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ABSTRACT

In the study of local-level food security, terms such as food variety, availability, accessibility and utilization represent quantitative metrics to describe one’s rela-
tionship to the tangible and intangible food environment. Food availability entails how close one is located to the nearest food location. These locations could be
healthy and fresh food as applied explicitly to the study food deserts, generally considered to be low-income areas that are far from healthy and fresh food. In the
Geographic Information Systems (GIS) network model where travel times and distances are either calculated along a line network such as a series of roads or via more
traditional techniques such as Manhattan or Euclidean distance, healthy and fresh food locations are defined as destinations. The places people are traveling from are
referred to as sources. However, modeling source locations can be increasingly complex. In just measuring food availability between all residential parcels to the
closest healthy food destination in Guilford County, North Carolina, it requires more than 177,000 route calculations, one for each of the residential parcels in
Guilford County, North Carolina. Research (Zandbergen and Hart 2009; Fischer 2004; Sahar et al. 2019; Winn 2014) has highlighted the challenges in efficiently
locating many addresses and calculating so many routes. In order to simplify the number of network calculations, this research explores ways to model, agglomerate
or simplify source locations to decrease the sheer number of calculations while not degrading results when compared to calculations using all original 177,000 source
locations. Studies in the field of food security have modeled source locations as census tract centroids, block group centroids, as well as random points and even
fishnets or grids. In this paper, we explore the use of different techniques to simulate source locations in the study of food availability in Guilford County, North
Carolina. These results are compared to calculations using all residential source locations in the county as a baseline. While all eleven techniques, which include
random, stratified and systematic, as well as combinations of them, showed some level of agreement with baseline measurements, sources simulated as block
centroids, population-weighted block group centroids and even a randomized-strata technique were strongest using t-tests of two means and equivalence tests for
dissimilarity for both drive-distance and drive-time.

1. Introduction

It is difficult to quantitively explain the nexus at the spatial distri-
bution of healthy food, spending patterns, health outcomes and
explanatory factors behind them. The body of knowledge transcending
studies in food deserts and the food environment entails a combination
of qualitative methods, quantitative calculations and mixed methods,
which collect and analyze both qualitative and quantitative data within
the same study. Contemporary research has been trending in this di-
rection (Brindle-Fitzpatrick, 2015; Chrisinger, 2016; Shannon, 2015)
since they also take into account individual perceptions and descriptions
of the food environment that can not be encapsulated using data
agglomerated within enumerations units such as block groups, census
tracts, zip codes and counties. Quantitative methods explore numerical
relationships between food availability, food access, food utilization and
explain it for a variety of metrics such as race/ethnicity, poverty status
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and access to transportation, among other things. These quantitative
metrics are immune to the effects of opinion and perception, and help
provide an impartial look at one’s relationship to the food environment.

A Geographic Information System (GIS) serves as a powerful tool to
examine quantitative spatial relationships that exist between and among
the various agents within the food environment. These agents include
source locations (where people are traveling from) and destinations
(where people are traveling to) in order to procure all forms of food,
both healthy and unhealthy. As applied to this study, the Food and
Agriculture Organization of the United Nations (FAO) definition of food
availability (FAO 2006) will be used, which measures how close one is
located to the nearest food location. Food availability, sometimes
referred to as proximity (Thornton et al., 2011), differs slightly from
food access, which takes into account both availability and a trans-
portation component (FAO 2006). While healthy food may be readily
available, it may not be accessible if one does not have the means of
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transportation to get to it. As with both of these metrics, both avail-
ability and access can be qualified given the various modes of individ-
ualized and non-individualized transportation available to some
populations based purely on geography alone (i.e. proximity to bus
routes or sidewalks) or rurality where a car is the only reasonable mode
of transportation.

Ways to measure this availability can be in absolute units such as
minutes or miles which are self-explanatory. More recently, relative
unitless metrics (Zenk et al., 2014; Clary et al., 2015; Mason et al., 2013)
have been used as alternatives to absolute measures since a 10-min drive
time to the nearest fresh food source in a downtown urban area means
something much different than a 10-min drive to the nearest fresh food
in a rural area. However, relative metrics have their challenges and
potential for misuse much like their absolute measure counterparts. For
example, the binary categorization of a food store as just UNHEALTHY"
or ‘HEALTHY’ deemphasizes the relative importance of one individual
store. A farmers’ market and a large supermarket both have the same
value when applied in a ratio although the large supermarket is utilized
by much more of the population than the farmers’ market. Furthermore,
proportions which represent the percentage of healthy food outlets
against a denominator can be misleading if the denominator includes
only a limited classification of food outlets (healthy food + fast food
outlets + convenience stores) versus a more comprehensive listing of all
outlets where food can be purchased (Thornton et al., 2020) which may
include bakeries, hardware stores, clothing outlets, gyms and even
laundromats (Lucan et al., 2018). The use of weights to measure an
outlet’s contribution to the overall quantitative assessment of the food
environment (Thornton et al., 2012) or novel relative metrics (Wilkins
et al., 2019) using various cohorts of the food environment (fast food,
total outlets, restaurants, etc.) are being devised to make stronger as-
sociations with health outcomes. Nonetheless, the use of either relative
or absolute metrics require additional interpretation beyond the actual
numbers yielded as a result of their calculations.

A GIS is used to measure availability between these sources and
destinations. This availability can be measured as Euclidean Distance
(straight-line), Manhattan Distance (distance between two points at
right angles), drive distance or even drive time between a source and
destination. While Euclidean and Manhattan Distance are relatively easy
and fast to compute within a GIS, the calculation of drive distance and
drive time, which is more practical, requires more input parameters, is
dependent upon high-quality data and is more resource-intensive. In
other cases, the number and types of destinations within a source can be
found within an area of interest (AOI) or multiple areas of interest. These
AOQIs are typically referred to as buffers. Methods have been used to
measure how availability and access, whether via distance, drive times
or grouped within buffers of varying lengths correlates to socio-
economics and ultimately health outcomes. Studies (Pearce et al.,
2008, Winkler 2006; Wang et al., 2006) at different scales have found
varying degrees of success finding associations between these factors,
ranging from strong associations between socio-economic status (SES)
and healthy food availability (Giang et al., 2008; Lewis et al., 2005;
Morland & Filomena, 2007, Powell et al., 2007) to no relationship be-
tween the two (Zenk et al., 2005; Morland et al., 2002). However,
regardless of method used, most of the historical literature within the
United States has cited that underrepresented communities (poor, mi-
nority, rural or combinations thereof) are typically further and less
accessible to healthy food, cost more and have less healthy options than
their counterparts.

Despite advances in GIS technologies, it is difficult to model all po-
tential drive-time scenarios between a source and destination using
desktop computing solutions in a timely manner. In the study area of
Guilford County where the population exceeds 500,00 people, there
exists 220,702 individual parcels of which 177,080 are residential par-
cels. Using Dijkstra’s Shortest Path First (SPF) algorithm (1959) and a
road network with more than 98,000 vertices, a best-case scenario for
calculating just one path requires a minimum of 98,000 calculations and
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a worst-case scenario of more than 9 billion (98,0002) calculations for
each of the 177,000 paths to be calculated (Mehlhorn 2008). This means
there are literally trillions of possible calculations between these resi-
dential parcels and potential destinations. While applications using
Python, Stata (Huber & Rust, 2016) and R programming solutions make
this process faster than Esri’s Network Analyst calculations using a GUI
(Graphical User Interface), they are less intuitive for the average GIS
user and still require billions of calculations.

Research (Fischer, 2004; Sahar et al., 2019; Winn, 2014; Zandbergen
& Hart, 2009) has highlighted the challenges in efficiently locating
many addresses and calculating so many routes. Because of this, geog-
raphers and GIS professionals have explored methods to simplify the
number of potential source locations which would in turn decrease the
number of calculations, while ensuring this decrease in source locations
does not degrade results when compared to the entirety of source lo-
cations. This simplification or sampling is an attempt to circumvent is-
sues of scale and in this case size by reducing the number of potential
source locations while not compromising results. Within many different
applications, prior work has approximated possible source locations as
both population and geometry-based centroids (Berke and Shi 2005),
random points (Mulrooney, Beratan, et al., 2017), grid-based points
(Economic Research Service 2019) and random points within a stratum
(Hilson et al., 2015) as highlighted in Table 1. This paper explores a
variety of sampling methods for potential source locations in the
quantitative measure of food availability using Networking GIS tools
and how these methods compare to measurements for all residential
locations in Guilford County, North Carolina.

1.1. Literature review

The mapping and delineation of food-unavailable areas within the
digital environment has been made exponentially easier with GIS tech-
nologies. While originally used as an aesthetic tool to map study areas
(Wrigley et al., 2002) or display underlying explanatory variables (Guy
et al., 2004), GIS has since been used to measure distances, quantita-
tively express availability and render this availability with statistical
significance using a variety of analytical, geostatistical and cartographic
techniques. Among the first to do this within the realm of the food
environment were Donkin et al. (1999), Lovett et al. (2002) and Pearce
(2006).

Within the GIS data environment, ways to express quantitative di-
mensions of the food environment vary from study to study. Prior
research has expressed these measures as absolute linear units such as
kilometers or miles (Jago et al., 2007), travel time in minutes (VerPloeg
et al., 2009; Jiao et al., 2012) and densities such as the number of food
options per square mile by census tract (Block et al., 2004), as well as
derived metrics such as the cost to operate a car (Hallett & McDermott,
2011). More recently, the aforementioned relative metrics have been
implemented as complements to absolute metrics. The Retail Food
Environmental Index (RFEI) and the Expanded RFEI (Cooksey-Stowers
etal., 2017, Lucan et al., 2015) are examples of widely-accepted relative
metrics, while others (Mulrooney, McGinn, et al., 2017; Rose et al.,
2009) have derived their own metrics and subsequent interpretations to
define spatial extents of food deserts and food swamps using the RFEI,
Expanded RFEI and Modified RFEI (mRFEI) developed by the Centers for
Disease Control (2009) and Food Balance Metric (Gallagher, 2006) as
guidelines.

Nonetheless, food availability can be mapped at different scales or
within different enumeration units such as those seen in Fig. 1 which
highlight travel time to the nearest healthy food location using two
different sized enumeration units, the census block group and the census
tract. In the United States, counties are further divided into census
tracts, census block groups and census blocks. While counties have been
used as the basis for food environment research (California Center for
Public Health Advocacy, 2007; Sisiopiku & Barbour, 2014), it is not at a
scale that facilitates local-level interventions necessary to implement
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Table 1

Different sampling techniques used in this study.

Number  Method

Explanation

Total #
Points

Prior Work

1 Guilford
Residential
Parcels

2 Block Group
Centroid

3 Pop.
Weighted BG
Centroid

4 Block
Centroid

5 Populated
Block
Centroid

6 1/2 Mile
Fishnet

7 1/4 Mile
Fishnet

8 Random
Points
(1,000)

9 Random
Points
(5,000)

The centroids of all
Guilford County
Residential parcels
were extracted as
centroids and used as
source locations in
Network Analyst
model. Calculations
were grouped into
block groups and
compared to other
modeling techniques
grouped at the BG
level.

The centroids of all
block groups in
Guilford County were
extracted as centroids
and used as source
locations.

The weighted
centroids of all block
groups, weighted by
population at the block
level, in Guilford
County were extracted
as centroids and used
as source locations.
The centroids of all
census blocks in
Guilford County and
were extracted as
centroids. These blocks
were grouped into the
appropriate block
group.

The centroids of all
census blocks in
Guilford County with a
population 50 or more
were extracted as
centroids. These blocks
were grouped into the
appropriate block
group.

Source locations
automatically placed
at 1/2 mile increments
and grouped into
appropriate BG after
Network Analyst
calculation.

Source locations
automatically placed
at 1/4 mile increments
and grouped into
appropriate BG after
Network Analyst
calculation.

Random points
randomly distributed
throughout study area
and grouped into
appropriate BG after
Network Analyst
calculation.

Random points
randomly distributed
throughout study area
and grouped into
appropriate BG after
Network Analyst
calculation.

177,080

292

291

8183

2745

2631

10,520

5000

1000

Berke and Shi
2005

Berke and Shi
2005

Berke and Shi
2005

Berke and Shi
2005

Economic
Research
Service 2019

Economic
Research
Service 2019

Mulrooney,
Beratan, et al.
(2017)

Mulrooney,
Beratan, et al.
(2017)
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Table 1 (continued)

Number  Method Explanation Total # Prior Work
Points
10 Random Area is split into strata 1168 Hilson et al.,
Points (4 per (BGs) and each strata 2015
BG) contains 4 points,
randomly placed
throughout BG.
11 Stratified Area is split into strata 5000 Hilson et al.,
Random - (BGs) and each strata 2015
Area (BG) contains proportional
number of points based
on the area of the BG,
randomly placed
throughout BG.
12 Stratified Area is split into strata 5000 Hilson et al.,
Random - Pop  (BGs) and each strata 2015
(BG) contains proportional
to the population of the

BG, randomly placed
throughout BG.

practical policy. In North Carolina, there are exactly 100 counties.
Within them, there exist 2174 census tracts and 6107 census block
groups. Contemporary neighborhood-level research has used these units
as a basis for research because they 1) are able to articulate
sub-county/neighborhoods patterns and 2) explanatory data via the
census, American Community Survey (ACS) or spending patterns are
also available at that scale, which in turn make for easy comparison,
correlation and associations.

Food availability studies at the tract level by Baker et al. (2006),
Block et al. (2004) and Zenk and Powell (2008) measure metrics such as
clustering to supermarkets, density to fast food and density of conve-
nience stores within for particular study areas, respectively, while the
mRFEI (Centers for Disease Control and Prevention, 2011) measures
relative food availability (ratio of healthy to unhealthy food) at the tract
level across the entire United States. The gold standard for measuring
food access in the United States, the United States Department of Agri-
culture Food Access Atlas (Economic Research Service 2019) specifically
measures food deserts (low income and limited access) as well as the
individual components that make up this metric combined with ancil-
lary measures such as income, vehicle access and high-density housing
at the tract level.

In this work, evaluating and displaying food availability at the
household level becomes one issue, the scale at which to render results
becomes another. Household-level results such as those highlighted in
Fig. 2, while useful, require display at an extremely high scale. This
becomes problematic when exploring and comparing counties, tracts
and even block groups, as the 292 block groups in Guilford County
average 680 households per block group. However, block group level
analysis has been performed by Jiao et al. (2012), Sharkey and Horel
(2008), Mulrooney, McGinn, et al. (2017) and Chen and Clark (2013).
Other research such as Van Hoesen (2014) has used towns as enumer-
ation units for a study in Vermont. Towns in Vermont are
non-overlapping polygonal units that are smaller than census tracts, but
larger than block groups. Some other states such as New Jersey, Penn-
sylvania, Michigan and Ohio are divided into sub-county units such as
townships, cities, towns and boroughs at which high-quality information
is also collected.

Using vector-based tools, network analysis and geoprocessing algo-
rithms can compute availability between a destination location from a
particular source. In some cases, these destination locations may be
retail food and fast food (Wang et al., 2007), any location selling fruits
and vegetables (Winkler 2006), fast food and convenience stores (Zenk
& Powell, 2008) or a combination of supermarkets, grocery stores,
convenience stores and fast good (Liu et al., 2007). As previously
mentioned, this availability can be measured in different ways. While
Wang et al. (2007) and Winkler (2006) measured this availability using
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Fig. 1. Average drive-time to healthy food sources in Guilford County for 292 Block Groups (left) and 119 Tracts (right).
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Fig. 2. Example of household-level drive-time analysis.

Euclidean distance, Zenk and Powell (2008) measured walking distance
while Liu et al. (2007) and Chen and Clark (2013) used driving distance.
Pearce et al. (2008) measured this availability as a function of drive
time.

While network-based (drive-time and drive-distance) measurements
at the block group level serve as the foundation for this research, this
paper focuses specifically on the representation of sources, whether it be
schools (Austin et al., 2005), census blocks (Smoyer-Tomic et al., 2008),
centroids of block groups (Gallagher, 2006), the actual addresses of
households (Van Hoesen 2014; Bodor et al., 2008, Burdette et al., 2004)
or even random points (Mulrooney, Beratan, et al., 2017) using Network
Analyst tools as applied in the study of food availability. Using Network
Analyst, one is able to determine the closest destination (fresh food)
using a travel-time and distance impedance along a network from a
source. The United States Department of Agriculture (USDA) Food Ac-
cess Atlas uses the center of ' km grids, or a fishnet, as their source in
creating a continuous raster surface of access in concert with

socio-economic data (access to transportation, poverty, etc.) rasterized
at this scale from existing census data grouped at various scales (United
States Department of Agriculture, 2020). In the case of schools and block
groups where the number of sources is relatively small (in the dozens to
perhaps hundreds), the calculations of these networks is relatively fast
and comparable to non-network based calculations of Euclidean and
Manhattan distance using tradition GIS geoprocessing tools. However,
as the number of source locations increase, these calculations become
more complex and longer to process.

In field-based research revolving around quality assurance/quality
control (QA/QC), geographical sampling presents a number of issues in
trying to avoid non-probabilistic sampling techniques. For example,
inaccessible sample points pose logistical challenges for those physically
visiting these points that do not exist in the digital environment. In this
case where sample points are simulated in a GIS environment in order to
reduce the sheer number of calculations without degrading results,
various methods exist to accomplish this. Where little is known about
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the data, a random distribution of points may be preferable. In other
cases where an equal distribution of points is required, a systematic
approach such as a fishnet such as those used by the USDA Food Access
Atlas can be used. Still in other cases where more data is known, a
stratified sampling technique based on strata (block groups) may be
used (Wood, 1955) to allow certain strata to be weighted more based on
some variable (population or area). Various techniques which use or
combine systematic, random and stratified techniques for various sam-
ple sizes are highlighted in Table 1 and four of these methods are shown
in Fig. 3 as well.

1.2. Study area

As part of a larger research project revolving around food insecurity
in three different counties across North Carolina, we conducted this pilot
study in Guilford County (Fig. 4). Located in the Piedmont Region of
North Carolina, the city of Greensboro dominates the county and serves
as the economic and cultural center of this county, which has an area of
about 1700 km? (658 mi2) and a population of approximately 502,000
people. Besides Greensboro (population 294,000), Guilford County is
also composed of other cities, municipalities and newly incorporated
municipalities (NIMs) to include High Point (pop. 112,00), Stokesdale
(pop. 5400 and incorporated in 1989), Summerfield (pop. 11,300 and

Residential Parcel Centroids

2500
Block Group

®  Healthy Food Source

+  Residential Parcel Centroid

Quarter Mile Fishnet

2,500 Feet

®  Healthy Food Source Block Group

@ 1/4 Mile Fishnet e .
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incorporated 1996), Jamestown (pop. 4500), Sedalia (pop. 660 and
incorporated in 1997), Oak Ridge (7000 and incorporated in 1998).
Despite this, rural regions, using the definition provided by the United
States Census (2010), are abundant in the southeastern, northeastern
and northwestern portions of the county and represent 16.4% of the
population and 55.3% of the land area within the study area.

2. Methodology

In order to test the usefulness of sampling algorithms to model travel
time to the nearest healthy food locations, data related to healthy food
locations (destinations), residential locations (sources) and a network
connecting them (roads) were extracted from existing GIS data sources.
The use of the terms source and destination align with their usage in
technical applications (Environmental Systems Research Institute 2010)
as used in Network Analyst calculations created in support of this
research and reinforced by GIS literature (Abousaeidi, Fauzi, & Muha-
mad, , Raja et al., 2008) which represent travel-time and travel-distance
between two locations. Healthy food locations were derived from their
NAICS (North American Industry Classification Standard) code, a
multinational (United States, Canada and Mexico) standard which
classifies business establishments by their primary economic activity. All
businesses are provided as point locations by InfoUSA for the year 2018.

Randomly Placed Points (5,000 total in county)

- W

2.500 Feet

@ Healthy Food Source Block Group

©  Random Point 05 025 L] 0.5 Miles

Stratified Random (based on population)

2

2,500 Feet

®  Healthy Food Source
@ Stratifed Random (Pop.)

Block Group
05 02 o 0.5 Miles

Fig. 3. Examples of different techniques to model source locations in the GIS. They include using all residential parcels (upper left), randomly placed points (upper
right), stratified random where number of points are proportional to block group’s population (lower right) and ' mile fishnet (lower left).
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Guilford County, North Carolina
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Fig. 4. The study area of Guilford County, North Carolina.

NAICS codes beginning with 44,511 represent supermarkets and other
groceries, with further delineations (44511001 through 4451106) to
represent increasing larger stores based on the number of employees. In
addition, InfoUSA provides attributes about the store’s number of em-
ployees. Only large (more thanlO employees) supermarkets were
extracted from this database, regardless of NAICS code since most
people would not patronize small stores classified as groceries to satisfy
their healthy food needs. In addition, all other large stores that sell fresh
food not denoted by this NAICS code (such as = WalMart Supercenter
and Target) were merged into this database, as well as farmers’ markets.
Finally, a 10-mile buffer was applied around Guilford County to include
stores outside of the county that may be frequented from Guilford
County source locations. In all, a total of 118 healthy food sellers, to be
used as destinations, were exported into the final version of this GIS
database.

In GIS, a network can be modeled in a way so that cumulative im-
pedances represented quantitatively through its attributes (such as
travel time or stream flow) can be calculated above and beyond real-
world distance measures (such as meters and miles) that are inherent
in GIS. Network calculations have advantages over the aforementioned
Euclidean and Manhattan calculations in that they better represent real-
world conditions and a human understanding of travel. All travelers care
more about travel time or travel distance as opposed to the straight-line
distance (Euclidean) or minimum distance when traveling at right an-
gles (Manhattan Distance). While the latter are easy to calculate in a GIS,
the former require more data, the correct type of data and the correct
attributes in order to make these more complex calculations. The North
Carolina Department of Transportation (NCDOT) provides high-quality
road data through both services (NCDOT 2020a) and downloadable sites
(NCDOT 2020b) that can be used in these calculations. This road
network consists of 1,072,300 individual road segments with more than
90 attributes, including road length and speed limit, so high-precision
travel time calculations can be derived. These road network data for
the entire state of North Carolina were integrated into this GIS database
for use in these calculations.

Finally, source locations were extracted or created using a variety of
different formats as highlighted in Table 1. In one calculation (block
group centroids, Method 2), the centroid of each of the 292 block groups
was extracted and used as a source in the Esri Network Analyst

calculation to find the nearest facility (in terms of travel-time) between
the 292 sources and 118 destinations. In another scenario (Method 6),
source locations were created at ! mile intervals using the Create Fishnet
function in Esri software. The specific networking tool in which routes
between sources and destinations were computed was Esri’s Nearest
Facility tool, which is able to determine the closest facility (healthy food
source) using a travel-time impedance along a network from another set
of points (modeled sources).

For each of the scenarios described in Table 1, a Network Analyst
computation using Dijkstra’s Shortest Path First (SPF) algorithm (1959)
was run to determine the drive-time and drive-distance between each of
the sources and destinations. The results of the calculation are a set of
routes, represented as a line, connecting the source and the nearest
destination. As highlighted in Table 1, given that the number of sources
used in each modeling scheme ranges from the hundreds (block group
centroid = 292 sources) to hundreds of thousands (Guilford County
Residential Parcels = 177,080 sources), the number of actual calcula-
tions varies greatly amongst these techniques which in turn cannot be
supported by typical desktop computing solutions. In running the Esri
Network Analyst calculation, all desktop computers used by the research
team ran out of memory when calculating 177,080 possible routes for all
Guilford County residential locations. As a result, the sources were
broken down in the manageable subsets of sources and the Network
Analyst calculation was run successfully. This process, even automated
in the Python programming environment, is time-consuming and this
conundrum with in the Esri platform serves as the impetus for this
research project.

Using GIS techniques, each route was grouped into its appropriate
block group. From the appropriate Federal Information Processing
Standard (FIPS) code. For those sources not related to a FIPS code such
as the fishnet and random points (Fig. 3), a Spatial Join function was run,
grouping and averaging each location and calculated travel time/dis-
tance with a block group that can be mapped. The result is a choropleth
map, highlighting the 292 block groups in the study area and their
calculated average drive time using the techniques described above
using the same destinations, but different sources as described above.

Given the base enumeration and display unit is the block group, it
must be noted that in some cases, there is an equal distribution of source
points within each block group while in other cases there may be none.
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In Methods 2 (Block Group Centroid) and 10 (4 sources in each BG), each
block group contains the same number of source points. In Method 6
where points are systematically placed % mile apart, 22 block groups did
not have a source point located within it while one block group, the
largest in terms of area but the 57th largest in terms of population,
contains 127 source points. In Method 9 where 5000 points were
randomly distributed throughout the study area, this same block group
contains 227 source points while 19 block groups did not contain a
source point. Still yet, Methods 11 and 12 create a proportionate dis-
tribution of points within each block group based on area and popula-
tion, respectively. As a result, while the aforementioned block group has
the greatest number of source points (236) based on relative area as
highlighted in Method 11, it contains only 24 source points based on its
population in relation to the rest of the other block groups (Method 12).

For each of the techniques described in Table 1, a choropleth map
was created such as those seen in Fig. 5. These maps are based on tabular
data representing each of the 292 block groups and the calculated drive
time to the nearest healthy food source for each scenario as shown in
Tables 1 and 2. For each of the techniques highlighted in Fig. 5, the
patterns appear generally the same since they show the same informa-
tion (drive time to the nearest healthy food facility), albeit calculated
differently using the techniques described above. Noticeable is the block
group in the northwest part of Guilford County where the block group
occurs in the first quantile of data one calculation (source is estimated as
the center of the block group) while it occurs in the second quantile for
the map to the right. In this case, the healthy food source is located close
(just over 1 mile) to the block group centroid which is used as a source.
In the second calculation to the right, there are 39 simulated sources
located throughout the block group which obfuscate values closer to the
destination in this part of the county.

As alluded to before, while there are 292 block groups in Guilford
County, the number of block groups with actual sources and calculated
values within them that are mapped may be slightly less depending upon
the sampling method used. For example, using the ' mile fishnet tech-
nique where source points are evenly spaced » mile apart, there were
cases where a source point did not fall within a block group, resulting in
a Null calculation. This occurs in urban areas where block groups are
much smaller. As a result, the sample size for this calculation is 270 since
only 270 block groups contain a simulated source point using this
technique. Nonetheless, in cases where the block group is used as a strata
unit, all 292 block groups will have a calculated value within it. In cases
of stratified random techniques based on area and population, block
groups may have such small area and/or population that their allocation
of source points is rounded down to O, hence resulting in a number
slightly less than 292. In the case of population-weighted centroids, only
291 block groups had a population and one centroid was not computed.

Drive Time in Minutes to Nearest Healthy Food Source
Block Group centroid used as source

Minutes
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2.1. T-test of two means

Using the Guilford Residential Parcel calculation (Method 1) as a
baseline, an independent t-test of two means was run between the
dataset as a result of the Guilford Residential Parcel calculation and each
of the eleven other scenarios to determine if there was a difference be-
tween the different cohorts of accuracies.

Average travel time of Method 1 = average travel time other method

Ho = py=py

Average travel time of Method 1 # average travel time for other method

Hy oy #

Using the derived average drive-times for each block group

(Y, and SA(Z) and the sample sizes for each cohort (N; and Ny), this test
helps determine the criteria in order to reject the Null hypothesis (drive-
times or distances from Guilford Residential Parcel calculation are
equal) and accept the alternate hypothesis (drive-times or distances
from Guilford Residential Parcel calculation are not equal to each other).

2.2. Equivalence testing

One of the challenges in working with the t-test of two means is the
interpretation of results. When running these tests, insufficient evidence
to reject the null hypothesis as shown above may not necessarily imply
similarity and the probability of making a Type II error still exists. This
non-rejection of the null hypothesis as a means to assume equivalence
can be thought of as convoluted and speculative. As a result, researchers
have explored testing mechanisms to directly measure equivalence
(Berger & Hsu, 1996; Cribbie et al., 2004; Seaman & Serlin, 1998) be-
tween different groups. These tests use statistical tools to determine if
the means between two groups are small enough to be considered
inconsequential.

In equivalence testing, the null and alternate hypotheses are essen-
tially switched compared to difference-based t-tests. In equivalence
testing, the null hypothesis dictates the difference of the means fall
outside of an equivalence interval (), which may not necessarily be
symmetric about a mean. The alternate hypothesis states the difference
of the means falls within this confidence interval.

Hop @ py— py < 01 Hyy :opy— py > 04

Hoy @ py— gy > OHy oy — py < 0

In order to further support the results from the t-tests, paired
equivalence tests were run between Method 1 (sources simulated for all
residential parcels in Guilford County) and each of the other methods

Drive Time in Minutes to Nearest Healthy Food Source
Sources placed along 1/2 mile fishnet

Minutes
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Fig. 5. Results of Nearest Facility analysis in which routes between sources and destinations are agglomerated at the block group level when block group centroids
are used as sources (left) and !5 fishnet is implemented (right) using a quantile mapping classification.
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Table 2
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Results of paired two-tail t-test when comparing Method 1 with each of the other Methods.

Drive-Distance (Miles) Drive-Time (Minutes)

Method Method Number N n (BGs) X t p X T p

Guilford Residential Parcels 1 177,080 292 1.701 - - 3.998 - -

Block Group Centroid 2 292 292 1.801 —0.844 0.399 4.229 -1.299 0.194
Pop. Weighted BG Centroid 3 291 291 1.781 —0.662 0.508 4.154 —0.891 0.373
Block Centroid 4 8183 292 1.703 —0.017 0.987 4.016 0.132 0.895
Populated Block Centroids 5 2745 291 1.730 —0.265 0.791 4.202 —1.294 0.196
1/2 Mile Fishnet 6 2631 270 1.800 —0.858 0.391 3.958 0.246 0.806
1/4 Mile Fishnet 7 10,520 290 1.789 —0.790 0.430 4.006 —0.046 0.964
Random Points (1000) 8 1000 196 2.050 —2.686 0.007 4.359 —1.909 0.057
Random Points (5000) 9 5000 273 1.810 —0.944 0.346 4.016 —0.102 0.919
Random Points (4 per BG) 10 1168 292 1.751 —0.447 0.655 3.917 0.495 0.621
Stratified Random - Area (BG) 11 5000 290 1.789 —0.790 0.430 3.989 0.059 0.953
Stratified Random - Pop (BG) 12 5000 291 1.748 —0.418 0.676 3.893 0.655 0.513

Null Hypothesis (Means Equal to Each Other) Acceptable at  (.05)

highlighted in Table 1. Steeped in behavioral research, the paired-
sample test for equivalence developed by Wellek (2003) uses a stan-
dardized equivalence interval, population mean difference score and
population standard deviation of the differences to derive a t-statistic
that can be compared to a critical value. The Two One-Sided Test for
Equivalence (TOST) purported by Seaman and Serlin (1998) implements
two separate one-sided tests using raw mean differences (u; — y,)
instead of mean difference scores.

3. Results

Descriptive statistics are highlighted in Table 2 for each of the
methods used to approximate source locations. A general observation
shows the average drive-distance for when grouped at the block group
level was lowest when using all Guilford County residential parcels
compared to the other methods. However, average drive-time ranked
5th out of the 11 different methods run. This table also highlights results
from the t-test and resulting p score when comparing results from all
Guilford County Residential Parcels (Method 1) versus the other eleven
methods used. This test essentially compares the average drive-distance
and drive-time when grouped at the block level when all Guilford
County Residential Parcels are used as sources when independently
compared to each of other methods employed in this study (Methods 2
through 12).

In 10 of the 11 t-tests for drive-distance and in all 11 of the t-tests for
drive-time, the corresponding p-values were computed to be above the
acceptable limits for accepting the alternative hypothesis at that sig-
nificance level (a« = 0.05). The only exception was Method 7 (1000
random points used as sources). As a result, given this sample size and
confidence, we can confidently state that there is no difference between

Table 3

drive-time between when grouped at the block group level for sources
simulated for all Guilford County Residents versus the other methods
used. When simulating drive-distance, all methods except 1 articulated
there were no differences using the t-test.

The paired t-test for equivalence and TOST were run in R, an open
source environment used primarily for statistical computing and the
results of the test for dissimilarity (the null hypothesis), are shown in
Table 4. Indicators of similarity, or rejection of dissimilarity, appeared
across all eleven methods at some level. However, their strength varied
between the type of test (TOST vs. Paired T-Test) and measurement
(drive-time vs. drive-distance) as shown in Table 3. In three cases, where
sources were approximated at the population weighted block group
centroid (Method 3), block centroid (Method 4) and random points (4
per block group) in Method 10, dissimilarity was rejected across all four
variations of the measurement. Combined with the fact that combined p-
values between the two methods were so high in the test of two means
(indicating extremely little chance the set of values are statistically
different), it is safe to assume these methods are excellent ways to model
source locations as opposed to running all possible calculations. In
addition, other methods such as the populated block centroids (Method
5), ¥ mile fishnet (Method 6), ¥ mile fishnet (Method 7), 1000 random
points (Method 8) and 5000 random points (Method 9) satisfied three
out of the four criteria for the test of dissimilarity. Except for Method 8
which failed the two-tail t-test for drive-time, these methods would also
be candidates for source modeling routines. Lastly, the block group
centroid (Method 2), Stratified Random - Area (Method 11) and Strati-
fied Random - Population (Method 12) only satisfied two of the
dissimilarity criteria.

Results for the Test for Dissimilarity (Null Hypothesis). Both the Two One-Sided Test for Equivalence (TOST) and Paired T-Test for Equivalence were run between

Method 1 and each of the other 11 methods.

Drive-Distance (Miles)

Drive-Time (Minutes)

Method Method Number N n (BGs) X TOST Paired T-Test X TOST Paired T-Test
Guilford Residential Parcels 1 177,080 292 1.701 - - 3.998 - -

Block Group Centroid 2 292 292 1.801 Rejected Not Rejected 4.229 Rejected Not Rejected
Pop. Weighted BG Centroid 3 291 201 1.781 Rejected Rejected 4.154 Rejected Rejected
Block Centroid 4 8183 292 1.703 Rejected Rejected 4.016 Rejected Rejected
Populated Block Centroids 5 2745 291 1.730 Rejected Rejected 4.202 Rejected Not Rejected
1/2 Mile Fishnet 6 2631 270 1.800 Rejected Rejected 3.958 Rejected Not Rejected
1/4 Mile Fishnet 7 10,520 290 1.789 Rejected Not Rejected 4.006 Rejected Rejected
Random Points (1000) 8 1000 196 2.050 Rejected Not Rejected 4.359 Rejected Rejected
Random Points (5000) 9 5000 273 1.810 Rejected Not Rejected 4.016 Rejected Rejected
Random Points (4 per BG) 10 1168 292 1.751 Rejected Rejected 3.917 Rejected Rejected
Stratified Random - Area (BG) 11 5000 290 1.789 Not Rejected Not Rejected 3.989 Rejected Rejected
Stratified Random - Pop (BG) 12 5000 291 1.748 Rejected Rejected 3.893 Not Rejected Not Rejected
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Table 4
Assessment of each of the techniques used in this research and justification for
each technique.

Method Method n Strength of Justification
Number Technique

Guilford 1 177,080 - Simulates geographic

Residential reality, but is time and

Parcels resource intensive on

most desktop
computers.

Block Group 2 292 Fairly Satisfied t-tests for
Centroid Strong differences, but only

satisfied 2 of the 4
equivalence tests for
dissimiliarity.

Pop. 3 291 Strongest Satisfied t-tests for
Weighted differences and satisfied
BG Centroid all 4 equivalence tests

for dissimiliarity.

Block 4 8183 Strongest Satisfied t-tests for
Centroid differences and satisfied

all 4 equivalence tests
for dissimiliarity.

Populated 5 2745 Strong Satisfied t-tests for
Block differences, but only
Centroids satisfied 3 of the 4

equivalence tests for
dissimiliarity.

1/2 Mile 6 2631 Strong Satisfied t-tests for
Fishnet differences, but only

satisfied 3 of the 4
equivalence tests for
dissimiliarity.

1/4 Mile 7 10,520 Strong Satisfied t-tests for
Fishnet differences, but only

satisfied 3 of the 4
equivalence tests for
dissimiliarity.

Random 8 5000 Weak Did not satisfy t-test for
Points differences for drive-
(1000) distance and barely

passed for drive-time,
but satisfied for 3 of the
4 equivalence tests for
dissimiliarty.

Random 9 1000 Strong Satisfied t-tests for
Points differences, but only
(5000) satisfied 3 of the 4

equivalence tests for
dissimiliarity.

Random 10 1168 Strongest Satisfied t-tests for
Points (4 differences and satisfied
per BG) all 4 equivalence tests

for dissimiliarity.

Stratified 11 5000 Fairly Satisfied t-tests for
Random - Strong differences, but only
Area (BG) satisfied 2 of the 4

equivalence tests for
dissimiliarity.

Stratified 12 5000 Fairly Satisfied t-tests for
Random - Strong differences, but only
Pop (BG) satisfied 2 of the 4

equivalence tests for
dissimiliarity.

4. Discussion

The decision to patronize certain healthy food establishments is a
function of many quantitative, qualitative and in-situ factors. This
research attempted to model travel scenarios to the nearest healthy food
source based solely on geographic proximity. Using the techniques
described above, different ways to approximate source locations resul-
ted in varying degrees of success, with population weighted block group
centroids (Method 3), block centroids (Method 4) and random points (4
per block group) in Method 10 being the strongest of these methods.

Applied Geography xxx (xxxx) xxx

In the course of research, opportunities for future research were
elucidated above and beyond those addressed in this paper. These op-
portunities revolve around the concept of the quantitative assessment of
one’s relationship to the food environment which would complement
the research highlighted here. While Guilford County residential par-
cels, as well as other modeling scenarios were used as source locations, it
is only an attempt to model people’s actual consumer behaviors. People
may shop for food on the way home from work or as part of other er-
rands. As well, availability is a principal determinant for a primary
grocery shopping location for just under half (48%) of US residents
(Food Marketing Institute, 2016). Another study (Zenk et al., 2013)
found that more than half (53.9%) of residents in Detroit often shopped
within 2 miles of their residence. Those who bypass the closest store cite
reasons such as lower prices, lower prices on wanted items, better se-
lection and better quality of fresh foods as reasons for doing so (Food
Marketing Institute, 2016). Lower income residents may not have the
means to be as choosy, as almost half of all Americans have cited that it
is ‘sometimes’ or ‘often’ true that they would’ve purchased healthy food
options instead of unhealthy ones for economic reasons (International
Food Information Council Foundation, 2018). These lower income res-
idents thus are subjected to the grocery store and their options, or lack
thereof, that geography dictates, compared to their higher-income
counterparts, as well as the inability to procure healthy food options
at these stores. This is difficult to encapsulate within this research.

The second quantifiable factor taken from this study is food away
from home (FAFH). FAFH can be thought of as food obtained or
consumed at fast food establishment (which accounts for the largest
percentage of FAFH), full-service restaurants and other (catered affairs,
food trucks and vending machines) establishments. Quick Service Res-
taurants (QSRs) have driven the growth of FAFH in the last two decades
as restaurants such as Chipotle Mexican Grill and Panera Bread provide
facets of both fast food (counter service) and full-service restaurants
(perceived ambiance and food quality). FAFH accounts for one-half of
Americans’ food budgets and Americans’ share of energy intake from
FAFH is 34%, double that from 1978 (United States Department of
Agriculture, 2018). Nonetheless, it is difficult to model travel patterns
attached to the consumption of FAFH, which may or may not be healthy.
While spending patterns are available at the block group level, con-
trolling for it within the confines of this study falls outside of the scope of
this research.

As applied explicitly to GIS applications related to the quality of
spatial food environment data, work has proliferated as research in the
spatial analysis and representation of the food environment has
increased and a need has arisen to answer questions about the validity of
data on which decisions are made. (Forysth et al. (2010) understood
these challenges, which include the reliability and validity of data
(proper addresses and classifications of stores) as well detail and
completeness (enough information is stored that can be useful in food
environment analysis). Wilkins et al. (2017) further expounded on these
dimensions to include the quality of geocoding processes, the definition
of food outlet constructs (what is the definition of healthy, use of pro-
prietary codes, etc.) and ways to measure access and via a reportable
standard called Geo-FERN (Food Environment Reporting). Compre-
hensive studies (Liese et al., 2010; Auchincloss et al., 2012) have
explored the quality of large spatial databases purchased from inde-
pendent sources among and between disparate datasets and providers
which serve as the basis for retail businesses. Larger-scale studies
(Rummo et al., 2015; Han et al., 2012; Hosler & Dharssi, 2010; Mendez
et al., 2016) were performed for Durham, Chicago, Albany and Pitts-
burgh respectively. All cited some degree of difference between different
CAB databases such as InfoUSA, Dunn and Bradstreet, TDLinx, as well as
field-based and automated methods, noting that caution must be taken
when using CAB databases. Powell et al. (2011) research reinforced the
idea of uncertainty absorption within this narrow focus (validity of GIS
data in measuring the food environment), highlighting the reconcilia-
tion that must be made between the sheer number of data sources
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provided by CAB databases, the time needed for field verification and
the need for high-quality data. While exploring these differences falls
outside of the scope of this research, they must be noted.

Results of drive-time calculations agglomerated within enumeration
units such as census block groups can potentially be misleading because
of the Modifiable Areal Unit Problem (MAUP) given the varying sizes
and shapes of enumerations units to which data are grouped. Research
(Wieczorek et al., 2011) showed the sizes and shapes of enumeration
units do in fact affect the patterns of phenomenon based on the way in
which they are grouped, whether intentionally or unintentionally. While
this research’s end-results focuses solely on census block groups, results
may be different if data are grouped within census tracts or even zip
codes. Using the techniques described previously, data were grouped
into 119 census tracts and 24 zip codes. Patterns highlighted at the
census block group mimicked those patterns at the coarser tract and zip
code scale.

Lastly, while the locations of sources are dictated by explicit loca-
tions or centroids in some scenarios (Methods 1 through 4), others have
some degree of randomness attached to them. In Methods 7 through 11,
random points or parcel locations within the study area or strata are
used to model source locations. Geostatistical tools such as Nearest
Neighbor Analysis can truly dictate the degree of randomness between
and amongst these points and python programming solutions combined
with modeling tools can be used to run a Monte Carlo simulation,
ensuring randomness for each of these methods over many different it-
erations of random source location placement. In Methods 5 and 6, the
fishnet is placed at designated intervals starting from the bottom left/
southwestern corner of the map extent, the minimum latitudes and
longitudes of geographic boundaries for Guilford County. If these points
were placed starting from the upper right/northeastern corner of the
map, they may be in slightly different locations about the study area.
Further research would be required to assess to what degree these dif-
ferences may or may not affect outcomes.

5. Conclusions

While the concepts ‘food desert’ and ‘food swamp’ have many
theoretical definitions, they have practical and applied applications.
They exist in the real world and people have an innate understanding of
them. Computationally, they represent a combination of availability, or
lack thereof, to food sources (healthy and/or unhealthy) and usually a
socio-economic component such as income or poverty. GIS tools are
being integrated into the study of food deserts and food swamps to map
the extent of these phenomena and further explore policy-driven solu-
tions (Liese et al., 2014; Shannon, 2015; Story et al., 2008) in order to
improve community health. In this study, we explicitly use GIS func-
tionality to measure food availability, one of the fundamental pillars of
food insecurity, as a function of drive-time and drive-distance between a
source and destination in and around Guilford County, North Carolina,
with an end goal of determining how source locations can be modeled or
sampled from a larger database of more than 177,000 possible sources
which represent all Guilford County residential locations. Traditional
desktop computing solutions have found computing these 177,000
routes resource-intensive, especially within the Esri software environ-
ment. This study explores different sampling methods from this popu-
lation and statistical analysis to ensure results when agglomerated at the
block group level are consistent with results when the entire population
of 177,000 sources are used and all 177,000 routes are calculated.

A complete and comprehensive evaluation of the food environment
at a local scale requires qualitative techniques and quantitative assess-
ment. A GIS has been used as a powerful tool to make these quantitative
assessments which require spatial calculation such as proximity (drive-
time or drive-distance) to the nearest resource(s) and density of re-
sources within enumerations units such as census block groups, census
tracts and zip codes. In addition, spatial clustering of healthy food
outlets, spending information or health outcomes with statistical
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significance can be measured using tools such as Local Moran’s I and
Getis-Ord. Qualitative variables such as personal dietary preferences,
one’s perception of the food environment and one’s understanding of
relative distance are difficult to quantify. In addition, overly-difficult-to-
quantify metrics such as Food Away From Home (FAFH), people
selecting more distant supermarkets than the closest to their home and
the purchasing of food in conjunction with other activities (work, rec-
reation, etc.) are difficult to quantify and more difficult to map within
the confines of this research. As a result, this research focuses solely on
the availability, or proximity, of source locations to the nearest healthy
food option, the basis for most food desert and food swamp research as
well as the popular USDA Food Access Atlas.

In evaluating all sampling techniques, all 11 had some level of
agreement when grouped at the block group level when compared to all
Guilford residential parcels as highlighted in Table 4. However, three of
them (Population-Weighted Block Group Centroids, Block Centroids and
Random Points (4 per block group)) rejected all four equivalence tests
for dissimilarity and returned p-values that satisfied research-grade (o« =
0.05) and less-stringent significance levels (o« = 0.1 or o = 0.2), high-
lighting similarity between the Guilford County residential parcels and
these three techniques. These were denoted as the strongest sampling
techniques and decisions rating the other techniques as strong, fairly
strong and weak were made based on these criteria. This supports work
by Berke and Shi (2009), as well as Henry and Boscoe (2009) which
highlighted how population-based measures such as the population
centroid were both adequate and better than geometry-based methods.
As a result, this research suggests population-weighted block group
centroids (Method #3) best simulate true residential locations in
agreement with this prior research, its alignment with population-based
measures and a 600-fold decrease in the number of calculations
required. While two other techniques (block centroids and four random
points per block group) did satisfy all aforementioned criteria just as
well, they also require more calculations (28 and 4 times more,
respectively) than the population-weighted block groups.

Calculations using these source locations can be used as part of unit-
based metrics used by the USDA Food Access Atlas which uses distance
in miles or integrated into unitless metrics or ratios (Zenk et al., 2014;
Clary et al., 2015; Mason et al., 2013; Mulrooney, McGinn, et al., 2017).
However, care must be used when implementing unit-based metrics. In
applying unit-based metrics, the size of study areas have ranged from the
county scale (Zenk 2005), such as this one, to the multi-county (Murrell
& Jones, 2020) and state (Mulangu & Clark, 2012) scale. While the study
areas come in all shapes and sizes, care must be taken to ensure these
unit-based metrics are applied correctly. The USDA Food Access Atlas
ensures to explicitly differentiate between poor availability in urban
areas versus poor availability in rural regions using a distance qualifier
while Mulangu and Clark (2012) qualified their drive-time calculations
between rural and urban areas.

The mapping of food availability can be done a number of different
ways and the use of sources, from which distance and drive-time to
destinations are computed, can be estimated as actual street addresses,
blocks, block groups, random points and along grids, as is the case of the
USDA Food Access Atlas. The research community accepts the results
and accompanying maps at face value with little question as to the how
values were computed and at what scale they were computed. Since
managing and making drive-time calculations with all sources can be
resource-intensive, this research is an attempt to determine how well
various sampling techniques align with results from using calculations
where all parcels are used as sources. In this paper, it was found that:

e Population-weighted centroids, block centroids and a stratified-
random technique grouped at the block group scale aligned best
with results from all Guilford County residential parcels.

e All three of these techniques satisfied t-tests of two differences as
well as two separate tests of dissimilarity (Two One-Sided Test for
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Equivalence and Paired T-Test for Equivalence) for both drive-
distance and drive-time.

e Of these three, population-weighted centroids require less calcula-
tions because there are less source points (291) compared to block
centroids (8,183) and the stratified-random (1,168) techniques.

e 1000 random points was the weakest of these methods because it did
not satisfy a t-test of two differences and passed 3 of 4 tests for
dissimilarity.

Nonetheless, this holistic and critical look at the source data and
techniques used in the quantitative assessment of the food environment
can serve as an impetus for larger work in the policy and subsequent
remediation of food deserts and food swamps at a scale necessary to
affect neighborhood-scale health outcomes and other related quality of
life measures.
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