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We report superconductivity in SnxNbSe2−δ, a topological nodal-line semimetal candidate with
a noncentrosymmetric crystal structure. The superconducting transition temperature Tc of this
compound is extremely sensitive to Sn concentration x and Se deficiency δ, 5.0 K for Sn0.13NbSe1.70
and 8.6 K for Sn0.14NbSe1.71 and Sn0.15NbSe1.69. In all samples, the temperature dependence of the
upper critical field Hc2(T ) differs from the prediction of the Werthamer-Helfand-Hohenberg theory.
While the zero-temperature value of the in-plane upper critical field of SnxNbSe2−δ with the higher
Tc is lower than the BCS Pauli paramagnetic limit HP , that of the lower Tc sample exceeds HP

by a factor of ∼2. Our observations suggest that a possible odd-parity contribution dominates the
superconducting gap function of SnxNbSe2−δ, and it can be fine-tuned by the Sn concentration and
Se deficiency.

Topological superconductors, characterized by a topo-
logically nontrivial gapped state in the bulk with gapless
surface states [1], have attracted great interest because
of potential applications to topologically protected quan-
tum computing [2, 3]. Such nontrivial gapped states
can be stabilized by odd-parity Cooper pairing, occa-
sionally realized in noncentrosymmetric superconductors
with strong spin-orbit coupling. The lack of inversion
symmetry in the crystal structures allows supersosition
of spin singlet (even parity) and spin triplet (odd parity)
in superconducting gap functions. This mixing of parity
can be fine-tuned by the spin-orbit coupling strength, as
observed in the crossover from even to odd-parity pairing
states in Li2(Pd,Pt)3Bi as the Pt concentration is varied
[4]. Hence, the search for noncentrosymmetric supercon-
ductors with strong spin-orbit coupling serves as one of
the routes toward the realization of topological supercon-
ductivity.

The noncentrosymmetric ABSe2 (A=Sn or Pb and
B=Nb or Ta) family is a promising candidate for a
topological superconductor. Recent experimental studies
have revealed superconductivity in PbTaSe2 at Tc = 3.8
K [5, 6], with a fully opened superconducting gap probed
by various measurements, including specific heat [7],
thermal conductivity [8], and penetration depth mea-
surements [9]. Moreover, angle-resolved photoemission
spectroscopy has identified this materials as a topolog-
ical nodal-line semimetal with drumhead surface states
[10, 11]. Although the parity of the superconducting
pairing state is yet to be determined, the lack of inver-
sion symmetry that along with the nontrivial topological
band structure can induce topological superconductivity
in this system in PbTaSe2.

In addition to this compound, PbNbSe2, SnNbSe2, and
SnTaSe2 are predicted by ab-initio calculations to be su-
perconductors with nontrivial topological nodal lines in

the band structure [12]. According to the calculations,
the superconducting transition temperatures, Tc, of these
materials are expected to be higher than that of PbTaSe2,
and notably, the predicted Tc of SnNbSe2 is 7 K, sugges-
tive of a possible realization of topological superconduc-
tivity in this material with a relatively high Tc, compared
with known bulk topological superconductor candidates,
such as half Heusler compounds YPtBi (Tc = 0.6 K) [13]
and YPdBi (Tc = 1.6 K) [14], In-doped SnTe (Tc = 1.2
K) [15], metal-intercalated Bi2Se3 (Tc = 3.2 K) [16–18],
and β-Bi2Pd (Tc = 5.4 K) [19, 20]. The higher Tc can be
advantageous to detect Majorana bound sates with the
energy spacing ∆2/EF , where ∆ and EF are the super-
conducting gap and Fermi energy, respectively, and can
eliminate one bottleneck in the exploration for topologi-
cal superconductivity [21].

We here report unusual superconductivity in
SnxNbSe2−δ, which retains the noncentrosymmetric
crystal structure of stoichiometric ABSe2. Although
theoretical predictions specific to this compound are
presently lacking, we propose by analogy to stoichio-
metric ABSe2 that SnxNbSe2−δ can be a promising
candidate for a topological nodal-line semimetal. The
superconducting transition temperature of SnxNbSe2−δ
varies with Sn concentration and Se deficiency—up to
8.6 K, a relativly high Tc among bulk topological su-
perconductor candidates known to date. The measured
upper critical fields of SnxNbSe2−δ cannot be described
by the Werthamer-Helfand-Hohenberg (WHH) theory
for conventional type-II superconductors [22], and the
zero-temperature value of the upper critical field for
Sn0.13NbSe1.70 exceeds the BCS Pauli paramagnetic
limit by a factor of ∼2. The unusual temperature depen-
dence of the upper critical fields and the enhancement
beyond the Pauli paramagnetic limit suggest that a
possible odd-parity component dominates the supercon-
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FIG. 1. Crystal structure and x-ray diffraction pat-
tern of SnxNbSe2−δ. (a) Top view (left panel) and side
view (right panel) of the crystal structure of SnNbSe2 with
the space group P 6̄m2 [23]. (b) X-ray diffraction pattern for
single crystal Sn0.15NbSe1.69 measured with Cu Kα radiation.
We only observe (00`) Bragg peaks from the ab plane. The
obtained lattice constant c is 9.2976(12) Å. Inset: Optical im-
age of a SnxNbSe2−δ single crystal. The typical crystal size
is ∼ 1× 1× 0.3 mm3.

ducting gap function of SnxNbSe2−δ, indicating that
this compound is a promising candidate for realizing
topological superconductivity.

Single crystals of SnxNbSe2−δ were grown by using a
self-flux method. A mixture of NbSe2 and Sn in the
ratio of NbSe2:Sn=1:2−6 was sealed in a quartz tube,
heated up to 900◦C, kept for 2−3 days, and slowly cooled
down to 600◦C. The excess of molten Sn flux was removed
by centrifuging. The typical size of obtained flake-like
crystals is about 1×1×0.3 mm3.

Our measured single-crystal x-ray diffraction pattern
is consistent with the noncentrosymmetric crystal struc-
ture of SnNbSe2 with the space group P 6̄m. As shown in
fig.1b, we observed only (00`) reflections, which yielded
the lattice constant c = 9.2976(12) Å close to the re-
ported value of 9.30 Å for polycrystalline SnNbSe2 [24].
The atomic ratio of the crystals was found to be Sn:Nb:Se
= 0.11−0.15:1:1.60−1.74 with x-ray fluorescence spec-
troscopy, suggestive of slightly intercalated Sn and de-
ficiency of Se. Although the Sn concentrations in our
samples are only 11%−15% of the stoichiometric value,
the identified crystal structure is the same as that of

ABSe2 and different from the 2H-NbSe2-type structure
of Sn-intercalated NbSe2 with x up to 0.04 [25].

We reveal superconductivity in SnxNbSe2−δ with resis-
tivity measurements from 300 K down to 2 K. Figure 2a
shows a typical temperature dependence of the resistivity
of SnxNbSe2−δ. The resistivity at T = 300 K is about
700 µΩ cm. Upon cooling, the resistivity shows metal-
lic behavior, followed by a superconducting transition at
low temperatures (fig.2a). The superconducting transi-
tion temperatures Tc, determined by the midpoint of re-
sistive transitions, are 5.0 K for Sn0.13NbSe1.70 and 8.6 K
for Sn0.14NbSe1.71 and Sn0.15NbSe1.69 (fig.2a inset). In
contrast, no superconductivity has been observed down
to 1.5 K in polycrystalline Sn2/3NbSe2 [26]. We observe
Meisner screening at low temperatures starting at T ∼ 7
K, where the resistivity becomes zero in Sn0.14NbSe1.71
(fig.2b). The superconducting volume fraction deter-
mined by a calibration using tin is ∼ 30 %, comparable
to typical volume fractions achieved by early works on
CuxBi2Se3 [16, 17]. It has been pointed out that sam-
ple qualities of ABSe2 can be correlated with the pres-
ence of stacking faults [7], which is in fact supported by
our powder x-ray diffraction result (see Supplementary
Material). The imperfect volume fraction found in our
sample suggests that stacking faults may, by affecting
local stoichiometry, be causing some regions to remain
nonsuperconducting.

The normal-state resistivity of SnxNbSe2−δ right
above Tc is much higher than that of PbTaSe2. Be-
cause of this high residual resistivity, the values of the
residual resistivity ratio RRR = ρ(300 K)/ρ(Tc) are 2.3
for Sn0.13NbSe1.70, 2.7 for Sn0.14NbSe1.71, and 3.0 for
Sn0.15NbSe1.69, 30−50 times as small as that of single-
crystal PbTaSe2 [6, 7, 27]. Interestingly, despite the high
residual resistivity, or the low RRR, the Tc of 8.6 K not
only surpasses the theoretical prediction of 7 K [12] but
also those of most known topological superconductor can-
didates.

To determine the upper critical fields of SnxNbSe2−δ,
we measured the resistivity in a 35 T resistive magnet
equipped with a 3He cryostat at the National High Mag-
netic Field Laboratory (NHMFL) in Tallahassee, Florida.
We show magnetoresistance of SnxNbSe2−δ in two differ-
ent magnetic field configurations: H ‖ I ‖ ab (in-plane
configuration) and H ⊥ ab, I ‖ ab (out-of-plane con-
figuration). For both field configurations and in both
Sn0.13NbSe1.70 and Sn0.14NbSe1.71, the magnetoresis-
tance is indiscernible even at an applied magnetic field of
35 T (fig.3), indicative of short mean free paths of charge
carrier due to disorder caused most likely by slightly in-
tercalated Sn and deficiency of Se. On the other hand, we
find a notable difference in the anisotropy of upper crit-
ical fields, Γ = Hab

c2 /H
c
c2, between these two samples. In

the out-of-plane configuration for Sn0.13NbSe1.70 (fig.3b),
the upper critical field parallel to the c axis, Hc

c2, defined
by the midpoints of sharp resistive transitions, is 5 T at
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FIG. 2. Temperature dependence of the resistivities
and ac susceptivitiy of SnxNbSe2−δ. (a) Overall temper-
ature dependence of the resistivity of Sn0.15NbSe1.69. Pre-
ceded by metallic behavior, SnxNbSe2−δ undergoes a super-
conducting transition at low temperatures. The residual re-
sistivity ratio RRR = ρ(300 K)/ρ(Tc) is 2.3−3.0, sugges-
tive of abundant disorder. Inset: Low temperature resistiv-
ities of SnxNbSe2−δ, indicating superconducting transitions
at 5.0 K for Sn0.13NbSe1.70 and 8.6 K for Sn0.14NbSe1.71 and
Sn0.15NbSe1.69. (b) Temperature depenence of ac susceptibil-
ity. The superconducting volume fraction determined by the
calibration using tin is about 30%.

0.3 K. In the in-plane configuration for Sn0.13NbSe1.70
(fig.3a), the transition widths are broad, and the upper
critical field parallel to the ab plane, Hab

c2 , is extremely
high, extracted to be 15 T at 0.3 K. These values of
Hc2 yield a large anisotropy of the upper critical field,
Γ = 3, for Sn0.13NbSe1.70. In contrast, we observe simi-
lar transition widths with very similar Hc2 in both field
configurations for Sn0.14NbSe1.71, suggestive of a nearly
isotropic upper critical field with Γ = 1.1 (figs.3d and e).
In the isostructural compound PbTaSe2, the anisotropy
of Hc2 is measured to be 11.6 [6], much larger than the
observed anisotropy in SnxNbSe2−δ, although the two
compounds share similar electronic band structures [12].
The striking difference in the upper critical fields and
the transition temperatures between Sn0.13NbSe1.70 and
Sn0.14NbSe1.71 may be correlated with carrier densities
determined by the Sn concentration and Se deficiency. A
slight change in the carrier densities can cause a dras-
tic change in superconducting properties and may even
induce a superconducting pairing symmetry transition.

We also measured in-plane anisotropy of the upper crit-
ical field in Sn0.13NbSe1.70. As shown in fig.3c, magne-
toresistance at fields parallel to the ab-plane but perpen-
dicular to the applied current shows broad transitions
accompanied by kinks indicated by black arrows. The
upper critical fields in this configuration, determined by
50 % of resistive transitions, are slightly lower than those
in the configuration for H ‖ I ‖ ab, as can be seen in
fig.3a, suggesting a discernible in-plane anisotropy.

Figure 3f shows the Hall resistivity ρyx of
Sn0.11NbSe1.60 in the normal state. The Hall resis-
tivity is positive and perfectly linear in magnetic fields
in the normal state above Tc, indicative of a dominant

FIG. 3. Magnetotransport in SnxNbSe2−δ. Resistivity
of Sn0.13NbSe1.70 as a function of magnetic fields parallel to
(a) the ab plane and (b) the c axis at several temperatures.
Electrical current is applied in the ab plane. While the re-
sistive transitions for H ‖ c are sharp, the transitions for
H ‖ ab are broad. The upper critical fields obtained by the
midpoints of the resistive transitions show high anisotropy
Γ = Hab

c2 /H
c
c2 = 3 in Sn0.13NbSe1.70. (c) Transverse magne-

toresistance of Sn0.13NbSe1.70 in magnetic fields parallel to
the ab plane. The resistive transitions are broad, and show
kinks indicated by arrows, associated with vortex motion due
to the Lorentz force. The extracted Hab

c2 for H ⊥ I is slightly
lower than Hab

c2 for H ‖ I, obtained from the curves shown
in panel (a). Resistivity of Sn0.14NbSe1.71 as a function of
magnetic fields parallel to (d) the ab plane and (e) the c axis
at various temperatures. Despite the layered structure of the
compound, the upper critical field is nearly isotropic, Γ = 1.1,
in Sn0.14NbSe1.71. (f) Field dependence of the Hall resistivity
of Sn0.11NbSe1.60 at 7 K (H ‖ c, I ‖ ab). The Hall resistiv-
ity ρyx is linear in H with the positive sign indicating that
the hole band dominates the transport in SnxNbSe2−δ. The
extracted Hall coefficient RH from the slope of ρyx is 5.3 ×
10−3 cm3/C, yielding a carrier density of 1.2× 1021 cm−3.

contribution to the charge transport from a large
cylindrical hole band, around the Γ point, predicted by
theoretical calculations [12, 28]. The slope of the Hall
resistivity gives the Hall coefficient RH = 5.3× 10−3

cm3/C, hence the carrier density n = 1.2× 1021 cm−3.

The upper critical fields of SnxNbSe2−δ exhibit quite
unusual behavior, as shown in fig.4. With decreasing
temperature starting from Tc, Hc2 increases linearly in
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FIG. 4. Temperature dependence and anisotropy of the upper critical field of SnxNbSe2−δ. (a) Temperature
dependence of upper critical field determined by the midpoint of resistive transitions in fig.3 for Sn0.13NbSe1.70. Regardless of
the field orientation, the upper critical field increases linearly with decreasing temperature down to 0.3 K. The zero-temperature
values of in-plane upper critical fields µ0H

ab
c2 (0) for H ‖ I and H ⊥ I exceed the Pauli paramagnetic limit µ0HP = 1.84Tc = 9.3

T, indicated by a blue dashed line. The zero-temperature value of out-of-plane µ0H
c
c2(0) is lower than µ0HP . Inset: Normalized

upper critical field h = Hc2/(−TcdHc2/dT |T=Tc) as a function of normalized temperature t = T/Tc for Sn0.13NbSe1.70. For
all the field orientations, the normalized upper critical field clearly deviates from the WHH model at low temperatures and
is close to the calculation for the polar p-wave state [29]. (b) Temperature dependence of the upper critical field determined
by the midpoint of resistive transitions in fig.3 for Sn0.14NbSe1.71. The upper critical fields for H ‖ ab and H ‖ c exhibit
linear-in-temperature behavior down to 0.3 K. The zero-temperature values of in-plane upper critical fields µ0H

ab
c2 (0) for H ‖ I

and H ⊥ I are lower than the Pauli paramagnetic limit µ0HP = 15.6 T, indicated by a blue dashed line. Inset: Normalized
upper critical field h as a function of t for Sn0.14NbSe1.71. The normalized upper critical fields for both H ‖ ab and H ‖ c
depart from the WHH model at low temperatures and are close to the calculation for the polar p-wave state [29].

all the field configurations for both Sn0.13NbSe1.70 and
Sn0.14NbSe1.71. The initial slopes of the upper critical
fields parallel to the ab plane for H ‖ I, dHc2/dT |T=Tc ,
are −3.2 T/K for Sn0.13NbSe1.70 and −1.5 T/K for
Sn0.14NbSe1.71, extremely larger than −0.19 K/T for
PbTaSe2 for H ‖ ab [7]. The observed temperature de-
pendence of Hc2 for SnxNbSe2−δ completely differs from
those of conventional type-II superconductors. In con-
ventional type-II superconductors, upper critical fields
due to the orbital effect are explicated by the Werthamer-
Helfand-Hohenberg (WHH) theory [22]. In the WHH
theory, the zero-temperature value of upper critical field
can be written as Hc2(0) = −αTcdHc2/dT |T=Tc

, where α
is 0.69 for the dirty limit and 0.72 for the clean limit [22].
However, as shown in the insets to figs.4a and b, the nor-
malized upper critical field h = Hc2/(−TcdHc2/dT |T=Tc)
strikingly deviates from the WHH values and is close to
the calculations for the polar p-wave state [29]. The ex-
tracted α for SnxNbSe2−δ is ∼ 1.0.

Equally unusual in SnxNbSe2−δ are the magnitudes
of the upper critical fields. The zero temperature
value of the in-plane upper critical field µ0H

ab
c2 (0) for

Sn0.13NbSe1.70 is ∼16 T, exceeding the Pauli paramag-
netic limit µ0HP = 1.84Tc = 9.3 T obtained from a sim-
ple estimation within the weak-coupling BCS theory with
2∆ = 3.5kBTc (fig.4a) [30]. The persistence of super-

conductivity beyond the BCS Pauli paramagnetic limit
suggests a possible odd-parity contribution in the super-
conducting gap function, as found in noncentrosymmetric
heavy fermions superconductor CePt3Si [31] and metal-
intercalated Bi2Se2 [32].

In Sn0.14NbSe1.71, µ0H
ab
c2 (0) is 13 T, comparable to

but slightly lower than µ0HP = 15.6 T enhanced by
the higher Tc of 8.6 K (fig.4b). The zero temperature
values of out-of-plane upper critical fields µ0H

c
c2(0) of

SnxNbSe2−δ are lower than the Pauli paramagnetic limit.
Utilizing the Ginzburg–Landau relation, µ0H

c
c2(0) =

φ0/2πξ
2
ab and µ0H

c
c2(0) = φ0/2πξcξab, where φ0 is the

magnetic flux quantum, we can estimate the coherence
lengths: ξab = 15 nm and ξc = 4.5 nm for Sn0.13NbSe1.70
and ξab = 5.0 nm and ξc = 6.0 nm for Sn0.14NbSe1.71.

Although our observations suggest the presence of a
possible odd-parity contribution to the pairing states at
least in Sn0.13NbSe1.70 with Tc of 5.0 K, its superconduc-
tivity is robust against scattering due to nonmagnetic dis-
order. In general, nonmagnetic scattering strongly sup-
presses unconventional superconductivity [33], including
odd-parity pairing states, as described by the Abrikosov-
Gorkov model [34]. The Abrikosov-Gorkov model shows
that Tc of unconventional superconductors are dramati-
cally suppressed to zero by nonmagnetic scattering, as
the mean free path ` becomes comparable to the co-
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herence length, ξ ∼ `. To estimate the mean free
paths in SnxNbSe2−δ, we exploit the Hall effect, along
with electrical resistivity. Assuming a single cylindri-
cal hole band, we can extract mean free paths by using
` = (~/ρe2)

√
2πc/n, where c is the lattice constant along

the c axis. The extracted mean free paths at Tc are ` =
5.9 nm for Sn0.13NbSe1.70 and 3.1 nm for Sn0.14NbSe1.71.
Here we have used the carrier density n from the Hall co-
efficient for Sn0.11NbSe1.60. Surprisingly, these values are
much smaller than the coherence lengths in the ab plane,
intuitively inconsistent with the possible odd-parity pair-
ing state.

However, there is a precedence in which odd-parity su-
perconductivity was found to be invulnerble to nonmag-
netic disorder—metal-intercalated Bi2Se3 [17, 32, 35].
In this topological superconductor, the robustness of
the odd-parity superconductivity is thought to be due
to strong spin-orbit coupling [36, 37]. Similarly, non-
negligible spin-orbit coupling due to Sn, a relatively
heavy element, may be protecting superconductivity
in SnxNbSe2−δ against strong nonmagnetic scattering.
The shared features of superconductivity in the two
compounds—the upper critical fields beyond the Pauli
paramagnetic limit and the robust superconductivity
against disorder—possibly suggest that the odd-parity
superconductivity is realized in SnxNbSe2−δ.

We briefly comment on a possible nematic supercon-
ducting state in the PbTaSe2 family. Nematic supercon-
ductivity, accompanied by a rotational symmetry break-
ing in the superconducting state, is observed in metal-
intercalated Bi2Se3, evidencing topological superconduc-
tivity in the system [38–41]. Similarly, in PbTaSe2,
soft point-contact spectroscopy [42] elucidates the rota-
tional symmetry breaking in superconducting properties,
possibly associated with nematic superconductivity. In
Sn0.13NbSe1.70, we observe clear anisotropy in in-plane
upper critical fields for two different configurations, H ‖ I
and H ⊥ I, as shown in fig.4a. However, the measured
anisotropy can be attributed to the presence/absence of
flux flow due to the Lorentz force as observed in MgB2

[43], masking intrinsic twofold symmetry associated with
electronic nematicity in this system, if present. Indeed,
we observe kinks in the resistive transition associated
with vortex motion due to the Lorentz force only in the
H ⊥ I configuration as shown in fig.3c [44]. To determine
the intrinsic in-plane anisotropy, further experimental in-
vestigations will be required.

In summary, we have grown single crystals of
SnxNbSe2−δ with a noncentrosymmetric crystal struc-
ture, and found superconductivity with e̊latively high Tc,
8.6 K, among known topological superconductor candi-
dates. The upper critical field of Sn0.13NbSe1.70, with
Tc = 5 K, exceeds the Pauli paramagnetic limit, sugges-
tive of a possible contribution of odd-parity pairing in the
superconductivity. The possible odd-parity pairing com-
ponent, a prerequisite for topological superconductivity,

makes this system a promising material for further study.
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