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Hyperfine structure of 173Yb+: Toward resolving the 173Yb nuclear-octupole-moment puzzle
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The hyperfine structure (HFS) of atomic energy levels arises due to interactions of atomic electrons with
a hierarchy of nuclear multipole moments, including magnetic dipole, electric quadrupole, and higher rank
moments. Recently, a determination of the magnetic octupole moment of the 173Yb nucleus was reported
from HFS measurements in neutral 173Yb [A. K. Singh et al., Phys. Rev. A 87, 012512 (2013)] and is
four orders of magnitude larger than the nuclear theory prediction. Considering this substantial discrepancy
between the spectroscopically extracted value and nuclear theory, here we propose to use an alternative system
to resolve this tension—a singly charged ion of the same 173Yb isotope. Utilizing the substantial suite of
tools developed around Yb+ for quantum information applications, we propose to extract nuclear octupole
and hexadecapole moments from measuring hyperfine splittings in the extremely long-lived first excited state
[4 f 13(2Fo)6s2, J = 7/2] of 173Yb+. We present results of atomic structure calculations in support of the proposed
measurements.
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I. INTRODUCTION

While the size of an atomic nucleus is far too small to
image its features directly with a microscope, the interaction
of an atomic nucleus with electrons bound to it will leave
signatures of the size and shape of the nucleus on the resulting
atom in the form of hyperfine structure (HFS). In particular,
P and T symmetries dictate that the distribution of protons
leads to even-rank (k=0, 2, 4...) electric 2k-pole moments
(e.g., monopole, quadrupole, and hexadecapole), and the dis-
tribution of currents and magnetic moments leads to odd-rank
(k=1, 3, 5...) magnetic moments (e.g., dipole, octupole, and
32-pole) that interact with the electrons to shift their energies.
In this sense, when combined with accurate atomic structure
calculations, a measurement of the HFS of an atom constitutes
an electron scattering experiment on the nucleus that allows
us to “see” the distribution of its nucleons by observing how
these well-characterized electrons scatter from it.

In general, the dominant contributions to HFS come from
(nuclear) magnetic dipole and electric quadrupole interac-
tions. Presently, the nuclear magnetic dipole (μ) and electric
quadrupole (Q) moments of most nuclei are well established
(see, e.g., compilation [1]). This is largely because the HFS
signatures of higher-order moments only appear on electronic
states with sufficiently high multiplicity (2J � k), and the
magnitude of the energy shift tends to decrease with increas-
ing rank k. The measurement of HFS signatures of high rank
(k � 3) multipoles, therefore, requires a well-controlled atom
in a high-angular-momentum state for precision and state-of-
the-art atomic structure theory for accuracy.

*andrei@unr.edu

Here we focus on the potential for measuring the rarely ob-
served nuclear octupole (�, k=3) and hexadecapole (�, k=
4) moments. These moments have been deduced for only
a handful of nuclei and, in most cases, are in tension with
nuclear theory (see Table I). For example, in 133Cs, the ex-
tracted [2] nuclear octupole moment is 40 times larger that the
nuclear theory value. This paper is motivated by the even more
substantial disagreement for 173Yb. Recently, Singh et al. [3]
reported a measurement of the nuclear octupole moment from
their measurements of HFS in the 3P2 state of neutral 173Yb.
However, this value, � = −34.4 bμN, is 104 times larger
than the nuclear theory prediction, � = 0.003 bμN [4]. This
striking four-orders-of-magnitude disagreement calls for an
independent measurement and analysis. Here we investigate
the prospects for extracting � and higher rank nuclear multi-
pole moments of ytterbium-173 by a combined theoretical and
experimental investigation of the hyperfine level splittings in
the first excited state [4 f 13(2Fo)6s2, J = 7/2] of the 173Yb+

ion. This 2Fo
7/2 state is metastable, contains six mF = 0 states

that will be first-order insensitive to magnetic fields, and easily
state-selectively coupled to the ground state for precision
spectroscopy.

Most of the previous spectroscopic determinations of high-
order moments of nuclei focused on extraction of octupole
moments and are compiled in Table I. This table also lists
the nuclear single-particle model [5] values for the nuclear
octupole moments. In addition to the listed spectroscopic
determinations, the experiments were carried out in Eu [12]
and Hf [13]. However, due to the complexity of electronic-
structure calculations, these experiments only determined ra-
tios of nuclear octupole moments between different isotopes,
�(151Eu)/�(153Eu) and �(177Hf )/�(179Hf ).
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TABLE I. Compilation of spectroscopic determinations of nu-
clear octupole moments. �emp are the empirical moments derived
from the combination of spectroscopic HFS measurements and
electronic-structure calculations. �SP are octupole moments pre-
dicted by the single-particle model [5]. All octupole moments are
in units barn × nuclear magneton(b × μN). All listed isotopes are
stable except for 115In and 87Rb with half-lives of 4.4 × 1014 and
4 × 1010 years, respectively [1]. Values of � have also been reported
for about 20 additional nuclei from nuclear scattering experiments
[6].

Isotope Iπ Valence nucleon Atomic state �emp �SP

87Rb [7] 3
2

−
p3/2, proton 2P3/2 −0.58 0.30

113In [8] 9
2

+
g9/2, proton 2P3/2 0.574 0.99

115In [8] 9
2

+
g9/2, proton 2P3/2 0.565 1.00

133Cs [2] 7
2

+
g7/2, proton 2P3/2 0.82 0.022

137Ba+ [9] 3
2

+
d3/2, neutron 2D3/2 −0.0629 0.039

155Gd [10] 3
2

−
p3/2, neutron 9D3 −1.66 −0.29

165Ho [11] 7
2

−
f7/2, proton 4I15/2 0.75 1.0

173Yb [3] 5
2

−
f5/2, neutron 3P2 −34.4 0.15

Beyond octupole order, the hexadecapole moment � has
been spectroscopically determined for only one species: 165Ho
[11]. Access to the hexadecapole moments requires J � 2 and
I � 2. For example, although the 133Cs nucleus has I = 7/2
and thereby possesses a hexadecapole moment, this moment
cannot be determined from the measured HFS of the 6 p3/2
state [2]. This argument prohibits the extraction of nuclear
hexadecapole moments from the structure of the states used
to measure magnetic octupole moments for all but two ex-
ceptions in Table I: 165Ho and 173Yb. The value for � that
was extracted from spectroscopic measurements in 165Ho was
found to be larger than the nuclear theory value by an order
of magnitude [11]. In principle, one could extract � from the
measurements made by Singh et al. in neutral 173Yb [3], but
its contribution was neglected in that work. Here, in order to
leverage the considerable experimental toolbox built around
Yb+ for quantum information applications, we evaluate the
necessary electronic-structure factors for 173Yb+ needed to
enable extraction of the hexadecapole moment of this isotope
from future spectroscopic measurements.

The Yb+ ground-state hyperfine structure is among the
most precisely measured and easiest to control of all the HFS
in atomic physics owing to its mF = 0 “clock states” and its
readily available state preparation and readout schemes. The
2S1/2 HFS of 171Yb+ has been used for decades for frequency
standards and quantum information processors, and its split-
ting has been known to millihertz precision for many years
[14]. The long coherence time of clock-state qubits defined on
this hyperfine splitting (recently shown to exceed 10 minutes
[15]) has made 171Yb+ a premier qubit host for quantum
computing and quantum simulation [16–20]. Likewise, the
metastable 2Fo

7/2 electronic state of 171Yb+ lives for years,
and the E3 transition on 2S1/2↔ 2Fo

7/2 is used as an optical
frequency standard [21], where the hyperfine structure within
these states allows control of systematics. Some of the current

best limits on the time variation of fundamental constants are
based on precision measurements between specific hyperfine
components of this E3 transition [22,23].

As the experimental progress with this species continues
to achieve higher accuracy and precision [21,24], theoretical
work is needed in parallel with these improvements to under-
stand contributions to systematics. Reference [25] has shown
how to calculate the second-order energy correction due to
hyperfine interaction for the alkali atoms in the first excited
state and gives the theoretical basis for higher-order terms
calculated in this paper. The values of hyperfine constants A
and B for 171Yb+ and 173Yb+ in the 2Fo

7/2 state are also given
in Ref. [26] and are used as a comparison to our values.

The paper is organized as follows. In Sec. II we review the
theory of hyperfine structure. Based on this general theory,
we derive the first- and second-order corrections to the HFS
of 173Yb+ in the first excited state. In Sec. IVA we compute
173Yb+ electronic-structure factors required for extracting
nuclear moments. We discuss the importance of correlation
effects in Sec. IVB. Finally, we estimate theoretical accuracy
and consider its implications on the extraction of octupole
and hexadecapole moments in Sec. VI. Unless specified oth-
erwise, atomic units are used throughout.

II. REVIEW OF THE THEORY OF HYPERFINE
STRUCTURE

The hyperfine interaction can be decomposed into the
magnetic dipole (M1), electric quadrupole (E2), magnetic
octupole (M3), electric hexadecapole (E4), and higher rank
contributions. We start by expressing the hyperfine Hamilto-
nian in irreducible tensor form [5,27],

HHFI =
∑
k,μ

(−1)μT e
k,μT

n
k,−μ , (1)

where rank-k tensors T e
k,μ act in the electron space, and

T n
k,−μ in the nuclear space. The many-electron operators are
T e
k,μ = ∑

i t
e
k,μ(i), where the summation is over all the atomic

electrons. The single-electron operators t ek,μ(i) can be divided
into two groups [27]:

t ek,μ(i) =
⎧⎨
⎩

− 1
rk+1Ck,μ(r̂), electric (even k) ,

− i
rk+1

√
k+1
k α ·C(0)

k,μ(r̂), magnetic (odd k).
(2)

Here, α is the Dirac matrix, r is the radial coordinate, Ck,μ

are normalized spherical harmonics, and C(0)
k,μ are normalized

vector spherical harmonics.
The first-order energy correction due to hyperfine interac-

tion, Eq. (1), in the basis of coupled nuclear and atomic states
is [25]

W (1)
F = 〈γ IJFMF |HHFI|γ IJFMF 〉 = (−1)I+J+F

×
∑
k

{
F J I
k I J

}
〈γ J‖T e

k ‖γ J〉〈I‖T n
k ‖I〉 , (3)

where I is the nuclear spin, J is the total electronic angular
momentum, F is the grand total angular momentum F = J +
I, and γ stands for remaining quantum numbers.
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The first-order energy corrections are conventionally ex-
pressed as linear combinations of HFS constants A, B, C,
D...(k = 1, 2, 3, 4...). The first four constants are defined as
[25]

A = 1

IJ

〈
T n
1

〉
I

〈
T e
1

〉
J = 1

IJ
μ

〈
T e
1

〉
J ,

B = 4
〈
T n
2

〉
I

〈
T e
2

〉
J = 2Q

〈
T e
2

〉
J , (4)

C = 〈
T n
3

〉
I

〈
T e
3

〉
J = −�

〈
T e
3

〉
J ,

D = 〈
T n
4

〉
I
〈
T e
4

〉
J = �

〈
T e
4

〉
J .

Here the stretched matrix element 〈T e
k 〉J is defined as 〈T e

k 〉J =
( J k J
−J 0 J)〈γ J||T e

k ||γ J〉. Nuclear stretched matrix elements
are proportional to the nuclear moments: 〈T n

1 〉I = μ, 〈T n
2 〉I =

Q/2, 〈T n
3 〉I = −�, and 〈T n

4 〉I = �.
The second-order energy correction due to hyperfine inter-

action reads

W (2)
F =

∑
γ ′J ′

〈γ IJFMF |HHFI|γ ′IJ ′FMF 〉〈γ ′IJ ′FMF |HHFI|γ IJFMF 〉
Eγ J − Eγ ′J ′

. (5)

This equation reduces to

W (2)
F =

∑
γ ′J ′

1

Eγ J − Eγ ′J ′

∑
k1,k2

{
I J F
J ′ I k1

}{
I J F
J ′ I k2

}

× 〈I‖T n
k1‖I〉〈I‖T n

k2‖I〉〈γ J‖T e
k1‖γ ′J ′〉〈γ J‖T e

k2‖γ ′J ′〉,
(6)

where primed quantities refer to intermediate states; Eγ J and
Eγ ′J ′ are the HFI-unperturbed energy levels. Based on the
general theory, in the next section we investigate the hyperfine
structure of 173Yb+ in the first excited state.

III. HYPERFINE STRUCTURE OF Yb+ IN THE FIRST
EXCITED STATE

The first excited state of Yb+ has the electronic configura-
tion 4 f 13(2Fo)6s2 with electronic angular momentum J equal
to 7/2. Since 173Yb has nuclear spin of 5/2, the grand total
angular momentum F is an integer in the interval [1,6]. The
173Yb isotope possesses five distinct nuclear electromagnetic
moments. The nucleus has an unpaired valence neutron in
the f5/2 state. The observed [1] nuclear magnetic dipole μ

and electric quadrupole moments Q are equal to −0.680μN

and 2.80 b2, respectively. The nuclear single-particle shell
model is not adequate for this isotope, as it predicts a zero
value for the quadrupole moment (the valence nucleon is a
neutron for this isotope, whereas the electric moments arise
from the distribution of protons in the core). This discrepancy
points to a strong nuclear deformation of 173Yb. Following the
theoretical proposal [28], the value for the octupole moment
was deduced [3] from the HFS in neutral 173Yb atom in
the metastable 6s6p 3P2 state. However, the deduced value,
� = −34.4 b × μN, is ∼200 times larger and of opposite sign
compared to the prediction of the single-particle nuclear shell
model [29]. Amore sophisticated nuclear structure calculation
[4] (axially symmetric collective model in strong coupling)
yields � = 0.003 b × μN, bringing the discrepancy with the
spectroscopic determination in neutral Yb to four orders of
magnitudes. As to the electric hexadecapole moment �, the
single-particle nuclear shell model again predicts zero (similar
to Q) because the valence nucleon is electrically neutral. We
are not aware of any nuclear structure calculations for � of
173Yb. We estimate � ≈ Q2 ≈ 9 b2, as both Q and � arise

due to nuclear deformation; we will take this value as fiducial
in further computations.

From Eqs. (3) and (4), we obtain the following first-order
energy corrections:

W (1)
6 = 35

4
A + 1

4
B +C + D ,

W (1)
5 = 11

4
A − 37

140
B − 109

35
C − 41

7
D ,

W (1)
4 = −9

4
A − 3

10
B + 46

35
C + 12D ,

W (1)
3 = −25

4
A − 1

14
B + 22

7
C − 44

7
D , (7)

W (1)
2 = −37

4
A + 1

4
B + 11

35
C − 11D ,

W (1)
1 = −45

4
A + 15

28
B − 33

7
C + 99

7
D .

The second-order corrections are computed from Eqs. (5)
and (6), where we keep magnetic dipole and electric
quadrupole contributions. To streamline the notation, we
introduce dipole-dipole, dipole-quadrupole, and quadrupole-
quadrupole constants. These are defined for individual inter-
mediate states |γ ′J ′〉,

ημμ[γ
′J ′] = (I + 1)(2I + 1)

I

μ2〈γ J‖T e
1 ‖γ ′J ′〉2

Eγ J − Eγ ′J ′
,

ημQ[γ
′J ′] = (I + 1)(2I + 1)

I

√
2I + 3

2I − 1

× μQ〈γ J‖T e
1 ‖γ ′J ′〉〈γ J‖T e

2 ‖γ ′J ′〉
Eγ J − Eγ ′J ′

, (8)

ηQQ[γ
′J ′] = (2I + 1)(I + 1)(2I + 3)

4I (2I − 1)

Q2〈γ J‖T e
2 ‖γ ′J ′〉2

Eγ J − Eγ ′J ′
.

Equation (6) shows that we need to sum over all possible
intermediate states obeying both the parity and the angular
selection rules—that is, the parity of the |γ J〉 and |γ ′J ′〉
states has to be the same and |J + J ′| � k � |J − J ′|. Thus,
for dipole-dipole and dipole-quadrupole terms, there are three
possible J ′ values, while for the quadrupole-quadrupole term,
there are five possible J ′ values. Among the |γ ′J ′〉 inter-
mediate states, the dominant contribution comes from the
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configuration 4 f 13(2Fo)6s2 with J = 5/2. The electronic ma-
trix elements of other possible intermediate states are small
enough to be neglected, or the energy denominators are
large. With the single intermediate state fixed, we rewrite
Eq. (6) as

W (2)
F ≈ Cμμ[J

′,F ] × ημμ[γ
′J ′] +CμQ[J

′,F ] × ημQ[γ
′J ′]

+CQQ[J
′,F ] × ηQQ[γ

′J ′] , (9)

where the angular factors are

Cμμ[J
′,F ] =

{
I J F
J ′ I 1

}2

,

CμQ[J
′,F ] =

{
I J F
J ′ I 1

}{
I J F
J ′ I 2

}
, (10)

CQQ[J
′,F ] =

{
I J F
J ′ I 2

}2

.

Adding the first-order, Eq. (7), and second-order, Eq. (9),
corrections for individual hyperfine levels, we arrive at

W (1+2)
6 = W (1)

6 + 0 × ημμ + 0 × ημQ + 0 × ηQQ ,

W (1+2)
5 = W (1)

5 + 1

98
ημμ +

√
5
6

98
ημQ + 5

588
ηQQ ,

W (1+2)
4 = W (1)

4 + 11

882
ημμ + 0 × ημQ + 0 × ηQQ ,

W (1+2)
3 = W (1)

3 + 1

98
ημμ −

√
2
15

49
ημQ + 4

735
ηQQ , (11)

W (1+2)
2 = W (1)

2 + 3

490
ημμ −

√
3
10

70
ημQ + 1

100
ηQQ ,

W (1+2)
1 = W (1)

1 + 1

441
ημμ − 1

49
√
30

ημQ + 3

490
ηQQ .

Experimentally relevant quantities are the HFS energy
intervals �WF = WF+1 −WF . Explicitly,

�W (1+2)
5 = 6A + 18

35
B + 144

35
C + 48

7
D − 1

98
ημμ

− 1

98

√
5

6
ημQ − 5

588
ηQQ ,

�W (1+2)
4 = 5A + 1

28
B − 31

7
C − 125

7
D − ημμ

441

+ 1

98

√
5

6
ημQ + 5

588
ηQQ ,

�W (1+2)
3 = 4A − 8

35
B − 64

35
C + 128

7
D + ημμ

441

+ 1

49

√
2

15
ημQ − 4

735
ηQQ , (12)

�W (1+2)
2 = 3A − 9

28
B + 99

35
C + 33

7
D + 1

245
ημμ

+
(

1

70

√
3

10
− 1

49

√
2

15

)
ημQ − 67

14700
ηQQ ,

�W (1+2)
1 = 2A − 2

7
B + 176

35
C − 176

7
D + 17

4410
ημμ

+
(

1

49
√
30

− 1

70

√
3

10

)
ημQ + 19

4900
ηQQ .

To determine the HFS constants A,B,C, and D from ex-
perimental measurements of �WF , in Sec. IV we compute the
second-order corrections. Further, to find the values of nuclear
octupole and hexadecapole moments from C and D, we need
electronic form factors; these are also computed in Sec. IV.
We neglect contributions of one remaining HFS constant
E arising from the 25-pole nuclear magnetic moment. This
contribution is expected to be strongly suppressed compared
to the contribution of the octupole moment (see Sec. VI).

IV. CALCULATIONS OF ELECTRONIC-STRUCTURE
FACTORS

A. Dirac-Hartree-Fock calculations

Yb+ ion in the first excited state contains thirteen 4 f
electrons and two 6s electrons. In this section we start our
calculation of the electronic wave functions by employing
the frozen core Dirac-Hartree-Fock (DHF) approximation.
In this approximation, we compute the DHF orbitals of the
YbIII ([Xe]4 f 14) core. Then the valence (outside the [Xe]4 f 14

core) orbitals are computed using the DHF potential of the
core. The many-body wave function ψJ ,M can be approxi-
mated as

|ψJ,M〉 
 1

2
(−1)7/2−M

( ∑
m

(−1)m−1/2a†6s1/2,ma
†
6s1/2,−m

)

× a4 f7/2,−M |0c〉 , (13)

where a†6s1/2,m are creation operators with magnetic quantum
number m equal to either −1/2 or 1/2, a4 f7/2,M is an annihi-
lation operator for the 4 f7/2 orbital, and |0c〉 represents the
[Xe]4 f 14 core. The phase factor (−1)7/2−M is generated after
moving the hole operator from the core state [27]. The two
6s1/2 orbitals are coupled so that the 6s2 valence shell has
zero value of angular momentum. Using Wick’s theorem, we
write the matrix element (2) in the multielectron state as an
expectation value in the hole orbital (see Appendix A for
derivation),

〈ψJ,M |T e
k, μ|ψJ,M〉 = −〈φJ,−M |t ek, μ|φJ,−M〉, (14)

where |φJ,−M〉 represents the 4 f7/2 hole orbital, with J and
−M being the electron’s angular momentum and magnetic
quantum number. The electronic tensors T e

k, μ are given by
Eq. (1). In Appendix A we show that the reduced matrix
elements are related as

〈ψJ‖T e
k,μ‖ψJ〉 = (−1)k+1〈φJ‖t ek‖φJ〉, (15)

with reduced matrix elements specified in Appendix B. The
transition from a multielectron state to the single-electron hole
orbital greatly simplifies our calculation since it only requires
the one-electron 4 f7/2 orbital, which can be easily obtained
self-consistently with the DHF method. Our computed values
of the first- and second-order hyperfine constants are listed in
the first row of Table II.
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TABLE II. First-order and dominant second-order hyperfine constants (in MHz) for the 4 f 135s2 2F7/2 state of 173Yb+. C/� is in
MHz/(b × μN) and D/� is in MHz/b2. We used the values [1] for the nuclear magnetic dipole and electric quadrupole moments,
μ = −0.68μN and Q = 2.80(4) b.

Method A B C/� D/� ημμ ημQ ηQQ

This work
DHF −239 −5330 4.53 × 10−4 2.00 × 10−4 −1.50 × 10−2 −0.112 −0.209
DHF (GRASP) −252 −5622 4.83 × 10−4 2.25 × 10−4 −1.91 × 10−2 −0.124 −0.200
MCDHF −241 −5061 −6 × 10−4 2.35 × 10−4

Prior work
CI+MBPT, Ref. [26] −240 −4762
MCDHF, Ref. [30] −304 −3680

B. Electron-correlation effects

We employ the multiconfiguration Dirac-Hartree-Fock
(MCDHF) method [31,32] to capture the main electron cor-
relations in the Yb+ ion. In this approach, an atomic-state
wave function (ASF) is represented as a linear combination of
configuration state functions (CSFs) with the same parity, total
angular momentum, and its component along the quantization
axis. The CSFs are generated by single and double substi-
tutions of orbitals occupied in the reference configurations
with virtual orbitals. The reference configurations constitute
the dominant CSFs of the ASF concerned. The MCDHF
calculation starts from the optimization on occupied orbitals
in the reference configurations. By contrast to Sec IVA, all
of these orbitals are generated in the self-consistent field
procedure. Virtual orbitals are augmented layer by layer in
order to monitor the convergence of level energies and other
atomic properties. Each layer includes orbitals with different
angular symmetries. In addition, only the virtual orbitals in the
latest added layer are variable. The details of computational
strategies can be found in Refs. [33,34].

In our calculations, we adopt the extended optimal level
(EOL) scheme to optimize the two states of the [Xe]4 f 136s2

configuration simultaneously. The electron correlations in the
4 f and 6s valence subshells and the correlations between
electrons in the valence and n = 3, 4 core subshells were
accounted for by CSFs generated by the singles-doubles re-
placement of the n � 3 occupied orbitals in the reference con-
figuration with the virtual orbitals. The double replacements
were restricted to only a single electron of the core subshells
being promoted into the virtual orbitals at a time. The final set
of virtual orbitals is composed of five orbitals per each of the
s, p, d, f , g, h, i angular momenta. The magnetic octupole and
electric hexadecapole hyperfine interaction constants were
calculated by an extended version [35] of the HFS92 code
[36] based on the GRASP package [37]. Our results, labeled
as MCDHF, are presented in Table II.

C. Evaluation of theoretical uncertainties

We start with a comparison of our computed values for A
and B HFS constants with the previously published results
and then assess our theoretical accuracy. Comparing our
computed values (see Table II) with theoretical values by
Dzuba and Flambaum [26], we observe that our A values
match while there is a roughly 10% discrepancy in values of
B. Itano (cited in Ref. [30]) has previously computed the A

and B constants for the 4 f 136s2 (J = 7/2) state in 171Yb+

and 173Yb+. Itano has also used the MCDHF method, but
his results are markedly different from ours. Since there are
no details of calculations given in Ref. [30], it is difficult
to assess the reasons for this difference. We, however, point
out that our MCDHF results are in a better agreement with
experimental values. For example, the deviation is about 20%
between his result and the experimental value A(171Yb) =
905 MHz [38]. Multiplying our A constant for 173Yb by the
ratio μ(171Yb)I (173Yb)/μ(173Yb)I (171Yb), we obtained A =
882 MHz for 171Yb, which differs from the measurement [38]
by only 3%.

Based on these comparisons we conservatively estimate
the uncertainty of our MCDHF calculations to be ∼10%
for the magnetic dipole and electric quadrupole hyperfine
interaction constants. This estimate is also consistent with that
of Ref. [26], where they claimed a similar 10% theoretical
uncertainty for these two constants using a different compu-
tational method. We assign a 10% theoretical uncertainty to
the D constant due to its stable convergence trend with the
increasing size of the virtual orbital set. However, it is difficult
to evaluate the theoretical uncertainty for the C/� constant,
since it strongly depends on the computational model, as
discussed below. We are, however, confident in the sign and
order of magnitude of this octupole constant.

The magnetic octupole HFS constant has proven to be
sensitive to the electron correlations, as they flip the sign of the
DHF result. We systematically investigated the dependence
of the calculated C/� values on the size of computational
model space, see Table III. For example, in this table the
results in the “no opened subshells” row demonstrate the ef-
fect of correlation between electrons in the valence subshells.
Because the octupole coupling operator has high multiplicity
(tensor of rank 3) and we are interested in the properties of
the l = 3 f -state hole, we include up to l = 6 virtual or-
bitals in each layer. The results, including the valence-valence
correlation, show a good convergence pattern (first row of
Table III). However, the convergence pattern worsens when
we start including core-valence correlations by opening core
subshells (columns of Table III). While the results show some
degree of convergence, results from an even larger model
space would have been more conclusive. Unfortunately, the
largest computation model that we employed already pushes
the limits of computational power at our disposal. Considering
the convergence trends of Table III, we believe that the sign
and the order of magnitude of the computed C/� constant
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TABLE III. Values of C/� [in units of kHz/(b × μN)] as a function of the MCDHF computational model space. The columns present
the trend with opening successively deeper core subshells: the first row has no core subshells opened, while the last row lists results with
the 3s3p3d4s4p4d5p5s core subshells opened. The rows compile values obtained by increasing numbers of virtual orbitals. The N th layer
includes N virtual orbitals for each of the s, p, d, f , g, h, i angular symmetries. For example, the first layer includes one virtual orbital for each
l ∈ [0, 6], i.e., seven orbitals in total. The value marked in bold was obtained with the largest model space.

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer

No opened subshells 0.578 0.630 0.649 0.652 0.652
5s 1.692 2.857 2.625 2.708 2.646
+5p 2.453 3.633 3.360 3.439 3.366
+4d 1.986 3.072 2.778 2.822 2.749
+4p 2.014 2.823 2.148 1.904 1.685
+4s 2.239 3.126 2.380 2.058 1.792
+3d 2.131 2.956 2.173 1.822 1.541
+3p 2.007 2.208 0.941 0.276 −0.198
+3s 1.932 2.037 0.688 −0.040 −0.557

would not change with increasing model space. We carried
out additional convergence tests that support this conclusion.
For example, trends in Table III indicate that opening the
3p and 4p subshells substantially modifies the result, so it
is plausible that opening the subshell of the same angular
momentum, 2p subshell, might modify the result further. To
test this hypothesis, we opened the 2p subshell for a small
model space and found this effect to be negligible. We take
the result obtained with the largest model space as our final
value, C/� = −6 × 10−4 MHz/(b × μN).

As to the second-order corrections ηX , these are propor-
tional to various products of electronic matrix elements of
magnetic-dipole and electric-quadrupole hyperfine interac-
tions. Based on our accuracy estimates for A and B, we conser-
vatively assign ∼10% theoretical uncertainty to such matrix
elements. Thereby, we expect a ∼10% theoretical uncertainty
in the second-order HFS constants. In addition, the second
corrections contain a summation over intermediate states;
in our calculations we truncated the entire sum to a single
contribution from the lowest-energy F5/2 state. We examined
contributions from the other 12-lowest-energy intermediate
states and found that ημμ, ημQ, ηQQ are modified by less than
4%, 8%, and 20%, respectively. Thus the overall theoretical
uncertainty in second-order corrections is in the order of 10%.

V. PROJECTED EXPERIMENTAL ACCURACY

A. Experimental procedure

The measurement of the hyperfine intervals �Wi of
173Yb+( 2Fo

7/2) can be accomplished via microwave Ramsey
spectroscopy on a single trapped ion. A pure state can be pre-
pared by beginning with optical pumping on the narrow-band
(E2) 2D5/2← 2S1/2 transition at 411 nm, which will sponta-
neously decay mainly to 2Fo

7/2 via the allowed E1 transition
at λ=3.4 μm. By restricting the E2 transition to drive only
2D5/2(F =0)← 2S1/2(F =2), the F =1 hyperfine level in
2Fo

7/2 will be populated. Following this optical pumping step,
resonant microwaves can be used to drive 2←1 at ≈1 GHz,
followed by deshelving of the remaining F =1 population in
2Fo

7/2 back to 2S1/2 via the E2 transition 1[3/2]o3/2← 2Fo
7/2 at

λ=760 nm. An ion in the ground state can be distinguished

from a 2Fo
7/2 ion via the appearance or lack of laser-induced

fluorescence on 2Po
1/2 ↔ 2S1/2. By observing how the mi-

crowave resonance frequency depends upon the magnetic field
in the trap, the MF =0↔0 transition can be isolated, permit-
ting preparation of the 2Fo

7/2(F =2,MF =0) single quantum
state. From there, stepwise microwave excitation through the
hyperfine structure can be used to complete the spectroscopy.
In all cases, readout is accomplished by observing whether the
760-nm transition deshelved the ion back to the ground-state
manifold.

B. Precision

Since the lifetimes of the states in 173Yb+(2Fo
7/2) are all

expected to on the order of 1 day or longer [26], the achievable
precision of these measurements is likely to be limited by
practical considerations (as opposed to T1). In particular, since
a small magnetic field will be used to isolate the MF =0↔0
transitions, second-order Zeeman shifts of the clock states can
lead to decoherence. Based on the experimentally determined
coherence time of the Zeeman-sensitive hyperfine transitions
in the ground state of 171Yb+ that we have achieved, we
anticipate that 1-Hz precision can be obtained by keeping
the effective magnetic sensitivity of the “clock transitions”
(MF =0↔0) in Yb+( 2Fo

7/2) below 10−3μB. The offset field
required to accomplish this will depend upon how close the
zero-field hyperfine states with �F =±1 are to degeneracy.
Assuming there is a pair with significantly smaller zero-field
splitting �W than the rest, the effective magnetic moment
associated with an offset field Bo scales as μeff ∼ Boμ

2
B/�W .

Barring any “accidental” near degeneracies (�W <10 MHz),
a precision of 1 Hz should be achievable with our current level
of magnetic field control.

C. Accuracy

The potential systematic effects that are expected for this
system can be divided into those that will be common to
measurements of ground-state splittings and those that are
unique to the 2Fo

7/2 state. The former group includes the non-
linear Zeeman shifts from static magnetic fields, differential
Stark shifts from the trap fields, blackbody and time-dilation
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shifts, off-resonant shifts of the levels being measured due
to the microwave probe field, and hyperfine-induced third-
order corrections [39]. Since ground-state splittings have been
measured below the target precision of 1 Hz for many years
[14,40], the techniques to avoid effects such as these have
already been demonstrated and are expected to be sufficient
for reaching the comparatively modest target accuracy of
1 Hz. In particular, taking the expected zero-field splittings
from the coefficients in Table II suggests that the largest

second- and fourth-order Zeeman shifts will be on the F =
4↔3 transition, which will contribute a systematic shift of
less than 1 Hz at Bo = 5 mG.

For systematics that are unique to the 2Fo
7/2 state, the

largest is anticipated to be the energy shifts from the elec-
tronic electric quadrupole interacting with static electric field
gradients in the trap. The diagonal contributions to the shifts
are given by

E (e.q.)
F,MF

= −e
∑

μ

T2,μ(∇E) 〈γ IJF |T2,−μ(�)|γ IJF 〉

= −e T2,0(∇E)
2
(
3M2

F − F (F + 1)
)

√
(2F + 3)(2F + 2)(2F + 1)2F (2F − 1)

× (−1)I+J+F (2F + 1)

{
J F I
F J 2

}
(

J 2 J
−J 0 J

)�(γ J ), (16)

where the quadrupole moment has been measured to
be �( 2Fo

7/2) = −0.041(5)a2o [41]. These contribute sub-Hz
shifts for an electric field gradient of 1 kV/cm2, which is
significantly larger than the gradient in our current trap. There
are also potentially off-resonant shifts due to the Paul trap’s rf
drive if pairs of states happen to be split by a frequency near
the rf drive, in which case the rf drive frequency may need
to be changed. We are therefore not aware of any barriers to
achieving a precision of 1Hz for this measurement.

VI. DISCUSSION

Equations (12) provide the relationship between the five
quantities that will be measured experimentally (the�W (1+2)

F )
and the seven parameters to be determined, A-D and the ηmn.
However, since all of the terms included in our model are
tensors of rank k�4, there is a degeneracy in Eqs. (12) and
a proper linear combination of any four of the measurements
can be used to predict the fifth. While this reduces the number
of experimentally determined quantities to kmax=4, it will
provide a test of the model presented above and way to detect
and reject systematic effects in the experiment.

Within the three second-order terms (ηmn), since the en-
ergy difference between the 2Fo

J ′=5/2 and 2Fo
J=7/2 states is

known, if we assume that these are the only terms that con-
tribute, they contain only two unknowns: μ〈γ J||T e

1 ||γ J ′〉 and
Q〈γ J||T e

2 ||γ J ′〉. Further, the coefficient A can be determined
from existing experimental data [14,38,40]:

A(173)
2Fo

7/2
=

A(173)
2S1/2

A(171)
2Fo

7/2

A(171)
2S1/2

= −250 MHz. (17)

Here, we have extracted A(171)
2Fo

7/2
from the measured energy

splitting �W (171)
3 = 3.620 GHz [38] via

A(171)
2F7/2

= �W (171)
3

4
+ 1

144

(
μ(171)

μ(173)

)2

ημμ ≈ �W (171)
3

4
(18)

and therefore neglected the contribution (tens of Hz) of
the second-order correction to the hyperfine splitting of
171Yb+( 2Fo

7/2), since it is not expected to contribute at the
current level of experimental precision. This term should, of
course, be included in a full treatment when experimental
precision reaches the 100-Hz level, and adding it does not
increase the number of unknowns in the system of equations
(12). The two ground-state A coefficients in (17) are known
to sub-Hz precision [14,40], and the limiting measurement
is �W (171)

3 , the 2Fo
7/2 HFS splitting in 171Yb+ [38]. Using

essentially the same procedure as described below, this split-
ting in 171Yb+ can be measured to the same precision (if not
better) than the�Wi in 173Yb+. This leaves Eqs. (12) with five
unknowns (B,C, D, μ〈γ J||T e

1 ||γ J ′〉, and Q〈γ J||T e
2 ||γ J ′〉).

Because the experimental uncertainty can reach ∼1Hz, we
expect that the dominant error in extracting first-order HFS
constants is due to theoretical uncertainty in the second-order
corrections ηX (see Sec. IVC). One of the possibilities is
to determine the second-order corrections directly from the
experimental data, but the system of effectively four equations
and five unknowns here will not allow unambiguous extrac-
tion of all five unknown parameters.

Instead, we solve Eqs. (12) for the first four HFS splittings
�WF for the HFS constants, A, B, C, and D. Each of the
resulting equations contains a contribution from the second-
order corrections. In particular, the induced variation in D is
δD ≈ 3.4 × 10−4 δηQQ. As discussed in Sec. III, the fiducial
value of the hexadecapole moment � ∼ 9 b2, leading, in
combination with results in Table II, to the expected value
of D ≈ 2 kHz. Since ηQQ ≈ −200 kHz, even a 100% error in
ηQQ would lead to only 3% error in the extracted value of
D. Estimating the induced uncertainty in C is more involved:
δC = −1.6 × 10−3 δημQ + 8.9 × 10−4 δηQQ. If we assume a
10% error in both ημQ and ηQQ per Sec. IVC, then the induced
uncertainty in C is 30Hz. Meanwhile, the expected values of
C depend substantially on the assumed value of the octupole
moment �. If we take� from the spectroscopic determination
[3] in neutral Yb, the resulting value is C ≈ 21 kHz; the
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nuclear shell model value of� (see Table I) yieldsC ≈ 90Hz,
and the more sophisticated nuclear model [4] reduces C to
2Hz. It is clear that for the latter case the uncertainties in the
second-order correction would mask the contribution of C to
the hyperfine splittings and only an upper limit on � can be
placed. In such a scenario, one could still determine D and
extract the hexadecapole moment, as the value of D is several
orders of magnitude larger than C.

Given that the well-controlled electronic structure of the
2Fo

7/2 state of Yb+ should allow for the extraction of mea-
surable, high-order spectroscopic multipole moments, it is
possible that even finer detail may be possible. While nuclear
theory suggests that the magnetic multipole moments may
be difficult to discern, the electric moments from deformed
cores appear straightforward to measure. In particular, the
radioactive 169Yb nuclide has spin I=7/2 and a half-life of
≈32 days, suggesting that precision spectroscopy of the 2Fo

7/2

state of 169Yb+ may reveal signatures of its electric 64-pole
moment. The calculation of more second-order correction
terms as well as third-order corrections would be required to
extract this moment from the data, but we see no fundamental
barriers to future studies along these lines.
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APPENDIX A: RELATION BETWEENMULTIELECTRON
AND SINGLE-ELECTRONMATRIX ELEMENTS

In this Appendix we prove Eqs. (14) and (15). The operator
T e
k,μ in the second quantized form reads [42]

T e
k,μ =

∑
i, j

:a†i a j : 〈i|t ek,μ| j〉, (A1)

where i and j represent either core or virtual orbitals, 〈i|t ek,μ| j〉
is the matrix element, and :a†i a j : are products of creation and
annihilation operators in the normal form. We would like to
evaluate the expectation value of the operator in Eq. (A1)
in the many-body state |ψJ,M〉, Eq. (13). The intermediate
result for the expectation value can be obtained using Wick’s
theorem [42],

〈0c|a†h′av′aw′ :a†i a j : a
†
wa

†
vah|0c〉

= −δihδh′ j (δvv′δww′ − δv′wδw′v )

+ δ jwδh′h(δvv′δiw′ − δiv′δw′v )

− δ jvδhh′ (δv′wδw′i − δiv′δww′ ) , (A2)

where h(h′) stands for the 4 f hole orbital and v(v′) and w(w′)
represent the 6s orbitals.

Then we immediately obtain

〈ψJ,M |T e
k,μ|ψJ,M〉 = −〈h|t ek,μ|h〉 , (A3)

where |ψJ,M〉 is the multielectron state of 173Yb+, Eq. (13).
The reason that the 6s orbitals do not contribute to Eq. (A3) is
that the operator is nonscalar, and the 6s2 shell has zero total

angular momentum by construction of the multielectron state
(13).

In general, Eq. (A3) works for any nonscalar one-body
operator. If we replace T e

k,μ and t ek,μ with the z components
of the angular momentum operators Jz and jz, respectively, in
Eq. (A3), we obtain the magnetic quantum number of the hole
state mh, equal to −M.

Then we rewrite Eq. (A3) as follows:

〈ψJ,M |T e
k,μ|ψJ,M〉 = −〈φJ, −M |t ek,μ|φJ,−M〉 , (A4)

where φJ,−M is the orbital of the hole-state electron. This
proves Eq. (14) of the main text.

Applying the Wigner-Eckart theorem and setting μ = 0 on
each side of Eq. (A4), we obtain

〈ψJ,M |T e
k,0|ψJ,M〉

= (−1)J−M

(
J k J

−M 0 M

)
〈ψJ‖T e

k ‖ψJ〉, (A5)

−〈φJ,−M |t ek,0|φJ,−M〉

= −(−1)J+M

(
J k J
M 0 −M

)
〈φJ‖t ek (i)‖φJ〉. (A6)

Since ( J k J
−M 0 M) = (−1)2J+k ( J k J

M 0 −M), the reduced
matrix elements satisfy the following identity:

〈ψJ‖T e
k ‖ψJ〉 = (−1)1+2M+2J+k〈φJ‖t ek‖φJ〉

= (−1)k+1〈φJ‖t ek‖φJ〉. (A7)

Equation (A7) suggests that when evaluating the reduced
matrix elements of even-k operators with multielectron states,
one needs to add an extra negative sign to the single-electron
reduced matrix elements. The sign of odd-k reduced matrix
elements is unaffected. This proves Eq. (15) of the main text.

Now we generalize these identities to the off-diagonal re-
duced matrix elements entering the second-order corrections.
As discussed in Sec. III, the dominant intermediate state is the
4 f 135s2 2F5/2 state denoted as |ψJ ′M ′ 〉. The many-body state
|ψJ ′M ′ 〉 has a similar form as Eq. (13) but differs in the phase
factor, (−1)5/2−M ′

, and the annihilation operator a4 f5/2,−M′ . It
can be shown that the relation in Eq. (A7) still holds for the
reduced matrix element,

〈ψJ‖T e
k ‖ψJ ′ 〉 = (−1)k+1〈φJ‖t ek‖φJ ′ 〉. (A8)

APPENDIX B: REDUCED MATRIX ELEMENTS OF
HYPERFINE INTERACTION

Formally, the one-electron wave function is represented by
the Dirac bispinor

|n jκm〉 =
(
iPnκ (r)�κ,m(r̂)
Qnκ (r)�−κ,m(r̂)

)
, (B1)

where P and Q are the large and small components of a
one-electron wave function and κ is the relativistic quantum
number (κ = ∓ j + 1

2 for j = l ± 1
2 ). The reduced matrix

elements of the electronic part of hyperfine interaction are
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explicitly [27]

〈n′κ ′‖t ek‖nκ〉 =
{

−〈κ ′‖Ck‖κ〉 ∫ ∞
0

dr
rk+1 (Pn′κ ′Pn,κ + Qn′κ ′Qn,κ ), odd k ,

〈κ ′‖Ck‖ − κ〉 κ ′+κ
k

∫ ∞
0

dr
rk+1 (Pn′κ ′Qn,κ + Qn′κ ′Pn,κ ), even k,

(B2)

where we suppressed j for brevity. The odd and even k subcases correspond to electric and magnetic interactions, respectively.
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