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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES II:

ARITHMETIC APPLICATIONS

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We prove two formulas in the style of the Gross-Zagier theorem, relating
derivatives of L-functions to arithmetic intersection pairings on a unitary Shimura
variety. We also prove a special case of Colmez’s conjecture on the Faltings heights
of abelian varieties with complex multiplication. These results are derived from the
authors’ earlier results on the modularity of generating series of divisors on unitary
Shimura varieties.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura
unitaires II: applications arithmétiques)

Nous prouvons deux formules dans le style du théorème de Gross-Zagier, reliant les
dérivées des fonctions L aux accouplements d’intersection arithmétique sur une variété
de Shimura unitaire. Nous prouvons également un cas particulier de la conjecture de
Colmez sur les hauteurs de Faltings des variétés abéliennes à multiplication complexe.
Ces résultats sont déduits des résultats antérieurs des auteurs sur la modularité des
séries génératrices de diviseurs sur les variétés de Shimura unitaires.

1. Introduction

Fix an integer n ≥ 3, and a quadratic imaginary field k ⊂ C of odd discriminant
disc(k) = −D. Let χk : A× → {±1} be the associated quadratic character, let
dk ⊂ Ok denote the different of k, let hk be the class number of k, and let wk be the
number of roots of unity in k.
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By a hermitian Ok-lattice we mean a projective Ok-module of finite rank endowed
with a nondegenerate hermitian form.

1.1. Arithmetic theta lifts. — Suppose we are given a pair (a0, a) in which
— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a is a self-dual hermitian Ok-lattice of signature (n− 1, 1).

This pair determines hermitian k-spaces W0 = a0Q and W = aQ.
From this data we constructed in [6] a smooth Deligne-Mumford stack Sh(G,D)

of dimension n− 1 over k with complex points

Sh(G,D)(C) = G(Q)\D×G(Af )/K.

The reductive group G ⊂ GU(W0) × GU(W ) is the largest subgroup on which the
two similitude characters agree, and K ⊂ G(Af ) is the largest subgroup stabilizing
the Ẑ-lattices â0 ⊂W0(Af ) and â ⊂W (Af ).

We also defined in [6, §2.3] an integral model

(1.1.1) SKra ⊂M(1,0) ×Ok
MKra

(n−1,1)

of Sh(G,D). It is regular and flat over Ok, and admits a canonical toroidal compact-
ification SKra ↪→ S∗Kra whose boundary is a smooth divisor.

The main result of [6] is the construction of a formal generating series of arithmetic
divisors

(1.1.2) φ̂(τ) =
∑
m≥0

Ẑ total
Kra (m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]]

valued in the Gillet-Soulé codimension one arithmetic Chow group with rational co-
efficients, extended to allow log-log Green functions at the boundary as in [10, 4], and
the proof that this generating series is modular of weight n, level Γ0(D), and charac-
ter χnk. The modularity result implies that the coefficients span a finite-dimensional
subspace of the arithmetic Chow group [6, Remark 7.1.2].

After passing to the arithmetic Chow group with complex coefficients, for any
classical modular form

g ∈ Sn(Γ0(D), χnk)

we may form the Petersson inner product

〈φ̂, g〉Pet =

∫
Γ0(D)\H

g(τ) · φ̂(τ)
du dv

v2−n

where τ = u+ iv. As in [24], define the arithmetic theta lift

(1.1.3) θ̂(g) = 〈φ̂, g〉Pet ∈ Ĉh
1

C(S∗Kra).

Armed with the construction of the arithmetic theta lift (1.1.3), we are now able
to complete the program of [18, 19, 7] to prove Gross-Zagier style formulas relating
arithmetic intersections to derivatives of L-functions.

The Shimura variety S∗Kra carries different families of codimension n−1 cycles con-
structed from complex multiplication points, and our results show that the arithmetic
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intersections of these families with arithmetic lifts are related to central derivatives
of L-functions.

1.2. Central derivatives and small CM points. — In §2 we construct an étale and
proper Deligne-Mumford stack Ysm over Ok, along with a morphism

Ysm → S∗Kra.

This is the small CM cycle. Intersecting arithmetic divisors against Ysm defines a
linear functional

[− : Ysm] : Ĉh
1

C(S∗Kra)→ C,

and our first main result computes the image of the arithmetic theta lift (1.1.3) under
this linear functional.

The statement involves the convolution L-function L(g̃, θΛ, s) of two modular forms

g̃ ∈ Sn(ωL), θΛ ∈Mn−1(ω∨Λ)

valued in finite-dimensional representations of SL2(Z). We refer the reader to §2.3 for
the precise definitions. Here we note only that g̃ is the image of g under an induction
map

(1.2.1) Sn(Γ0(D), χnk)→ Sn(ωL)

from scalar-valued forms to vector-valued forms, that θΛ is the theta function at-
tached to a quadratic space Λ over Z of signature (2n− 2, 0), and that the L-function
L(g̃, θΛ, s) vanishes at its center of symmetry s = 0.

Theorem A. — The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ysm] = − degC(Ysm) · d
ds
L(g̃, θΛ, s)|s=0

.

Here we have defined

degC(Ysm) =
∑

y∈Ysm(C)

1

|Aut(y)|
,

where the sum is over the finitely many isomorphism classes of the groupoid of complex
points of Ysm, viewed as an Ok-stack.

The proof is given in §2, by combining the modularity result of [6] with the main
result of [7]. In §3 we provide alternative formulations of Theorem A that involve
the usual convolution L-function of scalar-valued modular forms, as opposed to the
vector-valued forms g̃ and θΛ. See especially Theorem 3.4.1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

130 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

1.3. Central derivatives and big CM points. — Fix a totally real field F of degree n,
and define a CM field

E = k ⊗Q F.

Let Φ ⊂ Hom(E,C) be a CM type of signature (n− 1, 1), in the sense that there is a
unique ϕsp ∈ Φ, called the special embedding, whose restriction to k agrees with the
complex conjugate of the inclusion k ⊂ C. The reflex field of the pair (E,Φ) is

EΦ = ϕsp(E) ⊂ C,

and we denote by OΦ ⊂ EΦ its ring of integers.
We define in §4.2 an étale and proper Deligne-Mumford stack Ybig over OΦ, along

with a morphism of Ok-stacks

Ybig → S∗Kra.

This is the big CM cycle. Here we view Ybig as an Ok-stack using the inclusion
Ok ⊂ OΦ of subrings of C (which is the complex conjugate of the special embed-
ding ϕsp : Ok → OΦ). Intersecting arithmetic divisors against Ybig defines a linear
functional

[− : Ybig] : Ĉh
1

C(S∗Kra)→ C.

Our second main result relates the image of the arithmetic theta lift (1.1.3) under
this linear functional to the central derivative of a generalized L-function defined as
the Petersson inner product 〈E(s), g̃〉Pet. The modular form g̃(τ) is, once again, the
image of g(τ) under the induction map (1.2.1). The modular form E(τ, s) is defined as
the restriction via the diagonal embedding H →Hn of a weight one Hilbert modular
Eisenstein series valued in the space of the contragredient representation ω∨L. See §4.3
for details.

Theorem B. — Assume that the discriminants of k/Q and F/Q are odd and relatively
prime. The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ybig] =
−1

n
· degC(Ybig) · d

ds
〈E(s), g̃〉Pet|s=0

.

Here we have defined

degC(Ybig) =
∑

y∈Ybig(C)

1

|Aut(y)|
,

where the sum is over the finitely many isomorphism classes of the groupoid of complex
points of Ybig, viewed as an Ok-stack.

The proof is given in §4, by combining the modularity result of [6] with the inter-
section calculations of [8, 18, 19].
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1.4. Colmez’s conjecture. — Suppose E is a CM field with maximal totally real sub-
field F . Let DE and DF be the absolute discriminants of E and F , set ΓR(s) =
π−s/2Γ(s/2), and define the completed L-function

Λ(s, χE) =

∣∣∣∣DE

DF

∣∣∣∣ s2 ΓR(s+ 1)[F :Q]L(s, χE)

of the character χE : A×F → {±1} determined by E/F . It satisfies the functional
equation Λ(1− s, χE) = Λ(s, χE), and

Λ′(0, χE)

Λ(0, χE)
=
L′(0, χE)

L(0, χE)
+

1

2
log

∣∣∣∣DE

DF

∣∣∣∣− [F : Q]

2
log(4πeγ),

where γ = −Γ′(1) is the Euler-Mascheroni constant.
Suppose A is an abelian variety over C with complex multiplication by OE and

CM type Φ. In particular A is defined over the algebraic closure of Q in C. It is a
theorem of Colmez [12] that the Faltings height

hFalt
(E,Φ) = hFalt(A)

depends only on the pair (E,Φ), and not on A itself. Moreover, Colmez gave a con-
jectural formula for this Faltings height in terms of logarithmic derivatives of Artin
L-functions. In the special case where E = k, Colmez’s conjecture reduces to the
well-known Chowla-Selberg formula

(1.4.1) hFalt
k = −1

2
· Λ′(0, χk)

Λ(0, χk)
− 1

4
· log(16π3eγ),

where we omit the CM type {id} ⊂ Hom(k,C) from the notation.
Now suppose we are in the special case of §1.3, where

E = k ⊗Q F

and Φ ⊂ Hom(E,C) has signature (n − 1, 1). In this case, Colmez’s conjecture sim-
plifies to the equality of the following theorem.

Theorem C ([29]). — For a pair (E,Φ) as above,

hFalt
(E,Φ) = − 2

n
· Λ′(0, χE)

Λ(0, χE)
+

4− n
2
· Λ′(0, χk)

Λ(0, χk)
− n

4
· log(16π3eγ).

In [6, §2.4] we defined the line bundle of weight one modular forms ω on S∗Kra. It
was endowed it with a hermitian metric in [6, §7.2], and the resulting metrized line
bundle determines a class

ω̂ ∈ Ĉh
1

Q(S∗Kra).

The constant term of (1.1.2) is

(1.4.2) Ẑ tot
Kra(0) = −ω̂ + (Exc,− log(D))

where Exc is the exceptional locus of S∗Kra appearing in [6, Theorem 2.3.4]. It is a
smooth effective Cartier divisor supported in characteristics dividing D, and we view
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it as an arithmetic divisor by endowing it with the constant Green function − log(D)
in the complex fiber.

Theorem D. — The metrized line bundle ω̂ satisfies

[ω̂ : Ybig] =
−2

n
· degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
.

Theorem C is proved in [29] as a consequence of the average version of Colmez’s
conjecture [2, 30, 20]. Note that the proof in [29] does not require our standing hypoth-
esis that disc(k) is odd. Of course the assumption that disc(k) is odd is still needed
for Theorem D, as it is only under these hypotheses that we have even defined the
integral model S∗Kra and its line bundle of weight one modular forms.

In §5 we will show that Theorems C and D are equivalent. One can interpret this in
one of two ways. As Theorem C is already known, this equivalence proves Theorem D.
On the other hand, in §4.5 will give an independent proof of Theorem D under the
additional assumption that the discriminants of k and F are odd and relatively prime.
In this way we obtain a new proof of Theorem C under these extra hypotheses.

1.5. The case n = 2. — Throughout the introduction we have assumed that n ≥ 3,
and the reader might wonder how much of what we have written extends to the case
n = 2.

As explained in [6, §1.6], when n = 2 the proof of the modularity of (1.1.2) breaks
down because there is no known integral model of Sh(G,D) whose reduction at the
primes of Ok dividing D is normal. The existence of such a model when n > 2 is used
in [loc. cit.] to compute the vertical components of divisors of Borcherds products.

When n = 2, the Shimura variety Sh(G,D) is essentially a union of modular
curves (if the k-hermitian space W admits an isotropic line) or compact quaternionic
Shimura curves (if W is anisotropic). In either case the analogues of Theorems A and
B are close in spirit to the Gross-Zagier theorem [15] and its generalizations [31]. In
particular, the statement of Theorems A is quite parallel to the key result Theorem 6.1
in [15, Section 1.6]. If we interchange in the computation of [θ̂(g) : Ysm] the order
of taking the Petersson inner product and the height pairing, this quantity is very
analogous to the left hand side of Theorem 6.1 in [15]. Both quantities are expressed
as central derivatives of a Rankin convolution L-function of g and a binary theta
function which is determined by the CM cycle in question. If g is a newform, then
θ̂(g) should lie in a g-isotypical component and the height pairing in our Theorem A
should be proportional to the height of the g-isotypical component of (a twist of)Ysm.
It would be interesting to make such a comparison precise. However, note that there
are substantial differences as well. While we work with unitary Shimura varieties and
CM points whose discriminants are equal to the level, Gross and Zagier work with
GL2 Shimura varieties and CM points whose discriminants are coprime to the level.

Theorem C is true as stated when n = 2, and is proved in [29]. Indeed, Colmez’s
conjecture is known for all quartic CM fields. If the quartic CM field is Galois over Q,
then the Galois group is abelian and Colmez’s conjecture is known by work of Colmez
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[12] and Obus [25]. In the non-Galois case the CM types form a single Aut(C/Q)-orbit;
as Colmez’s conjecture is constant on such orbits, the full Colmez conjecture follows
from the average case proved in [2] and [30].

Theorem D is also true as stated when n = 2. Indeed, when we prove the equivalence
of Theorems C and D in §5 we only assume n ≥ 2.

1.6. Thanks. — The results of this paper are the outcome of a long term project,
begun initially in Bonn in June of 2013, and supported in a crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

2. Small CM cycles and derivatives of L-functions

In this section we combine the results of [6] and [7] to prove Theorem A. Although
we will restrict to n ≥ 3 in §2.5, we allow n ≥ 2 until that point.

2.1. A Shimura variety of dimension zero. — Define a rank three torus Tsm over Q as
the fiber product

Tsm
//

��

Gm

diag.

��

Resk/QGm × Resk/QGm
Nm×Nm

// Gm ×Gm.

Its group of Q-points is

Tsm(Q) ∼= {(x, y) ∈ k× × k× : xx = yy}.

The fixed embedding k ⊂ C identifies Deligne’s torus S with the real algebraic
group (Resk/QGm)R, and the diagonal inclusion

S ↪→ (Resk/QGm)R × (Resk/QGm)R

factors through a morphism hsm : S → Tsm,R. The pair (Tsm, {hsm}) is a Shimura
datum, which, along with the compact open subgroup

Ksm = Tsm(Af ) ∩ (Ô×k × Ô
×
k ),

determines a 0-dimensional k-stack Sh(Tsm) with complex points

Sh(Tsm)(C) = Tsm(Q)\{hsm} × Tsm(Af )/Ksm.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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2.2. The small CM cycle. — The Shimura variety just constructed has a moduli in-
terpretation, which allows us to construct an integral model. The interpretation we
have in mind requires first choosing a triple (a0, a1, b) in which

— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a1 is a self-dual hermitian Ok-lattice of signature (0, 1),
— b is a self-dual hermitian Ok-lattice of signature (n− 1, 0).

The hermitian forms on a0 and b induce a hermitian form of signature (n − 1, 0) on
the projective Ok-module

Λ = HomOk
(a0, b),

as explained in [7, §2.1] or [6, (2.1.5)].
Recall from [7, §3.1] or [6, §2.3] theOk-stacksM(p,0) andM(0,p). Both parametrize

abelian schemes A → S of relative dimension p ≥ 1 over Ok-schemes, endowed with
principal polarizations and Ok-actions. For the first moduli problem we impose the
signature (p, 0) condition that Ok acts on the OS-module Lie(A) via the structure
morphism Ok → OS . For the second we impose the signature (0, p) condition that the
action is by the complex conjugate of the structure morphism. Both of these stacks
are étale and proper over Ok by [19, Proposition 2.1.2].

Remark 2.2.1. — The generic fibers of M(1,0) and M(0,1) are the Shimura varieties
associated to a0Q and a1Q, while the generic fiber of M(n−1,0) contains the Shimura
variety associated to bQ as an open and closed substack. For more precise information,
see [23, Proposition 2.13] and the lemma that precedes it.

Denote by Ỹsm the functor that associates to every Ok-scheme S the groupoid of
quadruples (A0, A1, B, η) in which

(2.2.1) (A0, A1, B) ∈M(1,0)(S)×M(0,1)(S)×M(n−1,0)(S),

and

(2.2.2) η : HomOk
(A0, B) ∼= Λ

is an isomorphism of étale sheaves of hermitian Ok-modules, where the hermitian form
on the left hand side is defined as in [6, (2.5.1)]. We impose the further condition that
for every geometric point s→ S, and every prime ` 6= char(s), there is an isomorphism
of hermitian Ok,`-lattices

(2.2.3) HomOk
(A0s[`

∞], A1s[`
∞]) ∼= HomOk

(a0, a1)⊗Z Z`.

Lemma 2.2.2. — If

s→M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0)

is a geometric point of characteristic 0 such that (2.2.3) holds for all primes ` except
possibly one, then it holds for the remaining prime as well.

Proof. — The proof is identical to [6, Lemma 2.2.2].

ASTÉRISQUE 421
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Proposition 2.2.3. — The functor Ỹsm is represented by a Deligne-Mumford stack,
étale and proper over Ok, and there is a canonical isomorphism of k-stacks

(2.2.4) Sh(Tsm) ∼= Ỹsm/k.

Proof. — For any Ok-scheme S, letN (S) be the groupoid of triples (2.2.1) satisfying
(2.2.3) for every geometric point s→ S and every prime ` 6= char(s). In other words,
the definition is the same as Ỹsm except that we omit the datum (2.2.2) from the
moduli problem.

We interrupt the proof of Proposition 2.2.3 for a lemma.

Lemma 2.2.4. — The functor N is represented by an open and closed substack

N ⊂M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0).

Proof. — This is [7, Proposition 5.2]. As the proof there is left to the reader, we
indicate the idea. Let

B ⊂M(1,0) ×Ok
M(0,1) ×Ok

M(n−1,0)

be one connected component, and suppose there is a geometric point s → B of
characteristic p such that (2.2.3) holds for all ` 6= p. The geometric fibers of the `-adic
sheaf HomOk

(A0[`∞], A1[`∞]) on

B(p) = B×Spec(Z) Spec(Z(p))

are all isomorphic, and therefore (2.2.3) holds for all geometric points s → B(p)

and all ` 6= p. In particular, using Lemma 2.2.2, if s → B is a geometric point of
characteristic 0, then (2.2.3) holds for every prime `. Having proved this, one can
reverse the argument to see that (2.2.3) holds for every geometric point s → B and
every ` 6= char(s). Thus if the condition (2.2.3) holds at one geometric point, it holds
at all geometric points on the same connected component.

We now return to the proof of Proposition 2.2.3. As noted above, the stacksM(p,0)

and M(0,p) are étale and proper over Ok, and hence the same is true of N .
Let (A0, A1, B) be the universal object over N . Combining [7, Theorem 5.1] and

[17, Corollary 6.9], the étale sheaf HomOk
(A0, B) is represented by a Deligne-Mumford

stack whose connected components are finite étale over N . Fixing a geometric point
s → N , we obtain a representation of πet1 (N , s) on a finitely generated Ok-module
HomOk

(A0s, Bs), and the kernel of this representation cuts out a finite étale cover
N ′ →N over which the sheaf HomOk

(A0, B) becomes constant.
It is now easy to see that the functor Ỹsm is represented by the disjoint union of

finitely many copies of the maximal open and closed substack of N ′ over which there
exists an isomorphism (2.2.2).

It remains to construct the isomorphism (2.2.4). The natural actions of Ok on a0
and b, along with the complex conjugate of the natural action of Ok on a1, determine
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a morphism of reductive groups

Resk/QGm × Resk/QGm
(w,z) 7→(w,z,z)−−−−−−−−−→ GU(a0Q)×GU(a1Q)×GU(bQ).

Restricting this morphism to the subtorus Tsm defines a morphism

S hsm−−→ Tsm,R → GU(a0R)×GU(a1R)×GU(bR),

endowing the real vector spaces a0R, a1R, and bR with complex structures.
The isomorphism (2.2.4) on complex points sends a pair

(hsm, g) ∈ Sh(Tsm)(C)

to the quadruple (A0, A1, B, η) defined by

A0(C) = a0R/ga0, A1(C) = a1R/ga1, B(C) = bR/gb,

endowed with their natural Ok-actions and polarizations as in the proof of [6, Propo-
sition 2.2.1]. The datum η is the canonical identification

HomOk
(A0, B) = HomOk

(ga0, gb) = HomOk
(a0, b) = Λ.

It follows from the theory of canonical models that this isomorphism on complex points
descends to an isomorphism of k-stacks, completing the proof of Proposition 2.2.3.

The finite group Aut(Λ) of automorphisms of the hermitian lattice Λ acts on Ỹsm

by
γ ∗ (A0, A1, B, η) = (A0, A1, B, γ ◦ η),

allowing us to form the stack quotient Ysm = Aut(Λ)\Ỹsm. The forgetful map

Ỹsm →M(1,0) ×M(0,1) ×M(n−1,0)

(all fiber products over Ok) factors through an open and closed immersion

Ysm →M(1,0) ×M(0,1) ×M(n−1,0)

whose image is the open and closed substack N of Lemma 2.2.4.
The triple (a0, a1, b) determines a pair (a0, a) as in the introduction, simply by

setting a = a1 ⊕ b. This data determines a unitary Shimura variety with integral
model SKra as in (1.1.1), and there is a commutative diagram

Ysm
//

π

��

M(1,0) ×M(0,1) ×M(n−1,0)

��

SKra
⊂

//M(1,0) ×MKra
(n−1,1).

The vertical arrow on the right sends

(A0, A1, B) 7→ (A0, A1 ×B),

and the arrow π is defined by the commutativity of the diagram.
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Remark 2.2.5. — In order for A1 ×B to define a point of MKra
(n−1,1), we must endow

its Lie algebra with a codimension one subsheaf

FA1×B ⊂ Lie(A1 ×B)

satisfying Krämer’s condition [6, §2.3]. We choose FA1×B = Lie(B).

Definition 2.2.6. — Composing the morphism π in the diagram above with the inclu-
sion of SKra into its toroidal compactification, we obtain a morphism of Ok-stacks

π : Ysm → S∗Kra

called the small CM cycle.

As in [19, Definition 3.1.8], there is a linear functional

Ĉh
1

C(S∗Kra)→ C

called arithmetic degree along Ysm and denoted Ẑ 7→ [Ẑ : Ysm], defined as the
composition

Ĉh
1

C(S∗Kra)
π∗−→ Ĉh

1

C(Ysm)
d̂eg−−→ C.

The first arrow is pullback of arithmetic divisors. The second arrow (arithmetic degree)
is normalized as follows: An irreducible divisor Z ⊂ Ysm is necessarily supported in
finitely many nonzero characteristics, and hence any C-valued function Gr(Z , .) on
the finite set Ysm(C) defines a Green function for it. The arithmetic degree of the
arithmetic divisor

(Z ,Gr(Z , .)) ∈ Ĉh
1

C(Ysm)

is defined to be

d̂eg(Z ,Gr(Z , .)) =
∑
q⊂Ok

∑
z∈Z(Falg

q )

log(N(q))

#AutX (z)
+

∑
z∈Ysm(C)

Gr(Z , z)

#AutYsm(C)(z)
,

where Falg
q is an algebraic closure of Ok/q, and N(q) = #(Ok/q).

Remark 2.2.7. — The above definition of arithmetic degree does not include a factor
of 1/2 in front of the archimedean contribution, seemingly in disagreement with the
usual definition (see [13, §3.4.3] for example). In fact there is no disagreement. Our
convention is thatYsm(C) means the complex points ofYsm(C) as a k-stack, whereas
in the usual definition it would be regarded as a Q-stack. Thus the usual definition
includes a sum over twice as many complex points, but with a 1/2 in front.

Remark 2.2.8. — The small CM cycle arises from a morphism of Shimura varieties.
Indeed, there is a morphism of Shimura data (Tsm, {hsm})→ (G,D), and the induced
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morphism of Shimura varieties sits in a commutative diagram

Sh(Tsm) //

∼=
��

Sh(G,D)

∼=
��

Ỹsm/k
// Ysm/k

π // SKra/k.

Proposition 2.2.9. — The degree degC(Ysm) of Theorem A satisfies

degC(Ysm) = (hk/wk)2 · 21−o(D)

|Aut(Λ)|
,

where o(D) is the number of distinct prime divisors of D.

Proof. — This is an elementary calculation. Briefly, the groupoid Ysm(C) has
21−o(D)h2

k isomorphism classes of points, and each point has the same automorphism
group O×k ×O

×
k × U(Λ).

Recall from (1.4.2) that the constant term of (1.1.2) is

Ẑ tot
Kra(0) = −ω̂ + (Exc,− log(D)),

where ω̂ is the metrized line bundle of weight one modular forms. The exceptional
locus Exc ⊂ SKra was defined in [6, §2.3]. It is a reduced effective Cartier divisor
supported in characteristics dividing D, and can be characterized as follows. The
integral model SKra carries over it an abelian scheme A→ SKra of relative dimension n
endowed with an action of Ok. This abelian scheme is obtained by pulling back
the universal object from the second factor of the fiber product in (1.1.1). If we let
δ ∈ Ok be a fixed square root of −D, then Exc is the reduced stack underlying closed
substack of SKra defined by δ · Lie(A) = 0.

Proposition 2.2.10. — The constant term (1.4.2) satisfies

[Ẑ tot
Kra(0) : Ysm] = −[ω̂ : Ysm] = 2 degC(Ysm) · Λ′(0, χk)

Λ(0, χk)
.

Proof. — The second equality was proved in the course of proving [7, Theorem 6.4].
We note that the argument uses the Chowla-Selberg formula (1.4.1) in an essential
way.

The first equality is equivalent to

[(Exc,− log(D)) : Ysm] = 0,

and so it suffices to prove

(2.2.5) [(0, log(D)) : Ysm] = degC(Ysm) · log(D) = [(Exc, 0) : Ysm].

The first equality in (2.2.5) is obvious from the definitions. To prove the second
equality, we first prove

(2.2.6) Ysm ×SKra
Exc = Ysm ×Spec(Ok) Spec(Ok/dk).
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As the exceptional locus Exc ⊂ SKra is reduced and supported in characteristics
dividing D, it satisfies

Exc ⊂ SKra ×Spec(Ok) Spec(Ok/dk).

This implies the inclusion ⊂ in (2.2.6). As Ysm is étale over Ok, the right hand side
of (2.2.6) is reduced, and hence so is the left hand side. To prove that equality holds
in (2.2.6), it now suffices to check the inclusion ⊃ on the level of geometric points.

As above, let δ ∈ Ok be a square root of −D. Suppose p | D is a prime, p ⊂ Ok is
the unique prime above it, and Falg

p is an algebraic closure of its residue field. Suppose
we have a point y ∈Ysm(Falg

p ) corresponding to a triple (A0, A1, B) over Falg
p . As δ = 0

in Falg
p , the signature conditions imply that the endomorphism δ ∈ Ok kills the Lie

algebras of A0, A1, and B. In particular δ kills the Lie algebra of A1 × B, which is
the pullback via

π : Ysm → SKra

of the universal A→ SKra. Using the characterization of Exc recalled above, we find
that that π(y) ∈ Exc. This proves (2.2.6).

The equality (2.2.6), and the fact that both sides of that equality are reduced,
implies that

[(Exc, 0) : Ysm] =
∑
p|D

log(p)
∑

y∈Ysm(Falg
p )

1

|Aut(y)|
.

On the other hand, the étaleness of Ysm → Spec(Ok) implies that the right hand side
is equal to ∑

p|D

log(p)
∑

y∈Ysm(C)

1

|Aut(y)|
= log(D) · degC(Ysm),

completing the proof of the second equality in (2.2.5).

2.3. The convolution L-function. — Recall that we have defined a hermitian Ok-lat-
tice Λ = HomOk

(a0, b) of signature (n− 1, 0). We also define hermitian Ok-lattices

L0 = HomOk
(a0, a1), L = HomOk

(a0, a),

of signature (1, 0) and (n− 1, 1), so that L ∼= L0 ⊕ Λ.
The hermitian form 〈., .〉 : L × L → Ok determines a Z-valued quadratic form

Q(x) = 〈x, x〉 on L, and we denote in the same way its restrictions to L0 and Λ. The
dual lattice of L with respect to the Z-bilinear form

(2.3.1) [x1, x2] = Q(x1 + x2)−Q(x1)−Q(x2)

is L′ = d−1
k L.

As in [7, §2.2] we denote by SL = C[L′/L] the space of complex-valued functions
on L′/L, and by ωL : SL2(Z)→ AutC(SL) the Weil representation. There is a complex
conjugate representation ωL on SL defined by

ωL(γ)φ = ωL(γ)φ.
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Suppose we begin with a classical scalar-valued cusp form

g(τ) =
∑
m>0

c(m)qm ∈ Sn(Γ0(D), χnk).

Such a form determines a vector-valued form

(2.3.2) g̃(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(g|nγ)(τ) · ωL(γ−1)φ0 ∈ Sn(ωL),

where φ0 ∈ SL is the characteristic function of the trivial coset. This construction
defines the induction map (1.2.1). The form g̃(τ) has a q-expansion

g̃(τ) =
∑
m>0

c̃(m)qm

with coefficients c̃(m) ∈ SL.
There is a similar Weil representation ωΛ : SL2(Z) → AutC(SΛ), and for every

m ∈ Q we define a linear functional RΛ(m) ∈ S∨Λ by

RΛ(m)(φ) =
∑
x∈Λ′

〈x,x〉=m

φ(x)

where φ ∈ SΛ and 〈., .〉 : ΛQ×ΛQ → k is the Q-linear extension of the hermitian form
on Λ. The theta series

θΛ(τ) =
∑
m∈Q

RΛ(m)qm ∈Mn−1(ω∨Λ)

is a modular form valued in the contragredient representation S∨Λ .
As in [7, §5.3] or [9, §4.4], we define the Rankin-Selberg convolution L-function

L(g̃, θΛ, s) = Γ
(s

2
+ n− 1

) ∑
m≥0

{c̃(m), RΛ(m)}
(4πm)

s
2 +n−1

.(2.3.3)

Here {., .} : SL × S∨L → C is the tautological pairing. The inclusion

Λ′/Λ→ L′/L

induces a linear map SL → SΛ by restriction of functions, and we use the dual
S∨Λ → S∨L to view RΛ(m) as an element of S∨L .

Remark 2.3.1. — The convolution L-function satisfies a functional equation in s 7→ −s,
forcing L(g̃, θΛ, 0) = 0.

Remark 2.3.2. — In this generality, neither the cusp form g nor the theta series θΛ is
a Hecke eigenform. Thus the convolution L-function (2.3.3) cannot be expected to
have an Euler product expansion.
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2.4. A preliminary central derivative formula. — We now recall the main result of [7],
and explain the connection between the cycles and Shimura varieties here and in that
work.

Define hermitian Ôk-lattices

L0,f = HomOk
(a0, a1)⊗Z Ẑ, Lf = HomOk

(a0, a)⊗Z Ẑ,

and let L0,∞ and L∞ be kR-hermitian spaces of signatures (1, 0) and (n, 0), respec-
tively. In the terminology of [7, §2.1], the pairs

L0 = (L0,∞,L0,f ), L = (L∞,Lf )

are incoherent hermitian (kR, Ôk)-modules. Our small CM cycle is related to the cycle
of [7, §5.1] by

Ysm
// SKra

Y(L0,Λ)
//ML,

and the metrized line bundle ω̂
−1 of [6] agrees with the metrized cotautological bun-

dle T̂L of [7].
Let ∆ be the automorphism group of the finite abelian group L′/L endowed with

the quadratic form L′/L→ Q/Z obtained by reduction of Q : L→ Z. The tautological
action of ∆ on SL = C[L′/L] commutes with the Weil representation ωL, and hence
∆ acts on all spaces of modular forms valued in the representation ωL.

Let H2−n(ωL) be the space of harmonic Maass forms of [7, §2.2]. Every
f ∈ H2−n(ωL) has a holomorphic part

f+(τ) =
∑
m∈Q

m�−∞

c+f (m) · qm,

which is a formal q-expansion with coefficients in SL. Let c+f (0, 0) be the value
of c+f (0) ∈ SL at the trivial coset.

As in [5] or [9, §3.1], there is a ∆-equivariant, surjective, conjugate linear differential
operator

ξ : H2−n(ωL)→ Sn(ωL),

and the construction of [7, (4.15)] defines a linear functional

(2.4.1) Ẑ : H2−n(ωL)∆ → Ĉh
1

C(S∗Kra).

These are related by the main result of [7], which we now state.

Theorem 2.4.1 ([7]). — The equality

[Ẑ(f) : Ysm]− c+f (0, 0) · [ω̂ : Ysm] = − degC(Ysm) · L′(ξ(f), θΛ, 0)

holds for any ∆-invariant f ∈ H2−n(ωL).
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2.5. The proof of Theorem A. — Throughout §2.5 we assume n ≥ 3. Under this
assumption the linear functional (2.4.1) is closely related to the coefficients of the
generating series (1.1.2). Indeed, If m is a positive integer, [7, Lemma 3.10] shows
that there is a unique

fm ∈ H2−n(ωL)∆

with holomorphic part

(2.5.1) f+
m(τ) = φ0 · q−m +O(1),

where φ0 ∈ SL is the characteristic function of the trivial coset. Applying the above
linear functional to this form recovers the m-th coefficient

Ẑ tot
Kra(m) = Ẑ(fm)

of the generating series (1.1.2).
The following proposition explains the connection between the linear functional

(2.4.1) and the arithmetic theta lift (1.1.3).

Proposition 2.5.1. — For every g ∈ Sn(Γ0(D), χnk) there is a ∆-invariant form
f ∈ H2−n(ωL) such that

(2.5.2) θ̂(g) = Ẑ(f) + c+f (0, 0) · Ẑ tot
Kra(0),

and such that ξ(f) is equal to the form g̃ ∈ Sn(ωL) defined by (2.3.2). Moreover, we
may choose f to be a linear combination of the forms fm characterized by (2.5.1).

Proof. — Consider the space H∞2−n(Γ0(D), χnk) of harmonic Maass forms of [6, §7.2].
The constructions of [5] provide us with a surjective conjugate linear differential op-
erator

ξ : H∞2−n(Γ0(D), χnk)→ Sn(Γ0(D), χnk),

and we choose an f0 ∈ H∞2−n(Γ0(D), χnk) such that ξ(f0) = g. It is easily seen
that f0 may be chosen to vanish at all cusps of Γ0(D) different from ∞. This can,
for instance, be attained by adding a suitable weakly holomorphic form in the space
M !,∞

2−n(Γ0(D), χnk) of [6, §4.2]. The Fourier expansion of the holomorphic part of f0 is
denoted

f+
0 (τ) =

∑
m∈Q

c+0 (m)qm.

As in (2.3.2), the form f0 determines an SL-valued harmonic Maass form

f(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f0|2−nγ)(τ) · ωL(γ−1)φ0 ∈ H2−n(ωL)∆.

As the ξ-operator is equivariant for the action of SL2(Z), we have ξ(f) = g̃. According
to [6, Proposition 6.1.2], which holds analogously for harmonic Maass forms, the
coefficients of the holomorphic part f+ satisfy

c+f (m,µ) =

{
c+0 (m) if µ = 0,

0 otherwise,
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for all m ≤ 0. This equality implies that

f =
∑
m>0

c+0 (−m)fm,

where fm ∈ H2−n(ωL)∆ is the harmonic form characterized by (2.5.1). Indeed, the
difference between the two forms is a harmonic form h whose holomorphic part∑
m≥0 c

+
h (m)qm has no principal part. It follows from [5, Theorem 3.6] that such

a harmonic form is actually holomorphic, and therefore vanishes because the weight
is negative.

The above decomposition of f as a linear combination of the fm’s implies that

Ẑ(f) =
∑
m>0

c+0 (−m) · Ẑ tot
Kra(m) ∈ Ĉh

1

C(S∗Kra),

and consequently

θ̂(g) = 〈φ̂, ξ(f0)〉Pet

= {f0, φ̂}

=
∑
m≥0

c+0 (−m) · Ẑ tot
Kra(m)

= Ẑ(f) + c+f (0, 0) · Ẑ tot
Kra(0).

Here, in the second line, we have used the bilinear pairing

{., .} : H∞2−n(Γ0(D), χnk)×Mn(Γ0(D), χnk)→ C

analogous to [5, Proposition 3.5], and the fact that f0 vanishes at all cusps different
from ∞.

Remark 2.5.2. — It is incorrectly claimed in [7, §1.3] that (2.5.2) holds for every
form f with ξ(f) = g̃.

The following is stated in the introduction as Theorem A.

Theorem 2.5.3. — If g ∈ Sn(Γ0(D), χnk) and g̃ ∈ Sn(ωL) are related by (2.3.2), then

[θ̂(g) : Ysm] = − degC(Ysm) · L′(g̃, θΛ, 0).

Proof. — Choosing f as in Proposition 2.5.1, and using the first equality of Proposi-
tion 2.2.10, yields

[θ̂(g) : Ysm] = [Ẑ(f) : Ysm]− c+f (0, 0) · [ω̂ : Ysm].

Thus the claim follows from Theorem 2.4.1.
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3. Further results on the convolution L-function

In this section we specialize to the case where g ∈ Sn(Γ0(D), χnk) is a new eigenform,
and express the convolution L-function (2.3.3) associated to the vector valued cusp
form g̃ in terms of the usual L-function associated to g.

This allows us, in Theorem 3.4.1 below, to rewrite Theorem A of the introduction
in a way that avoids vector-valued modular forms. When n is even, it also allows us
to formulate a version of Theorem A in which the L-function has an Euler product.

We assume n ≥ 2 until we reach §3.4, at which point we restrict to n ≥ 3.

3.1. Atkin-Lehner operators. — Recall that χk is the idele class character associated
to the quadratic field k. If we view χk as a Dirichlet character modulo D, then any
factorization D = Q1Q2 induces a factorization

χk = χQ1
χQ2

where χQi : (Z/QiZ)× → C× is a quadratic Dirichlet character.
Fix a normalized cuspidal new eigenform

g(τ) =
∑
m>0

c(m)qm ∈ Sn(Γ0(D), χnk).

As in [6, Section 4.1], for each positive divisor Q | D, fix a matrix

RQ =

(
α β
D
Qγ Qδ

)
∈ Γ0(D/Q)

with α, β, γ, δ ∈ Z, and define the Atkin-Lehner operator

WQ =

(
Qα β

Dγ Qδ

)
= RQ

(
Q

1

)
.

The cusp form

gQ(τ) = χnQ(β)χnD/Q(α) · g|nWQ

=
∑
m>0

cQ(m)qm,

is then independent of the choice of α, β, γ, δ.
Let εQ(g) be the fourth root of unity

εQ(g) =
∏
q|Q

q prime

χnQ(Q/q) · λq,

where

λq = c(q) ·

{
−q1−n2 if n ≡ 0 (mod 2)

δqq
1−n

2 if n ≡ 1 (mod 2),
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and δq is defined by

(3.1.1) δq =

{
1 if q ≡ 1 (mod 4)

i if q ≡ 3 (mod 4).

According to [3, Theorem 2], we have

cQ(m) = εQ(g)χnQ(m)c(m) if (m,Q) = 1,

cQ(m) = εQ(g)χnD/Q(m)c(m) if (m,D/Q) = 1,

cQ(m1m2) = εQ(g)−1cQ(m1)cQ(m2) if (m1,m2) = 1.

Remark 3.1.1. — If n is even, then the Fourier coefficients of g are totally real. It
follows that gQ = εQ(g)g for every divisor Q | D. Furthermore,

εQ(g) =
∏
q|Q

(
− q1−n2 c(q)

)
= ±1.

3.2. Twisting theta functions. — Let (a0, a1, b) be a triple of self-dual hermitian
Ok-lattices of signatures (1, 0), (0, 1), and (n− 1, 0), as in §2.2, and recall that from
this data we constructed hermitian Ok-lattices

a = a1 ⊕ b, L = HomOk
(a0, a)(3.2.1)

of signature (n− 1, 1). We also define

L1 = HomOk
(a0, a1), Λ = HomOk

(a0, b),(3.2.2)

so that L = L1 ⊕ Λ.
Let GU(Λ) be the unitary similitude group associated with Λ, viewed as an alge-

braic group over Z. For any Z-algebra R its R-valued points are given by

GU(Λ)(R) = {h ∈ GLOk
(ΛR) : 〈hx, hy〉 = ν(h)〈x, y〉 ∀x, y ∈ ΛR},

where ν(h) ∈ R× denotes the similitude factor of h. Note the relation

Nmk/Q(det(h)) = ν(h)n−1.(3.2.3)

For h ∈ GU(Λ)(R) the similitude factor ν(h) belongs to R>0.
As Λ is positive definite, the set

XΛ = GU(Λ)(Q)\GU(Λ)(Af )/GU(Λ)(Ẑ)

is finite. Denoting by
CL(k) = k×\k̂×/Ô×k

the ideal class group of k, the natural map Resk/QGm → GU(Λ) to the center induces
an action

CL(k)×XΛ −→ XΛ.(3.2.4)

As in the proof of [6, Proposition 2.1.1], any h ∈ GU(Λ)(Af ) determines an Ok-lat-
tice

Λh = ΛQ ∩ hΛ̂.
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This lattice is not self-dual under the hermitian form 〈−,−〉 on ΛQ. However, there
is a unique positive rational number rat(ν(h)) such that

ν(h)

rat(ν(h))
∈ Ẑ×,

and the lattice Λh is self-dual under the rescaled hermitian form

〈x, y〉h =
1

rat(ν(h))
· 〈x, y〉.

If h ∈ GU(Λ)(Ẑ) then Λh = Λ. If h ∈ GU(Λ)(Q), then Λh ∼= Λ as hermitian Ok-mod-
ules. Hence h 7→ Λh defines a function from XΛ to the set of isometry classes of
self-dual hermitian Ok-module of signature (n− 1, 0).

Similarly, for any h ∈ GU(Λ)(Af ) we define a self-dual hermitian Ok-lattice of
signature (0, 1) by endowing

L1,h = L1Q ∩ det(h)L̂1

with the hermitian form

〈x, y〉h =
1

rat(ν(h))n−1
· 〈x, y〉.

The assignment h 7→ L1,h defines a map from XΛ to the set of isometry classes of
self-dual hermitian Ok-lattices of signature (0, 1).

Lemma 3.2.1. — For any h ∈ GU(Λ)(Af ) the hermitian Ok-lattice

Lh = L1,h ⊕ Λh

is isomorphic everywhere locally to L. Moreover, Lh and L become isomorphism after
tensoring with Q.

Proof. — Let p be a prime. As in [6, §1.8], a kp-hermitian space is determined by its
dimension and invariant. The relations

det(Λh ⊗Z Q) = rat(ν(h))1−n · det(Λ⊗Z Q),

det(L1,h ⊗Z Q) = rat(ν(h))1−n · det(L1 ⊗Z Q),

combined with (3.2.3), imply that L⊗ZQ and Lh⊗ZQ have the same invariant every-
where locally. As they both have signature (n− 1, 1), they are isomorphic everywhere
locally, and hence isomorphic globally.

A result of Jacobowitz [22] shows that any two self-dual lattices in L ⊗Z Q are
isomorphic everywhere locally, and hence it follows from the previous paragraph that L
and Lh are isomorphic everywhere locally.

Define a linear map

Mn−1(ω∨Λ)→Mn−1(Γ0(D), χn−1
k )

ASTÉRISQUE 421



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

MODULARITY OF UNITARY GENERATING SERIES II 147

from S∨Λ-valued modular forms to scalar-valued modular forms by evaluation at the
characteristic function φ0 ∈ SΛ of the trivial coset 0 ∈ Λ′/Λ. This map takes the
vector valued theta series θΛ ∈Mn−1(ω∨Λ) of §2.3 to the scalar valued theta series

θscΛ (τ) =
∑

m∈Z≥0

Rsc
Λ (m) · qm,

where Rsc
Λ (m) is the number of ways to represent m by Λ.

Let η be an algebraic automorphic form for GU(Λ) which is trivial at ∞ and right
GUΛ(Ẑ)-invariant. In other words, a function

η : XΛ −→ C.

Throughout we assume that under the action (3.2.4) the function η transforms with
a character χη : CL(k)→ C×, that is,

η(αh) = χη(α)η(h).(3.2.5)

We associate a theta function to η by setting

θscη,Λ =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· θscΛh ∈Mn−1(Γ0(D), χn−1

k ).

This form is cuspidal when the character χη is non-trivial. We denote its Fourier
expansion by

θscη,Λ(τ) =
∑
m≥0

Rsc
η,Λ(m) · qm.

Similarly, we may define

θη,Λ(τ) =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· θΛh(τ),

but this is only a formal sum: as h varies the forms θΛh take values in the varying
spaces S∨Λh .

Lemma 3.2.1 allows us to identify SL ∼= SLh , and hence make sense of the L-func-
tion L(g̃, θΛh , s) as in (2.3.3). In the next subsection we will compare

(3.2.6) L(g̃, θη,Λ, s) =
∑
h∈XΛ

η(h)

|Aut(Λh)|
· L(g̃, θΛh , s)

to the usual convolution L-function

(3.2.7) L(g, θscη,Λ, s) = Γ
(s

2
+ n− 1

) ∞∑
m=1

c(m)Rsc
η,Λ(m)

(4πm)
s
2 +n−1

of the scalar-valued forms g and θscη,Λ.
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3.3. Rankin-Selberg L-functions for scalar and vector valued forms. — In this subsec-
tion we prove a precise relation between (3.2.6) and (3.2.7). First, we give an explicit
formula for the Fourier coefficients a(m,µ) of g̃ in terms of those of g analogous to
[6, Proposition 6.1.2].

For a prime p dividing D define

(3.3.1) γp = δ−np · (D, p)np · invp(Vp) ∈ {±1,±i},

where invp(Vp) is the invariant of Vp = Homk(W0,W )⊗QQp in the sense of [6, (1.8.3)]
and δp ∈ {1, i} is as before. It is equal to the local Weil index of the Weil representation
of SL2(Zp) on SLp ⊂ S(Vp), where Vp is viewed as a quadratic space by taking the
trace of the hermitian form. This is explained in more detail in [6, Section 8.1]. For
any Q dividing D we define

(3.3.2) γQ =
∏
q|Q

γq.

Recall that V is the hermitian space over Ak attached to L . Let ψ =
∏
ψp be the

usual unramified additive character of Q\A, satisfying ψ∞(x) = e(x). Recall that the
Weil representation ω = ωV ,ψ of SL2(A) on the space of Schwartz-Bruhat functions
S(V ) is determined by the formulas

ω(n(b))ϕ(x) = ψ(b〈x, x〉)ϕ(x)

ω(m(a))ϕ(x) = χnk(a)|a|n+1ϕ(ax)

ω(w)ϕ(x) = γ(V )

∫
V

ϕ(y)ψ(− trk/Q〈x, y〉) dy

for all b ∈ A and a ∈ A×, where

n(b) =

(
1 b

0 1

)
, m(a) =

(
a 0

0 a−1

)
, w =

(
0 −1

1 0

)
,

dy is the self-dual Haar measure with respect to ψ(trk/Q〈x, y〉), and γ(V ) =∏
p≤∞ γp(V ) is a certain 8th root of unity (the product of the local Weil indices).

For any Q | D, define

γQ(V ) =
∏
p|Q

γp(V ).

Lemma 3.3.1. — Every finite prime p satisfies

γp(V ) =

{
δnp · χnk,p(p) · invp(V ) if p | D,
invp(V ) if p - D,

where δp is defined by (3.1.1), and invp(V ) is the local invariant of Vp defined in
Section ??.
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Proof. — Let V 0
p be Vp with the Qp-quadratic form Q(x) = 〈x, x〉. This is slightly

different from the space RVp of [?]. By [?, Theorem 3.1] and [?, Lemma 3.4], one has
(in the notation of [loc. cit.]) that

γp(V )−1 = βVp(w)−1 = γQp(ψp ◦ V 0
p ) = γQp(det V 0, ψp)γQp(ψ)2nhQp(V 0

p ).

Here hQp(V 0
p ) is the Hasse invariant of V 0

p , and det V 0
p = (det Vp)2Dn is the deter-

minant of V 0
p . A direct calculation gives

hQp(V 0
p ) = (D,D)

n(n−1)
2

p invp(V ).

On the other hand, [?, Appendix A.5] implies that

γQp(Dn, ψp)γQp(ψ)2n = γQp(D,ψp)
n(D,D)

n(n−1)
2

p γQp(−1, ψp)
−n

= γQp(−D,ψp)n(−D,−1)np (D,D)
n(n−1)

2
p .

Applying [?, Proposition A.11] and [?, Proposition A.9] shows that (recall
ψp(x) = e(−x/p) for x ∈ Z and p | x)

γQp(−D,ψp) =

{
(p,−D)pδp if p | D,
1 if p - D.

Putting everything together and using χk,p(x) = (−D,x)p yields the formula in the
lemma. For example, when p|D,

γp(V )−1 = γQp(Dn, ψp)γQp(ψ)2nhQp(V 0
p )

= δnp invp(V )(−D, p)np (−D,−1)np

= δnpχ
n
k,p(p)invp(V )(−D,−1)np

= δ−np χnk,p(p)invp(V ).

This formula was wrong in the original version (δp became δ−1
p ), and was discovered

in joint work with Kudla and Rapoport in November 2016, thus this correction version.
Kudla gave a shorter and more direct proof of this lemma by decomposing V0 into
direct sum of one dimensional subspaces—diagonalization, and using the fact that the
local Weil index is multiplicative on orthogonal direct sum.

Remark 3.3.2. — If n is even and p | D, then (3.3.1) simplifies to

γp =

(
−1

p

)n/2
invp(Vp).

Remark 3.3.3. — In the special case where D is prime, the root of unity γD(V ) can
be made even more explicit. Indeed, the self-duality of L implies that invp(V ) = 1
for all p 6= D, and so the incoherence condition on V forces invD(V ) = −1. Similar
reasoning shows that χk,p(p) = 1, and so

γD(V ) = ininvD(V ) =

{
(−1)

n
2 +1 if n is even,

i−n if n is odd.
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For any µ ∈ L′/L define Qµ | D by

Qµ =
∏
p|D
µp 6=0

p,

where µp is the image of µ in L′p/Lp. Let φµ ∈ SL be the characteristic function of µ.

Proposition 3.3.4. — For all m ∈ Q the coefficients ã(m) ∈ SL of g̃ satisfy

ã(m,µ) =


∑
Qµ|Q|D Q

1−nγQ · cQ(mQ) if m ≡ −Q(µ) (mod Z),

0 otherwise.

Proof. — The first formula is a special case of results of Scheithauer [26, Section 5]. It
can also be proved in the same way as Proposition 6.1.2 of [6]. The complex conjuga-
tion over γQ arises because of the fact that g̃ transforms with the complex conjugate
representation ωL. The additional factor Q1−n is due to the fact that we work here
in weight n.

Proposition 3.3.5. — The convolution L-function (2.3.3) satisfies

L(g̃, θΛ, s) =
∑
Q|D

Q
s
2 γQ · L(gQ, θ

sc
Λq , s),

where q ∈ k̂× is such that q2Ô×k = QÔ×k . Moreover, for any η : XΛ → C satisfying
(3.2.5) the L-functions (3.2.6) and (3.2.7) are related by

L(g̃, θη,Λ, s) =
∑
Q|D

Q
s
2 γQ · χη(q−1)L(gQ, θ

sc
η,Λ, s).

Proof. — Proposition 3.3.4 implies

L(g̃, θΛ, s)

Γ( s2 + n− 1)
=

∑
µ∈Λ′/Λ

∑
m∈Q>0

∑
Qµ|Q|D

Q1−nγQ ·
cQ(mQ)RΛ(m,φµ)

(4πm)
s
2 +n−1

=
∑
Q|D

Q1−nγQ
∑

m∈ 1
QZ>0

cQ(mQ)

(4πm)
s
2 +n−1

∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m,φµ)

=
∑
Q|D

Q
s
2 γQ

∑
m∈Z>0

cQ(m)

(4πm)
s
2 +n−1

∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m/Q, φµ).

The first claim now follows from the relation∑
µ∈Λ′/Λ
Qµ|Q

RΛ(m/Q, µ) = RΛq−1 (m, 0) = RΛq(m, 0).
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For the second claim, if we replace Λ by Λh and L1 by L1,h for h ∈ XΛ, then L
and γQ remain unchanged. The above calculations therefore imply that

L(g̃, θη,Λ, s) =
∑
Q|D

γQQ
s
2

∑
h∈XΛ

η(h)

|Aut(Λh)|
L(gQ, θ

sc
Λqh

, s)

=
∑
Q|D

γQQ
s
2

∑
h∈XΛ

η(q−1h)

|Aut(Λh)|
L(gQ, θ

sc
Λh
, s)

=
∑
Q|D

γQQ
s
2 · χη(q−1)L(gQ, θ

sc
η,Λ, s),

where we have used (3.2.5) and the fact that |Aut(Λh)| = |Aut(Λqh)|.

Corollary 3.3.6. — If n is even, then

L(g̃, θη,Λ, s) = L(g, θscη,Λ, s) ·
∏
p|D

(
1 + χη(p−1)εp(g)γpp

s
2

)
.

Proof. — This is immediate from Proposition 3.3.5 and Remark 3.1.1.

3.4. Small CM cycles and derivatives of L-functions, revisited. — Now we are ready to
state a variant of Theorem A using only scalar valued modular forms. Assume n ≥ 3.

Every h ∈ XΛ determines a codimension n− 1 cycle

(3.4.1) Ysm,h → S∗Kra

as follows. From the triple (a0, a1, b) fixed in §3.2 and the hermitian Ok-lattices
Lh = L1,h ⊕ Λh of Lemma 3.2.1, we denote by a1,h and bh the unique hermitian
Ok-lattices satisfying

L1,h
∼= HomOk

(a0, a1,h), Λh ∼= HomOk
(a0, bh),

and set ah = a1,h⊕bh so that Lh ∼= HomOk
(a0, ah). Compare with (3.2.1) and (3.2.2).

Repeating the construction of the small CM cycle Ysm with the triple (a0, a1, b)
replaced by (a0, a1,h, bh) results in a proper étale Ok-stack Ysm,h. Repeating the
construction of the Shimura variety SKra with the triple (a0, a) replaced by (a0, ah)

results in a new Shimura variety SKra,h, along with a finite and unramified morphism

Ysm,h → SKra,h.

It follows from Lemma 3.2.1 that a and ah are isomorphic everywhere locally, and
examination of the moduli problem defining SKra in [6, §2.3] shows that SKra depends
only the everywhere local data determined by the pair (a0, a), and not on the actual
global Ok-hermitian lattices. Therefore, there is a canonical morphism of Ok-stacks

Ysm,h → SKra,h
∼= SKra

in which the isomorphism is simply the identity functor on the moduli problems. In
the end, this amounts to simply repeating the construction of Ysm → SKra from
Definition 2.2.6 word-for-word, but replacing Λ by Λh everywhere. This defines the
desired cycle (3.4.1).
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Each algebraic automorphic form η : XΛ → C satisfying (3.2.5) now determines a
cycle

ηYsm =
∑
h∈XΛ

η(h) ·Ysm,h

on S∗Kra with complex coefficients, and a corresponding linear functional

[− : ηYsm] : Ĉh
1

C(S∗Kra)→ C.

Theorem 3.4.1. — The arithmetic theta lift (1.1.3) satisfies

[θ̂(g) : Ysm] = − degC(Ysm) · d
ds

[∑
Q|D

Q
s
2 γQL(gQ, θ

sc
Λq , s)

]
|s=0

,

where q ∈ k̂× is such that q2Ô×k = QÔ×k . Moreover, if n is even and η : XΛ → C
satisfies (3.2.5), then

[θ̂(g) : ηYsm] = −21−o(dk) (hk/wk)
2 · d
ds

[
L(g, θscη,Λ, s)·

∏
p|D

(
1+χη(p−1)εp(g)γpp

s
2

)]
|s=0

,

where p ∈ k̂× such that p2Ô×k = pÔ×k . Note that in the first formula the sum is
over all positive divisors Q | D, while in the second the product is over the prime
divisors p | D.

Proof. — The first assertion follows from Theorem A and Proposition 3.3.5.
For the second assertion, applying Theorem A to

Ysm,h → S∗Kra,h
∼= S∗Kra

yields

[θ̂(g) : Ysm,h] = − degC(Ysm,h) · d
ds
L(g̃, θΛh , s)|s=0

.

Combining this with Proposition 2.2.9 yields

[θ̂(g) : ηYsm] = −21−o(dk) (hk/wk)
2 · d
ds
L(g̃, θη,Λ, s)|s=0

,

and an application of Corollary 3.3.6 completes the proof.

Remark 3.4.2. — Since the L-function (3.2.6) vanishes at s = 0, the same must be
true for the expressions in brackets on the right hand sides of the equalities of the
above theorem. In particular, when n is even, then either L(g, θscη,Λ, s) or at least one
of the factors

1 + χη(p−1)εp(g)γpp
s
2

(for a prime p | D) vanishes at s = 0. If we pick the newform g such that the latter
local factors are nonvanishing, then L(g, θscη,Λ, 0) = 0 and we obtain

[θ̂(g) : ηYsm] = −21−o(dk) h
2
k

w2
k

·
∏
p|D

(
1 + χη(p−1)εp(g)γp

)
· L′(g, θscη,Λ, 0).
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4. Big CM cycles and derivatives of L-functions

In this section we prove Theorem B by combining results of [6] and [18, 19, 8]. We
asume n ≥ 2 until §4.4, at which point we restrict to n ≥ 3.

4.1. A Shimura variety of dimension zero. — Let F be a totally real field of degree n,
and define a CM field E = k⊗Q F. Define a rank n+ 2 torus Tbig over Q as the fiber
product

Tbig
//

��

Gm

diag.

��

Resk/QGm × ResE/QGm
Nm×Nm

// Gm × ResF/QGm.

Its group of Q-points is

Tbig(Q) ∼= {(x, y) ∈ k× × E× : xx = yy}.

Remark 4.1.1. — There is an isomorphism

Tbig(Q) ∼= k× × ker(Nm : E× → F×)

defined by (x, y) 7→ (x, x−1y). It is clear that this arises from an isomorphism

Tbig
∼= Resk/QGm × ker

(
Nm : ResE/QGm → ResF/QGm

)
.

As in the discussion preceding Theorem B, let Φ ⊂ HomQ(E,C) be a CM type of
signature (n− 1, 1), let

ϕsp : E → C

be its special element, and let OΦ be the ring of integers of EΦ = ϕsp(E).
The CM type Φ determines an isomorphism Cn ∼= ER, and hence an embedding

C× → E×R arising from a morphism of real algebraic groups S→ (ResE/QGm)R. This
induces a morphism

S→ (Resk/QGm)R × (ResE/QGm)R,

which factors through a morphism

hbig : S→ Tbig,R.

The pair (Tbig, {hbig}) is a Shimura datum, which, along with the compact open
subgroup

Kbig = Tbig(Af ) ∩ (Ô×k × Ô
×
E),

determines a 0-dimensional EΦ-stack Sh(Tbig) with complex points

Sh(Tbig)(C) = Tbig(Q)\{hbig} × Tbig(Af )/Kbig.
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4.2. The big CM cycle. — The Shimura variety just constructed has a moduli inter-
pretation, which we will use to construct an integral model. The interpretation we
have in mind requires first choosing a triple (a0, a, iE) in which

— a0 is a self-dual hermitian Ok-lattice of signature (1, 0),
— a is a self-dual hermitian Ok-lattice of signature (n− 1, 1),
— iE : OE → EndOk

(a) is an action extending the action of Ok.
Denoting by H : a× a→ Ok the hermitian form, we require further that

H(iE(x)a, b) = H(a, iE(x)b)

for all x ∈ OE and a, b ∈ a, and that in the decomposition

aR ∼=
⊕

ϕF :F→R
a⊗OF ,ϕF R

the summand indexed by ϕF = ϕsp|F is negative definite (which, by the signature
condition, implies that the other summands are positive definite).

Remark 4.2.1. — In general such a triple need not exist. In the applications will as-
sume that the discriminants of k/Q and F/Q are odd and relatively prime, and in
this case one can construct such a triple using the argument of [18, Proposition 3.1.6].

We now define a moduli space of abelian varieties with complex multiplication
by OE and type Φ, as in [18, §3.1]. Denote by CMΦ the functor that associates to
every OΦ-scheme S the groupoid of triples (A, ι, ψ) in which

— A→ S is an abelian scheme of dimenension n,
— ι : OE → End(A) is an OE-action,
— ψ : A→ A∨ is a principal polarization such that

ι(x)∨ ◦ ψ = ψ ◦ ι(x)

for all x ∈ OE .
We also impose the Φ-determinant condition that every x ∈ OE acts on Lie(A) with
characteristic polynomial equal to the image of∏

ϕ∈Φ

(T − ϕ(x)) ∈ OΦ[T ]

in OS [T ]. We usually abbreviate A ∈ CMΦ(S), and suppress the data ι and ψ
from the notation. By [18, Proposition 3.1.2], the functor CMΦ is represented by a
Deligne-Mumford stack, proper and étale over OΦ .

Remark 4.2.2. — The Φ-determinant condition defined above agrees with that of [18,
§3.1]. As in [16, Proposition 2.1.3], this is a consequence of Amitsur’s formula, which
can be found in [1, Theorem A] or [11, Lemma 1.12].

Define an open and closed substack

Ybig ⊂M(1,0) ×Ok
CMΦ
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as the union of connected components B ⊂M(1,0)×Ok
CMΦ satisfying the following

property: for every complex point y = (A0, A) ∈ B(C), and for all primes `, there is
an OE-linear isomorphism of hermitian Ok,`-lattices

(4.2.1) HomOk,`
(A0[`∞], A[`∞]) ∼= HomOk

(a0, a)⊗Z Q`.

Remark 4.2.3. — To verify that a connected componentB ⊂M(1,0)×Ok
CMΦ is con-

tained in Ybig, it suffices to check that (4.2.1) holds for one complex point y ∈ B(C).
This is a consequence of the main theorem of complex multiplication and the fact
that the points of B(C) form a single Aut(C/EΦ)-orbit.

Proposition 4.2.4. — There is a canonical isomorphism of EΦ-stacks

Sh(Tbig) ∼= Ybig/EΦ
.

Proof. — The natural actions of Ok and OE on a0 and a determine an action of the
subtorus

Tbig ⊂ Resk/QGm × ResE/QGm
on a0Q and aQ, and the morphism hbig : S → Tsm,R endows each of the real vector
spaces a0R and aR with a complex structure.

The desired isomorphism on complex points sends

(hbig, g) ∈ Sh(Tsm)(C)

to the pair (A0, A) defined by

A0(C) = a0R/ga0, A(C) = aR/ga.

The elliptic curve A0 is endowed with its natural Ok-action and its unique principal
ploarization. The abelian variety A is endowed with its natural OE-action, and the
polarization induced by the symplectic form determined by its Ok-hermitian form, as
in the proof of [6, Proposition 2.2.1].

It follows from the theory of canonical models that this isomorphism on complex
points descends to an isomorphism of EΦ-stacks.

The triple (a0, a, iE) determines a pair (a0, a) as in the introduction, which de-
termines a unitary Shimura variety with integral model SKra as in (1.1.1). Recalling
that Ok ⊂ OΦ as subrings of C, we now view both Ybig and CMΦ as Ok-stacks.
There is a commutative diagram

Ybig
//

π

��

M(1,0) × CMΦ

��

SKra
//M(1,0) ×MKra

(n−1,1)

(all fiber products are over Ok), in which the vertical arrow on the right is the identity
on the first factor and “forget complex multiplication” on the second. The arrow π is
defined by the commutativity of the diagram.
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Remark 4.2.5. — In order to define the morphism

CMΦ →MKra
(n−1,1)

in the diagram above, we must endow a point A ∈ CMΦ(S) with a subsheaf
FA ⊂ Lie(A) satisfying Krämer’s condition [6, §2.3]. Using the morphism

OE
ϕsp

−−→ OΦ → OS ,

denote by Jϕsp ⊂ OE ⊗Z OS the kernel of

OE ⊗Z OS
x⊗y 7→ϕsp(x)·y−−−−−−−−−→ OS .

According to [19, Lemma 4.1.2], the subsheaf FA = JϕspLie(A) has the desired prop-
erties.

Definition 4.2.6. — Composing the morphism π in the diagram above with the inclu-
sion of SKra into its toroidal compactification, we obtain a morphism of Ok-stacks

π : Ybig → S∗Kra,

called the big CM cycle.

Exactly as in §2.2, the arithmetic degree along Ybig is the composition

Ĉh
1

C(S∗Kra)
π∗−→ Ĉh

1

C(Ybig)
d̂eg−−→ C.

We denote this linear functional by Ẑ 7→ [Ẑ : Ybig].

Remark 4.2.7. — The big CM cycle arises from a morphism of Shimura varieties.
Indeed, there is a morphism of Shimura data (Tbig, {hbig})→ (G,D), and the induced
morphism of Shimura varieties sits in a commutative diagram of EΦ-stacks

Sh(Tbig) //

∼=
��

Sh(G,D)/EΦ

∼=
��

Ybig/EΦ

π // SKra/EΦ
.

Proposition 4.2.8. — The degree degC(Ybig) of Theorem B satisfies

1

n
· degC(Ybig) =

hk
wk
· Λ(0, χE)

2r−1
,

where r is the number of places of F that ramify in E (including all archimedean
places).

Proof. — It is clear from Proposition 4.2.4 that
1

n
· degC(Ybig) =

∑
y∈Sh(Tbig)(C)

1

|Aut(y)|
=
|Tbig(Q)\Tbig(Af )/Kbig|
|Tbig(Q) ∩Kbig|

.

Note that when we defined the degree on the left we counted the complex points
of Ybig viewed as an Ok-stack, whereas in the middle expression we are viewing
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Sh(Tbig) as an EΦ-stack. This is the reason for the correction factor of n = [EΦ : k]
on the left.

Let E′ ⊂ E× be the kernel of the norm map Nm : E× → F×, and define

Ê′ ⊂ Ê×, Ô′E ⊂ Ô×E

similarly. Note that µ(E) = E′ ∩ Ô′E is the group of roots of unity in E, whose order
we denote by wE . Using the isomorphism Tbig(Q) ∼= k××E′ of Remark 4.1.1, we find

(4.2.2)
|Tbig(Q)\Tbig(Af )/Kbig|
|Tbig(Q) ∩Kbig|

=
hk
wk
· |E

′\Ê′/Ô′E |
wE

.

Denote by CF and CE the ideal class groups of E and F , and by F̃ and Ẽ their
Hilbert class fields. As E/F is ramified at all archimedean places, F̃ ∩ E = F , and
the natural map

Gal(Ẽ/E)→ Gal(F̃ /F )

is surjective. Hence, by class field theory, the norm

Nm : CE → CF

is surjective. Denote its kernel by B, so that we have a short exact sequence

1→ B → CE
Nm−−→ CF → 1.

Define a group

B̃ = E×\

{
(B, β) :

B ⊂ E is a fractional OE-ideal,
β ∈ F×, and Nm(B) = βOF

}
,

where the action of E× is by α · (B, β) = (αB, ααβ). There is an evident short exact
sequence

1→ Nm(O×E)\O×F
β 7→(OE ,β)−−−−−−−→ B̃ → B → 1.

Lemma 4.2.9. — We have [O×E : Nm(O×E)] = 2n−1wE.

Proof. — Let Q = [O×E : µ(E)O×F ]. If Q = 1 then

[Nm(O×E) : O×,2F ] = 1 and [O×E : O×F ] =
1

2
· wE ,

and so

[O×F : Nm(O×E)] = [O×F : O×,2F ] = 2n =
2n−1wE

[O×E : O×F ]
,

where the middle equality follows from Dirichlet’s unit theorem.
If Q > 1 then [27, Theorem 4.12] and its proof show that Q = 2, and that the

image of the map φ : O×E → O×E defined by φ(x) = x/x is the index two subgroup
φ(O×E) = µ(E)2 ⊂ µ(E). From this it follows easily that

[Nm(O×E) : O×,2F ] = 2 and [O×E : O×F ] = wE ,
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and so

[O×F : Nm(O×E)] =
1

2
· [O×F : O×,2F ] = 2n−1 =

2n−1wE

[O×E : O×F ]
.

Combining the information we have so far gives

(4.2.3) |B̃| = [O×F : Nm(O×E)] · |B| = 2n−1wE

[O×E : O×F ]
· |CE |
|CF |

= wE · Λ(0, χE),

where the final equality is a consequence of Dirichlet’s class number formula.

Lemma 4.2.10. — There is an exact sequence

1→ E′\Ê′/Ô′E → B̃ → {±1}r → {±1} → 1.

Proof. — Every x ∈ Ê′ determines a fractional OE-ideal B = xOE with Nm(B) = OF ,
and the rule x 7→ (B, 1) is easily seen to define an injection

(4.2.4) E′\Ê′/Ô′E → B̃.

Given a (B, β) ∈ B̃, consider the elements χE,v(β) ∈ {±1} as v runs over all
places of F . If v is split in E then certainly χE,v(β) = 1. If v is inert in E then
Nm(B) = βOF implies that χE,v(β) = 1. As the product over all v of χE,v(β) is
equal to 1, we see that sending (B, β) to the tuple of χE,v(β) with v ramified in E
defines a homomorphism

(4.2.5) B̃ → ker
(
{±1}r product−−−−−→ {±1}

)
.

To see that (4.2.5) is surjective, fix a tuple (εv)v ∈ {±1}r indexed by the places
of F ramified in E, and assume that

∏
v εv = 1. Let b ∈ A×F be any idele satisfying:

— If v is ramified in E then χE,v(bv) = εv.
— If v is a finite place of F then bv ∈ O×F,v.

The second condition implies that χE,v(bv) = 1 whenever v is unramified in E, and
hence

χE(b) =
∏
v

εv = 1.

Thus b lies in the kernel of the reciprocity map

A×F → F×\A×F /Nm(A×E) ∼= Gal(E/F ),

and so can be factored as b = β−1xx for some β ∈ F× and x ∈ A×E . Setting B = xOE ,
the pair (B, β) ∈ B̃ maps to (εv)v under (4.2.5).

It only remains to show that the image of (4.2.4) is equal to the kernel of (4.2.5).
It is clear from the definitions that the composition

E′\Ê′/Ô′E → B̃ → {±1}r

is trivial, proving one inclusion. For the other inclusion, suppose (B, β) ∈ B̃ lies in
the kernel of (4.2.5). We have already seen that this implies that β ∈ F× satisfies
χE,v(β) = 1 for every place v of F , and so β is a norm from E everywhere locally. By
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the Hasse-Minkowski theorem, β is a norm globally, say β = αα with α ∈ E×. In the
group B̃, we therefore have the relation

(B, β) = α−1(B, β) = (A, 1)

for a fractional OE-ideal A = α−1B satisfying Nm(A) = OF . Any such A has the
form A = xOE for some x ∈ Ê′, proving that (B, β) lies in the image of (4.2.4).

Combining the lemma with (4.2.3) gives

|E′\Ê′/Ô′E |
wE

=
|B̃|

2r−1wE
=

Λ(0, χE)

2r−1
,

and combining this with (4.2.2) completes the proof of Proposition 4.2.8.

Proposition 4.2.11. — Assume that the discriminants of k and F are relatively prime.
The constant term (1.4.2) satisfies

[Ẑ tot
Kra(0) : Ybig] = −[ω̂ : Ybig].

Proof. — The stated equality is equivalent to

[(Exc,− log(D)) : Ybig] = 0,

and so it suffices to prove

[(0, log(D)) : Ybig] = degC(Ybig) · log(D) = [(Exc, 0) : Ybig].

The first equality is clear from the definitions. To prove the second equality, we first
argue that

(4.2.6) Ybig ×SKra
Exc = Ybig ×Spec(Ok) Spec(Ok/dk),

as in the proof of Proposition 2.2.10.
The inclusion ⊂ of (4.2.6) is again clear from

Exc ⊂ SKra ×Spec(Ok) Spec(Ok/dk).

Recall that Ybig → Spec(OΦ) is étale. Our hypothesis on the discriminants of k and
F implies that Spec(OΦ) → Spec(Ok) is étale at all primes dividing dk, and hence
the same is true for Ybig → Spec(Ok). This implies that the right hand side of (4.2.6)
is reduced, and hence so is the left hand side. To prove equality in (4.2.6), it therefore
suffices to prove the inclusion ⊃ on the level of geometric points.

Suppose p | dk is prime, and let Falg
p be an algebraic closure of its residue field.

Suppose that y ∈Ybig(Falg
p ) corresponds to the pair (A0, A), so that A ∈ CMΦ(Falg

p ).
Let W be the completed étale local ring of the geometric point

Spec(Falg
p )

y−→Ybig → Spec(OΦ).

More concretely, W is the completion of the maximal unramified extension of Ok,p,
equipped with an injective ring homomorphism OΦ →W . Let Cp be the completion of
an algebraic closure of the fraction field of W , and fix an isomorphism of EΦ-algebras
C ∼= Cp.
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For every ϕ ∈ Φ the induced map OE → C ∼= Cp takes values in the subring W ,
and the induced map

OE ⊗Z W →
∏
ϕ∈Φ

W

is surjective (by our hypothesis that k and F have relatively prime discriminants).
Denote its kernel by JΦ ⊂ OE ⊗Z W , and define an OE ⊗Z W -module

LieΦ = (OE ⊗Z W )/JΦ
∼=
∏
ϕ∈Φ

W.

As in the proof of [19, Lemma 4.1.2], there is an isomorphism of OE ⊗Z Falg
p -modules

Lie(A) ∼= LieΦ ⊗W Falg
p
∼=
∏
ϕ∈Φ

Falg
p .

Let δ ∈ Ok be a square root of −D. As the image of δ under

OE
ϕ−→W → Falg

p

is 0 for every ϕ ∈ Φ, it follows from what was said above that δ annihilates Lie(A).
Exactly as in the proof of Proposition 2.2.10, this implies that the image of y under
Ybig → SKra lies on the exceptional divisor. This completes the proof of (4.2.6), and
the remainder of the proof is exactly as in Proposition 2.2.10.

4.3. A generalized L-function. — The action iE : OE → EndOk
(a) makes

L = HomOk
(a0, a)

into a projective OE-module of rank one, and the Ok-hermitian form on L defined by
[6, (2.1.5)] satisfies 〈αx1, x2〉 = 〈x1, αx2〉 for all α ∈ OE and x1, x2 ∈ L. It is a formal
consequence of this that the E-vector space V = L⊗ZQ carries an E-hermitian form

〈−,−〉big : V × V → E,

uniquely determined by the property

〈x1, x2〉 = TrE/k〈x1, x2〉big.

This hermitian form has signature (0, 1) at ϕsp|F , and signature (1, 0) at all other
archimedean places of F .

From the E-hermitian form we obtain an F -valued quadratic form Q(x) = 〈x, x〉big

on V with signature (0, 2) at ϕsp|F , and signature (2, 0) at all other archimedean places
of F . The Q-quadratic form

(4.3.1) Q(x) = TrF/QQ(x)

is Z-valued on L ⊂ V , and agrees with the quadratic form of §2.3. Let

ωL : SL2(Z)→ AutC(SL)

be the Weil representation on the space SL = C[L′/L], where L′ = d−1
k L is the dual

lattice of L relative to the Z-bilinear form (2.3.1).
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Write each ~τ ∈ FC in the form ~τ = ~u+ i~v with ~u,~v ∈ FR, and set

HF = {~τ ∈ FC : ~v is totally positive}.

Every Schwartz function φ ∈ S(V̂ ) determines an incoherent Hilbert modular Eisen-
stein series

(4.3.2) E(~τ , s, φ) =
∑
α∈F

Eα(~v, s, φ) · qα

on HF , as in [8, (4.4)] and [2, §6.1]. If we identify

SL = C[L′/L] ⊂ S(V̂ )

as the space of L̂-invariant functions supported on L̂′, then (4.3.2) can be viewed as
a function E(~τ , s) on HF taking values in the complex dual S∨L .

We quickly recall the construction of (4.3.2). If v is an arichmedean place of F ,
denote by (Cv,Qv) the unique positive definite rank 2 quadratic space over Fv. Set
C∞ =

∏
v|∞ Cv. The rank 2 quadratic space

C = C∞ × V̂

over AF is incoherent, in the sense that it is not the adelization of any F -quadratic
space. In fact, C is isomorphic to V everywhere locally, except at the unique
archimedean place ϕsp|F at which V is negative definite.

Let ψQ : Q\A→ C× be the standard additive character, and define

ψF : F\AF → C×

by ψF = ψQ◦TrF/Q. Denote by I(s, χE) the degenerate principal series representation
of SL2(AF ) induced from the character χE | · |s on the subgroup B ⊂ SL2 of upper
triangular matrices. Thus I(s, χE) consists of all smooth functions Φ(g, s) on SL2(AF )

satisfying the transformation law

Φ

((
a b

a−1

)
g, s

)
= χE(a)|a|s+1Φ(g, s).

The Weil representation ωC determined by the character ψF defines an action
of SL2(AF ) on S(C ), and for any Schwartz function

φ∞ ⊗ φ ∈ S(C∞)⊗ S(V̂ ) ∼= S(C )

the function

(4.3.3) Φ(g, 0) = ωC (g)(φ∞ ⊗ φ)(0)

lies in the induced representation I(0, χE). It extends uniquely to a standard section
Φ(g, s) of I(s, χE), which determines an Eisenstein series

E(g, s, φ∞ ⊗ φ) =
∑

γ∈B(F )\SL2(F )

Φ(γg, s)

in the variable g ∈ SL2(AF ).
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We always choose φ ∈ SL ⊂ S(V ), and take the archimedean component φ∞ of
our Schwartz function to be the Gaussian distribution

φ1
∞ = ⊗φ1

v ∈
⊗
v|∞

S(Cv)

defined by φ1
v(x) = e−2πQv(x), so that the resulting Eisenstein series

E(~τ , s, φ) =
1√

Nm(~v)
· E(g~τ , s, φ

1
∞ ⊗ φ)

has parallel weight 1. Here

g~τ =

(
1 ~u

0 1

)(√
~v

1/
√
~v

)
∈ SL2(FR)

and Nm : F×R → R× is the norm.
A choice of ordering of the embeddings F → R fixes an isomorphism ofHF with the

n-fold product of the complex upper half-plane with itself, and the diagonal inclusion
H ↪→HF is independent of the choice of ordering. By restricting our Eisenstein series
to the diagonal we obtain an S∨L-valued function

E(τ, s) = E(~τ , s)|H
in the variable τ ∈ H, which transforms like a modular form of weight n and repre-
sentation ω∨L under the full modular group SL2(Z).

Given a cusp form g̃ ∈ Sn(ωL) valued in SL, consider the Petersson inner product

(4.3.4) 〈E(s), g̃〉Pet =

∫
SL2(Z)\H

{
g̃(τ), E(τ, s)

} du dv
v2−n ,

where {., .} : SL×S∨L → C is the tautological pairing. This is an unnormalized version
of the generalized L-function

L (s, g̃) = Λ(s+ 1, χE) · 〈E(s), g̃〉Pet

of [8, (1.2)] or [2, §6.3].
Let F+ ⊂ F be the subset of totally positive elements. The Eisenstein series E(~τ , s)

satisfies a functional equation in s 7→ −s, forcing it to vanish at s = 0. As in [8,
Proposition 4.6] and [2, §6.2], we can extract from the central derivative E′(~τ , 0) a
formal q-expansion

aF (0) +
∑
α∈F+

aF (α) · qα.

If α ∈ F+ then E′α(~v, 0, φ) is independent of ~v, and we define aF (α) ∈ S∨L by

aF (α, φ) = Λ(0, χE) · E′α(~v, 0, φ).

We define aF (0) ∈ S∨L by

aF (0, φ) = Λ(0, χ) · E′0(~v, 0, φ)− Λ(0, χE) · φ(0) log Nm(~v).

Again, this is independent of ~v.
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Remark 4.3.1. — For notational simplicity, we often denote by aF (α, µ) the value
of aF (α) : SL → C at the characteristic function of a coset µ ∈ L′/L.

For any nonzero α ∈ F , define

Diff(C , α) = {places v of F : Cv does not represent α}.

This is a finite set of odd cardinality, and any v ∈ Diff(C , α) is necessarily nonsplit
in E. We are really only interested in this set when α ∈ F+. As C is positive definite
at all archimedean places, for such α we have

Diff(C , α) = {primes p ⊂ OF : Vp does not represent α}.

We will need explicit formulas for all aF (α, µ) with α ∈ F+, but only for the trivial
coset µ = 0. These are provided by the following proposition.

Proposition 4.3.2. — Suppose α ∈ F+.

1. If |Diff(C , α)| > 1 then aF (α) = 0.

2. If Diff(C , α) = {p}, then

aF (α, 0) = −2r−1 · ρ(αdF p
−εp) · ordp(αpdF ) · log(N(p)),

where the notation is as follows: r is the number of places of F ramified in E
(including all archimedean places), dF ⊂ OF is the different of F , and

εp =

{
1 if p is inert in E
0 if p is ramified in E.

Moreover, for any fractional OF -ideal b ⊂ F we have set

ρ(b) = |{ideals B ⊂ OE : BB = bOE}|.

In particular, ρ(b) = 0 unless b ⊂ OF .

Proof. — Up to a change of notation, this is [18, Proposition 4.2.1], whose proof
amounts to collecting together calculations of [28]. More general formulas can be
found in [2, §7.1] and [21, §4.6].

Proposition 4.3.3. — Assume that the discriminants of k and F are relatively prime.
For any µ ∈ L′/L we have

aF (0, µ) =

{
−2Λ′(0, χE) if µ = 0

0 otherwise.

Proof. — Let Φµ =
∏
p Φµ,p be the standard section of I(s, χE) determined by the

characteristic function φµ ∈ SL ⊂ S(V ) of µ ∈ L′/L. According to [2, Proposi-
tion 6.2.3], we then have

(4.3.5) aF (0, µ) = −2φµ(0)Λ′(0, χE)− Λ(0, χE) · d
ds

(∏
p

Mp(s, φµ)
)
|s=0

,
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where the product is over all finite places p of F , and the local factors on the right
have the form

(4.3.6) Mp(s, φµ) = cp ·
Lp(s+ 1, χE)

Lp(s, χE)
·W0,p(s,Φµ)

for some constants cp independent of s. Here, setting

w =
(

0 −1
1 0

)
, n(b) = ( 1 b

0 1 ) ,

the function

W0,p(s,Φµ) =

∫
Fp

Φµ,p (wn(b), s) db

is the value of the local Whittaker function W0,p(g, s,Φµ) at the identity in SL2(Fp).
Our goal is to prove that Mp(s, φµ) is independent of s, and hence both the particular
value of cp and the choice of Haar measure on Fp are irrelevant to us.

Fix a prime p ⊂ OF , and let p be the rational prime below it. We may identify
Vp ∼= Ep in such a way that Lp ∼= OE,p, and so that the Fp-valued quadratic form Q
on Vp ∼= Ep becomes

Q(x) = βxx

for some β ∈ F×p . If dF denotes the different of F/Q, then

(4.3.7) βOF,p = d−1
F OF,p.

Indeed, let dE be the different of E/Q. The lattice L′p = d−1
k OE,p is the dual lattice

of OE,p relative to the Qp-bilinear form [x, y] = TrEp/Qp(βxy), which implies the first
equality in

β−1OE,p = dEd
−1
k OE,p = dFOE,p.

The second equality is a consequence of our assumption that the discriminants of k
and F are relatively prime.

If we endow Vp = Ep with the rescaled quadratic form

Q](x)
def
= β−1Q(x) = xx,

and define a new additive character

ψ]F,p(x)
def
= ψF,p(βx)

(unramified by (4.3.7)), we obtain a new Weil representation

ω] : SL2(Fp)→ Aut(S(Vp)),

and hence, as in (4.3.3), a function

S(Vp)
φ 7→Φ]p(s,g)
−−−−−−−→ Ip(s, χE)

defined by first setting Φ]p(0, g) = ω](g)φ(0), and then extending to a standard section.
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The local Schwartz function φµ,p ∈ S(Vp) now determines a standard section
Φ]µ,p(g, s) of Ip(s, χE), and explicit formulas for the Weil representation, as in [21,
(4.2.1)], show that ∫

Fp

Φµ,p (wn(b), s) db =

∫
Fp

Φ]µ,p (wn(b), s) db.

What our discussion shows is that there is no harm in rescaling the quadratic form
on Vp to make β = 1, and simultaneously modifying the additive character ψF,p to
make it unramified.

After this rescaling, one can easily deduce explicit formulas for W0,p(s,Φµ) from
the literature. Indeed, if the local component µp ∈ L′p/Lp is zero, then the calculations
found in [28, §2] imply that

W0,p(s,Φµ) =
Lp(s, χE)

Lp(s+ 1, χE)

up to scaling by a nonzero constant independent of s. If instead µp 6= 0 then p is
ramified in E (and in particular p > 2), and it follows from the calculations found
in the proof of [21, Proposition 4.6.4] that W0,p(s,Φµ) = 0. In any case (4.3.6) is
independent of s for every p, and so the derivative in (4.3.5) vanishes.

4.4. A preliminary central derivative formula. — The entirety of §4.4 is devoted to
proving Theorem 4.4.1, which a big CM analogue of Theorem 2.4.1. The proof will
make essential use of the calculations of [18, 19, 8].

We assume n ≥ 3 throughout §4.4. This allows us to make use of the distinguished
harmonic forms

fm ∈ H2−n(ωL)∆

(for m > 0) characterized by (2.5.1).

Theorem 4.4.1. — Assume that the discriminants of k/Q and F/Q are odd and rela-
tively prime, and fix a positive integer m. If f = fm is the harmonic form above, and
Ẑ is the linear function (2.4.1), then

n · [Ẑ(f) : Ybig]

degC(Ybig)
+ 2c+f (0, 0)

Λ′(0, χE)

Λ(0, χE)
= − d

ds
〈E(s), ξ(f)〉Pet|s=0

.

For the form f = fm we have

Ẑ(f) = Ẑ tot
Kra(m) =

(
Z tot

Kra(m),Θreg(fm)
)
∈ Ĉh

1
(S∗Kra),

where the Green function Θreg(fm) for the divisor Z tot
Kra(m) is constructed in [6, §7] as

a regularized theta lift. The arithmetic degree appearing in Theorem 4.4.1 decomposes
as
(4.4.1)

[Ẑ(f) : Ybig] =
∑
p⊂Ok

log(N(p))
∑

y∈(Ztot
Kra(m)∩Ybig)(Falg

p )

length(Oy)

|Aut(y)|
+

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|
,
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where Fp = Ok/p, and Oy is the étale local ring of

(4.4.2) Z tot
Kra(m) ∩Ybig

def
= Z tot

Kra(m)×S∗Kra
Ybig

at y. The final summation is over all complex points of Ybig, viewed as an Ok-stack.
We will see that the terms on the right hand side of (4.4.1) are intimately related to
the Eisenstein series coefficients aF (α) of §4.3.

We first study the structure of the stack-theoretic intersection (4.4.2). Suppose S is
a connected OΦ-scheme, and

(A0, A) ∈
(
M(1,0) ×Ok

CMΦ

)
(S)

is an S-point. The Ok-module HomOk
(A0, A) carries an Ok-hermitian form 〈−,−〉

defined by [6, (2.5.1)]. The construction of this hermitian form only uses the underlying
point of SKra, and not the action OE → EndOk

(A). As in [19, §3.2], the extra action
of OE makes HomOk

(A0, A) into a projective OE-module, and there is a totally
positive definite E-hermitian form 〈−,−〉big on

(4.4.3) V (A0, A) = HomOk
(A0, A)⊗Z Q

characterized by the relation

〈x1, x2〉 = TrE/k〈x1, x2〉big.

for all x1, x2 ∈ HomOk
(A0, A).

Fix an α ∈ F+. Recalling that

(4.4.4) Ybig ⊂M(1,0) ×Ok
CMΦ

as an open and closed substack, for any OΦ-scheme S let Zbig(α)(S) be the groupoid
of triples (A0, A, x), in which

— (A0, A) ∈Ybig(S),
— x ∈ HomOk

(A0, A) satisfies 〈x, x〉big = α.
This functor is represented by an OΦ-stack Zbig(α), and the evident forgetful mor-
phism

Zbig(α)→Ybig

is finite and unramified.
This construction is entirely analogous to the construction of the special divisors

Z tot
Kra(m)→ SKra of [6]. In fact, directly from the definitions, if S is an OΦ-scheme an

S-point
(A0, A, x) ∈

(
Z tot

Kra(m) ∩Ybig

)
(S)

consists of a pair (A0, A) ∈Ybig(S) and an x ∈ HomOk
(A0, A) satisfying m = 〈x, x〉.

From this it is clear that there is an isomorphism

(4.4.5) Z tot
Kra(m) ∩Ybig

∼=
⊔
α∈F+

TrF/Q(α)=m

Zbig(α),

defined by sending the triple (A0, A, x) to the same triple, but now viewed as an
S-point of the stack Zbig(α) determined by α = 〈x, x〉big.
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Proposition 4.4.2. — For each α ∈ F+ the stack Zbig(α) is either empty, or has di-
mension 0 and is supported at a single prime of OΦ. Moreover,

1. If |Diff(C , α)| > 1 then Zbig(α) = ∅.
2. Suppose that Diff(C , α) = {p} for a single prime p ⊂ OF , let q ⊂ OE be the

unique prime above it, and denote by qΦ ⊂ OΦ the corresponding prime under
the isomorphism ϕsp : E ∼= EΦ. Then Zbig(α) is supported at the prime qΦ,
and satisfies ∑

y∈Zbig(α)(Falg
qΦ

)

1

|Aut(y)|
=
hk
wk
· ρ(αdF p

−εp),

where FqΦ is the residue field of qΦ, and εp and ρ are as in Proposition 4.3.2.
Moreover, the étale local rings at all geometric points

y ∈ Zbig(α)(Falg
qΦ

)

have the same length

length(Oy) = ordp(αpdF ) ·

{
1/2 if Eq/Fp is unramified
1 otherwise.

Proof. — This is essentially contained in [18, §3]. In that work we studied the
OΦ-stack ZΦ(α) classifying triples (A0, A, x) exactly as in the definition of Zbig(α),
except we allowed the pair (A0, A) to be any point of M(1,0) ×Ok

CMΦ rather than
a point of the substack (4.4.4). Thus we have a cartesian diagram

Zbig(α) //

��

ZΦ(α)

��

Ybig
//M(1,0) ×Ok

CMΦ.

As the bottom horizontal arrow is an open and closed immersion, so is the top hori-
zontal arrow. In other words, our Zbig(α) is a union of connected components of the
stack ZΦ(α) of [18].

Lemma 4.4.3. — Each ZΦ(α) has dimension 0. If y is a geometric point of ZΦ(α)
corresponding to a triple (A0, A, x) over k(y), then k(y) has nonzero characteristic,
A0 and A are supersingular, and the E-hermitian space (4.4.3) has dimension one.
Moreover, if p ⊂ OF denotes the image of y under the composition

(4.4.6) ZΦ(α)→ Spec(OΦ) ∼= Spec(OE)→ Spec(OF )

(the isomorphism is ϕsp : E ∼= EΦ), then p is nonsplit in E, and the following are
equivalent:

— The geometric point y factors through the open and closed substack

Zbig(α) ⊂ ZΦ(α).
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— The E-hermitian space (4.4.3) is isomorphic to V everywhere locally except at p
and ϕsp|F .

Proof. — This is an easy consequence of [18, Proposition 3.4.5] and [18, Proposi-
tion 3.5.2]. The only part that requires explanation is the final claim.

Fix a connected component

B ⊂M(1,0) ×Ok
CMΦ.

As in [18, §3.4], for each complex point y = (A0, A) ∈ B(C) one can construct from
the Betti realizations of A0 and A an E-hermitian space

V (B) = Homk
(
H1(A0(C),Q), H1(A(C),Q)

)
of dimension 1. This hermitian space has signature (0, 1) at ϕsp|F , and signature (1, 0)

at all other archimedean places of F . Moreover, as in Remark 4.2.3, this hermitian
space depends only on the connected component B, and not on the particular complex
point y. The open and closed substack

Ybig ⊂M(1,0) ×Ok
CMΦ

can be characterized as the union of all components B for which V (B) ∼= V .
So, suppose we have a geometric point y = (A0, A, x) of ZΦ(α), and denote by

B ⊂M(1,0) ×Ok
CMΦ

the connected component containing the underlying point y = (A0, A). The content
of [18, Proposition 3.4.5] is that the hermitian space (4.4.3) is isomorphic to V (B)
everywhere locally except at p and ϕsp|F . From this we deduce the equivalence of the
following statements:

— The geometric point y → ZΦ(α) factors through Zbig(α).

— The underlying point y →M(1,0) ×Ok
CMΦ factors through Ybig.

— The hermitian spaces V (B) and V are isomorphic.
— The E-hermitian space (4.4.3) is isomorphic to V everywhere locally except

at p and ϕsp|F .

Now suppose that Zbig(α) is nonempty. If we fix a geometric point y = (A0, A, x)
as above, the vector x ∈ HomOk

(A0, A) satisfies 〈x, x〉big = α, and hence (4.4.3)
represents α. The above lemma now implies that V represents α everywhere locally
except at p and ϕsp|F , where p is the image of y under (4.4.6). From this it follows
first Diff(C , α) = {p}, and then that all geometric points of Zbig(α) have the same
image under (4.4.6), and lie above the same prime qΦ ⊂ OΦ characterized as in the
statement of Proposition 4.4.2. In particular, if |Diff(C , α)| > 1 then Zbig(α) = ∅.

It remains to prove part (2) of the proposition. For this we need the following
lemma.

Lemma 4.4.4. — Assume that Diff(C , α) = {p} for some prime p ⊂ OF , and let
q ⊂ OE be the unique prime above it. The open and closed substack Zbig(α) ⊂ ZΦ(α)
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is equal to the union of all connected components of ZΦ(α) that are supported at the
prime qΦ.

Proof. — We have already seen that every geometric point of Zbig(α) lies above the
prime qΦ, and so it suffices to prove that every geometric point of ZΦ(α) lying above
the prime qΦ factors through Zbig(α). Let y → ZΦ(α) be such a point.

If y corresponds to the triple (A0, A, x), then x ∈ HomOk
(A0, A) satis-

fies 〈x, x〉big = α, and hence (4.4.3) represents α. But the assumption that
Diff(C , α) = {p} implies that V represents α everywhere locally except at p and
ϕsp|F , and it follows from this that V and (4.4.3) are isomorphic locally every-
where except at p and ϕsp|F . By the previous lemma, this implies that y factors
through Zbig(α).

With this last lemma in hand, all parts of (2) follow from the corresponding state-
ments for ZΦ(α) proved in [18, Theorem 3.5.3] and [18, Theorem 3.6.2].

Proposition 4.4.5. — For every α ∈ F+ we have∑
p⊂Ok

n · log(N(p))

degC(Ybig)

∑
y∈Zbig(α)(Falg

p )

length(Oy)

|Aut(y)|
= − aF (α, 0)

Λ(0, χE)
,

where the inner sum is over all Falg
p -points of Zbig(α), viewed as an Ok-stack.

Proof. — Combining Propositions 4.2.8, 4.3.2, and 4.4.2 shows that∑
qΦ⊂OΦ

n · log(N(qΦ))

degC(Ybig)

∑
y∈Zbig(α)(Falg

qΦ
)

length(Oy)

|Aut(y)|
= − aF (α, 0)

Λ(0, χE)
,

where the inner sum is over all Falg
qΦ points of Zbig(α), viewed as an OΦ-stack. The

claim follows by collecting together all primes qΦ ⊂ OΦ lying above a common prime
p ⊂ Ok.

Proposition 4.4.6. — The regularized theta lift Θreg(fm) satisfies

n

degC(Ybig)

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|

= − d

ds
〈E(s), ξ(fm)〉Pet|s=0

+
∑
α∈F+

TrF/Q(α)=m

aF (α, 0)

Λ(0, χE)
− 2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
.

Proof. — This is a special case of the main result of [8]. This requires some explana-
tion, as that work deals with cycles on Shimura varieties of type GSpin, rather than
the unitary Shimura varieties under current consideration.

Recall that we have an F -quadratic space (V ,Q) of rank two, and a Q-quadratic
space (V,Q) whose underlying Q-vector space

V = Homk(W0,W )
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is equal to V , and whose quadratic form is (4.3.1). As in [8, §2] or [2, §5.3] this data
determines a commutative diagram

1 // Gm // TGSpin
//

��

TSO
//

��

1

1 // Gm // GSpin(V ) // SO(V ) // 1,

with exact rows, of algebraic groups over Q. The torus TSO = ResF/QSO(V ) has
Q-points

TSO(Q) = {y ∈ E× : yy = 1},

while the torus TGSpin has Q-points

TGSpin(Q) = E×/ker(Norm : F× → Q×).

The map TGSpin → TSO is x 7→ x/x. To these groups one can associate morphisms of
Shimura data

(TGSpin, {hGSpin}) //

��

(TSO, {hSO})

��

(GSpin(V ),DGSpin) // (SO(V ),DSO).

In the top row both data have reflex field EΦ. In the bottom row both data have
reflex field Q.

Let KSO ⊂ SO(V )(Af ) be any compact open subgroup that stabilizes the lattice
L ⊂ V , and fix any compact open subgroup KGSpin ⊂ GSpin(V )(Af ) contained in
the preimage of KSO. The Shimura data in the bottom row, along with these compact
open subgroups, determine Shimura varieties MGSpin → MSO. These are Q-stacks of
dimension 2n− 2.

The Shimura data in the top row, along with the compact open subgroups
KGSpin ∩ TGSpin(Af ) and KSO∩TSO(Af ), determine Shimura varieties YGSpin → YSO.
These are EΦ-stacks of dimension 0, but we instead view them as stacks over Spec(Q),
so that there is a commutative diagram

(4.4.7) YGSpin
//

��

YSO

��

MGSpin
// MSO.

Assume that the compact open subgroup KSO acts trivially on the quotient L′/L.
For every form f ∈ H2−n(ωL), one can find in [8, Theorem 3.2] the construction of a
divisor ZGSpin(f) on MGSpin, along with a Green function Θreg

GSpin(f) for that divisor,
constructed as a regularized theta lift. Up to change of notation, [8, Theorem 1.1]
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asserts that
(4.4.8)

n

degC(YGSpin)

∑
y∈YGSpin(C)

Θreg
GSpin(f, y)

|Aut(y)|
= − d

ds
〈E(s), ξ(f)〉Pet|s=0

+
∑
m≥0

µ∈L′/L

a(m,µ)c+f (−m,µ)

Λ(0, χE)
,

where the coefficients a(m) ∈ SL are defined by

a(m) =
∑
α∈F+

TrF/Q(α)=m

aF (α)

if m > 0, and by a(0) = aF (0).
It is not difficult to see, directly from the constructions, that both the divisor

ZGSpin(f) and the Green function Θreg
GSpin(f) descend to the quotient MSO. If we call

these descents ZSO(f) and Θreg
SO(f), it is a formal consequence of the commutativity of

(4.4.7) that the equality (4.4.8) continues to hold if all subscripts GSpin are replaced
by SO.

Moreover, suppose that our form f ∈ H2−n(ωL) is invariant under the action of the
finite group ∆ of §2.4, as is true for the form fm of (2.5.1). In this case one can see,
directly from the definitions, that the divisor ZSO(f) and the Green function Θreg

SO(f)
descend to the orthogonal Shimura variety determined by the maximal compact open
subgroup

KSO = {g ∈ SO(V )(Af ) : gL = L}.

From now on we fix this choice of KSO.
Specializing (4.4.8) to the form f = fm, and using the formula for a(0) = aF (0)

found in Proposition 4.3.3, we obtain

n

degC(YSO)

∑
y∈YSO(C)

Θreg
SO(fm)(y)

|Aut(y)|
= − d

ds
〈E(s), ξ(fm)〉Pet|s=0

+
a(m, 0)

Λ(0, χE)
− 2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
.(4.4.9)

As in [6, §2.1], our group G ⊂ GU(W0) × GU(W ) acts on V in a natural way,
defining a homomorphism G → SO(V ). On the other hand, Remark 4.1.1 shows
that Tbig

∼= Resk/QGm×TSO, and projection to the second factor defines a morphism
Tbig → TSO. We obtain morphisms of Shimura data

(Tbig, {hbig}) //

��

(TSO, {hSO})

��

(G,D) // (SO(V ),DSO),
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which induce morphisms of k-stacks

Ybig/k
//

��

YSO/k

��

SKra/k
// MSO/k.

The Green function Θreg(fm) on SKra/k defined in [6, §7.2] is simply the pullback
of the Green function Θreg

SO(fm) via the bottom horizontal arrow. It follows easily that

n

degC(YSO)

∑
y∈YSO(C)

Θreg
SO(fm)(y)

|Aut(y)|
=

n

degC(Ybig)

∑
y∈Ybig(C)

Θreg(fm)(y)

|Aut(y)|
,

and comparison with (4.4.9) completes the proof of Proposition 4.4.6.

Proof of Theorem 4.4.1. — Combining the decomposition (4.4.5) with Proposi-
tion 4.4.5 shows that∑

p⊂Ok

n log(N(p))

degC(Ybig)

∑
y∈(Ztot

Kra(m)∩Ybig)(Falg
p )

length(Oy)

|Aut(y)|
=

∑
α∈F+

TrF/Q(α)=m

−aF (α, 0)

Λ(0, χE)
.

Plugging this formula and the archimedean calculation of Proposition 4.4.6 into (4.4.1)
leaves

n · [Ẑ(fm) : Ybig]

degC(Ybig)
= −2c+fm(0, 0) · Λ′(0, χE)

Λ(0, χE)
− d

ds
〈E(s), ξ(fm)〉Pet|s=0

,

as desired.

4.5. The proof of Theorem B. — We now use Theorem 4.4.1 to prove a special case
of Theorem D, and then prove Theorem B. We assume n ≥ 3.

Recall the differential operator

ξ : H2−n(ωL)→ Sn(ωL)

of §2.4. Its kernel is the subspace

M !
2−n(ωL) ⊂ H2−n(ωL)

of weakly holomorphic forms.

Lemma 4.5.1. — In the notation of §2.4, there exists a ∆-invariant form f ∈M !
2−n(ωL)

such that c+f (0, 0) 6= 0, and

Ẑ(f) + c+f (0, 0) · Ẑ tot
Kra(0) = 0.

Proof. — Denote by

S!,∞
2−n(Γ0(D), χnk) ⊂M !

2−n(Γ0(D), χnk)
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the subspace of forms that vanish at all cusps other than ∞, and choose any form

f0(τ) =
∑
m∈Z

m�−∞

c0(m) · qm ∈ S!,∞
2−n(Γ0(D), χnk)

such that c0(0) 6= 0. The existence of such a form can be proved as in [4, Lemma 4.11].
As in (2.3.2) there is an induced form

f(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f0|2−nγ)(τ) · ωL(γ−1)φ0 ∈M !
2−n(ωL)∆,

which we claim has the desired properties.
Indeed, the proof of Proposition 2.5.1 shows that c+f (0, 0) = c0(0), and that

f =
∑
m>0 c0(−m)fm. In particular,

Ẑ(f) =
∑
m>0

c0(−m) · Ẑ tot
Kra(m) ∈ Ĉh

1

C(S∗Kra).

Given any modular form

g(τ) =
∑
m≥0

d(m) · qm ∈Mn(D,χnk),

summing the residues of the meromorphic form f0(τ)g(τ)dτ on X0(D)(C) shows that∑
m≥0

c0(−m) · d(m) = 0.

Thus the modularity of the generating series (1.1.2) implies the second equality in

(4.5.1) Ẑ(f) + c0(0) · Ẑ tot
Kra(0) =

∑
m≥0

c0(−m) · Ẑ tot
Kra(m) = 0.

We can now prove Theorem D under some additional hypotheses. These hypotheses
will be removed in §5.

Theorem 4.5.2. — If the discriminants of k/Q and F/Q are odd and relatively prime,
then

[ω̂ : Ybig] =
−2

n
· degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
.

Proof. — If we choose f as in Lemma 4.5.1 then ξ(f) = 0, and so Theorem 4.4.1
simplifies to

−nc+f (0, 0) · [Ẑ tot
Kra(0) : Ybig]

degC(Ybig)
+ 2c+f (0, 0) · Λ′(0, χE)

Λ(0, χE)
= 0.

An application of Proposition 4.2.11 completes the proof.

The following is Theorem B in the introduction.
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Theorem 4.5.3. — Assume that the discriminants of k/Q and F/Q are odd and rel-
atively prime, and let g ∈ Sn(Γ0(D), χn) and g̃ ∈ Sn(ωL) be related by (2.3.2). The
central derivative of the Petersson inner product (4.3.4) is related to the arithmetic
theta lift (1.1.3) by

[θ̂(g) : Ybig] =
−1

n
· degC(Ybig) · d

ds
〈E(s), g̃〉Pet|s=0

.

Proof. — If we choose f as in Proposition 2.5.1, then ξ(f) = g̃ and

[θ̂(g) : Ybig] = [Ẑ(f) : Ybig] + c+f (0, 0) · [Ẑ tot
Kra(0) : Ybig].

Proposition 4.2.11 and Theorem 4.5.2 allow us to rewrite this as

[θ̂(g) : Ybig] = [Ẑ(f) : Ybig]− c+f (0, 0) · [ω̂ : Ybig]

= [Ẑ(f) : Ybig] +
2

n
· c+f (0, 0) · degC(Ybig) · Λ′(0, χE)

Λ(0, χE)
,

and comparison with Theorem 4.4.1 completes the proof.

5. Faltings heights of CM abelian varieties

In §5 we assume n ≥ 2, and study Theorems C and D of the introduction. As in
§1.3, let F be a totally real field of degree n, set

E = k ⊗Q F,

and let Φ ⊂ Hom(E,C) be a CM type of signature (n−1, 1). We fix a triple (a0, a, iE)
as in §4.2.

5.1. Some metrized line bundles. — By virtue of the inclusion (1.1.1), there is a uni-
versal pair (A0, A) over SKra consisting of an elliptic curve π0 : A0 → SKra and an
abelian scheme π : A→ SKra of dimension n.

Endowing the Lie algebras of A0 and A with their Faltings (a.k.a. Hodge) metrics
gives rise to metrized line bundles

Lie(A0) ∈ P̂ic(SKra), det(Lie(A)) ∈ P̂ic(SKra).

A vector η in the fiber

det(Lie(As))
−1 ∼=

∧n
Fil1H1

dR(As) ⊂
∧n

H1
dR(As)

at a complex point s ∈ SKra(C) has norm

(5.1.1) ‖η‖2s =
∣∣∣ ∫
As(C)

η ∧ η
∣∣∣.

The metric on Lie(A0) is defined similarly.
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We now recall some notation from [6, §1.8]. Fix a π ∈ Ok such that Ok = Z+Zπ.
If S is any Ok-scheme, define

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS(5.1.2)

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS ,

where iS : Ok → OS is the structure map. We usually just write ε and ε, when the
scheme S is clear from context.

Remark 5.1.1. — If N is an Ok ⊗Z OS-module then N/εN is the maximal quotient
of N on which Ok acts through the structure morphism iS : Ok → OS , and N/εN is
the maximal quotient on which Ok acts through the conjugate of the structure mor-
phism. If D ∈ O×S then

N = εN ⊕ εN,
and the summands are the maximal submodules on which Ok acts through the struc-
ture morphism and its conjugate, respectively.

As in [6, §2.2], the relative de Rham homology HdR
1 (A) is a rank 2n vector bundle

on SKra endowed with an action of Ok induced from that on A. In fact, it is locally
free of rank n as an Ok ⊗Z OSKra

-module, and

V = HdR
1 (A)/εHdR

1 (A)

is a rank n vector bundle. We make det(V) into a metrized line bundle by declaring
that a local section η of its inverse

det(V)−1 ∼=
∧n

εH1
dR(A) ⊂ Hn

dR(A)

has norm (5.1.1) at a complex point s ∈ SKra(C).
As the exceptional divisor Exc ⊂ SKra of [6, §2.3] is supported in characteristics

dividing D, the line bundle O(Exc) is canonically trivial in the generic fiber. We
endow it with the trivial metric. That is to say, the constant function 1, viewed as a
section of O(Exc), has norm ‖1‖2 = 1.

Recall that the line bundle ω of [6, §2.4] was endowed with a metric in [6, §7.2],
defining

ω̂ ∈ P̂ic(SKra).

For any positive real number c, denote by

O〈c〉 ∈ P̂ic(SKra)

the trivial bundle OSKra
endowed with the constant metric ‖1‖2 = c.

Proposition 5.1.2. — There is an isomorphism

O〈8π2eγD−1〉⊗2 ⊗ ω̂
⊗2 ⊗ det(Lie(A))⊗ Lie(A0)⊗2 ∼= O(Exc)⊗ det(V)

of metrized line bundles on SKra.
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Proof. — In [6, §2.4] we defined a line bundle ΩKra on SKra by

ΩKra = det(Lie(A))−1 ⊗ Lie(A0)⊗−2 ⊗ det(V),

and in [6, Theorem 2.6.3] we constructed an isomorphism

ω
⊗2 ∼= ΩKra ⊗O(Exc).

This defines the desired isomorphism

(5.1.3) ω
⊗2 ⊗ det(Lie(A))⊗ Lie(A0)⊗2 ∼= O(Exc)⊗ det(V)

on underlying line bundles, and it remains to compare the metrics.
In the complex fiber this can be made more explicit. At any complex point

s ∈ SKra(C) the Hodge short exact sequence admits a canonical splitting

HdR
1 (As) = F 0(As)⊕ Lie(As),

where F 0(As) = Fil0HdR
1 (As) is the nontrivial step in the Hodge filtration. When

combined with the decomposition of Remark 5.1.1 we obtain

HdR
1 (As) = εF 0(As)︸ ︷︷ ︸

1

⊕ εF 0(As)︸ ︷︷ ︸
n−1

⊕ εLie(As)︸ ︷︷ ︸
n−1

⊕ εLie(As)︸ ︷︷ ︸
1

,

where the subscripts indicate the dimensions as C-vector spaces. There is a similar
decomposition

HdR
1 (A0s) = εF 0(A0s)︸ ︷︷ ︸

0

⊕ εF 0(A0s)︸ ︷︷ ︸
1

⊕ εLie(A0s)︸ ︷︷ ︸
1

⊕ εLie(A0s)︸ ︷︷ ︸
0

.

Denote by

(5.1.4) ψ : HdR
1 (As)×HdR

1 (As)→ C

the alternating pairing determined by the principal polarization on As. The two direct
summands

εF 0(As)⊕ εLie(As) ⊂ HdR
1 (As)

are interchanged by complex conjugation. We endow both εF 0(As) and εLie(As) with
the metric

(5.1.5) ‖b‖2s =

∣∣∣∣ψ(b, b)

2πi

∣∣∣∣ ,
so that the pairing

(5.1.6) ψ : εF 0(As)⊗ εLie(As)→ O〈4π2〉−1
s

is an isometry.
For a, b ∈ εLie(As), define pa⊗b : εF 0(As)→ εLie(As) by

(5.1.7) pa⊗b(e) = ψ(εa, e) · εb = −Dψ(a, e) · b.

The factor of −D comes from the observation that ε acts on εLie(As) as ±
√
−D,

where the sign depends on the choice of π used in (5.1.2).
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We now define Pa⊗b by the commutativity of

(5.1.8) det(Vs)
Pa⊗b

//

∼=
��

det(Lie(As))

∼=
��

εF 0(As)⊗ det(εLie(As))
pa⊗b⊗id

// εLie(As)⊗ det(εLie(As)).

This defines the isomorphism

(5.1.9) (εLie(As))
⊗2 P−→ Hom

(
det(Vs), det(Lie(As))

)
of [6, Lemma 2.4.5].

Lemma 5.1.3. — The isomorphism (5.1.9) defines an isometry

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As)).

Proof. — Fix an isomorphism
∧2n

H1(As(C),Z) ∼= Z and extend it to a C-linear
isomorphism

vol :
∧2n

HdR
1 (As) ∼= C.

Under the de Rham comparison isomorphism H1(As(C),C) ∼= HdR
1 (As), the pair-

ing (5.1.4) restricts to a perfect pairing

ψ : H1(As(C),Z)×H1(As(C),Z)→ 2πiZ.

It follows that there is a unique element Ψ = α ∧ β ∈
∧2

H1(As(C),Z) such that

2πi · ψ(a, b) = ψ(α, a)ψ(β, b)− ψ(α, b)ψ(β, a)

for all a, b ∈ H1(As(C),Z). The map(∧n−1
H1(As(C),Z)

)
⊗
(∧n−1

H1(As(C),Z)
)
→ Z

defined by a⊗ b 7→ vol(Ψ ∧ a ∧ b) is a perfect pairing of Z-modules.
We now metrize the line

det(εLie(As)) ⊂
∧n−1

εHdR
1 (As)

by ‖µ‖2 = |vol(Ψ ∧ µ ∧ µ)|. With this definition, the vertical arrows in (5.1.8) are
isometries.

Using (5.1.6) and (5.1.7), one sees that the map

pa⊗b ∈ Hom(F 0(As), εLie(As))

satisfies ‖pa⊗b‖ = 2πD · ‖a⊗ b‖, and hence also ‖Pa⊗b‖ = 2πD · ‖a⊗ b‖. This proves
that the isomorphism P defines an isometry

O〈2πD〉⊗2
s ⊗ (εLie(As))

⊗2 ∼= Hom
(
det(Vs), det(Lie(As))

)
.

The isomorphism (5.1.6) allows us to rewrite this as

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As)).
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The proof of [6, Proposition 2.4.2] gives an isomorphism

(5.1.10) ωs
∼= Hom(Lie(A0s), εF

0(As)) ⊂ εVC,

where
V = Homk

(
H1(A0s(C),Q), H1(As(C),Q)

)
.

As in [6, §2.1], there is a Q-bilinear form [., .] : V ×V → Q induced by the polarizations
on A0s and As. If we extend this to a C-bilinear form on

VC = Homk⊗C
(
HdR

1 (A0s), H
dR
1 (As)

)
then the metric on ωs is defined, as in [6, §7.2], by

‖x‖2 =
|[x, x]|
4πeγ

for any x ∈ Hom(Lie(A0s), εF
0(As)).

On the other hand, we have defined the Faltings metric on Lie(A0s), and defined a
metric on εF 0(As) by (5.1.5). The following lemma shows that (5.1.10) respects the
metrics, up to scaling by a factor of 4πeγ .

Lemma 5.1.4. — The isomorphism (5.1.10) defines an isometry

O〈4πeγ〉s ⊗ ω̂s
∼= Hom(Lie(A0s), εF

0(As)).

Proof. — The alternating form

ψ0 : HdR
1 (A0s)×HdR

1 (A0s)→ C

analogous to (5.1.4) restricts to a perfect pairing

ψ0 : H1(A0s(C),Z)×H1(A0s(C),Z)→ 2πiZ,

and hence the Faltings metric on Lie(A0s) = εHdR
1 (A0s) is

‖a‖2 = (2π)−1|ψ0(a, a)|.

From the definition of the bilinear form on V , one can show that

[x, x] · ψ0(a, a) = ψ(xa, xa)

for all x ∈ εVC. Comparing with the metric on εF 0(As) shows that

4πeγ · ‖x‖2 · ‖a‖2 = (2π)−1 · |ψ(xa, xa)| = ‖xa‖2,

for all x ∈ ωs and a ∈ Lie(A0s), as claimed.

The two lemmas provide us with isometries

det(Vs) ∼= O〈2πD−1〉⊗2
s ⊗ (εF 0(As))

⊗2 ⊗ det(Lie(As))

∼= O〈8π2eγD−1〉⊗2
s ⊗ ω̂

⊗2
s ⊗ Lie(A0s)

⊗2 det(Lie(As))

and the composition agrees with the isomorphism (5.1.3). This completes the proof
of Proposition 5.1.2.
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Recall the big CM cycle π : Ybig → S∗Kra of Definition 4.2.6. All of the metrized
line bundles on SKra appearing in Proposition 5.1.2 can be extended to the toroidal
compactification S∗Kra (with possible log-singularities along the boundary) so as to
define classes in the codimension one arithmetic Chow group. However, we don’t
actually need this. Indeed, we can define a homomorphism

[− : Ybig] : P̂ic(SKra)→ R

as the composition

P̂ic(SKra)
π∗−→ P̂ic(Ybig) ∼= Ĉh

1
(Ybig)

d̂eg−−→ R.

As the big CM cycle does not meet the boundary of the toroidal compactification,
the composition

Ĉh
1
(S∗Kra) ∼= P̂ic(S∗Kra)→ P̂ic(SKra)

[−:Ybig]−−−−−→ R

agrees with the arithmetic degree along Ybig of Definition 4.2.6.

Remark 5.1.5. — Directly from the definitions, and recalling Remark 2.2.7, the
metrized line bundle O〈c〉 satisfies

[O〈c〉 : Ybig] =
∑

y∈Ybig(C)

− log ‖1‖2 = − log(c) · degC(Ybig).

5.2. The Faltings height. — Recall from §4.2 the moduli stack CMΦ of abelian vari-
eties over OΦ-schemes with complex multiplication by OE and CM type Φ.

Suppose A ∈ CMΦ(C). Choose a model of A over a number field L ⊂ C large
enough that the Néron model π : A → Spec(OL) has everywhere good reduction.
Pick a nonzero rational section s of the line bundle π∗Ω

dim(A)

A/OL
on Spec(OL), and define

hFalt
∞ (A, s) =

−1

2[L : Q]

∑
σ:L→C

log
∣∣ ∫

Aσ(C)

sσ ∧ sσ
∣∣,

and
hFalt
f (A, s) =

1

[L : Q]

∑
p⊂OL

ordp(s) · log N(p).

By a result of Colmez [12], the Faltings height

hFalt
(E,Φ) = hFalt

f (A, s) + hFalt
∞ (A, s)

depends only on the pair (E,Φ).

Proposition 5.2.1. — The arithmetic degree of Lie(A) along Ybig satisfies

[det(Lie(A)) : Ybig] = −2 degC(Ybig) · hFalt
(E,Φ).

Similarly, recalling the Faltings height hFalt
k of (1.4.1),

[Lie(A0) : Ybig] = −2 degC(Ybig) · hFalt
k .
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Proof. — Suppose we are given a morphism y : Spec(OL) → Ybig for some finite
extension L/EΦ. The restriction of A to OL has complex multiplication by OE and
CM type Φ, and comparing the definition of the Faltings height with the definition
of d̂eg found in [19, §3.1], shows that the composition

P̂ic(SKra)
π∗−→ Ĉh

1
(Ybig)

y∗−→ Ĉh
1
(Spec(OL))

d̂eg−−→ R

sends Lie(A)−1 to [L : Q] · hFalt
(E,Φ).

We may choose L in such a way that the Ok-stack

Ybig ×Spec(OΦ) Spec(OL)

admits a finite étale cover by a disjoint union Ybig =
⊔

Spec(OL) of, say, m copies
of Spec(OL), and then

[Lie(A) : Ybig]

degC(Ybig)
=

[Lie(A) : Ybig]

degC(Ybig)
= −

m[L : Q] · hFalt
(E,Φ)

m[L : k]
= −2 · hFalt

(E,Φ).

This proves the first equality, and the proof of the second is similar.

5.3. Gross’s trick. — The goal of §5.3 is to compute the degree of the metrized line
bundle det(V) along the big CM cycle. The impatient reader may skip directly to
Proposition 5.3.6 for the answer. However, the strategy of the calculation is simple
enough that we can explain it in a few sentences.

It is an observation of Gross [14] that the metrized line bundle det(V) behaves, for
all practical purposes, like the trivial bundle OSKra

endowed with the constant metric
‖1‖2 = exp(−c) for a certain period c. This is made more precise in Theorem 5.3.1 and
Corollary 5.3.2 below. A priori, the constant c is something mysterious, but one can
evaluate it by computing the degree of det(V) along any codimension n−1 cycle that
one chooses. We choose a cycle along which the universal abelian scheme A → SKra

degenerates to a product of CM elliptic curves. Using this, one can express the value
of c in terms of the Faltings height hFalt

k appearing in (1.4.1). The degree of det(V)
along Ybig is readily computed from this.

To carry out this procedure, the first step is to construct a cover of SKra(C) over
which the line bundle det(V) can be trivialized analytically. Fix a positive integer m,
let K(m) ⊂ K be the compact open subgroup of [6, Remark 2.2.3], and consider the
finite étale cover

ShK(m)(G,D)(C)

��

G(Q)\D×G(Af )/K(m)

��

Sh(G,D)(C) G(Q)\D×G(Af )/K.

This cover has a moduli interpretation, exactly as with SKra itself, but with addi-
tional level m structure. This allows us to construct a regular integral model SKra(m)
over Ok[1/m] of ShK(m)(G,D), along with a finite étale morphism

SKra(m)→ SKra/Ok[1/m].
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We use the notation det(V) for both the metrized line bundle on SKra, and for its
pullback to SKra(m).

The following results extends a theorem of Gross [14, Theorem 1] to integral models.

Theorem 5.3.1. — Suppose m ≥ 3, let Zalg ⊂ C be the subring of all algebraic integers,
and fix a connected component

C ⊂ SKra(m)/Zalg[1/m].

The line bundle det(V) admits a nowhere vanishing section

η ∈ H0(C, det(V)).

Such a section is unique up to scaling by Zalg[1/m]×, and its norm ‖η‖2 is constant
on C(C).

Proof. — For some g ∈ G(Af ) we have a complex uniformization

Γ\D z 7→(z,g)−−−−−→ C(C) ⊂ ShK(m)(G,D)(C),

where Γ = G(Q) ∩ gK(m)g−1, and under this uniformization the total space of the
vector bundle det(V) is isomorphic to Γ\(D× C), where the action of Γ on C is via
the composition

Γ ⊂ G(Q)→ GL(W )
det−−→ k× ⊂ C×.

The compact open subgroup K(m) is constructed in such a way that there is a
Ok-lattice ga ⊂W (k) stabilized by Γ, and such that Γ acts trivially on ga/mga. This
implies that the above composition actually takes values in the subgroup

{ζ ∈ O×k : ζ ≡ 1 (mod mOk)},

which is trivial by our assumption that m ≥ 3. In other words, the vector bundle
det(V) becomes (non-canonically) trivial after restriction to X(C). In fact, the ar-
gument of [14, Theorem 1] shows that one can find a trivializing section η that is
algebraic and defined over Qalg ⊂ C, and that such a section is unique up to scaling
by (Qalg)× and has constant norm ‖η‖2.

All that remains to show is that η may be chosen so that it extends to a nowhere
vanishing section over Zalg[1/m]. The key is to recall from [6, §2.3] that Sh(G,D) has
a second integral model SPap over Ok, which is normal with geometrically normal
fibers. It is related to the first by a surjective morphism SKra → SPap, which restricts
to an isomorphism over Ok[1/D]. It has a moduli interpretation very similar to that
of SKra, which allows us to do two things. First, there is a canonical descent of the
vector bundle V to SPap, defined again by V = HdR

1 (A)/εHdR
1 (A), but where now

(A0, A) is the universal pair over SPap. Second, we can add level K(m) structure to
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obtain a cartesian diagram

SKra(m) //

��

SKra/Ok[1/m]

��

SPap(m) // SPap/Ok[1/m]

of Ok[1/m]-stacks with étale horizontal arrows.
In particular, SPap(m) is normal with geometrically normal fibers, from which it

follows that the above diagram extends to

C //

��

SKra(m)/Zalg[1/m]
//

��

SKra/Zalg[1/m]

��

B // SPap(m)/Zalg[1/m]
// SPap/Zalg[1/m]

for some connected component B ⊂ SPap(m)/Zalg[1/m] with irreducible fibers.
Now fix a number field L ⊂ C containing k large enough that the section η and

the components C and B are defined over OL[1/m]. Viewing η as a rational section
of the line bundle det(V) on B, its divisor is a finite sum of vertical fibers of B, and
so there is a fractional OL[1/m]-ideal b ⊂ L such that

div(η) =
∑
q|b

ordq(b) ·Bq,

where Bq is the mod q fiber of Y. By enlarging L we may assume that b is principal,
and hence η can be rescaled by an element of L× to have trivial divisor on B. But
then η also has trivial divisor on C, as desired.

Corollary 5.3.2. — Let A ⊂ SKra be a connected component. There is a constant
c = cA ∈ R with the following property: for any finite extension L/k and any mor-
phism Spec(OL)→A, the image of det(V) under

(5.3.1) P̂ic(SKra)→ P̂ic(A)→ P̂ic(Spec(OL))
d̂eg−−→ R

is equal to c · [L : k].

Proof. — Fix an integer m ≥ 3. The open and closed substack

A(m) = A ×SKra
SKra(m)

of SKra(m), may be disconnected, so we fix one of its connected componentsA(m)◦ ⊂
A(m). This is an Ok[1/m]-stack, which may become disconnected after base change
to Zalg[1/m]. Fix one connected component

C ⊂A(m)◦/Zalg[1/m]

and let η ∈ H0(C, det(V)) be a trivializing section as in Theorem 5.3.1.
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Choose a finite Galois extension M/k contained in C, large enough that C and η
are defined over OM [1/m]. For each σ ∈ Gal(M/k) we obtain a trivializing section

ησ ∈ H0(Cσ, det(V)),

which, by Theorem 5.3.1, has constant norm ‖ησ‖.
Let R(m) be the quotient of R by the Q-span of {log(p) : p | m}, and define

c(m) =
−1

[M : k]

∑
σ∈Gal(M/k)

log ‖ησ‖2 ∈ R(m).

This is independent of the choice of M , and also independent of η by the uniqueness
claim of Theorem 5.3.1. Moreover, for any number field L/k and any morphism

Spec(OL[1/m])→A(m)◦,

the image of det(V) under

P̂ic(A(m)◦)→ P̂ic(Spec(OL[1/m]))
d̂eg−−→ R(m)

is equal to c(m) · [L : k].
Now suppose we are given some Spec(OL)→A as in the statement of the corollary.

After possible enlarging L, this morphism admits a lift

A(m)◦

��

Spec(OL[1/m]) //

77

A/Ok[1/m],

and from this it is easy to see that the image of det(V) under the composition of
(5.3.1) with R→ R(m) is equal to c(m) · [L : k].

In particular, the image of det(V) under the composition of (5.3.1) with the diag-
onal embedding

R ↪→
∏
m≥3

R(m)

is equal to the tuple of constants c(m) · [L : Q]. What this proves is that there is a
unique c ∈ R whose image under the diagonal embedding is the tuple of constants
c(m), and that this is the c we seek.

Proposition 5.3.3. — The constant c = cA of Corollary 5.3.2 is independent of A,
and is equal to

c = (4− 2n)hFalt
k + log(4π2D),

where hFalt
k is the Faltings height (1.4.1).

Proof. — Recall that we have fixed a triple (a0, a, iE) as in §4.2. Fix a g ∈ G(Af ) in
such a way that the map

D
z 7→(z,g)−−−−−→ Sh(G,D)(C)
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factors through A(C), and a decomposition of Ok-modules

ga = a1 ⊕ · · · ⊕ an,
in which each ai is projective of rank 1. Define elliptic curves over the complex numbers
by

Ai(C) = gai\aiC/εaiC
for 0 ≤ i < n, and

An(C) = gan\anC/εanC.
Endow the abelian variety A = A1 × · · · ×An with the diagonal action of Ok, and

the principal polarization induced by the perfect symplectic form on ga, as in the proof
of [6, Proposition 2.2.1]. The pair (A0, A) then corresponds to a point (z, g) ∈A(C).

As each Ai has complex multiplication by Ok, we may choose a number field L con-
taining k over which all of these elliptic curves are defined and have everywhere good
reduction. If we denote again by A0, . . . , An and A the Néron models over Spec(OL),
the pair (A0, A) determines a morphism

Spec(OL)→A ⊂ SKra.

The pullback of V to Spec(OL) is the rank n vector bundle

V|Spec(OL)
∼= V1 ⊕ · · · ⊕Vn,

whereVi = HdR
1 (Ai)/εH

dR
1 (Ai). We endowV−1

i
∼= εH1

dR(Ai) with the metric (5.1.1),
so that

det(V)|Spec(OL)
∼= V1 ⊗ · · · ⊗Vn

is an isomorphism of metrized line bundles.
The following two lemmas relate the images of V1, . . . ,Vn under the arithmetic

degree

(5.3.2) P̂ic(Spec(OL))
d̂eg−−→ R

to the Faltings height hFalt
k .

Lemma 5.3.4. — For 1 ≤ i < n, the arithmetic degree (5.3.1182equation.5.3.12 sends

Vi 7→ −[L : Q] · hFalt
k .

Proof. — The action of Ok on Lie(Ai) is through the inclusion Ok → OL, and hence,
as in [6, Remark 2.3.5], the quotient map

HdR
1 (Ai)→ Lie(Ai)

descends to an isomorphism of line bundles Vi
∼= Lie(Ai). If we endow Lie(Ai)

−1 with
the Faltings metric (5.1.1) then this isomorphism respects the metrics, and the claim
follows as in the proof of Proposition 5.2.1.

Lemma 5.3.5. — The arithmetic degree (5.3.1182equation.5.3.12 sends

Vn 7→ [L : Q] ·
(
hFalt
k − 1

2
log(4π2D)

)
.
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Proof. — The action of Ok on Lie(Ai) is through the complex conjugate of the in-
clusion Ok → OL, from which it follows that the Hodge short exact sequence takes
the form

0 // F 0(An) // HdR
1 (An) // Lie(An) // 0

0 // εHdR
1 (A0) // HdR

1 (An) // HdR
1 (An)/εHdR

1 (An) // 0.

In particular, the endomorphism ε on HdR
1 (An) descends to an isomorphism

Vn
∼= F 0(An).

Let
ψn : HdR

1 (An)⊗HdR
1 (An)→ OL

be the perfect pairing induced by the principal polarization on An, and define a second
pairing Ψ(x, y) = ψn(εx, y). It follows from the previous paragraph that this descends
to a perfect pairing

Ψ : Vn ⊗ Lie(An) ∼= OL.

However, if we endow Lie(An)−1 with the Faltings metric (5.1.1), then this pairing is
not a duality between metrized line bundles.

Instead, an argument as in the proof of Proposition 5.1.2 shows that

Ψ : Vn ⊗ Lie(An) ∼= OL

〈
1

2π
√
D

〉
.

is an isomorphism of metrized line bundles. With this isomorphism in hand, the
remainder of the proof is exactly as in the previous lemma.

The two lemmas show that the image of det(V) under (5.3.1) is
n∑
i=1

d̂eg(Vi) = [L : Q] ·
(

(2− n) · hFalt
k − 1

2
log(4π2D)

)
as claimed. This completes the proof of Proposition 5.3.3.

Proposition 5.3.6. — The metrized line bundle det(V) satisfies

[det(V) : Ybig] = degC(Ybig) ·
(

(4− 2n)hFalt
k + log(4π2D)

)
.

Proof. — As in the proof of Proposition 5.2.1, we may fix a finite extension L/EΦ

and a finite étale cover Ybig =
⊔

Spec(OL) of the Ok-stack

Ybig ×Spec(OΦ) Spec(OL)

by, say, m copies of Spec(OL). Corollary 5.3.2 then implies

[det(V) : Ybig]

degC(Ybig)
=

[det(V) : Ybig]

degC(Ybig)
=
cm · [L : k]

m · [L : k]
= c.

Appealing to the evaluation of the constant c found in Proposition 5.3.3 completes
the proof.
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5.4. Theorems C and D. — We can now put everything together, and relate the arith-
metic degree of ω̂ along Ybig to the Faltings height hFalt

(E,Φ).

Proposition 5.4.1. — The metrized line bundle ω̂ satisfies
[ω̂ : Ybig]

degC(Ybig)
= hFalt

(E,Φ) +
n− 4

2
· Λ′(0, χk)

Λ(0, χk)
+
n

4
log(16π3eγ).

Proof. — Proposition 5.1.2 shows that

2 · [O〈8π2eγD−1〉 ⊗ ω̂ : Ybig] + [det(Lie(A)) : Ybig] + 2 · [Lie(A0) : Ybig]

= [O(Exc) : Ybig] + [det(V) : Ybig].

Proposition 5.2.1 and Remark 5.1.5 imply that the left hand side is equal to

2 · [ω̂ : Ybig]− 2 degC(Ybig) ·
(

log(8π2eγD−1) + hFalt
(E,Φ) + 2 · hFalt

k

)
,

while Proposition 5.3.6 shows that the right hand side is equal to

2 degC(Ybig) ·
(
(2− n)hFalt

k + log(2πD)
)
.

Note that we have used here the equality

[O(Exc) : Ybig] = [(Exc, 0) : Ybig] = degC(Ybig) · log(D).

from the proof of Proposition 4.2.11.
Combining these formulas yields

[ω̂ : Ybig]

degC(Ybig)
= hFalt

(E,Φ) + (4− n)hFalt
k + log(16π3eγ),

and substituting the value (1.4.1) for hFalt
k completes the proof.

It is clear from Proposition 5.4.1 that Theorems C and Theorem D are equivalent.
As Theorem C is proved in [29], this completes the proof of Theorem D.

On the other hand, we proved Theorem D in §4.5 under the assumption that n ≥ 3
and the discriminants of k and F are odd and relatively prime, and so this gives a
new proof of Theorem C under these hypotheses.
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