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Abstract—To make their services more user friendly, online so-
cial media platforms automatically identify text that corresponds
to URLs and render it as clickable links. In this paper, we show
that the techniques used by such services to recognize URLs are
often too permissive and can result in unintended URLs being
displayed in social network messages. Among others, we show that
popular platforms (such as Twitter) will render text as a clickable
URL if a user forgets a space after a full stop at the end of a
sentence, and the first word of the next sentence happens to be a
valid Top Level Domain. Attackers can take advantage of these
unintended URLs by registering the corresponding domains and
exposing millions of Twitter users to arbitrary malicious content.
To characterize the threat that unintended URLs pose to social
media users, we perform a large-scale study of unintended URLs
in tweets over a period of 7 months. By designing a classifier
capable of differentiating between intended and unintended URLs
posted in tweets, we find more than 26K unintended URLs posted
by accounts with tens of millions of followers. As part of our study,
we also register 45 unintended domains and quantify the traffic
that attackers can get by merely registering the right domains
at the right time. Finally, due to the severity of our findings,
we propose a lightweight browser extension which can, on the
fly, analyze the tweets that users compose and alert them of
potentially unintended URLs and raise a warning, allowing users
to fix their mistake before the tweet is posted.

I. INTRODUCTION

Social media platforms like Twitter, Facebook, and
Linkedin are increasingly becoming the main way in which
people obtain news and communicate with the rest of the
world. Twitter, as one of the most popular of these platforms,
was shown to be able to shape political campaigns [29] and
even affect the number of citations that academic papers
receive [23]. At the same time, the popularity of the platform
has made it the ideal target for a variety of malicious activities,
from spam [18], [25], [41], to online harassment [20], [32],
[38], [46], to misinformation [16], [39], [53]. In the most
recent high-profile example (July 2020), a sophisticated tar-
geted attack showed the consequences that a compromise of
the platform can have, resulting in multiple popular accounts
posting links to a Bitcoin scam [7].

To improve the usability of their platforms, many online
social networks automatically recognize links as users type

them and render them as clickable. For example, if Twitter
detects a URL in the text of a tweet, that part will be
highlighted and users that have access to the tweet will be
able to visit the link by just clicking on it. If the target Web
page contains a so-called Twitter Card, a preview of the link
will also be added to the tweet [1].

In this paper, we identify a potential attack vector in the
way in which online social networks parse text and decide
which parts of it should be rendered as clickable URLs. We
show that it is not uncommon for social network users to
supply text that is not supposed to be rendered as a clickable
URL, yet the automated means by the social network platform
mistakenly render it as such. Figure 1 depicts three typical
examples of unintended URLs included in tweets. These
examples showcase how unintended URLs enable third parties
(well-meaning or malicious) to compromise the integrity of
Twitter messages and expose the followers of popular Twitter
accounts to arbitrary content. For example, when Rudy Giu-
liani (with 714.2K followers) tweeted the following on Novem-
ber 30, 2018: “[...] as the President left for

G-20.In July he indicted [...] [10],” the miss-
ing space between “G-20.” and “In” caused Twitter to
interpret that part of the sentence (g-20.in) as a URL (even
though that domain was not registered at the time) and made
that part clickable. The g-20.in domain was registered on
the same day and served content that was critical of Mr.
Giuliani and his policies.

We present the first analysis of the threat of unintended
URLs on social media, with a particular focus on Twitter. We
start by presenting a threat model detailing how unintended
URLs can result from user posts which pose a threat to anyone
who has access to these posts. As part of this process, we
evaluate nine popular social media platforms and instant mes-
saging applications (including Twitter, Facebook, LinkedIn,
and Slack) to understand their behavior and identify the logic
that they follow for expanding text into clickable URLs.

To characterize the threat of unintended URLs in the wild,
we perform a large-scale measurement study on Twitter where
we analyze public tweets from the 1% streaming API posted
between January 2020 and July 2020, in search of unintended
URLs. By manually analyzing tweets that include URLs, we
build a ground truth dataset of intended and unintended URLs
which we use to train a machine learning model that can
differentiate between these two classes with 94% accuracy.
We use this model to set up a pipeline that automatically
identifies unintended URLs; over a period of 7 months, our
pipeline identified 26,596 unintended URLs. In parallel to
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Another common way to cause an unintended URL is users
putting a dot between two words in the same sentence instead
of a space. Users sometimes use this method to emphasize
these words. For instance, we excerpted the following from a
real tweet: “Dont you know who.I.am?” The proper punctua-
tion would be to put spaces between the words “who,” “I” and
“am”. The author put dots instead of spaces and caused the
unintended URL, “who.I.am” to be rendered as clickable by
Twitter.

C. Understanding the Link Rendering Behavior of Online
Services

In an effort to make their platforms more user friendly,
online services automatically render the text that they identify
as a URL, as clickable links. The precise algorithm for rec-
ognizing URLs in the user-provided text is something internal
to each online service and, to the best of our knowledge, not
known to the public.

In this section, we aim to understand the mechanisms used
by different online services to identify and render clickable
links. To this end, we test nine popular social media and
instant messaging platforms for their automatic URL rendering
functionality, applying 23 different test cases to each one. Our
test cases are essentially strings without spaces containing at
least one dot so that they can be interpreted as URLs. We
try posting these strings in different platforms and observe
whether the posted string is clickable (i.e., rendered as a URL
by each platform). These strings are different combinations of
the following conditions:

• Contains an existing domain name (XDOMAIN)

• Contains a non-existing domain name (NXDOMAIN)

• Contains a capital letter after a dot

• Contains a traditional TLD (e.g., .net)

• Contains a new TLD (e.g., .dev)

• Contains an invalid TLD (i.e., .ttt)

• Contains a number as the domain name

• Starts with “www”

• Contains a subdomain

Our test results are shown in Table I. The platforms
that resulted in the exact same results for all 23 test cases
are grouped together. For all tested platforms, test cases that
contain NXDOMAIN and XDOMAIN (conjugates of each
other) returned the same results. Thus, we conclude that
none of the platforms perform a name server lookup before
automatic rendering. We observe that Linkedin does not have
any sort of mechanism to distinguish between an unintentional
and an intentional URL. Twitter, Snapchat and Whatsapp Web
do not render text as a link if the text contains an invalid TLD.
Slack, Facebook and Whatsapp Mobile do not render the links
with the recent TLD .dev. The reason could be that those
platforms have not yet updated their TLD list in their servers
since they also did not render the link with an invalid TLD.
Telegram was the only platform that has an algorithm that
checks the occurrence of a capital letter after a dot and the

validity of a TLD. Skype and Google Hangouts only rendered
a link if it starts with “www.”

Our experiments show that the most permissive platforms
are Linkedin, Twitter, Snapchat, and Whatsapp Web. To further
understand the threats posed by unintended URLs we decide
to focus on Twitter for the rest of this paper. Our reasons for
this decision have to do with the nature of social media vs.
instant messaging applications as well as the overall popularity
of the Twitter platform. Specifically, the potential threat posed
by unintended URLs on instant messaging apps is lower than
on social media platforms, because only the users inside the
chat can access the unintended URLs. In terms of popularity,
Twitter is not only more popular than LinkedIn (Alexa Rank
50 vs. 63) but Twitter posts are public by default, thereby
exposing more users to the threat of unintended URLs.

D. Twitter Features

In this section we briefly describe the Twitter features
relevant to the issue of unintended URLs, to allow unfamiliar
readers to follow the remaining of the paper.

a) Link Preview and Rendering: Twitter detects links
in plain text and automatically renders them as URLs. As a
user types a tweet, Twitter shows it as a link by turning that
portion of the text blue. Twitter also provides a link preview
functionality. If a linked website uses Twitter Cards [1], the
posted tweet will include a link preview consisting of an image,
title and description of the posted link. These types of previews
are generated by Twitter after the user posts a tweet, whereas
the link highlighting happens as users type their tweets.

b) Retweet Types: Retweeting is a mechanism that
allows Twitter users to share another user’s tweet and making
it appear on their timeline, which is also accessible by the
user’s followers. As a result, retweeting increases the impact
of the tweet because it makes it visible to more users. Twitter
allows two different types of retweets. The first one is simple
retweeting, in which the other user’s tweet appears exactly as it
is in the retweeter’s timeline. This method increases the retweet
count of a tweet by one each time a different user retweets.
The second method is retweeting with a comment. Here, the
original tweet is compressed in a box and the comment is
shown as a regular tweet on top of this box. The original tweet
loses its features, such as the link preview, highlighted links
and images. This method does not increase the retweet count
of a tweet.

E. Threat Model

Twitter does not have a mechanism to check spelling or
punctuation and anyone can create an account and post tweets
in seconds. According to our data gathering, approximately
400 million tweets are posted by users on a daily basis. Given
the lack of native spell checking, the onus (or choice) of proper
spelling falls unto the users. As a result, tweets including typos
are not uncommon. Due to the aforementioned retweeting
mechanism, a typo in a tweet of an unpopular user can still
be shown to millions of users, if a popular user somehow
discovers and retweets that typo-including tweet. The same
goes for other types of unintended URLs.

Figure 2 provides an example attack scenario for the
type of vulnerability studied in this paper. First, a Twitter
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Fig. 3: System Diagram: Twitter data is collected daily throughout the experiment. We extract five days of tweets from the Twitter 1% streaming
API. We then apply prefiltering to this set. The resulting tweets are labeled manually to get the ground truth set and features are obtained.
We then train a linear SVM classifier to obtain the final model. We use this model to get unintended domain predictions for the rest of the
experiment. Then, we register unintended domains if suitable, and monitor the traffic to these domains. For those unintended domains that
have a third party website pointing to them, we crawl their home pages and record screenshots. From the obtained information, we cluster
unintended domains. Finally, we develop a mitigation by building a Chrome extension using our final model.

not a dictionary word and therefore someone who
explicitly types “www” is clearly intending to post a
URL.

• Non-English tweets: For this paper, we focus on
Twitter accounts that tweet in English. This allows
us to reason about the intended/unintended nature of
URLs using common grammar rules as well as later
utilize NLP tools that work best on English corpus.
Understanding whether unintended URLs happen in
other languages is an interesting path for future work
but outside the scope of this paper. After filtering out
non-English texts, we keep approximately 1.1 million
tweets.

• URLs with paths and/or subdomains higher than
third-level: We eliminate a tweet if it only con-
tains URLs with paths and/or subdomains higher than
third-level. During our manual investigation of URL-
including tweets we observe that in nearly all cases,
URLs with paths and subdomains (higher than third-
level) were clearly intentionally posted by users.

• URLs having “com” or “org” as TLDs: Even
though “com” and “org” are part of the English
dictionary (“com” as a prefix and “org” as an ab-
breviation) they are not particularly popular outside
intentional URLs. As such, we filter any URLs that
ended in these TLDs.

• URLs having TLDs that are not dictionary words:
Given that our intuition is that unintended URLs
are constructed by concatenating real words, we also
filter URLs with TLDs that are not English dictionary
words.

After prefiltering, we identify a set of 1,068 tweets that
potentially contain unintended URLs. To determine which of
these URLs are indeed unintended, we follow an inductive
approach, with three authors of this paper discussing them
until a good agreement is reached. After this process, our final
ground truth set is labeled as 644 tweets containing intended
URLs and 424 containing unintended URLs.

c) Feature Engineering: After determining our ground
truth set, we aim to develop features that can characterize
tweets containing intended and unintended URLs, with the
goal of performing automated detection of the latter class.
To determine the first batch of features, we go through our
initial set of pre-filtered tweets and gather statistics for tweets
containing unintended URLs such as common TLDs, DNS
responses, string properties, location of the URL inside tweet
text, etc. Then, to refine our features, we manually investigate
our ground truth dataset to identify new features and have
more accurate classification. We test our model on the labeled
ground truth set to fine-tune the features. We repeat the process
of investigating daily collected tweets and adding new features,
and removing features with low effect until we are satisfied
with the overall accuracy and the simplicity of our features.
After this process is completed, we have the following features:
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• DNS Response. We observe that many of the unin-
tended URLs correspond to non-existing domains. To
figure out whether a domain is registered, we check
whether that domain had name server (NS) records.
This allows us to conclude that a domain was either
registered/un-registered, irrespective of whether that
domain resolved when regular users were visiting (i.e.,
had A/AAAA records in place).

• Sentence Segmentation. If the first part of a link
logically belongs to one sentence whereas the text of
the remainder of that link belongs to the next sentence,
this link has a high likelihood to be an unintended
one. We use a tool called Deepsegment [4] to extract
the sentences out of a tweet, treating URLs as regular
text. Our preliminary results with the tool indicate
that Deepsegment has a 97% segmenting accuracy
if the punctuation is correct, 71% accuracy if the
punctuation is partially correct and 53% accuracy if
there is no punctuation in the tweet. For this binary
feature, we mark it as positive if parts of the URL
is at the end of one sentence and the remaining part
forms the beginning of the next sentence.

• String Properties. We identify five characteristics of
strings that are either indicative of intended or unin-
tender URLs, and codify them as binary features. iThe
following characteristics are indicative of intended
URLs:

◦ Any of the subdomains or the domain contains
a dash.

◦ Subdomains and domains are in camelcase
(contains a mix of capital and non-capital
letters).

Whereas the following characteristics are indicative of
unintended URLs:

◦ The length of both the subdomains and domain
are at most two (i.e., contains two or fewer
characters).

◦ Subdomains and domains are English words or
numbers.

◦ The link contains a non-capital letter followed
by a dot followed by a capital letter (i.e., [a-
z].[A-Z])

• Repetition of URL. Another binary feature is set to
True/False depending on whether a URL appears more
than once in the tweet. We consider it unlikely that a
user will accidentally introduce the same URL twice
in a single tweet.

• Location of URL. We use three different binary
features identifying the location of the URL inside
tweet text. The URL can be at the beginning, in the
middle, or at the end of the text. URLs that are at the
end of the text tend to be intended ones (such as when
someone explains what they are posting and ending
the tweet with a link to that post) whereas the ones
that are in the middle tend to be unintended. Here,
the full stops that users are using to mark the end of
a sentence are more likely to be recognized as part of
a URL, when whitespace is missing after them.

• TLD Type. Other than the prefiltering for “com”
and “org” TLDs, we use ten binary features for the
following ten different TLDs: “net,” “co,” “gov,”
“it,” “my,” “no,” “so,” “you,” “to” and “zip.”
The reason for explicitly converting these TLDs into
features is two-fold. First, the TLDs such as “it,” “my,”
“no,” “so,” “you” and “to” are English words that
are also likely to be used at the beginning of sentences.
As such, URLs including these TLDs have a high
likelihood of being unintended. Second, TLDs such as
“net,” “co,” “gov” and “zip” are not usually used
at the beginning of sentences and hence are likely to
be found in intended URLs.

We train and test our model on our ground truth dataset.
We experiment with a random forest classifier [31], a decision
tree classifier [44], a k-nearest neighbors classifier [9] and
support vector machines (SVMs) with different kernels [49].
We use 10-fold cross-validation to test the performance of
each classifier and obtained the highest accuracy with an SVM
model using a linear kernel. Our classifier uses binary features
and outputs a binary number corresponding to two classes
namely unintended (binary 1, positive) and intended (binary
0, negative).

The resulting classifier achieves 94% accuracy, 94.3%
precision, 90.6% recall and 92.2% f1 score on our ground
truth dataset. Using this classifier, we can now process the 1%
tweet stream and record the tweets that the classifier predicts to
be including unintended URLs. To make sure that our features
do not overfit on our ground truth set, we perform a validation
on independent data in Section IV-A, showing that our model
achieves similar performance on an unseen dataset. After run-
ning our model, we use the identified URLs both to understand
whether attackers are already abusing them but also, when
possible, to register them so that we can quantify the number of
Twitter users that attackers can victimize. Note that the overall
goal for this classifier is to achieve reasonably high accuracy
while keeping the features interpretable. We, therefore, do not
experiment with neural-network-based classifiers that require
significantly more ground truth and are difficult to interpret.

B. Unintended URL Crawling

Since unintended URLs in tweets can drive unsuspecting
visitors to potentially malicious websites, we seek to determine
the kind of content that they serve, as well as the extent of
malicious activity that leverages this traffic source. Thus, we
implement an automated URL crawling infrastructure that col-
lects data on all unintended URLs uncovered by our classifier.

Our crawling infrastructure visits each website with an in-
strumented Chrome browser using Selenium [11], and records
the following information: (1) webpage HTML, (2) screenshot,
(3) TLS certificate, (4) redirect URL and IP address, (5) IP
address information, (6) URL blacklist information, and (7)
Alexa rank.

To reduce the ability of websites to fingerprint our crawler
and cloak malicious content, we take measures to mask our use
of browser instrumentation. This involves changing the HTTP
User-Agent to appear as though the browser is Google Chrome
on a Windows 10 desktop, as well as injecting JavaScript into
each rendered page that modifies global JavaScript variables
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(such as navigator.webdriver) to hide signs of browser
automation.

Using the data gathered by our crawling infrastructure,
we cluster webpages based on the perceptual hashes of their
screenshots [54]. We then manually label these clusters based
on the content that was recorded by our crawlers.

C. Unintended URL Registration

To determine the traffic directed towards unintended URLs
present in tweets, we register a subset of available domains
(i.e., unintended domain names that are part of tweets and
are also available for registration) and forward traffic to web
servers under our control. There, we record information about
each request including the client’s IP address and request
headers.

To decide which unintended domains to register, we man-
ually analyze all the unintended URLs from each previous day
and focus on the ones that we reason will reach the most users.
Specifically, we determine the reach of a tweet by observing
the follower count of the tweet’s author as well as the number
of the tweet’s likes and retweets.

In parallel to the tweets that our classifier discovers as part
of the 1% of global tweets that Twitter offers via its API,
we also deploy an infrastructure that specifically monitors the
tweets of the most popular Twitter users, searching for tweets
that include domains which are available for registration. In
total, we monitor the tweets of 20,000 users with follower
counts ranging from 11 thousand to 118 million. Whenever
we encounter an unregistered domain tweeted by these top
accounts, the infrastructure — in real-time — automatically
registers that domain and forwards traffic to our webservers.
This allows us to observe traffic from tweets as soon as they
are posted, even in the cases where users later discover their
error and delete the unintended-URL-including tweets.

D. Ethical Considerations

Analyzing social media activity has important ethical im-
plications. In this work, we only analyze data that is publicly
posted on Twitter. For our registered unintended domains, we
do not interact in any way with the users who click on those
links and visit the web pages that we set up. We merely
count the number of visits that a page receives. Additionally,
we argue that by registering these domains we are reducing
potential harm, since we prevent attackers from leveraging
them for malicious purposes. Since all the data that we use
is public and we do not interact with users in any way, this
research is not considered as human subjects research by our
institution’s IRB.

IV. EVALUATION

In the following, we first present an experiment to vali-
date our classifier’s accuracy on unseen data. Then, we run
our model on the entire dataset and analyze the detected
unintended URLs in detail, together with the characteristics
of the accounts that posted them. We also report on our
experiment involving the registration of 45 domains that appear
as unintended URLs in our dataset and were available for
registration. This experiment allowed us to characterize the

type and amount of traffic that attackers can get when they
weaponize unintended URLs.

A. Validation of the Classifier

In Section III-A0c we performed a 10-fold cross validation
on our ground truth set and obtained the following average
performance scores: 94% accuracy, 94.3% precision, 90.6%
recall and 92.2% f1 score. To be that our classifier can gener-
alize to unseen data and rule out overfitting concerns, however,
we want to test our classifier on a different dataset than the
one the features were developed on. To this end, we collect
a week of unseen tweets, extract the URLs and apply our
prefiltering mechanism on this new set. After prefiltering, we
manually label the resulting URLs as intentional/unintentional
following the same process used to determine our ground truth.
This set consists of 1302 unintended and 1829 intended URLs.
We then train our classifier on the ground truth set, and test
it on this new dataset to get predictions. By comparing the
model’s predictions and the manual labels of this set we obtain
93.3% accuracy, 94.5% precision, 89.1% recall and 91.7%
f1 scores. Since we obtained similar performance scores on
our ground truth set and a completely unseen dataset, we
conclude that our feature set does not overfit on the training
set, and can therefore be run in the wild. We also observe that
around 40% of false positive URLs originate from spam tweets
belonging to betting, cryptocurrency, and gaming websites
such as “IQ.Cash,” “GG.bet,” and “iBlocks.Games.”
Particularly, we observe the same spam URL appearing among
the false positives more than once because the spam Twitter
accounts post almost exact tweet containing the URL many
times throughout the day. Our analysis shows that 25% of false
negatives contain either “.so” or “.in” as TLD. These two
words are commonly used to start sentences in spoken English
and having “.so” as TLD is among our features, however, that
was not enough by itself to classify these URLs correctly.

B. Common Properties of Unintended URLs

We ran our daily pipeline for 7 months, between January
2020 and July 2020, recording a total of 26,596 unintended
URLS. Figure 4 shows the daily number of unintended URLs
on Twitter identified by our analysis pipeline. Overall, 19,195
(72% of the total) domains resulting from unintended URLs
are non existent (NXDOMAINs), while 7,401 (28% of the
total) domains are existing (XDOMAINs). On average, 75% of
the unintended URLs posted every day are non-existing. This
result is expected since an unintentionally posted link would
only be an existing domain name due to pure coincidence.
Our results highlight the threat of adversaries opportunistically
registering these unintended domains and populating them with
arbitrary malicious content.

a) Unintended URL placement: We next look at the
placement of unintended URLs in tweets. We find that 23,813
unintended URLs are in the middle of the tweet (89.5%), 2,388
(9%) are at the beginning and 395 (1.5%) reside at the end
of the text. As we said previously, one of the reasons why
unintended URLs tend to appear in the middle of tweets is that
users forget to put a space between two sentences, creating an
unintended URL that combines the last word of the previous
sentence and first word of the next sentence. This mistake may
also cause unintended URLs at the beginning or at the end of
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need to face. Our advice to online services is to consider
the threats highlighted in this paper when designing and
updating their URL rendering systems. An option would be to
develop an unintended URL detection system similar to the one
proposed in this paper on their side. This deployment, however,
should follow a rigorous risk-benefit analysis weighing the
security of users, the usability of the platform, and the user
friction introduced by false positive alerts. Given that, accord-
ing to our results in Section IV, 72% of unintended URLs
point to unregistered domain names, we argue that showing a
warning whenever users post tweets including an unregistered
domain name, would cover the majority of unintended URLs
posted by users with virtually no negative side effects.

B. Limitations

Our dataset comes from the 1% streaming API that Twitter
provides to vetted researchers. As such, we expect that all the
numbers that we presented in this paper are lower bounds
of the problem of unintended URLs. Another limitation is
that we focus on tweets authored in English for both our
model as well as our mitigation. Since most of our features
depend on language, building a language-agnostic model is not
a straightforward task and therefore we chose not to pursue it
in the scope of this work.

C. Future Work

In this paper, we presented a series of promising results
towards automatically detecting unintended URLs on Twitter.
However, the accuracy of our machine learning algorithm
could be further improved. Adding more complicated features
and potentially analyzing each tweet in the context of other
tweets from the same user, could lead to higher accuracy. At
the same time, heavyweight features will also considerably
increase the time needed for analysis and therefore increase
the performance overhead, particularly if it is to be applied at
the client side.

A possible direction for future work is designing a system
that preemptively identifies future unintended domains, based
on commonly used words and the evolution of TLDs. These
domains could then be essentially “cached” by the classifier,
leading to classification speedups. This approach would be
conceptually similar to the work of Marchal et al. who
propose Markov chains built from past phishing websites, to
proactively predict future phishing URLs [33]. Orthogonally
to predictive classification, a separate direction is to experi-
ment with convolutional neural networks that have exhibited
immense accuracy improvements in other fields, compared to
traditional machine-learning classifiers. These classifiers tend
to require significantly larger ground-truth datasets compared
to traditional machine-learning algorithms which made them
inapplicable for us. We expect that our proposed classifier
(or our simplified heuristic of alerting on tweets including
unregistered domain names) could produce such a dataset and
therefore enable a transition to more advanced classifiers in
the long run.

VII. RELATED WORK

To the best of our knowledge, this paper is the first one
to draw attention to the phenomenon of unintended URLs in

social media and to characterize the threat that they pose to
users.

Due to its popularity, Twitter has attracted large amounts of
abuse and commensurate amounts of past research. Spam has
always been an issue which has inspired work that quantifies
the spam activity on the platform [25], [48], [21], [42] as
well as methods to detect fake accounts [47], [43], [19] and
differentiate them from compromised accounts [22], [51], both
on Twitter as well as other popular social networks [24],
[6]. An important differentiator of our work is that the un-
intended URLs are legitimately posted by benign users, not
by spammers controlling fake and compromised accounts. As
we showed in this paper, attackers can, after the fact, register
the accidentally-introduced URLs and therefore expose the
followers of the original Twitter users to arbitrary malicious
content.

Orthogonally to spam and account hijacking, researchers
have also investigated the security side-effects of allowing
users to change their usernames on popular social network
platforms [34] as well as whether attackers can confuse users
about the nature of posted URLs via web cloaking [40].

The negative consequences of typos to the security and pri-
vacy of users have been extensively studied in the area of do-
main squatting. Typosquatting specifically, refers to attackers
registering mistyped domain names (such as twitte.com)
in an attempt to capture all the traffic from users who mistype
a website’s URL in their browsers. Past research has charac-
terized the typosquatting abuse in the wild [14], [17], [28],
[35], [52], [45] as well as the effects of typos in related areas,
such as, website development [36], package managers [2], and
mobile app stores [27]. In this paper, we discovered that while
typos are one of the reasons for unintended URLs (where a
Twitter user intends to tweet one URL but tweets another), the
main culprit of unintended URLs is the semantic gap between
what a user types (such as a sentence with a missing space or
an Instagram ID) and what Twitter infers that that user typed
(i.e., a URL).

One of the reasons why Twitter and other social network
platforms are so eager to find URLs in user tweets, is the
constant expansion of valid domain TLDs. Next to traditional
generic TLDs (such as “.com” and “.org”) and country-code
TLDs (such as “.it” and “.es”), ICANN has, since 2013,
approved more than 1,200 new gTLDs, such as, “.life,”
“.love” and “.beer” [5]. These new gTLDs combined
with user typos are making it more likely that a social network
platform will identify URLs when users never intended them.
For at least some of these TLDs, researchers have questioned
whether they fulfill a real user need or are just creating more
opportunities for domain squatting and trademark abuse [26],
[37].

VIII. CONCLUSION

In this paper, we showed that the automatic link-rendering
feature of popular social media, combined with incorrect
spelling and punctuation, can result in unintentional URLs.
We presented a threat model on social media platforms in
which an adversary abuses this phenomenon to launch attacks
on users who click on those unintentional links. We evaluated
the link-rendering behavior of several online platforms to show
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the extent of the problem and focused on the manifestation of
unintended URLs on Twitter.

Given the volume of Twitter data, we proposed features that
can be used in the context of supervised machine learning to
identify unintended URLs in user tweets and used our classifier
over a period of 7 months, processing millions of tweets and
discovering a total of 26,596 unintended URLs. We analyzed
the properties of these unintended URLs and characterized the
abuse that attackers could inflict by registering 45 domains
found in unintended URLs. There, we discovered that, as long
as attackers register unintended domains shortly after they
are posted on Twitter, they will receive visits from hundreds
of unsuspecting Twitter users who are merely following the
links posted by trusted user accounts. Lastly, we presented
a lightweight browser extension which will warn users when
they are about to tweet text that includes an unintended URL.

Our study sheds light on the previously unexplored issue
of unintended URLs which we hope will be used by online
platforms to re-evaluate their link-rendering algorithms and
consider warning users when unintended URLs are about to be
posted. At the same time, our work highlights the importance
of being careful when authoring messages on social media,
where the absence of a space can now be weaponized to expose
millions of users to malicious content.

IX. AVAILABILITY

The code for our proposed browser extension can be
found at the following URL: https://github.com/

belizkaleli/TypoNoMo.
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