional to block group’s population (lower right) and ¼ mile fishnet (lower left). 
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NAICS codes beginning with 44,511 represent supermarkets and other 
groceries, with further delineations (44511001 through 4451106) to 
represent increasing larger stores based on the number of employees. In 
addition, InfoUSA provides attributes about the store’s number of em
ployees. Only large (more than10 employees) supermarkets were 
extracted from this database, regardless of NAICS code since most 
people would not patronize small stores classified as groceries to satisfy 
their healthy food needs. In addition, all other large stores that sell fresh 
food not denoted by this NAICS code (such as = WalMart Supercenter 
and Target) were merged into this database, as well as farmers’ markets. 
Finally, a 10-mile buffer was applied around Guilford County to include 
stores outside of the county that may be frequented from Guilford 
County source locations. In all, a total of 118 healthy food sellers, to be 
used as destinations, were exported into the final version of this GIS 
database. 

In GIS, a network can be modeled in a way so that cumulative im
pedances represented quantitatively through its attributes (such as 
travel time or stream flow) can be calculated above and beyond real- 
world distance measures (such as meters and miles) that are inherent 
in GIS. Network calculations have advantages over the aforementioned 
Euclidean and Manhattan calculations in that they better represent real- 
world conditions and a human understanding of travel. All travelers care 
more about travel time or travel distance as opposed to the straight-line 
distance (Euclidean) or minimum distance when traveling at right an
gles (Manhattan Distance). While the latter are easy to calculate in a GIS, 
the former require more data, the correct type of data and the correct 
attributes in order to make these more complex calculations. The North 
Carolina Department of Transportation (NCDOT) provides high-quality 
road data through both services (NCDOT 2020a) and downloadable sites 
(NCDOT 2020b) that can be used in these calculations. This road 
network consists of 1,072,300 individual road segments with more than 
90 attributes, including road length and speed limit, so high-precision 
travel time calculations can be derived. These road network data for 
the entire state of North Carolina were integrated into this GIS database 
for use in these calculations. 

Finally, source locations were extracted or created using a variety of 
different formats as highlighted in Table 1. In one calculation (block 
group centroids, Method 2), the centroid of each of the 292 block groups 
was extracted and used as a source in the Esri Network Analyst 

calculation to find the nearest facility (in terms of travel-time) between 
the 292 sources and 118 destinations. In another scenario (Method 6), 
source locations were created at ½ mile intervals using the Create Fishnet 
function in Esri software. The specific networking tool in which routes 
between sources and destinations were computed was Esri’s Nearest 
Facility tool, which is able to determine the closest facility (healthy food 
source) using a travel-time impedance along a network from another set 
of points (modeled sources). 

For each of the scenarios described in Table 1, a Network Analyst 
computation using Dijkstra’s Shortest Path First (SPF) algorithm (1959) 
was run to determine the drive-time and drive-distance between each of 
the sources and destinations. The results of the calculation are a set of 
routes, represented as a line, connecting the source and the nearest 
destination. As highlighted in Table 1, given that the number of sources 
used in each modeling scheme ranges from the hundreds (block group 
centroid = 292 sources) to hundreds of thousands (Guilford County 
Residential Parcels = 177,080 sources), the number of actual calcula
tions varies greatly amongst these techniques which in turn cannot be 
supported by typical desktop computing solutions. In running the Esri 
Network Analyst calculation, all desktop computers used by the research 
team ran out of memory when calculating 177,080 possible routes for all 
Guilford County residential locations. As a result, the sources were 
broken down in the manageable subsets of sources and the Network 
Analyst calculation was run successfully. This process, even automated 
in the Python programming environment, is time-consuming and this 
conundrum with in the Esri platform serves as the impetus for this 
research project. 

Using GIS techniques, each route was grouped into its appropriate 
block group. From the appropriate Federal Information Processing 
Standard (FIPS) code. For those sources not related to a FIPS code such 
as the fishnet and random points (Fig. 3), a Spatial Join function was run, 
grouping and averaging each location and calculated travel time/dis
tance with a block group that can be mapped. The result is a choropleth 
map, highlighting the 292 block groups in the study area and their 
calculated average drive time using the techniques described above 
using the same destinations, but different sources as described above. 

Given the base enumeration and display unit is the block group, it 
must be noted that in some cases, there is an equal distribution of source 
points within each block group while in other cases there may be none. 

Fig. 4. The study area of Guilford County, North Carolina.  

T. Mulrooney et al.                                                                                                                                                                                                                             



Applied Geography xxx (xxxx) xxx

7

In Methods 2 (Block Group Centroid) and 10 (4 sources in each BG), each 
block group contains the same number of source points. In Method 6 
where points are systematically placed ½ mile apart, 22 block groups did 
not have a source point located within it while one block group, the 
largest in terms of area but the 57th largest in terms of population, 
contains 127 source points. In Method 9 where 5000 points were 
randomly distributed throughout the study area, this same block group 
contains 227 source points while 19 block groups did not contain a 
source point. Still yet, Methods 11 and 12 create a proportionate dis
tribution of points within each block group based on area and popula
tion, respectively. As a result, while the aforementioned block group has 
the greatest number of source points (236) based on relative area as 
highlighted in Method 11, it contains only 24 source points based on its 
population in relation to the rest of the other block groups (Method 12). 

For each of the techniques described in Table 1, a choropleth map 
was created such as those seen in Fig. 5. These maps are based on tabular 
data representing each of the 292 block groups and the calculated drive 
time to the nearest healthy food source for each scenario as shown in 
Tables 1 and 2. For each of the techniques highlighted in Fig. 5, the 
patterns appear generally the same since they show the same informa
tion (drive time to the nearest healthy food facility), albeit calculated 
differently using the techniques described above. Noticeable is the block 
group in the northwest part of Guilford County where the block group 
occurs in the first quantile of data one calculation (source is estimated as 
the center of the block group) while it occurs in the second quantile for 
the map to the right. In this case, the healthy food source is located close 
(just over 1 mile) to the block group centroid which is used as a source. 
In the second calculation to the right, there are 39 simulated sources 
located throughout the block group which obfuscate values closer to the 
destination in this part of the county. 

As alluded to before, while there are 292 block groups in Guilford 
County, the number of block groups with actual sources and calculated 
values within them that are mapped may be slightly less depending upon 
the sampling method used. For example, using the ½ mile fishnet tech
nique where source points are evenly spaced ½ mile apart, there were 
cases where a source point did not fall within a block group, resulting in 
a Null calculation. This occurs in urban areas where block groups are 
much smaller. As a result, the sample size for this calculation is 270 since 
only 270 block groups contain a simulated source point using this 
technique. Nonetheless, in cases where the block group is used as a strata 
unit, all 292 block groups will have a calculated value within it. In cases 
of stratified random techniques based on area and population, block 
groups may have such small area and/or population that their allocation 
of source points is rounded down to 0, hence resulting in a number 
slightly less than 292. In the case of population-weighted centroids, only 
291 block groups had a population and one centroid was not computed. 

2.1. T-test of two means 

Using the Guilford Residential Parcel calculation (Method 1) as a 
baseline, an independent t-test of two means was run between the 
dataset as a result of the Guilford Residential Parcel calculation and each 
of the eleven other scenarios to determine if there was a difference be
tween the different cohorts of accuracies. 

Average travel time of Method 1 = average travel time other method  

H0 : μ1 = μ2  

Average travel time of Method 1 ∕= average travel time for other method  

Ha : μ1 ∕= μ2 

Using the derived average drive-times for each block group 
(Ŷ1 and Ŷ2) and the sample sizes for each cohort (N1 and N2), this test 
helps determine the criteria in order to reject the Null hypothesis (drive- 
times or distances from Guilford Residential Parcel calculation are 
equal) and accept the alternate hypothesis (drive-times or distances 
from Guilford Residential Parcel calculation are not equal to each other). 

2.2. Equivalence testing 

One of the challenges in working with the t-test of two means is the 
interpretation of results. When running these tests, insufficient evidence 
to reject the null hypothesis as shown above may not necessarily imply 
similarity and the probability of making a Type II error still exists. This 
non-rejection of the null hypothesis as a means to assume equivalence 
can be thought of as convoluted and speculative. As a result, researchers 
have explored testing mechanisms to directly measure equivalence 
(Berger & Hsu, 1996; Cribbie et al., 2004; Seaman & Serlin, 1998) be
tween different groups. These tests use statistical tools to determine if 
the means between two groups are small enough to be considered 
inconsequential. 

In equivalence testing, the null and alternate hypotheses are essen
tially switched compared to difference-based t-tests. In equivalence 
testing, the null hypothesis dictates the difference of the means fall 
outside of an equivalence interval (θ), which may not necessarily be 
symmetric about a mean. The alternate hypothesis states the difference 
of the means falls within this confidence interval. 

H01 : μ1 − μ2 ≤ θ1 Ha1 : μ1 − μ2 > θ1  

H02 : μ1 − μ2 ≥ θ2Ha2 : μ1 − μ2 < θ2 

In order to further support the results from the t-tests, paired 
equivalence tests were run between Method 1 (sources simulated for all 
residential parcels in Guilford County) and each of the other methods 

Fig. 5. Results of Nearest Facility analysis in which routes between sources and destinations are agglomerated at the block group level when block group centroids 
are used as sources (left) and ½ fishnet is implemented (right) using a quantile mapping classification. 
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highlighted in Table 1. Steeped in behavioral research, the paired- 
sample test for equivalence developed by Wellek (2003) uses a stan
dardized equivalence interval, population mean difference score and 
population standard deviation of the differences to derive a t-statistic 
that can be compared to a critical value. The Two One-Sided Test for 
Equivalence (TOST) purported by Seaman and Serlin (1998) implements 
two separate one-sided tests using raw mean differences (μ1 − μ2)

instead of mean difference scores. 

3. Results 

Descriptive statistics are highlighted in Table 2 for each of the 
methods used to approximate source locations. A general observation 
shows the average drive-distance for when grouped at the block group 
level was lowest when using all Guilford County residential parcels 
compared to the other methods. However, average drive-time ranked 
5th out of the 11 different methods run. This table also highlights results 
from the t-test and resulting ρ score when comparing results from all 
Guilford County Residential Parcels (Method 1) versus the other eleven 
methods used. This test essentially compares the average drive-distance 
and drive-time when grouped at the block level when all Guilford 
County Residential Parcels are used as sources when independently 
compared to each of other methods employed in this study (Methods 2 
through 12). 

In 10 of the 11 t-tests for drive-distance and in all 11 of the t-tests for 
drive-time, the corresponding p-values were computed to be above the 
acceptable limits for accepting the alternative hypothesis at that sig
nificance level (α = 0.05). The only exception was Method 7 (1000 
random points used as sources). As a result, given this sample size and 
confidence, we can confidently state that there is no difference between 

drive-time between when grouped at the block group level for sources 
simulated for all Guilford County Residents versus the other methods 
used. When simulating drive-distance, all methods except 1 articulated 
there were no differences using the t-test. 

The paired t-test for equivalence and TOST were run in R, an open 
source environment used primarily for statistical computing and the 
results of the test for dissimilarity (the null hypothesis), are shown in 
Table 4. Indicators of similarity, or rejection of dissimilarity, appeared 
across all eleven methods at some level. However, their strength varied 
between the type of test (TOST vs. Paired T-Test) and measurement 
(drive-time vs. drive-distance) as shown in Table 3. In three cases, where 
sources were approximated at the population weighted block group 
centroid (Method 3), block centroid (Method 4) and random points (4 
per block group) in Method 10, dissimilarity was rejected across all four 
variations of the measurement. Combined with the fact that combined p- 
values between the two methods were so high in the test of two means 
(indicating extremely little chance the set of values are statistically 
different), it is safe to assume these methods are excellent ways to model 
source locations as opposed to running all possible calculations. In 
addition, other methods such as the populated block centroids (Method 
5), ½ mile fishnet (Method 6), ¼ mile fishnet (Method 7), 1000 random 
points (Method 8) and 5000 random points (Method 9) satisfied three 
out of the four criteria for the test of dissimilarity. Except for Method 8 
which failed the two-tail t-test for drive-time, these methods would also 
be candidates for source modeling routines. Lastly, the block group 
centroid (Method 2), Stratified Random - Area (Method 11) and Strati
fied Random - Population (Method 12) only satisfied two of the 
dissimilarity criteria. 

Table 2 
Results of paired two-tail t-test when comparing Method 1 with each of the other Methods.       

Drive-Distance (Miles)  Drive-Time (Minutes) 

Method Method Number N n (BGs) x‾ t ρ  x‾ T ρ 

Guilford Residential Parcels 1 177,080 292 1.701 – –  3.998 – – 

Block Group Centroid 2 292 292 1.801 − 0.844 0.399  4.229 − 1.299 0.194 
Pop. Weighted BG Centroid 3 291 291 1.781 − 0.662 0.508  4.154 − 0.891 0.373 
Block Centroid 4 8183 292 1.703 − 0.017 0.987  4.016 0.132 0.895 
Populated Block Centroids 5 2745 291 1.730 − 0.265 0.791  4.202 − 1.294 0.196 
1/2 Mile Fishnet 6 2631 270 1.800 − 0.858 0.391  3.958 0.246 0.806 
1/4 Mile Fishnet 7 10,520 290 1.789 − 0.790 0.430  4.006 − 0.046 0.964 
Random Points (1000) 8 1000 196 2.050 − 2.686 0.007  4.359 − 1.909 0.057 
Random Points (5000) 9 5000 273 1.810 − 0.944 0.346  4.016 − 0.102 0.919 
Random Points (4 per BG) 10 1168 292 1.751 − 0.447 0.655  3.917 0.495 0.621 
Stratified Random - Area (BG) 11 5000 290 1.789 − 0.790 0.430  3.989 0.059 0.953 
Stratified Random - Pop (BG) 12 5000 291 1.748 − 0.418 0.676  3.893 0.655 0.513 
Null Hypothesis (Means Equal to Each Other) Acceptable at β (.05)  

Table 3 
Results for the Test for Dissimilarity (Null Hypothesis). Both the Two One-Sided Test for Equivalence (TOST) and Paired T-Test for Equivalence were run between 
Method 1 and each of the other 11 methods.      

Drive-Distance (Miles)   Drive-Time (Minutes)  

Method Method Number N n (BGs) x‾ TOST Paired T-Test  x‾ TOST Paired T-Test 

Guilford Residential Parcels 1 177,080 292 1.701 – –  3.998 – – 

Block Group Centroid 2 292 292 1.801 Rejected Not Rejected  4.229 Rejected Not Rejected 
Pop. Weighted BG Centroid 3 291 291 1.781 Rejected Rejected  4.154 Rejected Rejected 
Block Centroid 4 8183 292 1.703 Rejected Rejected  4.016 Rejected Rejected 
Populated Block Centroids 5 2745 291 1.730 Rejected Rejected  4.202 Rejected Not Rejected 
1/2 Mile Fishnet 6 2631 270 1.800 Rejected Rejected  3.958 Rejected Not Rejected 
1/4 Mile Fishnet 7 10,520 290 1.789 Rejected Not Rejected  4.006 Rejected Rejected 
Random Points (1000) 8 1000 196 2.050 Rejected Not Rejected  4.359 Rejected Rejected 
Random Points (5000) 9 5000 273 1.810 Rejected Not Rejected  4.016 Rejected Rejected 
Random Points (4 per BG) 10 1168 292 1.751 Rejected Rejected  3.917 Rejected Rejected 
Stratified Random - Area (BG) 11 5000 290 1.789 Not Rejected Not Rejected  3.989 Rejected Rejected 
Stratified Random - Pop (BG) 12 5000 291 1.748 Rejected Rejected  3.893 Not Rejected Not Rejected  
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4. Discussion 

The decision to patronize certain healthy food establishments is a 
function of many quantitative, qualitative and in-situ factors. This 
research attempted to model travel scenarios to the nearest healthy food 
source based solely on geographic proximity. Using the techniques 
described above, different ways to approximate source locations resul
ted in varying degrees of success, with population weighted block group 
centroids (Method 3), block centroids (Method 4) and random points (4 
per block group) in Method 10 being the strongest of these methods. 

In the course of research, opportunities for future research were 
elucidated above and beyond those addressed in this paper. These op
portunities revolve around the concept of the quantitative assessment of 
one’s relationship to the food environment which would complement 
the research highlighted here. While Guilford County residential par
cels, as well as other modeling scenarios were used as source locations, it 
is only an attempt to model people’s actual consumer behaviors. People 
may shop for food on the way home from work or as part of other er
rands. As well, availability is a principal determinant for a primary 
grocery shopping location for just under half (48%) of US residents 
(Food Marketing Institute, 2016). Another study (Zenk et al., 2013) 
found that more than half (53.9%) of residents in Detroit often shopped 
within 2 miles of their residence. Those who bypass the closest store cite 
reasons such as lower prices, lower prices on wanted items, better se
lection and better quality of fresh foods as reasons for doing so (Food 
Marketing Institute, 2016). Lower income residents may not have the 
means to be as choosy, as almost half of all Americans have cited that it 
is ‘sometimes’ or ‘often’ true that they would’ve purchased healthy food 
options instead of unhealthy ones for economic reasons (International 
Food Information Council Foundation, 2018). These lower income res
idents thus are subjected to the grocery store and their options, or lack 
thereof, that geography dictates, compared to their higher-income 
counterparts, as well as the inability to procure healthy food options 
at these stores. This is difficult to encapsulate within this research. 

The second quantifiable factor taken from this study is food away 
from home (FAFH). FAFH can be thought of as food obtained or 
consumed at fast food establishment (which accounts for the largest 
percentage of FAFH), full-service restaurants and other (catered affairs, 
food trucks and vending machines) establishments. Quick Service Res
taurants (QSRs) have driven the growth of FAFH in the last two decades 
as restaurants such as Chipotle Mexican Grill and Panera Bread provide 
facets of both fast food (counter service) and full-service restaurants 
(perceived ambiance and food quality). FAFH accounts for one-half of 
Americans’ food budgets and Americans’ share of energy intake from 
FAFH is 34%, double that from 1978 (United States Department of 
Agriculture, 2018). Nonetheless, it is difficult to model travel patterns 
attached to the consumption of FAFH, which may or may not be healthy. 
While spending patterns are available at the block group level, con
trolling for it within the confines of this study falls outside of the scope of 
this research. 

As applied explicitly to GIS applications related to the quality of 
spatial food environment data, work has proliferated as research in the 
spatial analysis and representation of the food environment has 
increased and a need has arisen to answer questions about the validity of 
data on which decisions are made. (Forysth et al. (2010) understood 
these challenges, which include the reliability and validity of data 
(proper addresses and classifications of stores) as well detail and 
completeness (enough information is stored that can be useful in food 
environment analysis). Wilkins et al. (2017) further expounded on these 
dimensions to include the quality of geocoding processes, the definition 
of food outlet constructs (what is the definition of healthy, use of pro
prietary codes, etc.) and ways to measure access and via a reportable 
standard called Geo-FERN (Food Environment Reporting). Compre
hensive studies (Liese et al., 2010; Auchincloss et al., 2012) have 
explored the quality of large spatial databases purchased from inde
pendent sources among and between disparate datasets and providers 
which serve as the basis for retail businesses. Larger-scale studies 
(Rummo et al., 2015; Han et al., 2012; Hosler & Dharssi, 2010; Mendez 
et al., 2016) were performed for Durham, Chicago, Albany and Pitts
burgh respectively. All cited some degree of difference between different 
CAB databases such as InfoUSA, Dunn and Bradstreet, TDLinx, as well as 
field-based and automated methods, noting that caution must be taken 
when using CAB databases. Powell et al. (2011) research reinforced the 
idea of uncertainty absorption within this narrow focus (validity of GIS 
data in measuring the food environment), highlighting the reconcilia
tion that must be made between the sheer number of data sources 

Table 4 
Assessment of each of the techniques used in this research and justification for 
each technique.  

Method Method 
Number 

n Strength of 
Technique 

Justification 

Guilford 
Residential 
Parcels 

1 177,080 – Simulates geographic 
reality, but is time and 
resource intensive on 
most desktop 
computers. 

Block Group 
Centroid 

2 292 Fairly 
Strong 

Satisfied t-tests for 
differences, but only 
satisfied 2 of the 4 
equivalence tests for 
dissimiliarity. 

Pop. 
Weighted 
BG Centroid 

3 291 Strongest Satisfied t-tests for 
differences and satisfied 
all 4 equivalence tests 
for dissimiliarity. 

Block 
Centroid 

4 8183 Strongest Satisfied t-tests for 
differences and satisfied 
all 4 equivalence tests 
for dissimiliarity. 

Populated 
Block 
Centroids 

5 2745 Strong Satisfied t-tests for 
differences, but only 
satisfied 3 of the 4 
equivalence tests for 
dissimiliarity. 

1/2 Mile 
Fishnet 

6 2631 Strong Satisfied t-tests for 
differences, but only 
satisfied 3 of the 4 
equivalence tests for 
dissimiliarity. 

1/4 Mile 
Fishnet 

7 10,520 Strong Satisfied t-tests for 
differences, but only 
satisfied 3 of the 4 
equivalence tests for 
dissimiliarity. 

Random 
Points 
(1000) 

8 5000 Weak Did not satisfy t-test for 
differences for drive- 
distance and barely 
passed for drive-time, 
but satisfied for 3 of the 
4 equivalence tests for 
dissimiliarty. 

Random 
Points 
(5000) 

9 1000 Strong Satisfied t-tests for 
differences, but only 
satisfied 3 of the 4 
equivalence tests for 
dissimiliarity. 

Random 
Points (4 
per BG) 

10 1168 Strongest Satisfied t-tests for 
differences and satisfied 
all 4 equivalence tests 
for dissimiliarity. 

Stratified 
Random - 
Area (BG) 

11 5000 Fairly 
Strong 

Satisfied t-tests for 
differences, but only 
satisfied 2 of the 4 
equivalence tests for 
dissimiliarity. 

Stratified 
Random - 
Pop (BG) 

12 5000 Fairly 
Strong 

Satisfied t-tests for 
differences, but only 
satisfied 2 of the 4 
equivalence tests for 
dissimiliarity.  
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provided by CAB databases, the time needed for field verification and 
the need for high-quality data. While exploring these differences falls 
outside of the scope of this research, they must be noted. 

Results of drive-time calculations agglomerated within enumeration 
units such as census block groups can potentially be misleading because 
of the Modifiable Areal Unit Problem (MAUP) given the varying sizes 
and shapes of enumerations units to which data are grouped. Research 
(Wieczorek et al., 2011) showed the sizes and shapes of enumeration 
units do in fact affect the patterns of phenomenon based on the way in 
which they are grouped, whether intentionally or unintentionally. While 
this research’s end-results focuses solely on census block groups, results 
may be different if data are grouped within census tracts or even zip 
codes. Using the techniques described previously, data were grouped 
into 119 census tracts and 24 zip codes. Patterns highlighted at the 
census block group mimicked those patterns at the coarser tract and zip 
code scale. 

Lastly, while the locations of sources are dictated by explicit loca
tions or centroids in some scenarios (Methods 1 through 4), others have 
some degree of randomness attached to them. In Methods 7 through 11, 
random points or parcel locations within the study area or strata are 
used to model source locations. Geostatistical tools such as Nearest 
Neighbor Analysis can truly dictate the degree of randomness between 
and amongst these points and python programming solutions combined 
with modeling tools can be used to run a Monte Carlo simulation, 
ensuring randomness for each of these methods over many different it
erations of random source location placement. In Methods 5 and 6, the 
fishnet is placed at designated intervals starting from the bottom left/ 
southwestern corner of the map extent, the minimum latitudes and 
longitudes of geographic boundaries for Guilford County. If these points 
were placed starting from the upper right/northeastern corner of the 
map, they may be in slightly different locations about the study area. 
Further research would be required to assess to what degree these dif
ferences may or may not affect outcomes. 

5. Conclusions 

While the concepts ‘food desert’ and ‘food swamp’ have many 
theoretical definitions, they have practical and applied applications. 
They exist in the real world and people have an innate understanding of 
them. Computationally, they represent a combination of availability, or 
lack thereof, to food sources (healthy and/or unhealthy) and usually a 
socio-economic component such as income or poverty. GIS tools are 
being integrated into the study of food deserts and food swamps to map 
the extent of these phenomena and further explore policy-driven solu
tions (Liese et al., 2014; Shannon, 2015; Story et al., 2008) in order to 
improve community health. In this study, we explicitly use GIS func
tionality to measure food availability, one of the fundamental pillars of 
food insecurity, as a function of drive-time and drive-distance between a 
source and destination in and around Guilford County, North Carolina, 
with an end goal of determining how source locations can be modeled or 
sampled from a larger database of more than 177,000 possible sources 
which represent all Guilford County residential locations. Traditional 
desktop computing solutions have found computing these 177,000 
routes resource-intensive, especially within the Esri software environ
ment. This study explores different sampling methods from this popu
lation and statistical analysis to ensure results when agglomerated at the 
block group level are consistent with results when the entire population 
of 177,000 sources are used and all 177,000 routes are calculated. 

A complete and comprehensive evaluation of the food environment 
at a local scale requires qualitative techniques and quantitative assess
ment. A GIS has been used as a powerful tool to make these quantitative 
assessments which require spatial calculation such as proximity (drive- 
time or drive-distance) to the nearest resource(s) and density of re
sources within enumerations units such as census block groups, census 
tracts and zip codes. In addition, spatial clustering of healthy food 
outlets, spending information or health outcomes with statistical 

significance can be measured using tools such as Local Moran’s I and 
Getis-Ord. Qualitative variables such as personal dietary preferences, 
one’s perception of the food environment and one’s understanding of 
relative distance are difficult to quantify. In addition, overly-difficult-to- 
quantify metrics such as Food Away From Home (FAFH), people 
selecting more distant supermarkets than the closest to their home and 
the purchasing of food in conjunction with other activities (work, rec
reation, etc.) are difficult to quantify and more difficult to map within 
the confines of this research. As a result, this research focuses solely on 
the availability, or proximity, of source locations to the nearest healthy 
food option, the basis for most food desert and food swamp research as 
well as the popular USDA Food Access Atlas. 

In evaluating all sampling techniques, all 11 had some level of 
agreement when grouped at the block group level when compared to all 
Guilford residential parcels as highlighted in Table 4. However, three of 
them (Population-Weighted Block Group Centroids, Block Centroids and 
Random Points (4 per block group)) rejected all four equivalence tests 
for dissimilarity and returned p-values that satisfied research-grade (α =
0.05) and less-stringent significance levels (α = 0.1 or α = 0.2), high
lighting similarity between the Guilford County residential parcels and 
these three techniques. These were denoted as the strongest sampling 
techniques and decisions rating the other techniques as strong, fairly 
strong and weak were made based on these criteria. This supports work 
by Berke and Shi (2009), as well as Henry and Boscoe (2009) which 
highlighted how population-based measures such as the population 
centroid were both adequate and better than geometry-based methods. 
As a result, this research suggests population-weighted block group 
centroids (Method #3) best simulate true residential locations in 
agreement with this prior research, its alignment with population-based 
measures and a 600-fold decrease in the number of calculations 
required. While two other techniques (block centroids and four random 
points per block group) did satisfy all aforementioned criteria just as 
well, they also require more calculations (28 and 4 times more, 
respectively) than the population-weighted block groups. 

Calculations using these source locations can be used as part of unit- 
based metrics used by the USDA Food Access Atlas which uses distance 
in miles or integrated into unitless metrics or ratios (Zenk et al., 2014; 
Clary et al., 2015; Mason et al., 2013; Mulrooney, McGinn, et al., 2017). 
However, care must be used when implementing unit-based metrics. In 
applying unit-based metrics, the size of study areas have ranged from the 
county scale (Zenk 2005), such as this one, to the multi-county (Murrell 
& Jones, 2020) and state (Mulangu & Clark, 2012) scale. While the study 
areas come in all shapes and sizes, care must be taken to ensure these 
unit-based metrics are applied correctly. The USDA Food Access Atlas 
ensures to explicitly differentiate between poor availability in urban 
areas versus poor availability in rural regions using a distance qualifier 
while Mulangu and Clark (2012) qualified their drive-time calculations 
between rural and urban areas. 

The mapping of food availability can be done a number of different 
ways and the use of sources, from which distance and drive-time to 
destinations are computed, can be estimated as actual street addresses, 
blocks, block groups, random points and along grids, as is the case of the 
USDA Food Access Atlas. The research community accepts the results 
and accompanying maps at face value with little question as to the how 
values were computed and at what scale they were computed. Since 
managing and making drive-time calculations with all sources can be 
resource-intensive, this research is an attempt to determine how well 
various sampling techniques align with results from using calculations 
where all parcels are used as sources. In this paper, it was found that:  

• Population-weighted centroids, block centroids and a stratified- 
random technique grouped at the block group scale aligned best 
with results from all Guilford County residential parcels.  

• All three of these techniques satisfied t-tests of two differences as 
well as two separate tests of dissimilarity (Two One-Sided Test for 
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Equivalence and Paired T-Test for Equivalence) for both drive- 
distance and drive-time. 

• Of these three, population-weighted centroids require less calcula
tions because there are less source points (291) compared to block 
centroids (8,183) and the stratified-random (1,168) techniques.  

• 1000 random points was the weakest of these methods because it did 
not satisfy a t-test of two differences and passed 3 of 4 tests for 
dissimilarity. 

Nonetheless, this holistic and critical look at the source data and 
techniques used in the quantitative assessment of the food environment 
can serve as an impetus for larger work in the policy and subsequent 
remediation of food deserts and food swamps at a scale necessary to 
affect neighborhood-scale health outcomes and other related quality of 
life measures. 
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