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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES II:
ARITHMETIC APPLICATIONS

by
Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We prove two formulas in the style of the Gross-Zagier theorem, relating
derivatives of L-functions to arithmetic intersection pairings on a unitary Shimura
variety. We also prove a special case of Colmez’s conjecture on the Faltings heights
of abelian varieties with complex multiplication. These results are derived from the
authors’ earlier results on the modularity of generating series of divisors on unitary
Shimura varieties.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura
unitaires II: applications arithmétiques)

Nous prouvons deux formules dans le style du théoréme de Gross-Zagier, reliant les
dérivées des fonctions L aux accouplements d’intersection arithmétique sur une variété
de Shimura unitaire. Nous prouvons également un cas particulier de la conjecture de
Colmez sur les hauteurs de Faltings des variétés abéliennes & multiplication complexe.
Ces résultats sont déduits des résultats antérieurs des auteurs sur la modularité des
séries génératrices de diviseurs sur les variétés de Shimura unitaires.

1. Introduction

Fix an integer n > 3, and a quadratic imaginary field k C C of odd discriminant
disc(k) = —D. Let xx : A* — {£1} be the associated quadratic character, let
05 C Op denote the different of k, let hy, be the class number of k, and let wg, be the
number of roots of unity in k.
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128 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

By a hermitian Oy-lattice we mean a projective Op-module of finite rank endowed
with a nondegenerate hermitian form.

1.1. Arithmetic theta lifts. — Suppose we are given a pair (ag, a) in which

— ap is a self-dual hermitian Og-lattice of signature (1,0),

— a is a self-dual hermitian O-lattice of signature (n —1,1).
This pair determines hermitian k-spaces Wy = agg and W = ag.

From this data we constructed in [6] a smooth Deligne-Mumford stack Sh(G,D)
of dimension n — 1 over k with complex points

Sh(G,D)(C) = GQ\D x G(Ay)/K.

The reductive group G C GU(Wp) x GU(W) is the largest subgroup on which the
two similitude characters agree, and K C G(Ay) is the largest subgroup stabilizing
the Z-lattices Ay C Wo(Ay) and @ C W(Ay).

We also defined in [6, §2.3] an integral model

(1.1.1) Skra € My 0y X0, m&ré—n,l)

of Sh(G,D). It is regular and flat over O, and admits a canonical toroidal compact-
ification Skra < Si,, Whose boundary is a smooth divisor.

The main result of [6] is the construction of a formal generating series of arithmetic
divisors

(1.1.2) o) = 3 Zigialm) - 4" € Chy(Sica) ]
m>0

valued in the Gillet-Soulé codimension one arithmetic Chow group with rational co-
efficients, extended to allow log-log Green functions at the boundary as in [10, 4], and
the proof that this generating series is modular of weight n, level I'y(D), and charac-
ter xi. The modularity result'implies that the coefficients span a finite-dimensional
subspace of the arithmetic Chow group [6, Remark 7.1.2].

After passing to the arithmetic Chow group with complex coefficients, for any
classical modular form

g € Sn(Lo(D); Xk)
we may form the Petersson inner product
—— ~, . dudv

G [ o050 5

where 7 = u + iv./As in [24], define the arithmetic theta lift

(1.1.3) 6(9) = ($,9)per € Che(Sicsa).

Armed with the construction of the arithmetic theta lift (1.1.3), we are now able
to complete the program of [18, 19, 7] to prove Gross-Zagier style formulas relating
arithmetic intersections to derivatives of L-functions.

The Shimura variety Sk,, carries different families of codimension n— 1 cycles con-
structed from complex multiplication points, and our results show that the arithmetic
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MODULARITY OF UNITARY GENERATING SERIES II 129

intersections of these families with arithmetic lifts are related to central derivatives
of L-functions.

1.2. Central derivatives and small CM points. — In §2 we construct an étale and
proper Deligne-Mumford stack Ysm over O, along with a morphism
Cysm - S%ra'

This is the small CM cycle. Intersecting arithmetic divisors.against Yy, defines a
linear functional

—~1
[_ : Cysm] : ChC(Sik(ra) - (C7

and our first main result computes the image of the arithmetic theta lift (1.1.3) under
this linear functional.
The statement involves the convolution L-function L(g, 84, s) of two modular forms

ge Sn(wL), Op € Mnfl(wX)

valued in finite-dimensional representations of SLy(Z). We refer the reader to §2.3 for
the precise definitions. Here we note only that §.is the image of g under an induction
map

(1.2.1) Sn(Lo(D);xk) — Sn(@L)

from scalar-valued forms to vector-valued forms, that 6, is the theta function at-
tached to a quadratic space A over-Z.of signature (2n —2,0), and that the L-function
L(g,60h,s) vanishes at its center of symmetry s = 0.

Theorem A. — The arithmetic theta lift (1.1.3) satisfies

—~ d
[9(9) : cysm] = _deg(c((ysm) ’ %L(939A73)|S:0'
Here we have defined
1
dege(Ysm) = D Aut)]’
Y€Ysm (C)

where the sum is over the finitely many isomorphism classes of the groupoid of complex
points of Cysm, viewed as an Og-stack.

The proof is given in §2, by combining the modularity result of [6] with the main
result of [7]. In §3 we provide alternative formulations of Theorem A that involve
the usual convolution L-function of scalar-valued modular forms, as opposed to the
vector-valued forms g and 8,. See especially Theorem 3.4.1.
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130 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

1.3. Central derivatives and big CM points. — Fix a totally real field F' of degree n,
and define a CM field

E=k®qfF.

Let ® C Hom(E,C) be a CM type of signature (n — 1,1), in the sense that there is a
unique °P € ®, called the special embedding, whose restriction to .k agrees with the
complex conjugate of the inclusion k C C. The reflex field of the pair (E, ®) is

Es = ¢P(E) C C,

and we denote by Og C Eg its ring of integers.
We define in §4.2 an étale and proper Deligne-Mumford stack Yz over Og, along
with a morphism of Og-stacks

*
Cybig - SKra .

This is the big CM cycle. Here we view UYpig as an Op-stack using the inclusion
O C Og of subrings of C (which is the complex conjugate of the special embed-
ding ¢ : O — Og). Intersecting arithmetic divisors against Yy, defines a linear
functional

—1
[_ : Cybig] : ChC(Sf(ra) - C.

Our second main result relates the image of the arithmetic theta lift (1.1.3) under
this linear functional to the central derivative of a generalized L-function defined as
the Petersson inner product (E(s),§)pet- The modular form §(7) is, once again, the
image of g(7) under the induction map(1.2.1). The modular form E(7, s) is defined as
the restriction via the diagonal embedding H — L™ of a weight one Hilbert modular
Eisenstein series valued in the space of the contragredient representation wy. See §4.3
for details.

Theorem B. — Assume that the discriminants of k/Q and F'/Q are odd and relatively
prime. The arithmetic theta lift (1.1.3) satisfies

~ -1 d -
[6(9) : Yoigl = — - dege(Yvig) - - (E(s): Ghper| -
Here we have defined

dege(Yvig) = D -

Aut(y)|’
vethmc) ATW))

where the sum is over the finitely many isomorphism classes of the groupoid of complex|
points of Yyig, viewed as an O-stack.

The proof is given in §4, by combining the modularity result of [6] with the inter-
section calculations of [8, 18, 19].
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MODULARITY OF UNITARY GENERATING SERIES II 131

1.4. Colmez’s conjecture. — Suppose E is a CM field with maximal totally real sub-
field F. Let Dg and Dp be the absolute discriminants of E and F, set T'r(s) =
7n~%/2T'(s/2), and define the completed L-function

A _|Pe Ep IFQ,
(s,xE) = Dr r(s+1) (s,xE)

of the character xg : Ay — {£1} determined by E/F. It satisfies the functional
equation A(1 —s,xg) = A(s, xr), and

A0, xg) _ L'0,xe) 1 Dg| [F:Q]
= + =log | —| — log(4me”),
AOxe) ~ LO.xp) 2% |D| 2 )
where v = —T"(1) is the Euler-Mascheroni constant.

Suppose A is an abelian variety over C with complex multiplication by O and
CM type ®. In particular A is defined over the algebraic closure of Q in C. It is a
theorem of Colmez [12] that the Faltings height

hf‘g{t@) — hFalt (A)
depends only on the pair (E, ®), and not on A itself. Moreover, Colmez gave a con-
jectural formula for this Faltings height in terms of logarithmic derivatives of Artin
L-functions. In the special case where E. ="k, Colmez’s conjecture reduces to the

well-known Chowla-Selberg formula

1 AN(@O,xe) 1
1.4.1 pEalt — _— . A% Z og(1673e”Y
( ) k 2 A(O7Xk) 4 Og( T e )7
where we omit the CM type {id} C Hom(k, C) from the notation.
Now suppose we are in the special case of §1.3, where
EF=k®qF

and ® C Hom(E, C) has signature (n — 1,1). In this case, Colmez’s conjecture sim-
plifies to the equality of the following theorem.

Theorem C ([29]). — For a pair (E,®) as above,

2. NO,xg)  4-n N(Oxk) n
prate _ 2 AU XE) | o AR 2 og(167%eY).
(E,%) n A0, xEg) 2 A0, xk) 4 2 )

In [6, §2.4] we defined the line bundle of weight one modular forms w on Sk,,. It
was endowed it with a hermitian metric in [6, §7.2], and the resulting metrized line
bundle determines a class .

® € Chg(Skya)-
The constant term of (1.1.2) is

~

(1.4.2) 20 (0) = —o + (Exc, —log(D))

ra

where Exc is the exceptional locus of Sk,, appearing in [6, Theorem 2.3.4]. It is a
smooth effective Cartier divisor supported in characteristics dividing D, and we view
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132 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

it as an arithmetic divisor by endowing it with the constant Green function — log(D)
in the complex fiber.

Theorem D. — The metrized line bundle @ satisfies
~ —2 Al(oa XE)
:Ypig] = — - d R
[(‘) Cyb g] n egC(Cyb g) A(O,XE)

Theorem C is proved in [29] as a consequence of the average version of Colmez’s
conjecture [2, 30, 20]. Note that the proof in [29] does not require our standing hypoth-
esis that disc(k) is odd. Of course the assumption that disc(k) is.odd is still needed
for Theorem D, as it is only under these hypotheses that we have even defined the
integral model Sk,, and its line bundle of weight one modular forms.

In §5 we will show that Theorems C and D are equivalent. One can interpret this in
one of two ways. As Theorem C is already known, this equivalence proves Theorem D.
On the other hand, in §4.5 will give an independent_proof of Theorem D under the
additional assumption that the discriminants of k and F' are odd and relatively prime.
In this way we obtain a new proof of Theorem C under these extra hypotheses.

1.5. The case n = 2. — Throughout the introduction we have assumed that n > 3,
and the reader might wonder how much of what we have written extends to the case
n = 2.

As explained in [6, §1.6], when n = 2 the proof of the modularity of (1.1.2) breaks
down because there is no known integral model of Sh(G,D) whose reduction at the
primes of Oy dividing D is normal. The existence of such a model when n > 2 is used
in [loc. cit.] to compute the vertical components of divisors of Borcherds products.

When n = 2, the Shimura variety Sh(G,D) is essentially a union of modular
curves (if the k-hermitian space W admits an isotropic line) or compact quaternionic
Shimura curves (if W is anisotropic). In either case the analogues of Theorems A and
B are close in spirit to the Gross-Zagier theorem [15] and its generalizations [31]. In
particular, the statement of Theorems A is quite parallel to the key result Theorem 6.1
in [15, Section 1.6]. If we interchange in the computation of [(9\(9) : Ysm] the order
of taking the Petersson inner product and the height pairing, this quantity is very
analogous to the left hand side of Theorem 6.1 in [15]. Both quantities are expressed
as central derivatives of a Rankin convolution L-function of g and a binary theta
function which is determined by the CM cycle in question. If g is a newform, then
§(g) should lie in a_g-isotypical component and the height pairing in our Theorem A
should be proportional to the height of the g-isotypical component of (a twist of) Y.
It would be interesting to make such a comparison precise. However, note that there
are substantial differences as well. While we work with unitary Shimura varieties and
CM points whose discriminants are equal to the level, Gross and Zagier work with
GLy Shimura varieties and CM points whose discriminants are coprime to the level.

Theorem C is true as stated when n = 2, and is proved in [29]. Indeed, Colmez’s
conjecture is known for all quartic CM fields. If the quartic CM field is Galois over Q,
then the Galois group is abelian and Colmez’s conjecture is known by work of Colmez
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[12] and Obus [25]. In the non-Galois case the CM types form a single Aut(C/Q)-orbit;
as Colmez’s conjecture is constant on such orbits, the full Colmez conjecture follows
from the average case proved in [2] and [30].

Theorem D is also true as stated when n = 2. Indeed, when we prove the equivalence
of Theorems C and D in §5 we only assume n > 2.

1.6. Thanks. — The results of this paper are the outcome of ‘a long term project,
begun initially in Bonn in June of 2013, and supported in a crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San-Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

2. Small CM cycles and derivatives of L-functions

In this section we combine the results of [6] and [7] to prove Theorem A. Although
we will restrict to n > 3 in §2.5, we allow n > 2 until that point.

2.1. A Shimura variety of dimension zero. — Define a rank three torus Ty, over Q as
the fiber product

Tsm Gm
J{ ldiag.
Resk/9Gm x Resg0Gm N N Gy x Gy

Its group of Q-points is
Tom(Q) = {(z,y) € K™ x k™ : 2T = yy}.

The fixed embedding -k C C identifies Deligne’s torus S with the real algebraic
group (Resg,qGm)r, and the diagonal inclusion

S — (Resk/@Gm)R X (Resk/QGm)R

factors through a morphism hgy : S — Tymr. The pair (Tym, {hsm}) is a Shimura
datum, which, along with the compact open subgroup

Ko = Tum(87) 0 (O3 x 67),
determines a 0-dimensional k-stack Sh(7y,) with complex points

Sh(Tsm)(C) = Tsm(Q)\{hsm} X Tsm(Af)/Ksm'
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2.2. The small CM cycle. — The Shimura variety just constructed has a moduli in-
terpretation, which allows us to construct an integral model. The interpretation we
have in mind requires first choosing a triple (ag, a;, b) in which

— ag is a self-dual hermitian Og-lattice of signature (1,0),

— 0y is a self-dual hermitian Og-lattice of signature (0, 1),

— b is a self-dual hermitian Og-lattice of signature (n — 1,0).
The hermitian forms on ay and b induce a hermitian form of signature (n — 1,0) on
the projective Og-module

A = Homg, (ao, b),

as explained in [7, §2.1] or [6, (2.1.5)].

Recall from [7, §3.1] or [6, §2.3] the O-stacks N, o) and M ;). Both parametrize
abelian schemes A — S of relative dimension p > 1 over O-schemes, endowed with
principal polarizations and ©-actions. For the first-moduli problem we impose the
signature (p,0) condition that O acts on the Og-module Lie(A) via the structure
morphism O — Og. For the second we impose the signature (0, p) condition that the
action is by the complex conjugate of the structure morphism. Both of these stacks
are étale and proper over O by [19, Proposition 2.1.2].

Remark 2.2.1. — The generic fibers of Ny o) and N 1) are the Shimura varieties
associated to apg and a1g, while the generic fiber of M, _1 ) contains the Shimura,
variety associated to bg as an open and closed substack. For more precise information,
see [23, Proposition 2.13] and the lemma that precedes it.

Denote by Cysm the functor that associates to every Og-scheme S the groupoid of]
quadruples (Ao, 41, B,n) in which

(2.2.1) (Ao, A1, B) € My,0)(8) x Myo,1)(S) x Myr—1,0)(S),
and
(2.2.2) n: Homg, (Ao, B) = A

is an isomorphism of étale sheaves of hermitian Oj-modules, where the hermitian form
on the left hand side is defined as in [6, (2.5.1)]. We impose the further condition that
for every geometric point' s — S, and every prime £ # char(s), there is an isomorphism
of hermitian Oy, o-lattices

(2:2.3) Homg, (Aos[¢*], A15[¢*]) 2 Homo, (a0, 01) ®z Z.
Lemma 2.2.2./— If
s — My1,0) X0, Myo,1) X0, Myn-1,0)

is a geometric point of characteristic 0 such that (2.2.3) holds for all primes £ except
possibly one, then it holds for the remaining prime as well.

Proof. — The proof is identical to [6, Lemma 2.2.2]. O
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Proposition 2.2.3. — The functor @sm is represented by a Deligne-Mumford stack,
étale and proper over O, and there is a canonical isomorphism of k-stacks

(224) Sh(Tsm) = Cysm/k'

Proof. — For any Og-scheme S, let N'(.S) be the groupoid of triples (2.2.1) satisfying
(2.2.3) for every geometric point s — S and every prime ¢ # char(s). In other words,
the definition is the same as Cgsm except that we omit the datum (2.2.2) from the
moduli problem.

We interrupt the proof of Proposition 2.2.3 for a lemma.

Lemma 2.2.4. — The functor N is represented by an open and closed substack
N ¢ CYTL(LO) X0y ‘WL(OJ) X0 ‘m,(n_l,o).

Proof. — This is [7, Proposition 5.2]. As the proof there is left to the reader, we
indicate the idea. Let

B - ‘WL(LO) X0y ‘Y)’L(O)l) X0 C)’n,(nfl,o)

be one connected component, and suppose there is a geometric point s — B of]
characteristic p such that (2.2.3) holds for/all £ # p. The geometric fibers of the £-adic
sheaf Homg, (Ag[€°], A1[€>°]) on

B(p) = B Xspec(z) SPec(Z(y))

are all isomorphic, and therefore (2.2.3) holds for all geometric points s — By
and all £ # p. In particular, using Lemma 2.2.2, if s — B is a geometric point of
characteristic 0, then (2.2.3) holds for every prime ¢. Having proved this, one can
reverse the argument to see that (2:2.3) holds for every geometric point s — B and
every £ # char(s). Thus if the condition (2.2.3) holds at one geometric point, it holds
at all geometric points on the-same connected component. O

We now return to the proof of Proposition 2.2.3. As noted above, the stacks mmo)
and C)’I’L(O,p) are étale and proper over Oy, and hence the same is true of JY.

Let (Ao, A1, B) be the universal object over JN'. Combining [7, Theorem 5.1] and
[17, Corollary 6.9], the étale sheaf Homg, (Ao, B) is represented by a Deligne-Mumford
stack whose connected components are finite étale over N'. Fixing a geometric point
s — JV', we obtain a representation of 7{!(/N',s) on a finitely generated Og-module
Homg, (Ags, Bs), and the kernel of this representation cuts out a finite étale cover
N — N over which the sheaf Homg, (Ao, B) becomes constant.

It is now easy to see that the functor Yy is represented by the disjoint union of
finitely many copies of the maximal open and closed substack of N’ over which there
exists an isomorphism (2.2.2).

It remains to construct the isomorphism (2.2.4). The natural actions of O on ag
and b, along with the complex conjugate of the natural action of O on a;, determine
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a morphism of reductive groups

(w,2)—(w,Z,2)

Resk/QGm X Resk/@Gm GU(aoQ) X GU(alQ) X GU(bQ).

Restricting this morphism to the subtorus Ty, defines a morphism

S L=, 7k — GU(agr) x GU(arr) x GU(bg),

endowing the real vector spaces agr, 01r, and br with complex structures.
The isomorphism (2.2.4) on complex points sends a pair

(hsm,9) € Sh(Tem)(C)
to the quadruple (Ao, 41, B,n) defined by
Ao(C) = aor/gao, A1(C) = a1r/ga1, < B(C) = br/gb,

endowed with their natural Og-actions and polarizations as in the proof of [6, Propo-
sition 2.2.1]. The datum 7 is the canonical identification

Homg, (Ao, B) = Homg, (gag, gb) = Homg, (ag, b) = A.

It follows from the theory of canonical models that this isomorphism on complex points
descends to an isomorphism of k-stacks, completing the proof of Proposition 2.2.3. [

The finite group Aut(A) of automorphisms of the hermitian lattice A acts on Cysm
by
Yk (A07A17B177) = (A07A17B77 077)7

allowing us to form the stack quotient Ygm = Aut(A)\‘i:Jsm. The forgetful map

Yom = M0 % Mho,1) X My,
(all fiber products over Oy) factors through an open and closed immersion
Yom = Mya,0) X Myo,1) X Myn—1,0)

whose image is the open and closed substack JY" of Lemma, 2.2.4.

The triple (ag,a;,b) determines a pair (ag,a) as in the introduction, simply by
setting a = a; @ b. This data determines a unitary Shimura variety with integral
model Sk;, as in (1.1.1), and there is a commutative diagram

Ysm = My1,0) X Myo,1y X Myn—1,0)

| |

Skra < My ,0) x ME2 .

The vertical arrow on the right sends
(Ao, A1, B) — (Ao, A1 x B),

and the arrow 7 is defined by the commutativity of the diagram.
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Remark 2.2.5. — In order for A; x B to define a point of mgffl 1), We must endow
its Lie algebra with a codimension one subsheaf

CfAle C Lie(A1 X B)
satisfying Kramer’s condition [6, §2.3]. We choose Fa, x5 = Lie(B):

Definition 2.2.6. — Composing the morphism 7 in the diagram above with the inclu-
sion of Sk, into its toroidal compactification, we obtain a morphism of ©-stacks

T Cysm - Sf{ra

called the small CM cycle.
As in [19, Definition 3.1.8], there is a linear functional
1
ChC (Sf(ra) —-C

called arithmetic degree along Ysm and denoted 2 — [2 : Ysm), defined as the
composition

—~1 * ~1 deg

Ch(C(Sf{ra) = Ch((l(cysm) i’
The first arrow is pullback of arithmetic divisors. The second arrow (arithmetic degree)
is normalized as follows: An irreducible divisor & C Ygm is necessarily supported in
finitely many nonzero characteristics, and hence any C-valued function Gr(<Z,.) on

the finite set Ysm (C) defines a Green function for it. The arithmetic degree of the
arithmetic divisor

(Z,Gr(Z. ) € Che(Yam)
is defined to be

deg log(N(q)) Gr(Z, 2)
ToR(Z, Gr(, ) = JosN@) | g __Gr(&)
qCZ@k zei%f;‘g) #Auto(2) ze‘ljszm((c) #AUtCUsm(C)(Z)

where F2'2 is an algebraic closure of Oy /q, and N(q) = #(Ox/q).

Remark 2.2.7. — The above definition of arithmetic degree does not include a factor
of 1/2 in front of the archimedean contribution, seemingly in disagreement with the
usual definition (see [13, §3.4.3] for example). In fact there is no disagreement. Our
convention is that Yy, (C) means the complex points of Ysm (C) as a k-stack, whereas
in the usual definition it would be regarded as a Q-stack. Thus the usual definition
includes a sum over twice as many complex points, but with a 1/2 in front.

Remark 2.2.8. — The small CM cycle arises from a morphism of Shimura varieties.
Indeed, there is a morphism of Shimura data (Tsm, {hsm}) — (G, D), and the induced
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morphism of Shimura varieties sits in a commutative diagram

Sh(Tym) Sh(G, D)
C’gsm/k Cysm/k = SKra/k'
Proposition 2.2.9. — The degree degc(Ysm) of Theorem A satisfies

21—0(D)
dege(Ysm) = (hue/wie)? - TAut(A)]"

where o(D) is the number of distinct prime divisors of D.

Proof. — This is an elementary calculation. Briefly, the groupoid Y¢m(C) has
g1—o(D )hi isomorphism classes of points, and each point has the same automorphism
group O x OF x U(A). O

Recall from (1.4.2) that the constant term of (1.1.2) is

Zig4(0) = =& + (Bxc; = log(D)),

where @ is the metrized line bundle of weight. one modular forms. The exceptional
locus Exc C Skr, was defined in [6, §2.3]. It is a reduced effective Cartier divisor
supported in characteristics dividing D, and can be characterized as follows. The
integral model Sk, carries over it an abelian scheme A — Sk, of relative dimension n
endowed with an action of Og. This abelian scheme is obtained by pulling back
the universal object from the second factor of the fiber product in (1.1.1). If we let
§ € O be a fixed square root of —D;then Exc is the reduced stack underlying closed
substack of Sk, defined by 4 - Lie(A) = 0.

Proposition 2.2.10. — The constant term (1.4.2) satisfies

o~ - A (0, x&)
2500) : Y] = —[@ : Y] = 2de om) ol
[ira (0) : Ysm| =—[@ : Yol gc(Ysm) A0, xx)
Proof. — The second equality was proved in the course of proving [7, Theorem 6.4].

We note that the argument uses the Chowla-Selberg formula (1.4.1) in an essential
way.
The first equality is-equivalent to

[(Exc, —log(D)) : Ysm] = 0,

and so it suffices.to prove

(2.2.5) [(0,10g(D)) : Ysm] = dege(Ysm) - log(D) = [(Exc, 0) : Ysm]-
The first equality in (2.2.5) is obvious from the definitions. To prove the second
equality, we first prove

(2.2.6) cysm X Sgern IXC = cysm X Spec(O) Spec(@k/bk).
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As the exceptional locus Exc C Sk;a is reduced and supported in characteristics
dividing D, it satisfies

Exc C ‘SKra X Spec(9) Spec(ek/ak)'

This implies the inclusion C in (2.2.6). As Cysm is étale over Oy, the right hand side
of (2.2.6) is reduced, and hence so is the left hand side. To prove that equality holds
in (2.2.6), it now suffices to check the inclusion D on the level of geometric points.

As above, let § € Oy be a square root of —D. Suppose p | D-is a prime, p C Oy is
the unique prime above it, and ]F;lg is an algebraic closure of its-residue field. Suppose
we have a point y € Ysm (F;lg) corresponding to a triple (Ag, 41, B) over F;lg. Asé=0
in Fglg, the signature conditions imply that the endomorphism § € Oy kills the Lie
algebras of Ay, A1, and B. In particular § kills the Lie algebra of A; x B, which is
the pullback via

7 Ysm — Skra

of the universal A — Sk.a. Using the characterization of Exc recalled above, we find
that that m(y) € Exc. This proves (2.2.6).

The equality (2.2.6), and the fact that both sides of that equality are reduced,
implies that

[(Exc,0) : Y] = D log(®) D m'
p|D YE€Ym (F3'®)

On the other hand, the étaleness of Yem — Spec(Of) implies that the right hand side
is equal to

Slogp) Y )mzmgw)-degc(%mx

p|D Y€Ysm (C
completing the proof of the second-equality in (2.2.5). O
2.3. The convolution L-function. — Recall that we have defined a hermitian O-lat-

tice A = Homg, (ag, b) of signature (n — 1,0). We also define hermitian Og-lattices
LO = Hom@k(ao,al), L :Homok(ao,a),

of signature (1,0) and (n'—1,1), so that L = Lo & A.

The hermitian form {.,.) : L x L — O determines a Z-valued quadratic form
Q(z) = (z,z) on L, and we denote in the same way its restrictions to Ly and A. The
dual lattice of L with respect to the Z-bilinear form

(2.3.1) [71, 2] = Q(z1 + 22) — Q(z1) — Q(22)
is L' =0, ' L.

As in [7, §2.2] we denote by S; = C[L'/L] the space of complex-valued functions
on L' /L, and by wy, : SLo(Z) — Autc(SL) the Weil representation. There is a complex
conjugate representation wy on Sy, defined by

wL(1)¢ =wr()¢.
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Suppose we begin with a classical scalar-valued cusp form
g(r) =Y e(m)q™ € S,(To(D), Xp)-
m>0
Such a form determines a vector-valued form
(23.2) im = Y (g -wr(y Do € Sn(@r);
7€l (D)\SL2(Z)

where ¢g € Sy is the characteristic function of the trivial coset. This construction
defines the induction map (1.2.1). The form g(7) has a g-expansion

with coefficients ¢(m) € St.
There is a similar Weil representation wp : SL2(Z) — Autc(Sa), and for every
m € Q we define a linear functional Rx(m) € SY by

> o)

where ¢ € Sy and (.,.) : Ag x Ag — k is the Q-linear extension of the hermitian form
on A. The theta series

T) = Y. Ra(m)q™ € My_1(wy)
meQ

is a modular form valued in the contragredient representation SY.
Asin [7, §5.3] or [9, §4.4], we define the Rankin-Selberg convolution L-function

(233) L(ga 9/\7 5) =T (7 - 1) Z { 4ﬂ.m)§+51m3}

Here {.,.} : S x S} — C is the tautological pairing. The inclusion
N/AN—L'/L

induces a linear map S; — Sp by restriction of functions, and we use the dual
Sy — S} to view Rp(m) as an element of SY.

Remark 2.3.1. — The convolution L-function satisfies a functional equation in s — —s,
forcing L(g,60x,0) = 0.

Remark 2.3.2. — In this generality, neither the cusp form ¢ nor the theta series 6, is

a Hecke eigenform. Thus the convolution L-function (2.3.3) cannot be expected to
have an Euler product expansion.
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2.4. A preliminary central derivative formula. — We now recall the main result of [7],
and explain the connection between the cycles and Shimura varieties here and in that
work. R
Define hermitian Og-lattices
Lo,f = Hom@k(ao,al) Rz 7, Lf = Hom@k(ao,a) Q7 b,

and let Lo o and Lo, be kg-hermitian spaces of signatures (1,0) and (n,0), respec-
tively. In the terminology of [7, §2.1], the pairs

LOZ(LO,OO7L0,f)7 L:(Loony)
are incoherent hermitian (kg, @k)-modules. Our small CM cycle is related to the cycle
of [7, §5.1] by
Cysm —_— SKra

Yiwon) — M,

and the metrized line bundle @' of [6] agrees with the metrized cotautological bun-
dle Ty of [7].

Let A be the automorphism group of the finite abelian group L’/L endowed with
the quadratic form L'/L — Q/Z obtained by reduction of @) : L — Z. The tautological
action of A on Sy = C[L'/L] commutes with the Weil representation wy, and hence
A acts on all spaces of modular forms valued in the representation wy,.

Let Hy_n(wr) be the space of harmonic Maass forms of [7, §2.2]. Every
f € Ho_p,(wr) has a holomorphic part

fHoy="3 cim)-qm
meQ
m>—o0

which is a formal g-expansion with coefficients in S7. Let cj{(0,0) be the value
of c;{(O) € S at the trivial coset.

Asin [5] or [9, §3.1], there is a A-equivariant, surjective, conjugate linear differential
operator

5 : H2—n(WL) - Sn(wL),
and the construction. of/[7, (4.15)] defines a linear functional

~ /\1
(2.4.1) L+ Hy_n(wr)® — Che(Sira)-
These are related by the main result of [7], which we now state.

Theorem 2.4.1 ([7]). — The equality
[g(f) Y] — C}—(07 0) - [® : Yom] = — dege(Ysm) - L'(§(f),04,0)

holds for any A-invariant f € Ho_,(wy).
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2.5. The proof of Theorem A. — Throughout §2.5 we assume n > 3. Under this
assumption the linear functional (2.4.1) is closely related to the coefficients of the
generating series (1.1.2). Indeed, If m is a positive integer, [7, Lemma 3.10] shows
that there is a unique

fm € Ho_p(wr)?

with holomorphic part
(2.5.1) fa(T) = ¢0-a7™ +O(1),

where ¢¢ € S, is the characteristic function of the trivial coset. Applying the above
linear functional to this form recovers the m-th coefficient

Kra(m) = L(fm)
of the generating series (1.1.2).
The following proposition explains the connection between the linear functional
(2.4.1) and the arithmetic theta lift (1.1.3).

Proposition 2.5.1. — For every g € S,(I'o(D),x}%) there is a A-invariant form
f € Ho_p(wr,) such that

(2.5.2) Blg) = Z(f) + ¢} (0,0)- Zit (0),

and such that £(f) is equal to the form § € S, (wy) defined by (2.3.2). Moreover, we
may choose f to be a linear combination of the forms f,, characterized by (2.5.1).

Proof. — Consider the space H3°  (T'o(D), xj) of harmonic Maass forms of [6, §7.2].
The constructions of [5] provide us'with a'surjective conjugate linear differential op-
erator
£: H;in(rﬂ(D)’ XZ) - SH(FO(D)’ Xﬁ),

and we choose an fy € H5°, . (To(D),xy) such that &(fo) = g. It is easily seen
that fo may be chosen to vanish at all cusps of I'g(D) different from co. This can,
for instance, be attained by adding a suitable weakly holomorphic form in the space
Mé’ffl(Fg (D), x}) of [6, §4.2]. The Fourier expansion of the holomorphic part of f is
denoted

ff ()= ef(m)q™.

meQ
As in (2.3.2), the form f; determines an Sr-valued harmonic Maass form
f@ =0 >0 (fola(7) - wr(y "o € Haon(wr)®

¥ETo(D)\SL2(Z)

As the ¢-operator is equivariant for the action of SLo(Z), we have £(f) = §. According
to [6, Proposition 6.1.2], which holds analogously for harmonic Maass forms, the
coefficients of the holomorphic part f* satisfy

+ .
+ Co (m) if H = 07
ci(m,u) =
! (m, 1) {0 otherwise,
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for all m < 0. This equality implies that

F="cf(=m)fm,

m>0

where f,, € Hy_,(wr)? is the harmonic form characterized by (2:5.1). Indeed, the
difference between the two forms is a harmonic form h whose holomorphic part
> 50 i (m)g™ has no principal part. It follows from [S, Theorem 3.6] that such
a harmonic form is actually holomorphic, and therefore vanishes because the weight
is negative.

The above decomposition of f as a linear combination of ‘the f,,’s implies that

2 =3 (=m) - 2t (m) € Ohe(Siera),

m>0

and consequently

8(9) = (6, &(fo))pes

= {fo,a}
=3t (=m)- gt (m)
m>0

= Z(f) + ¢ (0,0) - Z35 (0).
Here, in the second line, we have used the bilinear pairing
{3+ H2, (Lo(D), X&) x Mn(To(D), xg) — C

analogous to [5, Proposition 3:5], and the fact that fy vanishes at all cusps different
from oo. O

Remark 2.5.2. — Tt is incorrectly claimed in [7, §1.3] that (2.5.2) holds for every
form f with £(f) = g.

The following is stated in the introduction as Theorem A.
Theorem 2.5.3. — If g.€ Sp,(T'o(D),x}) and g € S, (wr) are related by (2.3.2), then
8(9) : Ysm] = — dege(Ysm) - L'(, 64, 0)-

Proof. — Choosing f as in Proposition 2.5.1, and using the first equality of Proposi-
tion 2.2.10, yields

0(9) : Yom] = [Z(F) : Y] — F(0,0) - [@ : Ysua)-

Thus the claim follows from Theorem 2.4.1. O
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3. Further results on the convolution L-function

In this section we specialize to the case where g € S,,(T'o(D), x%) is a new eigenform,
and express the convolution L-function (2.3.3) associated to the vector valued cusp
form g in terms of the usual L-function associated to g.

This allows us, in Theorem 3.4.1 below, to rewrite Theorem A of the introduction
in a way that avoids vector-valued modular forms. When n is even, it also allows us
to formulate a version of Theorem A in which the L-function has an Euler product.

We assume n > 2 until we reach §3.4, at which point we restrict to n > 3.

3.1. Atkin-Lehner operators. — Recall that xg is the idele class character associated
to the quadratic field k. If we view xx as a Dirichlet character modulo D, then any
factorization D = Q1Q2 induces a factorization

Xk = XQ1XQ2

where x, : (Z/Q;Z)* — C* is a quadratic Dirichlet character.
Fix a normalized cuspidal new eigenform

g(r) =Y e(m)g™ € Su(To(D), xR).
m>0
As in [6, Section 4.1], for each positive divisor @ | D, fix a matrix
o B
Rq = €To(D/Q)
(%’Y Q5>
with «a, 3,7,0 € Z, and define the Atkin-Lehner operator

L [Qa B _ Q
D))

90(1) = x5B)XD o (@) - 9lnWa
=Y co(m)g™,

m>0

The cusp form

is then independent of the choice of a, 3, 7, §.
Let eg(g) be the fourth root of unity

eole) = JI x6(Q/9) A
q1Q

q prime

where

n

— | —¢'7% ifn=0 (mod 2)
Ag = c(q) - i1-n _
deg =z ifn=1 (mod2),
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and 4§, is defined by

(3.1.1) 5 :{1 if g=1 (mod 4)

i ifg=3 (mod4).

According to [3, Theorem 2], we have

co(m) = EQ(g)X’é(m)c(m) if (m,Q) =1,
cq(m) = eq(9)XD o (m)c(m) if (m,D/Q) =1,
cq(mimz) = eq(9) " cq(mi)cq(ma) if (mi,me)=1.
Remark 3.1.1. — If n is even, then the Fourier coefficients of ¢ are totally real. It

follows that gg = eg(g)g for every divisor @ | D. Furthermore,

co(9) = [T (- ¢ Felg) = 1.

q|Q

3.2. Twisting theta functions. — Let (ag,a;,b) be a triple of self-dual hermitian
Op-lattices of signatures (1,0), (0,1), and (n — 1,0),-as in §2.2, and recall that from
this data we constructed hermitian Og-lattices

(3.2.1) a=a; b, L = Homg), (ag, a)
of signature (n — 1,1). We also define
(3.2.2) L = Homg, (ao,a1), A = Homg, (ap, b),

so that L = L1 @ A.
Let GU(A) be the unitary similitude group associated with A, viewed as an alge-
braic group over Z. For any Z-algebra R its R-valued points are given by

GU(A)(R) = {h’ € GL@k(AR) : <h.’1), hy> = V(h)(.’l),y> any € AR}a
where v(h) € R* denotes the similitude factor of h. Note the relation
(3.2.3) Nmy, g(det(h)) = v(h)* .
For h € GU(A)(R) the similitude factor v(h) belongs to Rxo.
As A is positive definite, the set
Xa = GUA)(Q\GU(A)(Af)/GU(A)(Z)
is finite. Denoting by
CL(k) = k*\k*/OF
the ideal class group of k, the natural map Resy,9G,, — GU(A) to the center induces
an action

(3.2.4) CL(k) X XA — XA.

As in the proof of [6, Proposition 2.1.1], any h € GU(A)(A[) determines an Og-lat-
tice
Ap = AQ N hA.
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This lattice is not self-dual under the hermitian form (—, —) on Ag. However, there
is a unique positive rational number rat(v(h)) such that

V(h) 7 X
rat(w()) €2

and the lattice Aj, is self-dual under the rescaled hermitian form
1
(T, y)n = m Az, y).

If h € GU(A)(Z) then A, = A. If b € GU(A)(Q), then A, = A as hermitian O-mod-
ules. Hence h — Aj defines a function from X, to the set of isometry classes of]
self-dual hermitian ©g-module of signature (n — 1,0).

Similarly, for any h € GU(A)(Af) we define a self-dual hermitian Og-lattice of
signature (0,1) by endowing

Lyp = Lig Ndet(h)L,
with the hermitian form
1
(T, y)n = W “(z,y).

The assignment h — L;; defines a map from X, to the set of isometry classes of
self-dual hermitian Og-lattices of signature (0,1).

Lemma 3.2.1. — For any h € GU(A)(Ay) the hermitian O-lattice
Ly =Lin,®A
is isomorphic everywhere locally to L. -Moreover, L, and L become isomorphism after

tensoring with Q.

Proof. — Let p be a prime. As'in [6, §1.8], a ky-hermitian space is determined by its
dimension and invariant. The relations

det(Ay ®7 Q) = rat(v(h))' ™™ - det(A ®z Q),
det(Ly 5, ®z Q) = rat(v(h))'™" - det(L; ®z Q),

combined with (3.2.3);imply that L ®zQ and L, ®7Q have the same invariant every-
where locally. As they both have signature (n — 1, 1), they are isomorphic everywhere
locally, and hence isomorphic globally.

A result of Jacobowitz [22] shows that any two self-dual lattices in L ®z Q are
isomorphic everywhere locally, and hence it follows from the previous paragraph that L
and Lj, are isomorphic everywhere locally. O

Define a linear map

M, (wy) — nfl(FO(D)7Xk71)
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from SY-valued modular forms to scalar-valued modular forms by evaluation at the
characteristic function ¢y € Sp of the trivial coset 0 € A’/A. This map takes the
vector valued theta series 0, € Mn_l(wX) of §2.3 to the scalar valued theta series

mEZZO

where R5°(m) is the number of ways to represent m by A.
Let N be an algebraic automorphic form for GU(A) which is trivial at co and right
GUA( )-invariant. In other words, a function

n: Xy — C.

Throughout we assume that under the action (3.2.4) the function n transforms with
a character x,, : CL(k) — C*, that is,

(3.2.5) n(ah) = xu(a)n(h).
We associate a theta function to n by setting
sc n—1
Oon = 2 TRut(an)] Aut € My _1(To(D), X1 7).
heXa

This form is cuspidal when the character yx, is non-trivial. We denote its Fourier
expansion by

AT =D Ria(m) - q™

m>0
Similarly, we may define
-0
"7A T) Z |Aut )| Ah(T)7
hEX)

but this is only a formal sum: as h varies the forms 65, take values in the varying
spaces Sy, .

Lemma 3.2.1 allows us to identify Sy, = S;,, and hence make sense of the L-func-
tion L(g,04,,s) as in-(2.3:3). In the next subsection we will compare

2. L(g -L(g,0
(3.2.6) On.n, Z |Aut Ah (G,04,,5)
to the usual convolution L-function

>, ¢ m)R A(m)

(3.2.7) L(g,0%n:8) = Z (47m)z2 +n (4rm)3Htn—1
=1

of the scalar-valued forms g and 67¢,.
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3.3. Rankin-Selberg L-functions for scalar and vector valued forms. — In this subsec-
tion we prove a precise relation between (3.2.6) and (3.2.7). First, we give an explicit
formula for the Fourier coefficients a(m, u) of § in terms of those of g analogous to
[6, Proposition 6.1.2].

For a prime p dividing D define

(3.3.1) Yo = 8, - (D, p)l - invy (V) € {1, +i},

where inv,(V},) is the invariant of V,, = Homy (W), W)®q Q) in the sense of [6, (1.8.3)]
and §, € {1,4} is as before. It is equal to the local Weil index of the Weil representation
of SLy(Zp) on Sg, C S(V}), where V, is viewed as a quadratic space by taking the
trace of the hermitian form. This is explained in more detail in [6, Section 8.1]. For
any @ dividing D we define

(3.3.2) 7o =]
q|Q

Recall that ¥ is the hermitian space over Ay attached to .Z. Let ¢ =[]+, be the
usual unramified additive character of Q\A, satisfying 1 (z) = e(z). Recall that the
Weil representation w = wy 4 of SLa(A) on the space of Schwartz-Bruhat functions
S(7) is determined by the formulas

w(n(d))p(z) = P(b{z, ))p(2)
w(m(a))p(z) = xk(a)lal" " p(az)

w(w)p(z) = (%) [y o)~ e, 9)) dy

for all b € A and a € A*, where

1 b a 0 0 -1
n(b)=<o 1)’ m(a)=<o a—l)’ w=<1 0)’

dy is the self-dual Haar measure with respect to w(trx,q(z,y)), and v(¥) =
[I,<o07(7) is a certain 8th root of unity (the product of the local Weil indices).
For any @ | D, define

CICOE | AT}

plQ

Lemma 3.3.1. — FEwery finite prime p satisfies

(V) = {f%’f Xi(®)-inv,(#) ifp| D,
inv, (%) ifptD,

where 8, is defined by (3.1.1), and inv,(¥) is the local invariant of ¥, defined in
Section 7?.
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. This is slightly
different from the space ma 3.4], one has

(in the notation of [loc.

Yo (P) 7 = By, (w) ™" =g, (¥p 0 %)) = g, (det ¥°,9bp)vq, () *" ha, (7).
Here hq, (7)) is the Hasse invariant of ¥,°, and det ¥,? = (det ¥,)>D" is the deter-

minant of ”I/po. A diregt @alculation gives

n(n—1)

(7)) =(D,D)p 7 invy(¥).

On the other endix A.5] implies that

n(n—1)

)*(D,D)p = g, (=1 4p) 7"
n(n—1)

n(_Da _1)Z(D’D)P :

position A.9] shows that (recall

)_ (pa _D)p(sp 1fp | Da
1 if ptD.

Putting everything together and using xx.p(z) = (—D, ), yields the formula in the
lemma. For example, when p|D,

W)™ =g, (D", )10, (¥)*"he, (%))

= 0pinv, (V) (=D, p)y (=D, —1)

= 0p Xpe,p(P)invy, (V) (=D, —1),
= 6;"Xz’p(p)invp(7/). O

This formula was wrong in the original version (&, became &, '), and was discovered
in joint work with Kudla and Rapoport in November 2016, thus this correction version.
Kudla gave a shorter and more direct proof of this lemma by decomposing V° into
direct sum of one dimensional subspaces—diagonalization, and using the fact that the
local Weil index is multiplicative on orthogonal direct sum.

Remark 3.3.2. — If n is even and p | D, then (3.3.1) simplifies to
] n/2
T = (7) inv, (V3).

Remark 3.3.3: — In the special case where D is prime, the root of unity yp (%) can
be made even more explicit. Indeed, the self-duality of . implies that inv, (%) =1
for all p # D, and so the incoherence condition on ¥ forces invp (%) = —1. Similar
reasoning shows that xx ,(p) = 1, and so

. (=1)2* if n is even,
¥) = iy (¥ :{
10() = o (V) L= if n is odd.
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For any € L'/L define Q,, | D by

=[] »

p|D
Hp7#0

where p,, is the image of in L;,/L,. Let ¢, € Sz, be the characteristic function of u.
Proposition 3.3.4. — For all m € Q the coefficients a(m) € Sy, of § satisfy

ZQM|Q|D Q'""yg - co(mQ) if m = —Q(u)-(mod Z),

0 otherwise.

a(m,p) =

Proof. — The first formula is a special case of results of Scheithauer [26, Section 5]. It
can also be proved in the same way as Proposition 6:1.2 of [6]. The complex conjuga-
tion over g arises because of the fact that § transforms with the complex conjugate
representation wy. The additional factor Q'™ is due to the fact that we work here
in weight n. O

Proposition 3.3.5. — The convolution L-function (2.3.3) satisfies

L(§,07,5) = > Q%yq - L(gg, 0%, 9),
Q|D

where q € k> is such that q2©,§ = Q@; Moreover, for any n: Xp — C satisfying
(3.2.5) the L-functions (3.2.6) and (3.2.7) are related by

L(§,0.0,8) = Y_@27q - xn(a ") L(gq, 6°s, 5)-
QID

Proof. — Proposition 3.3.4 implies

,0A, 1en co(mQ)Ra(m, ¢,
e T S R M

neEAN /AmEQ>0 QL|Q|ID

=2 Qe X (4701'?nmf—2n ) Ratmé)

QD me5Zxo HEA'/A
Qul@
=Y Qhe ¥ 2T Y R/,
QID m€Z>0 ueA /A
Qul@

The first claim now follows from the relation

> Ba(m/Q,u)=Ra_,(m,0) = Ry, (m,0).
REA' /A
QulQ
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For the second claim, if we replace A by Ay and L; by Ly for h € Xa, then L
and yg remain unchanged. The above calculations therefore imply that

L "7/\7 ZVQQ Z |Ant( ) ( eAq;H )

QID heXA
_ : (g~ 'h)
ZVQQ Z |Aut( )|L( Q’eA;ﬂ )
QID heXa
=2 10Q% xn(a™ ) L9, 03 5);
QID
where we have used (3.2.5) and the fact that [Aut(Ap)| = [Aut(Agr)]. O

Corollary 3.3.6. — If n is even, then
L(§,0.8,8) = L(g,05°0,5) - [ (1 + xa (0T H)en(9)7027).-

p|D
Proof. — This is immediate from Proposition 3.3.5 and Remark 3.1.1. O
3.4. Small CM cycles and derivatives of L-functions, revisited. — Now we are ready to

state a variant of Theorem A using only scalar valued modular forms. Assume n > 3.
Every h € X, determines a codimension'n — 1 cycle

(3.4.1) Ysm,h — Skra

as follows. From the triple (ag,a1,b) fixed in §3.2 and the hermitian Og-lattices
Ly =L1,®Ap of Lemma 3.2.1, we denote by a;, and b, the unique hermitian
Og-lattices satisfying

Ll,h & HOIn@,c (ao, a1,h), Ay = HOm@k(ao, bh),

and set ap = a1 5, @ by, so that Lj, = Homg, (ag, ap). Compare with (3.2.1) and (3.2.2).

Repeating the construction of the small CM cycle Y, with the triple (ag, a1, b)
replaced by (ag,a1,p,b) results in a proper étale Og-stack Cysm,h. Repeating the
construction of the Shimura variety Sk,, with the triple (ag, a) replaced by (ag, ar)
results in a new Shimura variety SKra,hy along with a finite and unramified morphism

Cysm,h - SKra,h .

It follows from Lemma 3.2.1 that a and a; are isomorphic everywhere locally, and
examination of the moduli problem defining Sk, in [6, §2.3] shows that Sk, depends
only the everywhere local data determined by the pair (ag, a), and not on the actual
global Og-hermitian lattices. Therefore, there is a canonical morphism of Og-stacks

Cysm,h - SKra,h = SKra

in which the isomorphism is simply the identity functor on the moduli problems. In
the end, this amounts to simply repeating the construction of Cysm — Skya from
Definition 2.2.6 word-for-word, but replacing A by A, everywhere. This defines the
desired cycle (3.4.1).
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Each algebraic automorphic form 7 : X, — C satisfying (3.2.5) now determines a
cycle

ncysm = Z W(h) : Cysm,h

heXa
on S, with complex coefficients, and a corresponding linear functional

~1
[_ : ncysm] : Ch(C( f(ra) - C.
Theorem 3.4.1. — The arithmetic theta lift (1.1.3) satisfies

0(9) : Yom] = — dege(Yom) - | 2 QEv0 Lo 0%,15)] |,y
Q|D

where q € k* is such that qzéi = Qé: Moreover, if m_is even and n : X5, — C
satisfies (3.2.5), then

0(9) : nYsm] = —2" () (hk/wk)2'% 200,50, ) TT (+xa(e™zn(9)00) ||,
p|D

where p € k> such that p2©,f = p@,f Note that in the first formula the sum is
over all positive divisors @ | D, while in the second the product is over the prime
divisors p | D.

Proof. — The first assertion follows from Theorem A and Proposition 3.3.5.
For the second assertion, applying Theorem A to

Cysm,h R Sf(ra,h = Sik(ra
yields
. d
[e(g) : Cysm,h] ~r— deg({:(cysm,h) : %L(gaeAmS”S:O'
Combining this with Proposition 2.2.9 yields

N . d
[0(9) : 1Y sm] = —21 7o) (hk/wk)Z ’ %L(g,ﬂn,f\,s)b:

and an application of Corollary 3.3.6 completes the proof. O

07

Remark 3.4.2. — Since the L-function (3.2.6) vanishes at s = 0, the same must be
true for the expressions in brackets on the right hand sides of the equalities of the
above theorem. In particular, when n is even, then either L(g, ﬁflc A, S) or at least one
of the factors

1+ Xy (p ™ )ep(9)1pp?
(for a prime p | D) vanishes at s = 0. If we pick the newform g such that the latter,
local factors are nonvanishing, then L(g, A 0) = 0 and we obtain

~ —o h} — sc
[0(g) : 1Y sm] = —2" (dk)wf'% T @+ xn(0™)ep(@)) - L (9,654, 0).
p|D
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4. Big CM cycles and derivatives of L-functions

In this section we prove Theorem B by combining results of [6] and [18, 19, 8]. We
asume n > 2 until §4.4, at which point we restrict to n > 3.

4.1. A Shimura variety of dimension zero. — Let F' be a totally real field of degree n,
and define a CM field E = k ®q F. Define a rank n + 2 torus Ti;, over-Q as the fiber
product

Tbig Gm

| -

Resk/QGm X RGSE/QGm Gm X ResF/@Gm.

NmxNm
Its group of Q-points is
Thig(Q) = {(z,y) € k* x E" 2T = yy}.
Remark 4.1.1. — There is an isomorphism
Thig(Q) = k™ x ker(Nm : EX — F*)
defined by (x,y) — (z,27'y). It is clear that this arises from an isomorphism

Thig = Resg 9Gr x ker(Nm : Resg /@G — ResF/QGm).
As in the discussion preceding Theorem B, let ® C Homg(E, C) be a CM type of
signature (n —1,1), let
PP E—C

be its special element, and let Og be the ring of integers of Fg = ¢°P(E).

The CM type ® determines an isomorphism C™ = ER, and hence an embedding
C* — Ey arising from a morphism of real algebraic groups S — (Resg;gGm)r. This
induces a morphism

S = (Resk/QGm)R X (ReSE/QGm)R,
which factors through a morphism
hbig :S — Tbig,]R-

The pair (Thig;{hbig}) is a Shimura datum, which, along with the compact open
subgroup

Kuig = Toig(Ag) N (O x O%),

determines a 0-dimensional Eg-stack Sh(Ti;z) with complex points

Sh(Tig)(C) = Thig(Q)\{ hvig} X Thig(Ay)/ Kig-
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4.2. The big CM cycle. — The Shimura variety just constructed has a moduli inter-
pretation, which we will use to construct an integral model. The interpretation we
have in mind requires first choosing a triple (ag, a,ig) in which

— ag is a self-dual hermitian Og-lattice of signature (1,0),

— ais a self-dual hermitian O-lattice of signature (n — 1,1),

— i : Op — Endg, (a) is an action extending the action of Oj.
Denoting by H : a x a — O the hermitian form, we require further that

H(ip(z)a,b) = H(a,ip(T)b)

for all z € O and a,b € a, and that in the decomposition

agp = @ a®@F#,F R
er:F—R

the summand indexed by ¢p = goSp|F is negative definite (which, by the signature
condition, implies that the other summands are positive definite).

Remark 4.2.1. — 1In general such a triple need not exist. In the applications will as-
sume that the discriminants of k/Q and F/Q are-odd and relatively prime, and in
this case one can construct such a triple using the argument of [18, Proposition 3.1.6].

We now define a moduli space of abelian varieties with complex multiplication
by Op and type ®, as in [18, §3.1]. Denote by C97le the functor that associates to
every Og-scheme S the groupoid of triples (A, ¢,%) in which

— A — S is an abelian scheme of dimenension n,

— t: O — End(A) is an Og-action,

— 9 : A — AV is a principal polarization such that

L) o) =1 o u(T)

for all x € Op.
We also impose the ®-determinant condition that every x € O acts on Lie(A) with
characteristic polynomial equal to the image of

[ (@ - ¢(@)) € OsT]
ped

in Og[T]. We usually abbreviate A € CNlg(S), and suppress the data ¢ and ¢
from the notation. By [18, Proposition 3.1.2], the functor C97¢ is represented by a
Deligne-Mumford ‘stack, proper and étale over Og .

Remark 4.2.2. — The ®-determinant condition defined above agrees with that of [18,
§3.1]. As in [16, Proposition 2.1.3|, this is a consequence of Amitsur’s formula, which
can be found in [1, Theorem A] or [11, Lemma 1.12].

Define an open and closed substack

Cybig C CWL(LO) X 9y CC)’?”LCD
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as the union of connected components B C N o) X 9, CN g satisfying the following
property: for every complex point y = (A4, A) € B(C), and for all primes ¢, there is
an O g-linear isomorphism of hermitian Oy, o-lattices

(4.2.1) Home, , (Ao[€>], A[£>]) = Homp, (a9, a) ®z Q;.

Remark 4.2.3. — To verify that a connected component B C My 0y x 9, CMNMg is con-
tained in Yh,g, it suffices to check that (4.2.1) holds for one complex point y € B(C).
This is a consequence of the main theorem of complex multiplication and the fact
that the points of B(C) form a single Aut(C/FEg)-orbit.

Proposition 4.2.4. — There is a canonical isomorphism of Eg-stacks

Sh(Thig) = Ybig/Es-
Proof. — The natural actions of O and O on ag and a determine an action of the
subtorus

Tbig - Resk/QGm X ReSE/QGm
on agg and ag, and the morphism hpig : S — Ty r-endows each of the real vector

spaces agr and ag with a complex structure.
The desired isomorphism on complex points sends

(hbigyg) € Sh(Tsm)(C)
to the pair (Ag, A) defined by
Ao(C) = apr/ga9, A(C) = ag/ga.

The elliptic curve A is endowed with its natural Og-action and its unique principal
ploarization. The abelian variety A is-endowed with its natural O g-action, and the
polarization induced by the symplectic form determined by its Og-hermitian form, as
in the proof of [6, Proposition 2.2.1]:

It follows from the theory of canonical models that this isomorphism on complex
points descends to an isomorphism of Eg-stacks. O

The triple (ag,a,ig) determines a pair (ap,a) as in the introduction, which de-
termines a unitary Shimura variety with integral model Sk, as in (1.1.1). Recalling
that O C O as subrings of C, we now view both Yp;; and CNe as Op-stacks.
There is a commutative diagram

Cybig E— CWL(LO) X Ccm@

| J

SKra E— ‘WL(LO) X Cm%fffl,l)

(all fiber products are over Og), in which the vertical arrow on the right is the identity
on the first factor and “forget complex multiplication” on the second. The arrow 7 is
defined by the commutativity of the diagram.
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Remark 4.2.5. — In order to define the morphism
CMeg — CWL&“_‘M)
in the diagram above, we must endow a point A € CNlg(S) with a subsheaf]
Fa C Lie(A) satisfying Kramer’s condition [6, §2.3]. Using the morphism
Op £ 04 — O,
denote by Jyos» C O ®7 Og the kernel of

— P .
Op @y Og 22V o

According to [19, Lemma 4.1.2], the subsheaf F4 = J,s»Lie(A) has the desired prop-

erties.

Definition 4.2.6. — Composing the morphism 7 in the diagram above with the inclu-
sion of Sk, into its toroidal compactification, we obtain a morphism of ©-stacks
7+ Ywig = Sirar
called the big CM cycle.
Exactly as in §2.2, the arithmetic degree along Ypig is the composition
Che(Sirn) = ChiYig) =%
We denote this linear functional by 2 — [é% : Yhig)-
Remark 4.2.7. — The big CM cycle arises from a morphism of Shimura varieties.

Indeed, there is a morphism of Shimura data (Thig, {hvig}) — (G, D), and the induced
morphism of Shimura varieties sits-in.a commutative diagram of Fg-stacks

Sh(Tbig) —_— Sh(G, @)/Eq>

zl Jz

T
quig/E@ SKra/Eq> .

Proposition 4.2.8. — The degree dege(Ynig) of Theorem B satisfies

1 hk A(OaXE)
- .degc(cybig) = uTk Tt
where r is the number of places of F that ramify in E (including all archimedean

places).

Proof. — It is clear from Proposition 4.2.4 that
1 1 |Thig (Q)\Thig(Ar)/ Kig|
n - dege(Ywig) = Z = —= — £

|Aut(y)] |Thig(Q) N Kig|

Note that when we defined the degree on the left we counted the complex points
of Cljbig viewed as an Og-stack, whereas in the middle expression we are viewing

yE€Sh(Thig)(C)
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Sh(Tyig) as an Eg-stack. This is the reason for the correction factor of n = [Eg : k]
on the left.
Let E' C E* be the kernel of the norm map Nm : EX — F*, and define

o5 YoV; 9 x
E'c E*, 0% c O}

similarly. Note that u(E) = E'N @'E is the group of roots of unity in E, whose order
we denote by wg. Using the isomorphism Thi, (Q) = k* x E’ of Remark 4.1.1, we find

Thse(Q\Tosg (A7) Kvig| _ i |E\E'/Op|
|Thig (Q) N Kiig| W WE
Denote by Cp and Cg the ideal class groups of E and F, and by F and E their

Hilbert class fields. As E/F is ramified at all archimedean places, FNE=F, and
the natural map

(4.2.2)

Gal(E/E) — Gal(F/F)
is surjective. Hence, by class field theory, the norm
Nm:Cg — Cg
is surjective. Denote its kernel by B, so that we have a short exact sequence
1—>B—>CEN—m>CF—>1.
Define a group

BB\ (B,5): B C F is a fractional O g-ideal,
’ BeF*, and Nm(B) = 80r |’

where the action of E* is by a - (B, 8) = (a®B, a@B). There is an evident short exact
sequence

1 - Nm(ON\O 220D 5 g1,
Lemma 4.2.9. — We have [0 +Nm(O3%)] = 2" twg.
Proof. — Let Q = [OF : u(E)OF]. If @ = 1 then
Nm(©3): 052 =1 and [0F:0F]= 5 -wn,

and so
2nfle

[OF : OF]
where the middle equality follows from Dirichlet’s unit theorem.

If @ > 1 then [27, Theorem 4.12] and its proof show that @ = 2, and that the
image of the map ¢ : OF — OF defined by ¢(z) = z/7 is the index two subgroup
#(OF) = u(E)* C u(E). From this it follows easily that

[Nm(0%): 05?1 =2 and [0%:0%] =wg,

(03 Nm(9%)] = (05 : 057 = 2" =
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and so . -
X . X\ _ X . 0O%,21 _ on—1 __ "Twg
[OF.Nm(OE)]—ﬁ‘[@F.OF ]=2 —m
Combining the information we have so far gives
2" lwg  |Cg]
CERCHEA

where the final equality is a consequence of Dirichlet’s class number formula.

(4.2.3) |B| = [OF : Nm(OF)] - |B| = =wg A0, xE),

Lemma 4.2.10. — There is an exact sequence
1— ENE' /Oy — B — {£1}" — {1} — 1.

Proof. — Every x € E' determines a fractional Og-ideal B.= 2O with Nm(®B) = Op,
and the rule z — (8, 1) is easily seen to define an injection

(4.2.4) E'\E'/O% — B.

Given a (B,3) € B, consider the elements Xz (8) € {1} as v runs over all
places of F. If v is split in E then certainly xg.(8) = 1. If v is inert in E then
Nm(B) = fOF implies that xg.(8) = 1. As the product over all v of xg . (8) is

equal to 1, we see that sending (8, ) to the tuple of xg ,(6) with v ramified in E
defines a homomorphism

(4.2.5) B — ker({£1}7 20, 41},

To see that (4.2.5) is surjective, fix a tuple (e,), € {£1}" indexed by the places
of F ramified in F, and assume that [[, &, = 1. Let b € A} be any idele satisfying:

— If v is ramified in E then xg 4(by) = €.

— If v is a finite place of F.then b, € Of .
The second condition implies that x g (by) = 1 whenever v is unramified in F, and
hence

xe(b) = Hev =1.
Thus b lies in the kernel of the reciprocity map
A% — FX\AL/Nm(A}) = Gal(E/F),
and so can be factored as b = 8~ 12T for some § € F* and z € A% Setting B = 209,
the pair (B, 8). € B maps to (¢,), under (4.2.5).

It only remains to show that the image of (4.2.4) is equal to the kernel of (4.2.5).
It is clear from the definitions that the composition

E\E')0), - B — {£1}"

is trivial, proving one inclusion. For the other inclusion, suppose (8,0) € B lies in
the kernel of (4.2.5). We have already seen that this implies that § € F* satisfies
XE,»(8) =1 for every place v of F', and so § is a norm from F everywhere locally. By
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the Hasse-Minkowski theorem, 3 is a norm globally, say 8 = o with o € E X, In the
group B, we therefore have the relation

(B,8) =a~'(B,6) = (A1)
for a fractional Op-ideal 2 = o198 satisfying Nm(A) = Op. Any such A has the
form 2 = zOp for some z € E’, proving that (B, 8) lies in the image of (4.2.4). O

Combining the lemma with (4.2.3) gives

[ENE'/O| _ 1Bl _ A0.xp)
WE 27‘—1wE or—1 1’
and combining this with (4.2.2) completes the proof of Proposition 4.2.8. O
Proposition 4.2.11. — Assume that the discriminants of k_and F are relatively prime.

The constant term (1.4.2) satisfies

[Z565.(0) : Yig) = —[@ : Ybig]-
Proof. — The stated equality is equivalent to
[(Exc, —log(D)) : Yuig) = 0,

and so it suffices to prove

[(0,10g(D)) : Ywig] = dege(Yhig) - log(D) = [(Exc,0) : Ybig]-
The first equality is clear from the definitions. To prove the second equality, we first
argue that

(4.2.6) cybig X 8ypa BXC = Cybig X Spec(Or) SpeC(@k/bk),

as in the proof of Proposition 2:2.10.
The inclusion C of (4.2.6) is-again clear from

Exc C Skra X Spec(Op) Spec(@k/bk).

Recall that Yp;; — Spec(Os) is étale. Our hypothesis on the discriminants of k and
F implies that Spec(Og) — Spec(Og) is étale at all primes dividing 0%, and hence
the same is true for Ypig — Spec(Og). This implies that the right hand side of (4.2.6)
is reduced, and hence so'is the left hand side. To prove equality in (4.2.6), it therefore
suffices to prove the inclusion D on the level of geometric points.

Suppose p | 0 is prime, and let Fglg be an algebraic closure of its residue field.
Suppose that y-€ Ypig (Fglg) corresponds to the pair (Ag, A), so that A € CN g (F;lg).
Let W be the completed étale local ring of the geometric point

Spec(F;Ig) N Yrig — Spec(Oq).

More concretely, W is the completion of the maximal unramified extension of O,
equipped with an injective ring homomorphism O — W. Let C, be the completion of
an algebraic closure of the fraction field of W, and fix an isomorphism of Fg-algebras

C2C,.
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For every ¢ € ® the induced map O — C = C, takes values in the subring W,
and the induced map

Oz W — H W
ped
is surjective (by our hypothesis that k and F have relatively prime discriminants).
Denote its kernel by Jo C O ®7 W, and define an O ®7 W-module

Lieg = (OE X7, W)/J@ = H w.
ped
As in the proof of [19, Lemma 4.1.2], there is an isomorphism of O ®7 F;lg—modules
Lie(A) & Lies ®w Fp® = [] F3®.
ped
Let § € O be a square root of —D. As the image of § under
OE i} W i ]Fng

is 0 for every ¢ € ®, it follows from what was said/above that § annihilates Lie(A).
Exactly as in the proof of Proposition 2.2.10, this implies that the image of y under
Ypig — Skra lies on the exceptional divisor. This completes the proof of (4.2.6), and
the remainder of the proof is exactly as in Proposition 2.2.10. O

4.3. A generalized L-function. — The action ig : O — Endg, (a) makes

L= Homok (Clo, Cl)

into a projective O g-module of rank one, and the O-hermitian form on L defined by
[6, (2.1.5)] satisfies (az1,z2) = (#1,@x2) for all @ € O and z1,z2 € L. It is a formal
consequence of this that the F-vector space ¥ = L ®z Q carries an E-hermitian form

<_7_>big Y XY — E,
uniquely determined by the property
<331,562> = TrE/k<w1ax2>big~

This hermitian form has signature (0,1) at ©*| ., and signature (1,0) at all other
archimedean places of (F.

From the E-hermitian form we obtain an F-valued quadratic form 2(z) = (z, )big
on ¥ with signature (0, 2) at ©*| ., and signature (2,0) at all other archimedean places
of F'. The Q-quadratic form

(4.3.1) Q(z) = Trp/p2(x)
is Z-valued on L C ¥, and agrees with the quadratic form of §2.3. Let
wy, SLQ(Z) — Aut(c(SL)

be the Weil representation on the space Sy, = C[L’/L], where L' = 9, 'L is the dual
lattice of L relative to the Z-bilinear form (2.3.1).
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Write each 7 € F¢ in the form 7 = @ + i with 4, ¥ € Fg, and set
Fp = {7 € F¢ : ¥ is totally positive}.

Every Schwartz function ¢ € S(¥ ) determines an incoherent Hilbert modular Eisen-
stein series

(4.3.2) E(T,s,¢) = Z E.(7,s,9)-q%
acF
on Hr, as in [8, (4.4)] and |2, §6.1]. If we identify

Sy =C[L'/L] C S(¥)

as the space of L-invariant functions supported on % , then (4.3.2) can be viewed as
a function E(7,s) on Hr taking values in the complex dual 5Y.

We quickly recall the construction of (4.3.2). If v-is an-arichmedean place of F,
denote by (6,,<2,) the unique positive definite rank- 2 quadratic space over F;,. Set
Coo = Hv|oo %,. The rank 2 quadratic space

C=Co xV

over Ar is incoherent, in the sense that it is not the adelization of any F-quadratic
space. In fact, ¢ is isomorphic to ¥ everywhere locally, except at the unique
archimedean place <psP|F at which 7 is negative definite.

Let ¢g : Q\A — C* be the standard additive character, and define
'(/JF 9 F\AF — (CX
by 1 r = g0 Trp/q. Denote by I(s, Xp) the degenerate principal series representation
of SLy(Ar) induced from the character xg| - |° on the subgroup B C SLs of upper

triangular matrices. Thus I(s, xg) consists of all smooth functions ®(g, s) on SLa(Afr)
satisfying the transformation law

@ (( ”) g,s) = x&(@)lal"* (g, ).

The Weil representation we determined by the character ip defines an action
of SLo(Ap) on S(%), and for any Schwartz function

b ® b € S(€a) ® S(V) = 8(6)
the function

(4.3.3) 2(g,0) = we(9)(Poo ® ¢)(0)

lies in the induced representation (0, xg). It extends uniquely to a standard section
®(g, s) of I(s,xr), which determines an Eisenstein series

E(g,5,60®¢)= >  ®(yg,5)

YEB(F)\SLz2(F)

in the variable g € SLy(Ag).
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We always choose ¢ € S, C S(¥), and take the archimedean component ¢, of]
our Schwartz function to be the Gaussian distribution
oL = @y € Q) S(%,)
v|oo
defined by ¢! (z) = e=?"2»(®) 50 that the resulting Eisenstein series
1

v/ Nm(7)

E(F)Sv()b): ’E(g;,s,cﬁ;@qﬁ)

has parallel weight 1. Here

1 @\ (V7
g7 = (0 1) ( 1/\@) € SL,(Fk)

and Nm : F' — R* is the norm.

A choice of ordering of the embeddings F' — R fixes an isomorphism of Flr with the
n-fold product of the complex upper half-plane with itself, and the diagonal inclusion
H — Hr is independent of the choice of ordering. By restricting our Eisenstein series
to the diagonal we obtain an S)-valued function

E(r,s) = E(%’,s)kﬂ

in the variable 7 € #, which transforms like a modular form of weight n and repre-
sentation wy under the full modular group SL3(Z).
Given a cusp form g € S, (wy) valued in Sy, consider the Petersson inner product
- —-— du d?)
(4.3.4) (E(8), §)pet = / {g(T),E(T, s)} =
SLa(Z)\H v
where {.,.} : S x S} — C is the tautological pairing. This is an unnormalized version
of the generalized L-function
&(Sag) = A(S + 13 XE) : <E(S)7§>Pet

of [8, (1.2)] or [2, §6.3].

Let F'y C F be the subset of totally positive elements. The Eisenstein series E(7, s)
satisfies a functional equation in s — —s, forcing it to vanish at s = 0. As in [8,
Proposition 4.6] and [2,§6.2], we can extract from the central derivative E’(7,0) a
formal g-expansion

ar(0) + Z ap(a) - q”.

a€F L
If « € Fy then F/ (7,0, ¢) is independent of @, and we define ar(a) € S) by

aF(aa ¢) = A(Oa XE) . E(/);(’Ua Oa ¢)
We define ar(0) € S} by
ap(0,4) = A0, x) - E4(7,0, ) — A0, x) - $(0) log Nm(9).

Again, this is independent of ¥.
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Remark 4.3.1. — For notational simplicity, we often denote by ap(a, ) the value
of ap(a) : S, — C at the characteristic function of a coset p € L'/L.
For any nonzero o € F', define
Diff (¢, a) = {places v of F : €, does not represent a}.

This is a finite set of odd cardinality, and any v € Diff (¢, @) is-necessarily nonsplit
in E. We are really only interested in this set when o € Fy. As € is positive definite
at all archimedean places, for such o we have

Diff (¢, o) = {primes p C O : ¥;, does not represent a}.
We will need explicit formulas for all ap(a, u) with o € Fy, but only for the trivial
coset p = 0. These are provided by the following proposition.
Proposition 4.3.2. — Suppose o € F;.
1. If IDiff (€, )| > 1 then ap(a) = 0.
2. If Diff (¢, ) = {p}, then
ap(@,0) = =271 p(adpp~°r) - ordy (apdr) - log(N(p)),

where the notation is as follows: r is the number of places of F ramified in E
(including all archimedean places), 0F C OF is the different of F, and

_ )1 ifpisinertin B
= {0 ifp is ramified in E.
Moreover, for any fractional Op-ideal b C F we have set
p(b) = |{ideals B C Op : BB = bOg}|.
In particular, p(b) = 0 unless b C Op.

Proof. — Up to a change of notation, this is [18, Proposition 4.2.1], whose proof
amounts to collecting together calculations of [28]. More general formulas can be
found in [2, §7.1] and [21, §4.6]. O

Proposition 4.3.3. — Assume that the discriminants of k and F' are relatively prime.
For any pu € L' /L we-have

—2A'(0,xE) ifpu=0
0 otherwise.

a'F(OHu) = {

Proof. — Let ®, = [], ®,, be the standard section of I(s, xg) determined by the
characteristic function ¢, € S C S(¥) of p € L'/L. According to [2, Proposi-
tion 6.2.3|, we then have

(4.35)  ap(0,u) = —26,(0)A'(0,x5) — A0, x5) - %(HM,,(S,%)) .
P

s=
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where the product is over all finite places p of F, and the local factors on the right
have the form

. LP(S + 1’ XE')
LP(87XE)

for some constants c, independent of s. Here, setting

w= (973", n®)=(44),

(4.3.6) My (s,¢,) = cp -Wop(s, @)

the function
Wou(s.8,) = [ @, (wn®),s) db
Fy

is the value of the local Whittaker function Wy ,(g,s, ®,) at the identity in SLy(F}).
Our goal is to prove that M, (s, ¢,) is independent of s, and hence both the particular
value of ¢, and the choice of Haar measure on F} are irrelevant to us.

Fix a prime p C OF, and let p be the rational prime below it. We may identify
¥p = E, in such a way that L, = Op ,, and so that the Fj,-valued quadratic form 2
on ¥, =2 E, becomes

Q(x) = fzT
for some (§ € pr. If 0 denotes the different of F/Q, then
(4.3.7) BOF, =05"Op,.

Indeed, let 0 be the different of E/Q. The lattice L; = DEIOE,,, is the dual lattice
of Op p relative to the Q,-bilinear form [z;y] = Trg, /g, (B27), which implies the first
equality in

B_leE,p = DEO;IOE,p = DFOE,p-

The second equality is a consequence of our assumption that the discriminants of k
and F' are relatively prime.
If we endow ¥, = E, with the rescaled quadratic form

24x) ¥ 1 2(z) = a7,
and define a new additive character
def
B (@) S Yy (B)
(unramified by (4:3.7)), we obtain a new Weil representation
W+ SLa(Fy) — Aut(S(%)),
and hence, as in (4.3.3), a function

o4 (s,9)

S(7) Iy(s,xE)

defined by first setting @g (0,9) = w*(g)¢$(0), and then extending to a standard section.
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The local Schwartz function ¢,, € S(%,) now determines a standard section

@fl,p (9,s) of I(s,xg), and explicit formulas for the Weil representation, as in [21,
(4.2.1)], show that

/ @, (wn(b),s) db = / @, , (wn(b),s) db.
F,

P Fy
What our discussion shows is that there is no harm in rescaling the quadratic form
on 7, to make § = 1, and simultaneously modifying the additive character ¥z, to
make it unramified.
After this rescaling, one can easily deduce explicit formulas for Wo ,(s, ®,,) from
the literature. Indeed, if the local component 1, € L; /Ly is zero, then the calculations
found in [28, §2] imply that

Ly (s, x5)
L,(s+1,xE)
up to scaling by a nonzero constant independent of s. If instead p, # 0 then p is
ramified in E (and in particular p > 2), and it follows from the calculations found
in the proof of [21, Proposition 4.6.4] that Wy (s, ®,) = 0. In any case (4.3.6) is
independent of s for every p, and so the derivative in (4.3.5) vanishes. O

Wo,p(s, @p) =

4.4. A preliminary central derivative formula. — The entirety of §4.4 is devoted to
proving Theorem 4.4.1, which a big CM analogue of Theorem 2.4.1. The proof will
make essential use of the calculations of [18, 19, 8].
We assume n > 3 throughout §4.4. This allows us to make use of the distinguished
harmonic forms
fm€ Ho_p(@r)?
(for m > 0) characterized by (2.5.1).

Theorem 4.4.1. — Assume that the discriminants of k/Q and F/Q are odd and rela-
tively prime, and fix a positive integer m. If f = f,, is the harmonic form above, and
Z is the linear function (2.4.1), then

n - [Z(f) : Yuig)
degc(Ybig)

For the form f =.f,, we have

A,(07 XE) d

P OOFG )~ Dy

~

Z (). = L2 (m) = (ZL2(m), O°%(f,n)) € Ch (Sicra),

where the Green function ©2(f,,) for the divisor Zit (m) is constructed in [6, §7] as
a regularized theta lift. The arithmetic degree appearing in Theorem 4.4.1 decomposes
as
(4.4.1)

5 length(O,) O (fm)(y)
[Z(f) : Yig] = D log(N(p)) > 7? + Y e

Aut Aut
pCOxk ye(zl;f;;(m)mfyb-.g)(mlg)| ) YEYnig (C) | W)l
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where F, = Ok /p, and O, is the étale local ring of

(4.4.2) 2 (m) N Yuig = L (m) x5, Y
at y. The final summation is over all complex points of Cybig, viewed as an Op-stack.
We will see that the terms on the right hand side of (4.4.1) are intimately related to
the Eisenstein series coefficients ap () of §4.3.

We first study the structure of the stack-theoretic intersection (4.4.2). Suppose S is
a connected ©g-scheme, and

(A(),A) S (C)’I’L(LO) X0y CC}’)’Lq))(S)

is an S-point. The Op-module Homg, (Ao, A) carries an Op-hermitian form (—,—)
defined by [6, (2.5.1)]. The construction of this hermitian form only uses the underlying
point of Ska, and not the action O — Endg, (A). As in [19, §3.2], the extra action
of Op makes Homg, (A, A) into a projective Op-module, and there is a totally
positive definite E-hermitian form (—, —)piz on

(4.4.3) ¥ (Ao, A) = Homg, (Ao, A) @z Q
characterized by the relation

<$1,$2> = TrE/k<il?1,$2>big-

for all z1,xz2 € Homg, (Ao, A).
Fix an o € F;. Recalling that

(4.4.4) Cgbig - CWL(LO) X0, C‘m@

as an open and closed substack, for any Og-scheme S let Zyig()(S) be the groupoid
of triples (Ap, A, z), in which
A07 E Cyblg

— =z € Hom@k (AO,A) satisfies (z, z)pig = .
This functor is represented by an Og-stack Zpig(c), and the evident forgetful mor-
phism

ézblg q&lblg

is finite and unramified.

This construction is entirely analogous to the construction of the special divisors

ot (m) — Skra of [6]. In fact, directly from the definitions, if S is an Og-scheme an
S-point

(Ao, A, 2) € (L& (m) N Yhig) (5)

consists of a pair (A, 4) € Ypig(S) and an = € Homg, (Ao, A) satisfying m = (z, z).
From this it is clear that there is an isomorphism

(4.4.5) Ram) nYuig = || Zigla),

acFy
Trp/g(a)=m

defined by sending the triple (Ap, A,z) to the same triple, but now viewed as an
S-point of the stack Zyig(a) determined by o = (z, Z)pig.
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Proposition 4.4.2. — For each o € F the stack Zyig(c) is either empty, or has di-
mension 0 and is supported at a single prime of Og. Moreover,

1. If |IDiff (¢, )| > 1 then Zpig(a) = 0.

2. Suppose that Diff (¢, a) = {p} for a single prime p C Op, let q C O be the
unique prime above it, and denote by qe C Og the corresponding prime underi
the isomorphism ¢*P : E = Eg. Then Zyig(a) is supported at-the prime qs,
and satisfies

1 hg
T = pladpp T,
LK)
yE€Lpig (o) (Fq 2

where Fgq, is the residue field of qo, and €, and p are as in Proposition 4.3.2.
Moreover, the étale local rings at all geometric points

y € Lpig(a)(FyE)
have the same length

1/2  if Eq/F, is unramified

length(O,) = ord, (apdr) - )
1 otherwise.

Proof. — This is essentially contained in [18, §3]. In that work we studied the
Og-stack Zo(a) classifying triples (Ao, A, z) exactly as in the definition of Z;.(c),
except we allowed the pair (Ag, A) to'be any point of N o) x g, CNMg rather than
a point of the substack (4.4.4). Thus we have a cartesian diagram

Zbig(a) ———— Zo(a)

| |

Cgbig e M(Lo) X0y Ccrn@.

As the bottom horizontal arrow is an open and closed immersion, so is the top hori-

zontal arrow. In other words, our Zpig(c) is a union of connected components of the
stack Lo () of [18].

Lemma 4.4.3. — Each Zg(a) has dimension 0. If y is a geometric point of Lo()
corresponding to a triple (Ao, A,x) over k(y), then k(y) has nonzero characteristic,
Ag and A are supersingular, and the E-hermitian space (4.4.3) has dimension one.
Moreover, if p'C O denotes the image of y under the composition

(4.4.6) Zo(a) — Spec(Og) = Spec(Og) — Spec(OF)

(the isomorphism is ¢ : E = Eg), then p is nonsplit in E, and the following are
equivalent:
— The geometric point y factors through the open and closed substack

Lyig(a) C Lo ().
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— The E-hermitian space (4.4.3) is isomorphic to V" everywhere locally except at p
and ¢SP|F.

Proof. — This is an easy consequence of [18, Proposition 3.4.5] and [18, Proposi-
tion 3.5.2]. The only part that requires explanation is the final claim.
Fix a connected component

B C CV)’L(LO) X9, C‘TI’L@

As in [18, §3.4], for each complex point y = (Ag, A) € B(C) one can construct from
the Betti realizations of Ag and A an E-hermitian space

¥(B) = Homyg (H1(A0(C), Q), Hy (A(C), Q)

of dimension 1. This hermitian space has signature (0, 1) at ©*P| ., and signature (1,0)
at all other archimedean places of F'. Moreover, as in.Remark 4.2.3, this hermitian
space depends only on the connected component B, and not on the particular complex
point y. The open and closed substack

Cybig C CWL(LO) X0, CCWL@

can be characterized as the union of all components B for which ¥ (B) = 7.
So, suppose we have a geometric point y =(4g, A, ) of (), and denote by

BcC CWL(LO) X0y C‘TYL@

the connected component containing the underlying point y = (Ap, A). The content
of [18, Proposition 3.4.5] is that the hermitian space (4.4.3) is isomorphic to ¥ (B)
everywhere locally except at p and goSp|F. From this we deduce the equivalence of the
following statements:

— The geometric point y — £ () factors through Zpig ().

— The underlying point y =M o) X, CN e factors through Ypig.

— The hermitian spaces ¥ (B) and ¥ are isomorphic.

— The E-hermitian space (4:4.3) is isomorphic to ¥ everywhere locally except

at p and goSp|F. O

Now suppose that Zig() is nonempty. If we fix a geometric point y = (Ao, 4, z)
as above, the vector £ € Homg, (Ao, A) satisfies (x,z)niz = «, and hence (4.4.3)
represents a. The above lemma now implies that ¥ represents o everywhere locally
except at p and <pSp|F, where p is the image of y under (4.4.6). From this it follows
first Diff (¢, &) = {p}, and then that all geometric points of Zpis() have the same
image under(4.4.6), and lie above the same prime q¢ C Og characterized as in the
statement of Proposition 4.4.2. In particular, if [Diff (¢, )| > 1 then Zyig(a) = 0.

It remains to prove part (2) of the proposition. For this we need the following
lemma.

Lemma 4.4.4. — Assume that Diff (¢, ) = {p} for some prime p C Op, and let
g C Op be the unigue prime above it. The open and closed substack Zpig(a) C Lo (cxr)
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is equal to the union of all connected components of () that are supported at the
prime qs.

Proof. — We have already seen that every geometric point of Zpig(c) lies above the
prime g, and so it suffices to prove that every geometric point of Zg () lying above
the prime q¢ factors through Zpig(a). Let y — <o () be such a point.

If y corresponds to the triple (Ao, A,z), then z € Homp, (Ao, A) satis-
fies (x,%)pig = @, and hence (4.4.3) represents «. But the assumption that
Diff (¢, ) = {p} implies that ¥ represents « everywhere locally except at p and
<pSp|F, and it follows from this that ¥ and (4.4.3) are isomorphic locally every-
where except at p and <pSP|F. By the previous lemma, this implies that y factors

through Zpig (). O
With this last lemma in hand, all parts of (2) follow from the corresponding state-
ments for Z¢(a) proved in [18, Theorem 3.5.3| and |18, Theorem 3.6.2]. O
Proposition 4.4.5. — For every o € F, we have
Z n - log(N(p)) Z length(0,) _ ar(a,0)
ol degc(Yvig) Do (o) (FE) |Aut(y)| A0, xE)’

where the inner sum is over all ]Fglg—points of Lpig(a), viewed as an O-stack.

Proof. — Combining Propositions 4.2.8, 4.3.2, and 4.4.2 shows that

n -log(N(qe)) length(9,) _ ar(a,0)
Z deg({:(cybig) Z |Aut(y)| - A(O) XE)’

92 COe YEZnig () (F52)

where the inner sum is over all Fgf points of Zyig(r), viewed as an Og-stack. The

claim follows by collecting together all primes qo C 94 lying above a common prime

p C Ok. O
Proposition 4.4.6. — The regularized theta lift ©™8(f,,) satisfies
n O™ (fm)(y)
i A
degc(Yvie) | i o)~ IAUEW)]
d (IF(CY, O) + Al(Oa XE)
= ——(E(5);&(fm))Pe — -2 0,0) - ———=—.
SEGNE el ot Y G =2, 0,0) FE
a€Fy
Trp/g(a)=m
Proof. — This is a special case of the main result of [8]. This requires some explana-

tion, as that work deals with cycles on Shimura varieties of type GSpin, rather than
the unitary Shimura varieties under current consideration.

Recall that we have an F-quadratic space (¥, 2) of rank two, and a Q-quadratic
space (V, Q) whose underlying Q-vector space

V = Homy (Wy, W)
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is equal to ¥, and whose quadratic form is (4.3.1). As in [8, §2] or [2, §5.3] this data
determines a commutative diagram

1 Gm TGSpin TSO 1

|

1——G,, —— GSpin(V) —— SO(V) —— 1,

with exact rows, of algebraic groups over Q. The torus Tso.= Resp,oSO(7) has
Q-points
T50(Q) ={y € £ :yy = 1},

while the torus Tgspin has Q-points
Taspin(Q) = EX /ker(Norm : FX* — Q).

The map Tgspin — Iso is ¢ — z/Z. To these groups one can associate morphisms of]
Shimura data

(TGspin, {haspin}) — (Ts0, {hso})

| |

(GSle(V), @GSpin) E— (SO(V), q.)so).

In the top row both data have reflex field Fg. In the bottom row both data have
reflex field Q.

Let Kso C SO(V)(Ay) be any compact open subgroup that stabilizes the lattice
L C V, and fix any compact open subgroup Kaspin C GSpin(V)(Ay) contained in
the preimage of Kgo. The Shimura data in the bottom row, along with these compact
open subgroups, determine Shimura varieties Mggpin — Mso. These are Q-stacks of]
dimension 2n — 2.

The Shimura data in the top row, along with the compact open subgroups
Kaspin N Taspin(Ay) and KsoNTso(Af), determine Shimura varieties Yaspin — Yso-
These are Eg-stacks of dimension 0, but we instead view them as stacks over Spec(Q),
so that there is a commutative diagram

(4.4.7) Yaspin — Yso

|

Maspin — Mso.

Assume that the compact open subgroup Kgo acts trivially on the quotient L'/L.
For every form f € Hy_,(@r), one can find in [8, Theorem 3.2| the construction of a
divisor Zgspin(f) on Mgspin, along with a Green function @ggpin( f) for that divisor,

constructed as a regularized theta lift. Up to change of notation, [8, Theorem 1.1]
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asserts that

(4.4.8)
Octm(fy)  d a(m, p)cf (—m, )
n in ) ) )
P — T = = (B().6(Dpal _yt D 1o :
g(}( GSpln) YEYaspin(C) | ut(y)| $ m>0 ( aXE)
peL'/L

where the coefficients a(m) € St are defined by

a(m) = Z ar(a)

OLEF+
Trp/q(a)=m

if m > 0, and by a(0) = ar(0).

It is not difficult to see, directly from the constructions, that both the divisor
Zaspin(f) and the Green function @ggpm (f) descend to the quotient Mgp. If we call
these descents Zgo(f) and ©¢5(f), it is a formal consequence of the commutativity of
(4.4.7) that the equality (4.4.8) continues to hold if all subscripts GSpin are replaced
by SO.

Moreover, suppose that our form f € Ha_,,(wy ) is invariant under the action of the
finite group A of §2.4, as is true for the form. f,, of (2.5.1). In this case one can see,
directly from the definitions, that the divisor-Zso(f) and the Green function O¢5(f)
descend to the orthogonal Shimura variety determined by the maximal compact open
subgroup

Kgo = {g (S SO(V)(Af) :gL = L}.
From now on we fix this choice of Kgg.

Specializing (4.4.8) to the form f = f,,, and using the formula for a(0) = ar(0)
found in Proposition 4.3.3, we obtain

s U 4
degC(Yso) Yo (C) |Aut(y)| ds <E( )7£(fm)>Pet|s=0

As in [6, §2.1], our group G C GU(Wy) x GU(W) acts on V in a natural way,
defining a homomorphism G — SO(V). On the other hand, Remark 4.1.1 shows
that Thig = Resg /oG X Tso, and projection to the second factor defines a morphism
Thig — Tso. We'obtain morphisms of Shimura data

(Thig, {hvig}) — (Ts0, {hso})

| |

(G7 CD) — (SO(V)a CDSO)y
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which induce morphisms of k-stacks

Yhbig/k — Yso/k

L

Skra/k — Mso /-

The Green function ©™%(f,,) on Skya/k defined in [6, §7.2] is'simply the pullback

of the Green function ©g5(f) via the bottom horizontal arrow. It follows easily that
n Os5(fm)y) _  n 05 (fm)(¥)
degc(Veo) | 2= [Auily)]  deome(@Wg) | 2= TAut(y)
and comparison with (4.4.9) completes the proof of Proposition 4.4.6. O

Proof of Theorem 4.4.1. — Combining the decomposition (4.4.5) with Proposi-
tion 4.4.5 shows that

> nlog(N(p)) 3 length(9,) _ 3 —ar(a,0)

d ; Aut A0, ’

=t egc(Ybig) IS ()Pl (L) |Aut(y)]| aeF (0,xE)
rp/g(a)=m

Plugging this formula and the archimedean calculation of Proposition 4.4.6 into (4.4.1)
leaves

n- [2(fm> : Cybig] 4 A/(Oa XE) d
= —2¢} (0,0). ————== — —(E(3),&(fm))pe ,
deg@(quig) fm( ) A(O, XE) d8< ( ) g(f )>P t|s:0
as desired. O
4.5. The proof of Theorem B. — We now use Theorem 4.4.1 to prove a special case

of Theorem D, and then prove Theorem B. We assume n > 3.
Recall the differential operator

§: Hyn(wr) — Sn(wr)
of §2.4. Its kernel is the subspace

M;_,(wi) C Hyn(wr)
of weakly holomorphic forms.

Lemma 4.5.1. —, In the notation of §2.4, there exists a A-invariant form f € Mz!_n(w,;)
such that c}"(O, 0)-# 0, and

Z(f) + 5 (0,0) - it (0) = 0.
Proof. — Denote by
S5, (Lo (D), X) € My, (To(D), X30)
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the subspace of forms that vanish at all cusps other than co, and choose any form

fo(r)= > co(m) q™ € 8%, (To(D), X&)

mEZ
m>—0o0

such that ¢g(0) # 0. The existence of such a form can be proved as in [4, Lemma 4.11].
As in (2.3.2) there is an induced form

W= (ol ) wr(r e € Moy (@),
v€To(D)\SL2(Z)
which we claim has the desired properties.
Indeed, the proof of Proposition 2.5.1 shows that C}—(O, 0) = c¢o(0), and that
f =2 ms0c(—=m) fm. In particular,
= ~1
Z(f) =" co(=m) - Zigh(m) € Che(Sicra)-
m>0
Given any modular form
g(r) =Y d(m) - ¢™ € My(D,x3),
m>0
summing the residues of the meromorphic form fo(7)g(7)dr on Xo(D)(C) shows that
> co(=m) - d(m) = 0.
m>0
Thus the modularity of the generating series (1.1.2) implies the second equality in

(4.5.1) Z() +co(0) - Zigh(0) = S co(—m) - Zigh (m) = 0. O

m>0

We can now prove Theorem D under some additional hypotheses. These hypotheses
will be removed in §5.

Theorem 4.5.2. — If the discriminants of k/Q and F/Q are odd and relatively prime,
then

A'(0,xE)

A(07 XE) .

Proof. — If we choose f as in Lemma 4.5.1 then £(f) = 0, and so Theorem 4.4.1
simplifies to

(@ Ybig| = _72 - degc(Ywig) -

AtOt 0): i AI 0
—nc (0,0) - [ (0) : Y] +2¢(0,0) - (0, xx) =0.
degc(Ybig) A0, xr)
An application of Proposition 4.2.11 completes the proof. O

The following is Theorem B in the introduction.
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Theorem 4.5.3. — Assume that the discriminants of k/Q and F/Q are odd and rel-
atively prime, and let g € S, (To(D),x™) and § € Sp(@r) be related by (2.3.2). The
central derivative of the Petersson inner product (4.3.4) is related to the arithmetic
theta lift (1.1.3) by

~ -1 d _
0(g) : Yoig] = . - dege (Ybig) - £<E(3)79>Pet|s:0
Proof. — If we choose f as in Proposition 2.5.1, then §(f) = g-and

Cyblg ;z’.(f) Cyblg +Cf O 0) Cyblg

Proposition 4.2.11 and Theorem 4.5.2 allow us to rewrite this as
g)“yng 3@Mg—C+OJDWG¢WMQ

Cyblg — ¢y (0 0 degc(quig) . M

A(07 XE) ’

and comparison with Theorem 4.4.1 completes the proof. O

5. Faltings heights of CM abelian varieties

In §5 we assume n > 2, and study Theorems C and D of the introduction. As in
§1.3, let F' be a totally real field of degree n, set

E=kaqF,
and let ® C Hom(E, C) be a CM type of signature (n—1,1). We fix a triple (ag,a,ig)
as in §4.2.

5.1. Some metrized line bundles. — By virtue of the inclusion (1.1.1), there is a uni-
versal pair (Ag, A) over Sk;, consisting of an elliptic curve 7y : Ag — Skra and an
abelian scheme 7 : A — Sk;, of dimension n.

Endowing the Lie algebras of Ay and A with their Faltings (a.k.a. Hodge) metrics
gives rise to metrized line bundles

Lie(Ap) € Pic(Skra),  det(Lie(A)) € Pic(Skra)-
A vector 1 in the fiber
det(Lie(4,) ™" & \"Fil'Hip(4,) ¢ \" Hin(4

at a complex point s € Sk;2(C) has norm

(511) =]/ nn
A5(C)

The metric on Lie(Ag) is defined similarly.
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We now recall some notation from [6, §1.8]. Fix a m € O such that Op = Z + Zn.
If S is any Og-scheme, define
(5.1.2) Eg =7T®1—1®i5(ﬁ) € O, ®z Og
Es=T®1-1R®is(T) € O ®z 95,

where ig : O — Og is the structure map. We usually just write e.and g, when the
scheme S is clear from context.

Remark 5.1.1. — If N is an Oy ®7 Og-module then N/zN .is the maximal quotient
of N on which O acts through the structure morphism ig :-Of — Og, and N/eN is
the maximal quotient on which O acts through the conjugate of the structure mor-
phism. If D € OF then

N =eN &N,
and the summands are the maximal submodules on which 'O acts through the struc-

ture morphism and its conjugate, respectively.

As in [6, §2.2], the relative de Rham homology H{®(A) is a rank 2n vector bundle
on Sk, endowed with an action of O, induced from that on A. In fact, it is locally
free of rank n as an Ok ®z Og, . -module, and

U = H{"(A)/eH{™(4)

is a rank n vector bundle. We make det(?V) into a metrized line bundle by declaring
that a local section 1 of its inverse

det(V)~! =2 A" eHjg(4) C Hi(4)

has norm (5.1.1) at a complex point s € Sk;a(C).

As the exceptional divisor Exc C Sk, of [6, §2.3] is supported in characteristics
dividing D, the line bundle O(Exc) is canonically trivial in the generic fiber. We
endow it with the trivial metric. That is to say, the constant function 1, viewed as a,
section of O(Exc), has norm ||1]|? = 1.

Recall that the line bundle w of [6, §2.4] was endowed with a metric in [6, §7.2],
defining

® € Pic(Skra).
For any positive real number ¢, denote by
O(c) € Pic(Skra)

the trivial bundle Og, _ endowed with the constant metric ||1]% = c.

Proposition 5.1.2. — There is an isomorphism
O(872e'D71)®2? © %% ® det(Lie(A)) ® Lie(A4g)®? = O(Exc) ® det(V)

of metrized line bundles on Skya.
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Proof. — In [6, §2.4] we defined a line bundle Qk;, on Sk, by
Q.o = det(Lie(A)) ™ @ Lie(A49)® 2 ® det(V),
and in [6, Theorem 2.6.3] we constructed an isomorphism
0®% 2 Q.. ® O(Exc).
This defines the desired isomorphism
(5.1.3) 0?2 ® det(Lie(A)) ® Lie(Ag)®? = O(Exc) ® det(V)

on underlying line bundles, and it remains to compare the metrics.
In the complex fiber this can be made more explicit. At any complex point
s € Skra(C) the Hodge short exact sequence admits a canonical splitting

H{*(A,) = F°(A;) @ Lie(4,),
where FO(A,) = Fil’H{R(A,) is the nontrivial step in the Hodge filtration. When
combined with the decomposition of Remark 5.1.1 we obtain
HR(A,) = eFO(A,) DEF(A,) @ eLie(A) dELie(A;),
-1 n—1

where the subscripts indicate the dimensions-as C-vector spaces. There is a similar
decomposition

H?R(AOS) = EFO(AOS) @gFO(AOS) éBsLie(Aos) EB?Lie(AOS) .
—_— Y Y Y

Denote by
(5.1.4) Y HR(A,) x HR(A,) — C

the alternating pairing determined by the principal polarization on A;. The two direct
summands

eFO(A,) @ gLie(A,) C HIR(A,)
are interchanged by complex conjugation. We endow both e F(A;) and gLie(A;) with
the metric

(b, b)

.1. 2 =

(5.15) oz = |52,

so that the pairing

(5.1.6) Y : eFY(A,) ® ELie(A,) — O(4r?) ;!

is an isometry.
For a,b € gLie(A,), define pagy : eF°(A,) — ELie(4,) by

(5.1.7) Pagb(€) = Y(Za,e) -€b = —Dip(a,e) - b.

The factor of —D comes from the observation that € acts on gLie(A;) as v —D,
where the sign depends on the choice of 7w used in (5.1.2).
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We now define P,gp by the commutativity of

Pa®b

(5.1.8) det(Vy) det(Lie(As))
% Jg
eF%(A;) ® det(eLie(As)) e gLie(As) ® det(eLie(Ay)).
This defines the isomorphism
(5.1.9) (eLie(A,))®* L Hom (det(V,), det(Lie(4s)))
of [6, Lemma 2.4.5].
Lemma 5.1.3. — The isomorphism (5.1.9) defines an isometry

det(V,) = 027D 1)¥? @ (e F°(A,))®? ® det(Lie(Ay)).

Proof. — Fix an isomorphism A>" Hy(A4(C),Z) = Z and extend it to a C-linear
isomorphism

2n
vol: \* H{®*(4,) =C.

Under the de Rham comparison isomorphism H; (A4,(C),C) = HIR(A;), the pair-
ing (5.1.4) restricts to a perfect pairing

¥ H1(As(C),Z) x H1(As(C),Z) — 2miZ.
It follows that there is a unique element' ¥ = a A 8 € A* Hy(4,(C),Z) such that
23 - (a, b) = Blara)(8,5) — Y(a, bYY(, a)
for all a,b € H1(As(C),Z). The map

(/\"_1 Hl(AS(C)>Z)) X (/\n_1 Hl(As((C)7Z)) =7

defined by a ® b — vol(¥ A a Ab) is a perfect pairing of Z-modules.
We now metrize the line

det(cLie(4,)) ¢ N\ eHIR(A,)

by ||ul|? = |[vol(¥ A uAR)|. With this definition, the vertical arrows in (5.1.8) are
isometries.
Using (5.1.6) and (5:1.7), one sees that the map

Dagb € Hom(FO(AS), gLie(Ay))

satisfies ||pags|| = 27D - ||a ® b||, and hence also || Pygp|| = 27D - ||a ® b||. This proves
that the isomorphism P defines an isometry

O(2rD)¥* ® (gLie(As))®? = Hom (det(Vs), det(Lie(As))).
The isomorphism (5.1.6) allows us to rewrite this as

det(Vs) 2 021D~ 1% @ (F°(A,))®? ® det(Lie(As)). O
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The proof of [6, Proposition 2.4.2] gives an isomorphism
(5.1.10) w, = Hom(Lie(Ays),eF°(A,)) C Ve,

where
V = HOI’Ilk (H1 (A(]s ((C), Q), Hl (As((C), Q)) .

Asin [6, §2.1], there is a Q-bilinear form [.,.] : VXV — Q induced by the polarizations
on Ags and A,. If we extend this to a C-bilinear form on

VC = HOHIk@C (H?R(AOS)a HiiR(As))
then the metric on w; is defined, as in [6, §7.2], by

[z, 7]|

2 _
lal? = 22

for any = € Hom(Lie(Aqs),eF°(Ay)).

On the other hand, we have defined the Faltings metric on Lie(Ags), and defined a
metric on eF°(A,) by (5.1.5). The following lemma shows that (5.1.10) respects the
metrics, up to scaling by a factor of 4mwe”.

Lemma 5.1.4. — The isomorphism (5.1.10) defines.an isometry
O(4re), ® @, = Hom(Lie(Ags), e FO(Ay)).
Proof. — The alternating form
Yo : Hi ™ (Ags) x H{(Ags) — C
analogous to (5.1.4) restricts to a perfect pairing
Yo : H1(Aps(C),Z) x H1(Aps(C),Z) — 2miZ,
and hence the Faltings metric on Lie(Ags) = e H{R(Aos) is
llall* = (2m)~ 4o (a, @)l
From the definition of the bilinear form on V', one can show that
[,Z] - Yo(a,a) = Y(za, Ta)
for all z € eV¢. Comparing with the metric on eF°(A;) shows that
dme? - ||z||? - [lal|* = (2m) 7" - [¢(za, 7@)| = ||zal?,
for all z € wy and'a € Lie(Ags), as claimed. O
The two lemmas provide us with isometries
det(Vs) = 027D 1% @ (e FO(A,))®? @ det(Lie(Ay))
=~ (8%’ D)%% @ 622 ® Lie(Ags)®? det(Lie(Ay))

and the composition agrees with the isomorphism (5.1.3). This completes the proof
of Proposition 5.1.2. O
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Recall the big CM cycle 7 : (ybig — Si*(ra of Definition 4.2.6. All of the metrized
line bundles on Sk., appearing in Proposition 5.1.2 can be extended to the toroidal
compactification S, (with possible log-singularities along the boundary) so as to
define classes in the codimension one arithmetic Chow group. However, we don’t
actually need this. Indeed, we can define a homomorphism

Cyblg PIC SKra) — R

as the composition

. P deg
Pic(Skra) — Pic(Ywig) Ch (Ybig) —

As the big CM cycle does not meet the boundary of the toroidal compactification,
the composition

O’ (Siea) & Pie(Sicr) = Pie(Sicia) 222 R

agrees with the arithmetic degree along UYp;, of Definition 4.2.6.

Remark 5.1.5. — Directly from the definitions, and recalling Remark 2.2.7, the
metrized line bundle O{c) satisfies

&) Yuigl = Y —log |12 ="—log(c) - dege(Ybig)-

ye(ybig ©)

5.2. The Faltings height. — Recall from §4.2 the moduli stack C1ls of abelian vari-
eties over Og-schemes with complex multiplication by Oz and CM type ®.

Suppose A € CNMg(C). Choose a-model of A over a number field L C C large
enough that the Néron model A, — Spec(Or) has everywhere good reduction.

Pick a nonzero rational section s of theline bundle W*Qii';lé‘z) on Spec(OL), and define

1 _
REIE(A, 5) = AR Z log‘/ s7 A7,

and
h?alt (4,s) =

[L:Q]
By a result of Colmez [12], the Faltings height
hiEie) = B (4, 5) + hid"(4,5)
depends only on the pair (E, ®).
Proposition 5.2.1. — The arithmetic degree of Lie(A) along Ynig satisfies
[det(Lie(A)) : Ynig] = —2dege(Ybig) - h(Fglfcb).
Similarly, recalling the Faltings height hE? of (1.4.1),
L1e AO Cyblg —2 deg(c (Cybig) . hi‘alt.
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Proof. — Suppose we are given a morphism y : Spec(O) — UYpig for some finite
extension L/Eg. The restriction of A to O has complex multiplication by O and
CM type ®, and comparing the definition of the Faltings height with the definition
of d/c:g found in [19, §3.1], shows that the composition

== o =1 *o~1 deg
Pic(Skra) 7 Ch (Yuig) 2= Ch (Spec(01)) <5 R
sends Lie(A)™! to [L: Q] - hfg{t@).
We may choose L in such a way that the O-stack
Cybig X Spec(0s) SpeC(OL)

admits a finite étale cover by a disjoint union Yy, = | |Spec(OL) of, say, m copies
of Spec(9y), and then

. . . Falt
[Lie(4) : Yoig) _ [Lie(A) : Vi _ ML QLA
degc(Yvig) degc(Yoig) m[L : k] (B:%)
This proves the first equality, and the proof of the second is similar. O

5.3. Gross’s trick. — The goal of §5.3 is to compute the degree of the metrized line
bundle det(V) along the big CM cycle. The impatient reader may skip directly to
Proposition 5.3.6 for the answer. However, the strategy of the calculation is simple
enough that we can explain it in a few sentences.

It is an observation of Gross [14] that the metrized line bundle det(‘V) behaves, for
all practical purposes, like the trivial bundle Og,_  endowed with the constant metric
|1]]? = exp(—c) for a certain period c. This is made more precise in Theorem 5.3.1 and
Corollary 5.3.2 below. A priori, the constant c¢ is something mysterious, but one can
evaluate it by computing the degree-of det(V) along any codimension n— 1 cycle that
one chooses. We choose a cycle along which the universal abelian scheme A — Sk,
degenerates to a product of CM elliptic curves. Using this, one can express the value
of ¢ in terms of the Faltings height hf®' appearing in (1.4.1). The degree of det(V)
along Yp;g is readily computed from this.

To carry out this procedure, the first step is to construct a cover of Sk;,(C) over
which the line bundle det(?V) can be trivialized analytically. Fix a positive integer m,
let K (m) C K be the compact open subgroup of [6, Remark 2.2.3|, and consider the
finite étale cover

Shi (m) (G, D)(C) === G(Q\D x G(A)/K(m)
Sh(G, D)(C) === G(Q)\D x G(As)/K.

This cover has a moduli interpretation, exactly as with Sk,, itself, but with addi-
tional level m structure. This allows us to construct a regular integral model Sk, (m)
over Or[1/m] of Shg () (G,D), along with a finite étale morphism

Skra(m) = Skraf0yfi/m)-
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We use the notation det(V) for both the metrized line bundle on Sk:,, and for its
pullback to Skra(m).
The following results extends a theorem of Gross [14, Theorem 1] to integral models.

Theorem 5.3.1. — Suppose m > 3, let Z*'® C C be the subring of all algebraic integers,
and fix a connected component

Cc SKra(m)/Zalg[l/m].
The line bundle det(V) admits a nowhere vanishing section
n € H°(C,det(V)).

Such a section is unique up to scaling by Z¥8[1/m]*, and.its norm ||n||? is constant

on C(C).
Proof. — For some g € G(Af) we have a complex uniformization

T\D 2229, 0(C) € Shy (G, D)(C),

where I' = G(Q) N gK(m)g~!, and under this uniformization the total space of the
vector bundle det(?V) is isomorphic to I'\(D x C), where the action of I' on C is via
the composition
T c G(Q) = GLIW) L% k> c C*.
The compact open subgroup “K(m). is constructed in such a way that there is a
Og-lattice ga C W (k) stabilized by T';;and such that T" acts trivially on ga/mga. This
implies that the above composition actually takes values in the subgroup

{€€0r:¢=1 (mod mOy)},

which is trivial by our assumption that m > 3. In other words, the vector bundle
det(V) becomes (non-canonically) trivial after restriction to X(C). In fact, the ar-
gument of [14, Theorem 1] shows that one can find a trivializing section 1 that is
algebraic and defined-over Q*# C C, and that such a section is unique up to scaling
by (Q*2)* and has constant norm ||n]|2.

All that remains to show is that  may be chosen so that it extends to a nowhere
vanishing section over Z*8[1/m]. The key is to recall from [6, §2.3] that Sh(G,D) has
a second integral . model Sp,, over O, which is normal with geometrically normal
fibers. It is related to the first by a surjective morphism Sk, — Spap, Which restricts
to an isomorphism over O[1/D]. It has a moduli interpretation very similar to that
of Skra, Which allows us to do two things. First, there is a canonical descent of the
vector bundle V to Spap, defined again by V = H{R(A)/zH{R(A), but where now
(Ag, A) is the universal pair over Spyp. Second, we can add level K (m) structure to
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obtain a cartesian diagram

‘SKra (m) _— SKra/@;c [1/m]

| J

Spap(Mm) —— Spap/0,[1/m]

of O[1/m]-stacks with étale horizontal arrows.
In particular, Spap(m) is normal with geometrically normal fibers, from which it
follows that the above diagram extends to

C —— Skra(m) jza18[1 /m] — Skra/za15[1/m]

| | J

B——r SPap(m)/Zalgu/m] — 8Pap/Zalg[l/M]

for some connected component B C Spap(m) /z28[1/m] With irreducible fibers.

Now fix a number field L C C containing k large enough that the section 1 and
the components C and B are defined over O[1/m]. Viewing n as a rational section
of the line bundle det(V) on B, its divisor is a finite sum of vertical fibers of B, and
so there is a fractional ©p[1/m]-ideal b C L-such that

div(n) = Zordq(b) - By,
qlb

where By is the mod q fiber of Y. By enlarging L we may assume that b is principal,
and hence 7 can be rescaled by an element of L™ to have trivial divisor on B. But
then 7 also has trivial divisor on C, as desired. O

Corollary 5.3.2. — Let A, C Sk be a connected component. There is a constant
¢ = cy, € R with the following-property: for any finite extension L/k and any mor-
phism Spec(O) — A, the image of det(V) under

(5.3.1) Pic(Skia) — Pic(A) — Pic(Spec(O1)) <& R

is equal to c- [L : KJ.

Proof. — Fix an integer m > 3. The open and closed substack
A(m) = A xg,,, Sra(m)

of Skra(m), may be disconnected, so we fix one of its connected components A.(m)° C
A(m). This is an Og[1/m]-stack, which may become disconnected after base change
to Z*'8[1/m]. Fix one connected component

C C AAm)Jzas1 /m)

and let n € H°(C,det(V)) be a trivializing section as in Theorem 5.3.1.
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Choose a finite Galois extension M /k contained in C, large enough that C and g
are defined over O )s[1/m]. For each o € Gal(M/k) we obtain a trivializing section

n° € H°(C?,det(V)),

which, by Theorem 5.3.1, has constant norm ||77]|.
Let R(m) be the quotient of R by the Q-span of {log(p) : p | m}, and define

cm) = g > Lol € Rm),

c€Gal(M/k)

This is independent of the choice of M, and also independent of 5 by the uniqueness
claim of Theorem 5.3.1. Moreover, for any number field L/k and any morphism

Spec(OL[1/m]) — A(m)?,
the image of det(V) under
Pic(A(m)°) — Pic(Spec(OL[1/m])) <2 R(m)
is equal to ¢(m) - [L : k.
Now suppose we are given some Spec(Or,) — A as in the statement of the corollary.
After possible enlarging L, this morphism admits a lift

Spec(OL[1/m]) =—— Ao, [1/m]»

and from this it is easy to see that the image of det(V) under the composition of]
(5.3.1) with R — R(m) is equal to-c(m) - [L : k].

In particular, the image of det(V) under the composition of (5.3.1) with the diag-
onal embedding

R< ] R(m)
m>3

is equal to the tuple of constants c(m) - [L : Q]. What this proves is that there is a
unique ¢ € R whose image under the diagonal embedding is the tuple of constants
c(m), and that this is the ¢ we seek. O

Proposition 5.3.3. — The constant ¢ = cy4, of Corollary 5.3.2 is independent of A,
and is equal to

c = (4 —2n)h2" 4 log(472 D),
where hE™ is the Faltings height (1.4.1).
Proof. — Recall that we have fixed a triple (ag,a,ig) as in §4.2. Fix a g € G(Ay) in
such a way that the map
D 229, sh(@, D)(C)
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factors through A/(C), and a decomposition of Og-modules
ga=a1 @ D ay,
in which each a; is projective of rank 1. Define elliptic curves over the complex numbers
by
A;i(C) = ga;\aic/Eaic
for 0 < i < n, and
A, (C) = gay\anc/eanc.

Endow the abelian variety A = A; X --- X A, with the diagonal action of O, and
the principal polarization induced by the perfect symplectic form on ga, as in the proof|
of [6, Proposition 2.2.1]. The pair (Ag, A) then corresponds to a point (z,g) € A(C).

As each A; has complex multiplication by O, we may choose a number field L con-
taining k over which all of these elliptic curves are defined-and have everywhere good
reduction. If we denote again by Ay,..., A, and A the Néron models over Spec(9p),
the pair (Ap, A) determines a morphism

Spec(Or) — A C Skra-
The pullback of V to Spec(Oy) is the rank n vector bundle

CU|Spec(€)L) = (vl A EBCU”’

where V; = H{R(A;)/zH{®(A;). We endow V' = eH1p (A;) with the metric (5.1.1),
so that
det(CU)|SpeC(OL) ¥V ®--QV,
is an isomorphism of metrized line bundles.
The following two lemmas relate the images of V1, ...,V, under the arithmetic

degree

—

(5.3.2) Pic(Spec(9.)) ~% R

to the Faltings height hj>!t.

Lemma 5.3.4. — For 1 < i'<-n, the arithmetic degree (5.3.1182equation.5.3.12 sends
V; - ~[L: Q- A

Proof. — The action of Oy on Lie(A;) is through the inclusion Oy — O, and hence,
as in [6, Remark 2.3.5], the quotient map

descends to an‘isomorphism of line bundles V; & Lie(A4;). If we endow Lie(A4;) ™! with
the Faltings metric (5.1.1) then this isomorphism respects the metrics, and the claim
follows as in the proof of Proposition 5.2.1. O

Lemma 5.3.5. — The arithmetic degree (5.3.1182equation.5.3.12 sends

V,, = [L:Q]- (R — %10g(47r2D)).
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Proof. — The action of O on Lie(A;) is through the complex conjugate of the in-
clusion O — O, from which it follows that the Hodge short exact sequence takes
the form

0 FOA,) — HIR(4,) —  Lie(A,) ———0

0 —— eH{R(Ag) —— HIR(A,) —— HIR(A,) /e HIM(A,)— 0.

In particular, the endomorphism e on H{F(A,) descends to an isomorphism
U, = FO(A,).

Let

Pn H?R(An) ® H?R(An) — 0
be the perfect pairing induced by the principal polarization on A,,, and define a second
pairing ¥(z,y) = ¥, (ez,y). It follows from the previous paragraph that this descends
to a perfect pairing
UV, ®Lie(A,) 2.

However, if we endow Lie(4,)~! with the Faltings metric (5.1.1), then this pairing is
not a duality between metrized line bundles.

Instead, an argument as in the proof of Proposition 5.1.2 shows that

UV, ® Lie(4,) = @L<2mlf>

is an isomorphism of metrized line bundles. With this isomorphism in hand, the
remainder of the proof is exactly as in the previous lemma. O

The two lemmas show that the image of det(V) under (5.3.1) is
—~ Falt _ 1 2
Y deg(Vi) = [L: Q- ((2 —n) - A — 2 log(4 D))
i=1

as claimed. This completes the proof of Proposition 5.3.3. O
Proposition 5.3.6. — The.metrized line bundle det(V) satisfies

[det(V) : Ypig) = dege(Ynig) - <(4 — 2n)hpelt 4 10g(47r2D)).

Proof. — As in the proof of Proposition 5.2.1, we may fix a finite extension L/Fg
and a finite étale cover Yy, = | |Spec(Oy) of the Op-stack

Cybig X Spec(94) Spec(Op)
by, say, m copies of Spec(@ ). Corollary 5.3.2 then implies
[det(V) : Ypig]  [det(V) : Yiig] em-[L: k]

= = = C.
dege (Ybig) degc(Yhig) m - [L: k]
Appealing to the evaluation of the constant ¢ found in Proposition 5.3.3 completes
the proof. O
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5.4. Theorems C and D. — We can now put everything together, and relate the arith-

metic degree of @ along Y, to the Faltings height h? gltq))

Proposition 5.4.1. — The metrized line bundle ® satisfies
~ . a; _ p
e = M+ T e + o)
Proof. — Proposition 5.1.2 shows that
2-[0@r?e'DH®a: Yrig) + det(Lle )t Ywig] + 2« [Lie(Ag) : Ybig]
O(Exc) Cyblg + [det(V) : Ypig)-
Proposition 5.2.1 and Remark 5.1.5 1mply that the left hand side is equal to
@ : Yuig) — 2dege(Ynig) - (108:(87T26”D_1) +h(pe) +2- h}ia“) :
while Proposition 5.3.6 shows that the right hand side is equal to
2degc(Ynig) - ((2 — n)hi™ + log(27D)).
Note that we have used here the equality
O(Exc) : Ypig) = [(Exc,0) : Ypig] =dege(Ybig) - log(D).

from the proof of Proposition 4.2.11.
Combining these formulas yields

[@ : Cybig] Falt Falt 3
—— = = h A%+ (4 —n)h 2t + log(167°e),
dege (Yng) ) (4 —n)hy ( )

and substituting the value (1.4.1) for hgalt completes the proof. O

It is clear from Proposition 5.4.1 that Theorems C and Theorem D are equivalent.
As Theorem C is proved in [29], this completes the proof of Theorem D.

On the other hand, we proved Theorem D in §4.5 under the assumption that n > 3
and the discriminants of k and F' are odd and relatively prime, and so this gives a
new proof of Theorem C under these hypotheses.
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