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Abstract Deep‐seated landslides can have catastrophic impacts on human life and infrastructure when
they suddenly fail. These events are devastating because of the large volumes of soil and rock masses
involved and their often long runout. The present study suggests an energy‐based method to determine
when a landslide becomes unstable, giving critical values for measurable variables (velocity and basal
temperature) up to which remediation actions can be deployed. This work focuses on large ancient
landslides reactivated by dam‐related water table variations that modify landslide stability. The main
hypothesis of this work is that most of the deformation of deep‐seated landslides is concentrated on a thin,
basal shear band forming the sliding surface. In particular, this assumption allows an approximation of
deep‐seated landslides as elastic/rigid blocks sliding over a viscoplastic shear band, featuring weak phases
like expansive clays. When the landslide moves, it causes friction in the shear band that raises the
temperature of the clays until they become unstable and collapse catastrophically through a thermal
runaway instability. The model is applied to the Vaiont landslide in Northern Italy and the Shuping
landslide next to the Three Gorges Dam in China. The results of the model reproduce the sliding behavior of
both landslides and provide constraints on the critical points of stability.

1. Introduction

Large, deep‐seated landslide failure can be accompanied by a catastrophic impact on societies and infra-
structures. This kind of landslide is often preceded by large periods (on the order of several years) of creep
until they collapse suddenly without previous warning. Thus, the main question that arises from these
events is: why after years of slow movement (cm/year) deep‐seated landslides collapse in minutes? Some
of these slides are ancient landslides that remained dormant during centuries and reactivated (due to human
interaction), remaining active (from few years to tens of years) until they fail (in minutes). Because of this
evolution, deep‐seated landslides present a formidable challenge in their failure prediction.

Common points of focus in landslide modeling include the study of external factors that would deteriorate
the stability of a slope. These factors include, for example, groundwater variations due to precipitation or
dam construction and seismic activity (Terzaghi, 1950). Both of these factors can directly change the loading
conditions of the landslide (through the stresses) and, therefore, the factor of safety (Song et al., 2014; Wang
et al., 2017; Yu et al., 2017). However, the factor of safety is a static quantity (calculated from the stresses
only) and is of restricted validity in a—predominantly kinematic—creeping landslide. This leads to the
necessity of replacing the concept of factor of safety with a real‐time assessment tool. Such a tool was sug-
gested by Saito (1965, 1969), and later generalized by Voight (1988), who implied that taking the velocity data
from the field and calculating the inverse velocity leads to an estimated time of the collapse of the landslide.
This approach is based on extrapolating the last values of the inverse velocity until it reaches zero (i.e., dis-
placement goes to infinity). Hence, at the time that inverse velocity is zero, the landslide accelerates catastro-
phically (Helmstetter et al., 2004; Sornette et al., 2004). More recently, Ma et al. (2017) and Zhao et al. (2016)
generalized the inverse velocity further, by proposing forecasting models of landslide failure with probabil-
istic models of the displacements and regression of the groundwater data, respectively. These techniques rely
on empirical observation of deep‐seated landslides but provide useful insight on the phenomenology of the
latest stages of large Earth slides. It seems that modeling of landslides should be enriched with internal fac-
tors of instability (Terzaghi, 1950), as physical mechanisms that can directly change the material's properties
(such as strength and friction coefficient) without requiring changes in the loading stresses, and allow the
slide to transition from secondary (i.e., quasi‐stable) to tertiary (unstable) creep.
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Several studies (e.g., Kilburn & Petley, 2003) point out that the basal sliding surface (or shear band), as the
weakest part of the landslide, is indeed where such internal factors of instability would be of major impor-
tance since the sliding surface is where the deformation of the landslide is concentrated. Thus, focusing
on understanding the behavior of the shear band could allow us to constrain the failuremechanism of a large
deep‐seated landslide. It is common that deep‐seated landslides present clays as the material forming their
sliding surface. Clays frequently exhibit thermal softening behavior in their mechanical response
(Hueckel & Baldi, 1990; Vardoulakis, 2002b, Veveakis et al., 2010). Therefore, when a landslide activates
it can enter a positive thermal feedback loop (Vardoulakis, 2002b; Veveakis et al., 2007) whereby slowmove-
ments (of cm/year) along a thin shear band (from cm to m) can trigger mechanical dissipation that increases
the temperature and reduces the shearing resistance of the material inside the shear band (Anderson, 1980;
Lachenbruch, 1980; Mase & Smith, 1984; Rice, 2006; Vardoulakis, 2002b; Voight & Faust, 1982). This process
(positive thermal feedback loop) can continue up to the point when the friction coefficient decreases uncon-
trollably due to a thermal runaway instability (Gruntfest, 1963), even without any variations of external fac-
tors (i.e., loading conditions).

Over the years, several authors have focused on such behavior of the shear band and presented models
of its thermo‐poro‐mechanical response during slip, especially with clays as the material present in the
gouge (Alonso et al., 2016; Cecinato & Zervos, 2012; Goren & Aharonov, 2007, 2009; Goren et al., 2010;
Pinyol & Alonso, 2010; Vardoulakis, 2002b; Veveakis et al., 2007). This paper is also part of an attempt
to constrain further the combination of internal factors (which change the material's friction coefficient,
like thermal softening) and the temporal variations of external factors (which drive the shear stress, like
groundwater fluctuations) to provide a time‐dependent assessment tool for deep‐seated landslides.
Hence, we generalize the analysis of Veveakis et al. (2007), taking into account the groundwater varia-
tions. Although the previous study of Veveakis et al. (2007) has produced some stability regimes for the
response of the material (internal factors) by isolating the material's internal response from the influ-
ence of external factors, it does not provide any information on the role of external stress variations.
Indeed, the analysis of Veveakis et al. (2007) was performed under constant loading stress, that is,
neglecting the effects of transient precipitation or groundwater variations. In this work, we generalize
these concepts and study the internal response of the material subjected to a transient groundwater
level. By doing so, we aim at providing a kinematic (time‐dependent) stability criterion that couples
the external forcing of a landslide (i.e., groundwater variations in this case) with its internal response
as this was studied by Veveakis et al. (2007).

For this analysis, we consider two case studies: the Vaiont landslide (Italy) and the Shuping landslide
(Three Gorges Dam, China). For the Vaiont slide, we study the two years of creep until its collapse,
reproducing the velocity history as provided by Muller (1964, 1968). Similarly, in the case of the
Shuping landslide, we study 5 years of its creeping phase (remaining active nowadays), reproducing
the velocity history retrieved from Huang et al. (2014). We have chosen these two landslides as charac-
teristic examples of large deep‐seated landslides that have been very well documented. The common
characteristics that these two large deep‐seated landslides share are (1) their shear bands are formed
by clays (thereby expecting similar response to variations of internal factors like temperature), and (2)
they are ancient landslides that reactivated upon the construction of a dam in their vicinity.
However, their main difference is their response to the reservoir variations (i.e., to external factors),
since the Vaiont landslide accelerated when the reservoir level increased, while Shuping stabilizes when
the reservoir level rises. Therefore, the two landslides seem to have an opposite internal response to
similar external stimulation (variations of the groundwater), allowing for an in‐depth assessment of
the limitations of our approach.

2. Multi‐Scale Model of a Deep‐Seated Landslide

The multiscale model for deep‐seated landslides presented in this study incorporates three configurations at
two scales, as initially suggested by Vardoulakis (2002a) and shown in Figure 1. The mathematical equations
of the problem include the momentum, mass, and energy balance laws [see also Rice, 2006]:
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div σð Þ þ ρg ¼ ρ
∂V
∂t

(1)

∂p
∂t

þ V∇p ¼ Dm∇2pþ Λ
∂θ
∂t

−
_εi

β
(2)

∂θ
∂t

þ V∇θ ¼ κm ∇2θþ τ _γ i þ σ′_εi

ρCm
(3)

combined with appropriate constitutive equations, at both scales. In these expressions σ is the total stress
tensor; ρ is the density of the material; V the velocity; p is the total pore pressure, consisting of a hydro-
static and an excess part; Dm is the hydraulic diffusivity; β is the mixture's compressibility; θ is the tem-
perature; Λ is the thermal pressurization coefficient; κm is the thermal diffusivity; Cm is the specific

heat capacity; τ _γ i þ σ′_εi is the total dissipation consisting of a deviatoric (τ _γ i) and a volumetric (σ′_εi) part.
_γ i and _εi are the irreversible parts of the deviatoric and volumetric strain rates, respectively. τ and σ′ are
the deviatoric and volumetric parts of the effective stress tensor, respectively. The Terzaghi effective stress
tensor is linked to the total stress tensor by σ′ = σ + pI (compression negative) assuming for simplicity
that solid matrix is incompressible. However, as explained in detail by Veveakis et al. (2007), because of
the vastly different length scales of the overburden mass (tens to hundreds of meters thick) and the sliding
surface (a few centimeters thick, also called shear band in this study), it is possible to separate the physical
processes operating at each scale.

Indeed, the overburden is treated as a rigid block (i.e., admitting no internal deformation _γi ¼ _εi ¼ 0), with
the only source of deformation (and thus heat production) being the interface with the sliding surface. In
addition, we consider here the case of creeping landslides with no significant internal mass and heat

Figure 1. Multiscale model of a deep‐seated landslide. (a) Static configuration: Topographic cross section of the landslide in which classical stress
calculations are performed. (b) Kinematic configuration: The landslide is treated as translational, with its kinematics represented as an infinite rigid‐elastic
block sliding over a shear band, where τd is the mean basal shear stress, σd is the normal force, γdry is the specific unit weight of the dry material, γsat is the specific
unit weight of the saturated material,Hdry is an average of the height of the dry material,Hsat is an average of the height of the saturated material, δ is the angle of
the shear band with the horizontal, ds is the shear band thickness, and V is the velocity. (c) Shear band configuration: The shear band of the landslide
incorporating thermo‐mechanical couplings (Veveakis et al., 2007), where θ is the temperature.
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advection processes (i.e., involving materials like clays, having negligible permeability of the order of
microDarcy or less), thereby eliminating acceleration and advective terms. Under these assumptions, the
validity of which will be also discussed in section 6, the equations for the overburden reduce to

div σð Þ þ ρg ¼ 0 (4)

∂p
∂t

¼ Dm ∇2pþ Λ
∂θ
∂t
;

∂θ
∂t

¼ κm ∇2θ (5)

The obvious solution to the pore pressure and temperature diffusion equations is considering the trivial solu-
tion of constant fields (θ= const., p= const.). This is true for the temperature, when external heating sources
are not present (i.e., when isothermal boundary conditions are assumed). However, since the pore pressure
can vary with externally imposed hydraulic head variations (recall that the hydraulic head h for a given ele-

vation of the piezometric bottom Y is equal to h ¼ p
ρg

þ Y ), it cannot be assumed constant. The final equa-

tions of the overburden therefore consist of the stress equilibrium and pressure (or equivalently hydraulic
head) diffusion equations:

div σð Þ þ ρg ¼ 0 ;
∂h
∂t

¼ D
∂2h
∂x2

(6)

where D is the diffusivity constant (D = Dm/H).

Unlike the overburden, the shear band is considered fully saturated in water, deformable, and viscoplastic.
However, its very small thickness compared to its length has twofold ramifications: first, it reduces the equa-
tions in essentially 1D inside the shear band, with all the fields varying only across the z direction of the
shear band (Figure 1); and second, it eliminates any effect of gravity or inertia, as well as any changes of
the hydrostatic pressure inside the shear band (Rice, 2006; Vardoulakis, 2002b; Veveakis et al., 2007). This
reduces the momentum balance equations to constant stresses inside the sliding surface and—together with
the assumption of negligible advection inside the shear band—reduces the system of equations to

∂σxz
∂z

¼ 0 → σxz ¼ τd tð Þ; ∂σzz
∂z

¼ 0 → σzz ¼ σn tð Þ (7a)

∂Δp
∂t

¼ Dm
∂2Δp
∂z2

þ Λ
∂θ
∂t

−
_εi

β
(7b)

∂θ
∂t

¼ κm
∂2θ
∂z2

þ σxz _γ i þ σ′zz _εi

ρCm
(7c)

In these expressions, Δp is the value of excess pore water pressure inside the sliding surface (Δp = 0 at the
boundary ensuring drained conditions), and τd(t) and σn(t) are the values of the (time‐dependent) shear
and normal stresses applied on the sliding surface's boundary, which is also the interface between the sliding
surface and the overburden. Note that the condition σzz= σn(t) can also be written for the effective stresses as
σ′zz − phydrostatic − Δp = σn(t) (where the pore fluid pressure is split into a hydrostatic and an excess part) or
equivalently σ′zz= σ′n(t) + Δp. The two scales communicate through this common boundary, on which con-
tinuity of the fields (stresses, pore pressure, and temperature) needs to be ensured. However, the fact that the
equations of the sliding surface are 1D and those of the overburden 2D, for every cross section of a landslide,
causes the need for an additional mathematical/configurational step where the calculations of the two
domains are linked together in an equivalent topography.

This is achieved as shown in Figure 1, by considering three configurations: (a) a static configuration, in which
the topography enables us to calculate the groundwater table and therefore the shear stress applied along the
sliding surface of the landslide. To do so, in this 2D configuration we are solving the equation of the over-
burden, Equation 6, thereby calculating the stresses acting on the real (2D) sliding surface; (b) a kinematic
configuration, in which the landslide topography is mapped to an equivalent rigid block geometry sliding
on a surface. In these configurations, the stresses acting on the 2D sliding surface are mapped into an
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equivalent 1D configuration, and the displacement of the block (Figure 1b) is calculated from the geometry
and the stresses determined in the static configuration (Figure 1a); and (c) the shear‐band configuration, in
which a smaller scale is considered, represents the sliding surface where its kinematic configuration is mod-
eled as an infinite sheared layer (in dimensionless form) and includes the multiphysical phenomena hap-
pening in this thin zone. Moreover, in this configuration (Figure 1c) we are solving the equations of the
sliding surface (Equation 7).

Note that the above considerations and assumptions imply that the present study focuses only on (1) trans-
lational landslides, since the kinematic configuration is an infinite plane; and (2) thermo‐poro‐mechanical
behavior of the material in the shear band. The following paragraphs present in more detail how each con-
figuration of the multiscale model is approached and linked to one another.

2.1. Groundwater Table of a Landslide

As a first step, we calculate the stresses and their evolution acting along the sliding surface, through a
hydro‐mechanical analysis of the landslide (at the static configuration level). For this calculation we need
two elements: (1) the groundwater table and (2) the forces acting inside the landslide (including the sliding
mass). Thus, to study the groundwater table of a landslide, we consider the topographic cross section of the
scale in Figure 1a and calculate the hydraulic head (h). The hydraulic head is calculated at each point (hor-
izontal distance) of the landslide considering (a) the steady‐state solution for the Vaiont landslide (sec-
tion 4.2) and (b) a transient solution for the Shuping landslide (section 5.2).

2.2. Limit Equilibrium and Coulomb Mechanism of a Landslide

Once the groundwater level of the landslide is determined, we calculate the time‐dependent shear stress of
the landslide (with time entering through the evolution of the groundwater level), by performing a
limit‐equilibrium analysis (Figure 2) in the static configuration scale in Figure 1a. This static configuration
is required to calculate the force values that are acting on the “real shape” of the landslide. To this end,
we apply the two‐wedge method (Alonso, 1989a and 1989b) to simplify the calculations. The implementa-
tion of the two‐wedge method requires (1) first, a force equilibrium calculated separately for each wedge,
and (2) second, calculate the total shear stress of the landslide acting on the slip plane as a mean of shear
stresses acting at the base of each block (Alonso & Pinyol, 2010; Veveakis et al., 2007). Hence, we divide
the landslide into two blocks considering the topography of the landslide. To separate the landslide into
two blocks, we set the division line: (1) at the point where the sliding surface (i.e., shear band) changes its
slope sharply and (2) at the point where the topography changes the slope drastically (Figure 2). It should
be noted that the two‐wedge method is just one of the available limit equilibrium approaches (others being
the Fellenius or Bishop method of slices) and is used in the present study to simplify the mathematical
treatment.

We consider thatWedge 1 acts onWedge 2 as an active force, andWedge 2 acts onWedge 1 as a passive force,
following the basics of the limit equilibrium theory detailed by Craig (Chapter 4, 2004). This consideration
takes into account the slopes of the shear band of each wedge. Thus, the wedge that has the higher shear
band's slope acts actively, and the wedge that has a lower shear band's slope acts passively. Applying the limit
equilibrium analysis, detailed in Appendix A, in the double‐wedge structure (see also Chapters 11–12 of
Craig, 2004), we calculate the mean basal shear stress force for the landslide as

τd ¼ 1

H 1ð Þ þH 2ð Þ H 1ð Þτ 1ð Þ
d þ H 2ð Þτ 2ð Þ

d

� �
(8)

In Equation 8, τd is the mean shear stress of the landslide (acting on the sliding surface),H 1ð Þ is an average

height of dry soil height plus saturated soil height of Wedge 1, τ 1ð Þ
d is the shear stress of Wedge 1 (at the shear

band of Wedge 1),H 2ð Þ is an average height of dry soil height plus saturated soil height of Wedge 2, and τ 2ð Þ
d is

the shear stress of Wedge 2 (at the shear band of Wedge 2). Note that the dry and saturated soil heights of
each wedge have been calculated from the areas obtained at each groundwater level.
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2.3. Thermo‐Poro‐Mechanical Behavior of the Shear Band

After calculating the forces acting on the landslide, we consider that the slide will kinematically evolve as a
translational landslide, being thereby able to be represented by a simple 1D rigid‐block/shear‐band config-
uration (Figure 1b). We briefly present the conceptual model used in the paper of Veveakis et al. (2007) to
describe such a deep‐seated landslide, incorporating the kinematic configuration and shear‐band configura-
tion scales, as shown in Figures 1b and 1c. As such, a translational landslide is considered as an infinite
rigid‐elastic block sliding over a thin (order of centimeter) layer of clay (i.e., the sliding surface or shear
band). The slope where the infinite rigid‐elastic block is sliding has been considered as a mean between

the slopes of the two wedges of the landslide (calculated as
β1 þ β2

2
) so that the dynamics of the landslide

is respected. As we assume that the block is rigid, its vertical velocity (direction perpendicular to the sliding
surface) is constant. The rigid‐elastic block, therefore, admits the shear stresses (calculated in the previous
section 2.2) at its basal interface and, because we consider that the contact between the base of the infinite
rigid‐elastic block (Figure 1b) and the shear band is continuous (Figure 1c), the same shear stress is also
transferred on the shear band.

We recall that the equations of the shear band are Equations 7a–7c, which require a constitutive law for the
mechanical response of the basal material to obtain amathematically closed system of equations. We start by

invoking the definition of dilatancy ψ ¼ _εi

_γi
to have Equations 7a–7c written as

Figure 2. (top) Section profile of a deep‐seated landslide with a two‐wedge mechanism and its force equilibrium.
(bottom) The forces acting on each of the two wedges, where N is the normal force, S is the seepage force, W is the
weight, τ is the shear stress, and E12 and E21 are the lateral pressures.
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∂Δp
∂t

¼ Dm
∂2Δp
∂z2

þ Λ
∂θ
∂t

− ψ
_γ i

β
(9a)

∂θ
∂t

¼ κm
∂2θ
∂z2

þ τd þ σ′nψþ Δp ψ
ρCm

� �
_γ i (9b)

Based on the assumption that the landslides we are going to be modeling in this work are reactivated,
and the fact that clays reach critical state (deforming under constant volume, i.e., zero dilatancy) upon
relatively small displacements when sheared (Tika & Hutchinson, 1999), we assume that the clay mate-
rial inside the shear zone is at critical state for every variation of the groundwater table. This assump-
tion implies that ψ = 0, and any volumetric effect is negligible (see also Rice, 2006), therefore
eliminating the possibility of the model generating excess pore fluid pressure due to volume change
effects (Garagash & Rudnicki, 2003; Iverson, 2005; Veveakis & Regenauer‐Lieb, 2015). This is obviously
a strong assumption and limitation of the present model, which will be reassessed for its validity in
section 6.

In addition to the above, although thermal pressurization is still a plausible mechanism inside the shear
band, Veveakis et al. (2007) showed that it is triggered once the basal temperature exceeds a certain value
(for clays the critical temperature is of the order of 40 °C), something that is achieved only at the very last
stages of the landslide failure, when catastrophic acceleration takes place (Cecinato et al., 2011;
Vardoulakis, 2002a; Veveakis et al., 2007). This, in turn, means that during the prolonged slow creeping
phase the equations are reduced to the temperature equation 9b, requiring a constitutive response for the

irreversible part of the strain‐rate _γi.

This is obtained by assuming the behavior of the claymaterial inside the shear zone to be viscoplastic (_γi ¼ γ),
exhibiting thermal and rate sensitivity, following the work of Vardoulakis (2002b). Hence, we assume
(1) velocity hardening (the strain‐rate increases when increasing the shear stress) and (2) thermal soften-
ing (when the temperature of clays increases, the friction coefficient of the material decreases). As dis-
cussed in the seminal work of Vardoulakis (2002b) and briefed by Veveakis et al. (2007) and Cecinato
et al. (2011), these two mechanisms are supported by experimental data on clays (Hueckel &
Baldi, 1990). Additional mechanisms that could affect the shearing resistance of the material inside
the shear band can be considered, such as strain softening (Vardoulakis, 2002a) and rate softening
(Handwerger et al., 2016). It was argued by Veveakis et al. (2010) that rate softening accommodated
with thermal (or any other) hardening would have the same result in the frictional response of the
basal material, as the only requirement for a stable creeping phase is that the operating mechanisms
can counterbalance each other, so that the shearing resistance (i.e., friction coefficient) of the material
can attain a constant (critical state) value. For this reason strain softening is not included, as it would
automatically drive the system away from critical state and toward a residual value of the shearing
resistance.

The shearing resistance (friction coefficient) at critical state can therefore be defined as a product of (1) a
power law dependency for the velocity [g _γð Þ� and (2) an exponential thermal softening [f(θ)]:

μcs ¼ g _γð Þ · f θð Þ ¼ μref
_γ
_γref

� �N

e−M θ − θ1ð Þ (10)

where g _γð Þ is the velocity hardening of clays expressed as
_γ
_γref

� �N

and f(θ) is the thermal softening of clays

defined as e−M θ − θ1ð Þ. In this expression, μcs is the friction coefficient at critical state, μref is the reference
friction coefficient, _γ is the shear strain‐rate, N is the frictional rate‐sensitivity coefficient, M is the fric-
tional thermal‐sensitivity coefficient, θ1 is the reference (boundary) temperature, and θ is the actual tem-
perature in the shear band.

Considering that the shearing resistance at critical state is defined as μcs ¼
τd
σ′n

(where τd is the shear

stress and σ′n is the effective normal stress), we can solve Equation 10 for the strain‐rate _γ and obtain
the following expression:
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_γ ¼ ∂V
∂z

¼ _γref
τd
τref

� �1=N

em θ − θ1ð Þ; where τref ¼ μref σ′n; m ¼ M
N

(11)

In this expression, m is the exponent ratio of the temperature sensitivity coefficient [M] over the strain‐rate
sensitivity coefficient [N]. Note that the dependency on the temperature [θ] with an exponential law
(Equations 10 and 11) corresponds to the low‐temperature approximation of the more generic
Arrhenius law. This law has also been used in the field of fault mechanics (Alevizos et al., 2014; Poulet
et al., 2014; Veveakis et al., 2014).

Having established the constitutive law for the basal material (velocity hardening and thermal softening of
clays at critical state), we combine Equation 11 with Equation 9, so that the final equation of the shear band
reads:

∂θ
∂t

¼ κm
∂2θ
∂z2

þ τd
ρCm

� �
_γref

τd
τref

� �1=N

em θ − θ1ð Þ (12)

with boundary conditions θ = θ1 at z = −
ds
2
;
ds
2
.

Equation 12 can be reduced in a single‐parameter dimensionless equation

∂θ*

∂t*
¼ ∂2θ*

∂z*2
þ Gr eθ

*

; z ∈ −1; 1½ �; t > 0 (13)

by using the following dimensionless parameters:

z* ¼ z
ds
2

� �; t* ¼ κm
ds
2

� �2t; θ* ¼ m θ − θ1ð Þ (14)

where ds is the thickness of the shear band (represented in Figure 1c), and Gr is the so‐called Gruntfest
number (Gruntfest, 1963), defined as follows:

Gr ¼m
_γref
Fθ

ds
2

� �2

τref
τd
τref

� �1þ1=N

(15)

where Fθ is the thermal conductivity (Fθ = κm ρCm) and τd ¼ τd is the basal mean shear stress of the
landslide (Equation 8) calculated for each groundwater level. The Gruntfest number (Gr) expresses
the ratio of the mechanical work converted into heat over the heat diffusion capabilities of the
material. This parameter includes all the material properties at hand (thermal conductivity, rate and
thermal sensitivities, and reference rate), as well as the thickness of the shear band and the normal
and shear stresses applied in the shear band's material. Since these stresses (normal and shear), which
are calculated in the previous section (2.2), evolve with the groundwater level (section 2.1), Gr is expres-
sing the influence of external loading on the shear band and is therefore not constant in time. This is
distinctly different than the approach adopted by Veveakis et al. (2007) where the loading stresses were
constant.

3. Stability Analysis of a Deep‐Seated Landslide

Having established the governing equation of the shear band (Equation 13), we need to assess the regions of
stability of the system. The stability assessment of the system is achieved by performing a numerical bifurca-
tion analysis of the steady‐state:

∂2θ*

∂z*2
þ Gr eθ

* ¼ 0; (16)

The numerical bifurcation analysis is performed with respect to the only parameter of the system, Gr, by
using a pseudo‐arc‐length continuation approach (Chan & Keller, 1991; Veveakis et al., 2010).
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3.1. Numerical Bifurcation Analysis

Figure 3a presents the results of the numerical bifurcation analysis. This graph expresses the steady‐state
response of the dimensionless temperature as a function of the Gruntfest number (bifurcation parameter).
This bifurcation diagram can be interpreted as follows:

The peak of the steady‐state curve (black dot in Figure 3a) is what we call the critical value of Gruntfest num-
ber, Grc. In our system, the results show Grc ~ 0.88. This critical value defines a limit between two regions of
the diagram:

1. whenGr>Grc (green point of Figure 3a), there is no steady‐state solution. Therefore, the system becomes
unstable (i.e., the landslide will fail).

2. when Gr ≤Grc, there are two steady‐state solutions, expressed as the two branches of Figure 3a. By
inspecting the sign of the maximum eigenvalue of the system's Jacobian (Figure 3b), we conclude that
the lower branch of the steady state‐curve is stable, thereby behaving as an attractor of the transient sys-
tem, whereas the upper branch is an unstable repeller (see also Veveakis et al., 2010).

Therefore, the steady‐state curve delimits the stable area of our system (highlighted as the gray area of
Figure 3a). If the system is somehow pushed outside this area (stable area of the system), a catastrophic
increase of the temperature will occur, a response known in the literature as thermal runaway
(Gruntfest, 1963) or thermal blow‐up instability (Veveakis et al., 2007). Since in the present study the

Figure 3. (a) Steady state curve with its critical point (black dot) and the corresponding maximum eigenvalue (inlet b).
A stable Point 1 (pink dot) and an unstable Point 2 (green point) are highlighted. The pink and green arrows
represent the evolution in time of the system with an initial state described by Points 1 and 2, respectively.
(c) Representation of the temperature evolution in time starting from the stable and unstable points from Figure 3a.
(d) Representation of the velocity evolution in time starting from the stable and unstable points from Figure 3a.
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Gruntfest number represents the shear stress τd applied on the sliding surface, which in turn is calculated by
the groundwater level through Equation 8, this bifurcation diagram implies that when the groundwater level
variations cause the shear stress to increase,Gr number increases and the system is pushed toward its critical
value Grc. During this motion, the temperature of the shear band can increase due to friction. As long as the
combination of shear stress/Gruntfest number and maximum temperature remains in the gray area of
Figure 3a, the system has the capacity to diffuse away all the heat generated inside the shear band due to
friction and maintain a stable—slow creeping—steady‐state. As soon as the stress (i.e., Gr) or temperature
increases above (or outside) the upper branch of the curve and the system is pushed to the white area, the
system is entering a quasi‐adiabatic regime, where the temperature generated due to friction cannot be dif-
fused away by the material, and causes abrupt increase of the temperature, in a process known as thermal
runaway.

To better understand the system's behavior, in terms of transient temperature and velocity inside the shear
band, we have selected two example points in Figure 3a and examine the response of the system from these
initial conditions (Point 1 and Point 2 in Figure 3a). If the system is at an initial state represented by Point 1
(pink dot in Figure 3a), which corresponds to a Gruntfest value below Grc, the temperature and velocity of
the system tend to reach a steady value (pink curves in Figures 3c and 3d). This means that when the
Gruntfest number is located below the turning point, the landslide would creep stably. However, if the sys-
tem is at an initial state represented by Point 2 (green point in Figure 3a), corresponding to a Gruntfest value
aboveGrc, the temperature and velocity would increase exponentially (i.e., blow‐up) over time (green curves
in Figures 3c and 3d), meaning that the landslide would collapse catastrophically in a finite time. The bifur-
cation diagram of Figure 3a can therefore be viewed in light of an operational protocol, with the gray area
where Gr ≤ Grc holds true delimiting the values of the shear stresses (and hence of the groundwater level)
a slope can admit without failing catastrophically.

3.2. Procedure for the Inversion of Field Case Studies

This analysis, thus, highlights the crucial role of the Gruntfest number in the stability of the system, suggest-
ing that Gr is the bifurcating parameter for the stability of a landslide. As already discussed, Gr is not con-
stant over time, as the loading conditions (shear stress) of the landslide are included in the Gruntfest
number. Using the definition of the Gruntfest number (Equation 15), and the values of the shear stress cal-
culated by the groundwater analysis (Equation 8), we will test whether the stability threshold of a landslide
can be indeed evaluated through the bifurcation analysis presented in this section. In the next sections we
apply the model to two case studies with different behaviors: (1) the Vaiont landslide in Italy, which turned
unstable after years of slow creep and failed catastrophically; and (2) the Shuping landslide in China, which
has been creeping stably for decades.

We note that the system depends on a single parameter, as Gr is the only number that determines the
response of the mathematical system of equations (i.e., the response of the clay material—inside the shear
band—under external loading). As Gr is a dimensionless group of parameters, it encompasses several of
the material's properties and loading conditions. In the following examples, we start by bringing the velocity
data provided in the field (through Global Positioning System stations) in a dimensionless form using the
definition of the dimensionless time and space of Equation 14. To do so, we start by inputting the values
of thermal properties (thermal conductivity and diffusivity), which do not vary significantly across all
Earth materials, as well as the shear band thickness of each landslide that is reported in the literature.
Having normalized the field data (displacement/velocity and time), we proceed by fitting them with our
model, using the time‐dependent Gr number as an inversion parameter.

Through this inversion process we obtain optimal values of Gr and the rate sensitivity N (which governs the
response of the velocity of the model with respect to shear stress variations and therefore groundwater level
variations), as well as the initial conditions for the shear stress and strain‐rate (calculated as initial velocity
over shear band half‐thickness). Our final step is to use this value of Gr, the value of N, and the initial value
of the stress to infer the thermal sensitivity coefficientM and the reference strain‐rate [_γref]. It is to be noted
that, although representative values have been given for N andM by Veveakis et al. (2007) based on generic
literature data of clays (Leinenkugel, 1976) and simple models assessing the dependence of water viscosity
on temperature (Bagnold, 1954; Veveakis et al., 2007), these parameters are material sensitive and can only
be determined through material testing at different rates and temperatures. Because of the nonlinear
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dependence of Gr on them, the model is extremely sensitive to small variations of their values (especially N).
The parameters used both as input and output of the model for the case studies of this work are listed in
Table 1 and will be further discussed in section 6.

4. Case Study: Vaiont Landslide

The famous Vaiont landslide (Figures 4a and 4b) failed on October 9th of 1963, in Northern Italy. It has been
reported in the literature as an ancient landslide that reactivated when the water level increased in the reser-
voir (in 1959) after the construction of the Vaiont dam (Semenza &Melidoro, 1992). As such, in this work we
will assume that the landslide is a reactivation of an ancient landslide, allowing us to consider the basal
material at critical state and deploy the suggested framework.

During the three years of creeping phase of the landslide, the reservoir level fluctuated depending on the sea-
son of the year, with heights from 590 to 710 m (Figure 4e) (Muller1964, 1968). Since the landslide was
instrumented, it had been seen that the velocity of the slide increased when the lake level rose
(Figure 4e). Therefore, the landslide was stabilized by controlling the reservoir level. However, on
September 1st of 1963, the reservoir's level reached 710 m and the slide started accelerating, and although
the reservoir's level was reduced on October 2nd of 1963, to stop the acceleration, the landslide accelerated
until failure (Muller1964, 1968). The average thickness of the sliding mass was about 150 m involving a
volume of rock of 2.7 × 108 m3 (Figure 4c) (Muller1964, 1968). When the event occurred, the rock mass slid
into the reservoir creating a wave that overflowed the dam and caused approximately 2,000 casualties in the
downstream valley.

4.1. Geographical Location and Geological Framework

The Vaiont dam is situated in a steep valley in the Italian Alps, under the Mount Toc in the Pordenone pro-
vince, region of Friuli‐Venice Julia in Northern Italy (Figure 4a). The Piave River crossed this valley ending
up in the Vaiont Lake. Upstream, the valley is wide as it was formed by glacial erosion, and downstream the
valley is narrower, which made it an appropriate location to place a dam. The stratigraphy of the area
(Figure 4d) is composed of massive oolitic calcarenite from the Calcare of Vaiont formation; biocalcarenites
and micritic limestone from the Fonzano formation; reddish and gray micrite with ammonites with thin
layers of clays from Ammonitico Rosso formation; and intercalations of microcrystalline limestones, calcar-
enites, and loam from the Calcare of Soccher formation of the Lower Cretaceous (Ferri et al., 2011).

Since themass of rock was sliding over clay layers, a more detailed information of these clay layers is needed.
They are composed of 35 to 80% of a mixture of different types of clays (Ca‐montmorillonite, smectite, illite,
and vermiculite) with grains of calcite and some traces of quartz (Ferri et al., 2011; Tika &
Hutchinson, 1999). These kinds of clays are frequently called “expansive clays,” which have properties of
low shear strength and swell in the presence of water.

Table 1
Material Parameters of the gouge of Vaiont and Shuping (Li, 2015; Veveakis et al., 2007) landslides

Vaiont Shuping
Parameter Value Value Units Range Source

ds 0.161 0.7 m 0.2–0.0015 Veveakis et al. (2007), Vardoulakis (2002a) for Vaiont
0.6–1.0 Wu et al. (2018) for Shuping

κm 1.6 · 10−7 1.6 · 10−7 m2/s 10–7–10−6 Picard (1994)
jkm 0.45 0.45 J (°C m s)−1 0.1–1 Vardoulakis (2002a)

_γref 1
1.7 · 10−2 4.9 · 10−2 s−1 Parameter fitted in the model

_γref 2
3.4 · 10−2 s−1 Parameter fitted in the model

N 0.01 0.025 [−] 0–1 Veveakis et al. (2007)
M 0.0093 0.0093 °C−1 0 − 1 Vardoulakis (2002a),

θ1
22 ‐ °C Veveakis et al. (2007)

D ‐ 2.5 m/s 0.01–2.5 Li (2015)
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4.2. Groundwater Analysis

The groundwater table evolution of the Vaiont landslide is calculated considering that the dolomite is
permeable enough to allow the groundwater to reach a steady‐state in between the lake level variations.
Thus, we calculate the groundwater level by setting Equation 6 to steady‐state, therefore retrieving the
Dupuit‐Forchheimer parabola as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 − U2
1 −U2

2

� �x
L

r
(17)

where U1 is the height of the reservoir's level, U2 is the height of the groundwater table at the fixed point
in the back of the landslide (toward the top of the mountain), x is the horizontal coordinate of a point
between the two reference points of groundwater level (U1 and U2), and L is the horizontal length between
the x position of U1 (the horizontal coordinate of the point of the reservoir's level in contact with the topo-
graphy of the landslide) and the x position of U2 (the horizontal coordinate of the fixed point in the back of
the landslide).

4.3. Shear Stress Results

To calculate the shear stress of the landslide, we need the data obtained by the groundwater analysis (sec-
tion 4.2), hence, data from the piezometers. However, in the case of the Vaiont landslide, the data

Figure 4. (a) Map of location of the Vaiont dam. (b) 3D elevation map of the Vaiont landslide (the blue line indicates the contour of the initial position of the
sliding mass, and the red line its final position after the collapse). The white line shows the position of the dam. (c) Schematic profile of the deep‐seated
Vaiont landslide. (d) Stratigraphic column of the bottom of the landslide (from Veveakis et al., 2007). (e) Graph showing the reservoir level and the velocity of the
landslide during the last two years of recorded data (Muller1964, 1968).
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provided by the piezometers installed in the landslide are not reliable because of the following issues pre-
sented by the four piezometers: (1) the so‐called P4 piezometer closed over time due to the displacement
of the sliding mass; (2) P1 and P3 piezometers were installed in boreholes whose bottom did not reach the
depth of the shear band, for this reason, the groundwater table readings of these two piezometers always pre-
sented the same value as the reservoir's level; and (3) P2 piezometer presented values of the groundwater
table of approximately 90 m above the reservoir's level. Moreover, in 1962 the borehole where the P2 piezo-
meter was installed also closed due to the displacement of the sliding mass, thus, invalidating the piezo-
meter's readings afterwards. Because of the lack of acceptable data of the piezometers (see Hendron &
Patton, 1985 for a further discussion on this topic), this leads us to assume that the landslide is always at
its maximum capacity of groundwater (for each reservoir's level). This assumption of maximum ground-
water capacity of the landslide overestimates the mean basal shear stress by ~0.1 MPa during periods of
low precipitation and snowmelt.

Following the double wedge procedure described in Appendix A and using the reservoir's level data of
Figure 4e, a linear dependency between the lake level and slip plane shear stresses is obtained. This linear
dependency is assumed as the material of the sliding mass (mainly dolomite, mentioned in section 4.2) is
considered as a high permeable material, implying that the groundwater behaves as a free aquifer (i.e.,
the groundwater level fluctuates in parallel to the reservoir's level). This assumption, thus, lets us calculate
the shear stress with a simple linear equation that only depends on the reservoir's level (U1):

τd ¼ 0:0017 U1 − 0:118 (18)

where τd is the shear stress (MPa), and U1 is the reservoir level (m). Figure 5a presents the values of the
shear stress calculated with Equation 18 for the reservoir levels recorded in the last two years (from 1961
until 1963).

4.4. Transient Stability Analysis

To calculate the velocity of the landslide and the Gruntfest number, the material parameters of the clay
inside the shear band of Vaiont are retrieved from Veveakis et al. (2007) (summarized also in Table 1). In
the case of the Vaiont landslide, the mathematical system calculated becomes unstable for a value of the
Gruntfest number of 0.88 and a maximum dimensionless value of the temperature of 1.2 (Figure 5b). We
fit the velocity calculated by our model against the field data (described in Muller, 1964). To match the cal-
culated velocity by our model with the field velocity, we adjust it by applying two values of initial strain‐rate.
These two values of the strain‐rate give two different evolutions of the velocity (Figure 5f), which mark off
the limits of the velocity field. This exercise serves as uncertainty quantification, providing a confidence
interval for the least constrained parameters like the initial strain‐rate.

As shown in Figures 4e and 5f, during the 2 years of recorded data before the collapse of the landslide, the
reservoir underwent two large fillings that affected significantly the outcome of the model, in terms of the
shear stress, the temperature in the shear band, and the velocity. The fluctuations of the reservoir were per-
formed to stabilize the landslide because the slide accelerated when the reservoir's level increased. However,
the last decrease in the reservoir's level could not stop the acceleration of the landslide. Accordingly, we may
interpret this last effect through our mathematical model, suggesting that the landslide did not stop its accel-
eration because the system already out‐passed the stability threshold. This implies that the values of the
shear stress (i.e., Gruntfest number) and the temperature inside the shear band were already too large
(Figure 5b), making impossible to stop the landslide.

Figure 5f shows the results of our model (velocity of the landslide [cm/day] and temperature inside the shear
band [°C]) in the case of the Vaiont landslide. The evolution of the temperature inside the shear band shows
a parallel behavior to the shear stress and the velocity of the landslide. When the reservoir underwent its first
filling, the temperature inside the shear band reached a value of 22.9 °C. And during the second filling of the
reservoir, the temperature reached a value between 23.5 and 24 °C. From our model, we found a possible
critical value of temperature inside the shear band of 23.5 °C. Hence, we suggest that the landslide collapsed,
regardless of the decrease of the reservoir's level after the second filling, because the Gruntfest number
(external loading) was increased beyond its critical value, thereby forcing the temperature inside the shear
band to overcome its critical value (Figure 5b).
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Figure 5. Results of the analysis for the Vaiont slide: (a) Graph representing the shear stress value calculated at each reservoir's level during the last two years of
recorded data of the Vaiont dam. (b) Maximum dimensionless temperature inside the shear zone plotted as a function of the Gruntfest number, with the stability
curve obtained from the model. (c) Zoom of Figure 5b: for the first filling of the reservoir, Points 1 to 2 of Figure 5a. The arrow represents the direction of the
evolution in time of the Gr and temperature. (d) Zoom of Figure 5b: for the first reduction of the reservoir, Points 2 to 3 of Figure 5a. (e) Zoom of Figure 5b: for the
second and last filling of the reservoir, Points 3 to 4 from Figure 5a. (f) Evolution of the field velocity of the landslide in time (Muller, 1964) as blue dots, and

velocity calculated in the model for two different strain‐rate values—keeping in mind that _γ ¼∂V
∂z

—as green and black lines. The red dashed/dotted line

corresponds to the temperature (in time) of the shear band.
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5. Case Study: Shuping Landslide

The Shuping landslide (Figure 6b) is a landslide that was reactivated when the Three Gorges Dam was built
in June of 2003 and the artificial lake started filling. The area of the dam is formed, mainly, by sandy mud-
stone and muddy sandstone from the Triassic Badong formation (Wang et al., 2017). Because of this lithol-
ogy, several landslides were triggered. Moreover, the Three Gorges Dam area is subject to long periods of
rainfall, which is also another possible triggering factor of reactivation/formation of landslides (Huang
et al., 2014).

In particular, the Shuping landslide has a sliding mass thickness between 30 and 70 m and a total sliding
rock volume of 2.7 × 107 m3 (Figure 6c). Observations have shown that the landslide accelerates when the
reservoir's level decreases, but the slide remains stable when the reservoir's level rises (Figure 6d) (Huang
et al., 2014). Thus, from the field data, it can be seen that the Shuping landslide exhibits an opposite behavior
from the Vaiont landslide (which accelerates when the lake level increases). This main difference in the
behaviors of the two landslides can be traced to the permeability of the slidingmass, which is high in the case
of Vaiont and low in the case of Shuping.

5.1. Geographical Location and Geological Framework

The Shuping landslide is located nearby the village of Xietanxiang, in Zigui county in eastern China. The
slide lies on the southern crest of the valley, where the Yangtze River flows along. Downstream along the
Yangtze River, at approximately 47 km, lies the Three Gorges Dam (Figure 6a) (Wang et al., 2017).

Figure 6. (a) Map of location of the Shuping slide. (b) 3D elevation map of the Shuping landslide (the red line indicates the contour of the active sector of the
landslide, and the green line is the dormant sector of the landslide). (c) Profile of the deep‐seated Shuping landslide. (d) Graph showing the variations of the
reservoir level, the variations of the groundwater level from the piezometer QZK3, the value of reservoir level when there is a zero groundwater slope as magenta
dashed line, and the displacement of GPS stations (ZG85, ZG86, and ZG87) of 5 years of recorded data (Huang et al., 2014).
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The landslide is geologically situated in the southern part of the Shazhenxi anticline, which is formed by
mudstone, siltstone, and muddy limestone from the Triassic Badong formation. The layers of this formation,
on the south side of the anticline, are dipping with an angle between 9 and 38° toward the direction of 120–
173°. The highest part of the landslide is formed by gravel, and the bottom part of the landslide is formed by
clay and silty clay. The mass is sliding over a thin layer (0.6–1 m) of brown breccia soil and silty clay, and the
underlying material of the landslide is composed of siltstone mixed with mudstone (Yin et al., 2016).

The behavior of the landslide is shown in Figure 6d (Huang et al., 2014; Li, 2015). The groundwater of the
landslide (reservoir level and piezometer level in Figure 6d) presents two different behaviors: (1) when the
piezometer level is above the reservoir level (same direction of groundwater table slope as Vaiont) and 2)
when the reservoir level is above the piezometer level (opposite slope as the Vaiont). Focusing now on the
displacements that the sliding mass experience, Figure 6d shows that there is a delay between the high peaks
of the water levels (reservoir and piezometer) and the acceleration of the landslide (displacement). This
delay of the response of the landslide could indicate that the permeability of the sliding mass is low. We
could also consider that the downdrawn of the reservoir level accelerates the sliding mass (i.e., destabilizes
the landslide) (Huang et al., 2014).

5.2. Groundwater Analysis

To calculate the groundwater table for this case study, we apply the transient method (due to the delay
between groundwater level peaks and the acceleration of the landslide, Figure 6d; Huang et al., 2014;
Li, 2015) using the hydraulic head (Equation 6) and solving it analytically, with appropriate boundary
conditions,

h x ¼ x1ð Þ ¼ U1 and h x ¼ x2ð Þ ¼ U2 (19)

obtaining

h x; tð Þ ¼
U1 − U2ð Þerf ξ

2

� �
þ U2erf

ξ1
2

� �
− U1erf

ξ2
2

� �

erf
ξ1
2

� �
− erf

ξ2
2

� � (20)

where ξ i ¼
xi

2
ffiffiffiffiffi
Dt

p , and erf is the error function expressed as erf zð Þ ¼ 2ffiffiffi
π

p ∫
z

0e
−t2dt , t is the time, h is the

height of groundwater, U1 is the height of the reservoir's level, U2 is the height of groundwater at the

Figure 7. Schematic groundwater table (dashed line) scenarios, for a given cross section of the Shuping landslide: (a) when the reservoir level is lower
than the piezometric level, allowing for positive slope of the groundwater table (similar to the Dupuit‐Forchheimer profile of Figure 4c), and (b) when the
reservoir level is higher than the piezometric level, allowing for negative slope of the groundwater table and thus of the seepage force. The black arrows show the
direction of the seepage force for each case.
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fixed point in the back of the landslide, and x is the horizontal coordinate of a point between the two
reference points of water level. Equation 20, thus, describes the hydraulic head evolution in time inside
the sliding mass.

The boundary conditions chosen to calculate the hydraulic head (described in Equation 19) of the ground-
water data are the reservoir's level and the piezometer data from the QZK3 piezometer (see Figure 6c for
location; Wu et al. 2018). In Figures 7a and 7b, we represent the two groundwater profiles that the
Shuping landslide experiences: (1) positive seepage force (pointing downward, when the piezometer level is
above the reservoir's level) and (2) negative seepage force (pointing upward, when the reservoir's level is
above the piezometer level), respectively. Note that the zero slope of the groundwater table is not presented
in Figure 7.

5.3. Shear Stress Results

To calculate the shear stress (with the double‐wedgemethod), we do not need to overestimate the basal shear
stress value for this case study, as we use both the piezometer and reservoir's field data. Figure 8a presents
the results of the basal shear stress calculated (at each reservoir and piezometer levels) as a function of time.
In our results, the mean shear stress at the base of the landslide varies between 1.12 and 1.2 MPa, which are
very similar values as the ones obtained for the Vaiont landslide.

As we have implemented the transient method to calculate the groundwater evolution, by applying a perme-
ability value (Li, 2015), our shear stress results also show a time delay (between the high peaks of water and
the high peaks of shear stress, Figure 8a). Figure 8a shows the evolution of shear stress, which compared to
the groundwater data (reservoir and piezometer levels) has two different behaviors: (1) the shear stress is

Figure 8. (a) Graph showing the reservoir level, the piezometer data, the value of the reservoir level when there is a zero‐groundwater slope (no seepage force) as
magenta dashed line, and the shear stress calculated for the Shuping slide. (b) Gruntfest number calculated versus temperature, with the steady‐state curve.
(c) Zoom of Figure 8b: Gruntfest number versus temperature for the first behavior of the landslide, Points 1 to 2 from Figure 8a. (d) Zoom of Figure 8b: Gruntfest
number versus temperature for the second behavior of the landslide, Points 2 to 3 from Figure 8a.
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higher when the piezometer level is above the reservoir level (i.e., positive seepage force inside the sliding
mass), and (2) the shear stress values are lower when the reservoir level is above the piezometer level (i.e.,
negative seepage force inside the sliding mass). Therefore, this could indicate that the landslide is decelerat-
ing by increasing the reservoir level (when the slidingmass has a negative seepage) force, and accelerating by
decreasing reservoir level, when the seepage force is positive (i.e., seepage direction toward the reservoir
level, downhill). A notable exception is the peak of stress at Point 2 of Figure 8a, which is admitted in the
historically highest values of the piezometer and the reservoir levels, and after which an exchange of seepage
direction is observed. The role of this point in the transient behavior of the slide will be discussed further in
the following sections.

5.4. Transient Stability Analysis

In Table 1, we present the parameters of the clay material (inside the shear band) required to calculate the
velocity of the landslide and the Gruntfest number. Some of these parameters have been taken from the
Vaiont landslide (Veveakis et al., 2007) because of the absence of information for the Shuping landslide
and because the shear bands are formed by similar clays. The rest of the parameters used for the Shuping
landslide have been taken from Li (2015).

For the Shuping landslide, the mathematical system becomes unstable for a value of the Gruntfest number of
0.88 and a dimensionless maximum ratio of the temperature of 1.14 (Figure 8b). The critical value of the
Gruntfest number, for the case of Shuping, is the same as for the Vaiont landslide. This is because the stabi-
lity of the model is studied in a dimensionless form (Equation 16) with the Gruntfest number incorporating
material properties and loading conditions that may vary in real case studies. It is therefore expected that this
stability response is universal in the dimensionless space, for any material obeying the frictional law of
Equation 10. Nonetheless, in order for the model to have forecasting capabilities, the Gruntfest number
needs to be constrained with minimum uncertainty. In the following, we are performing an inverse analysis
to estimate a value of the Gr from the displacement data for the case of Shuping, where detailed information
of the material properties and loading is missing.

To calculate the velocity, we have chosen the Global Positioning System data provided by station ZG86
(Figure 6c for location and Figure 6d for the data). This is because we consider that (1) the location of this
station represents an average displacement of the entire landslide and, (2) this station is the one that presents
the largest displacements, which allows us to evaluate the stability for the worst‐case scenario. Moreover, to
fit the velocity calculated by our model with the data provided by the ZG86 station, we have used only one
value of initial strain‐rate (Figure 9). Comparing the two velocities (calculated and field data) in Figure 9,
there are two main differences: (1) a change in the magnitude of some of the peaks and (2) a time lag
between some peaks. The changes in magnitude and time lag indicate the difference between the model
(which calculates an average velocity of the whole sliding mass) and the velocity of the field (which repre-
sents only the velocity of a single point of the sliding mass).

In the case of Vaiont, we know that the landslide collapses after the last filling of the reservoir; hence, the
Gruntfest number reaches the steady‐state curve causing the system to become unstable. However, in the
Shuping landslide, the instability point (critical Gr) is uncertain because the landslide has not collapsed
yet. Thus, we have calculated Gr with a value of N that matches as close as possible the field data (i.e., velo-
city), considering a rate sensitivity (parameter N) value within the range of values of clay materials reported
in the literature. To constrain further this value (N), as well as the thermal sensitivity coefficient M in the
Shuping case, and therefore offer predictive capabilities in the current approach, laboratory tests performed
on the shear band's material would be required.

5.5. The Behavior of Shuping Landslide Explained Through Groundwater Regimes

Figures 6d and 8a show that the Shuping landslide admits two distinct behaviors over the ten years of its
motion: (1) from Point 1 to Point 2 (Figure 9) where the seepage force tends downward, parallel to the slope
of the landslide (Figure 7a). In this period, the piezometer's level was maintained above the reservoir's level,
with both levels varying simultaneously and the landslide accelerating when the lake level decreased.
(2) FromPoint 2 to Point 3 (Figure 9) the seepage is acting opposite to the slope of the landslide (Figure 7b). In this
stage, the piezometer's level is maintained below the reservoir, consequently, inducing the inverse seepage. These
twobehaviors of the groundwater regime cause the landslide to acceleratewhen the reservoir level is decreased, in
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accordance with other studies in the literature (Huang et al., 2014).Hence, it seems that keeping the reservoir on
the second regime, thus maintaining the reservoir level above the piezometric level, would allow the landslide to
be controlled easier, since increasing the lake level would decelerate the slope. However, since this is a transient
regime, it is expected that when the reservoir head is consistently kept above the piezometric head within the
landslide, groundwater would be flowing into the landslide, raising the hydraulic head and eventually negating
the stabilizing effect. The timescale of this process depends on the hydraulic conductivity of the overburden
mass and its volume. Therefore, any operation in this regime should consider these transient effects. (A/N: we
thank the anonymous reviewer for highlighting this transient sequence).

6. Discussion and Conclusions

The cases of Vaiont and Shuping landslides were studied in this paper. For both cases, the implementation of
a time‐dependent shear stress in the thermal model presented in Veveakis et al. (2007) allowed us to repro-
duce the history of velocities for the Vaiont and Shuping slides. This model combines external and internal
factors that drive the behavior of a landslide: the weakening of friction at the base of the slide (as the internal
factor) and the pore pressure (i.e., the shear stress) evolution due to groundwater table variations (as the
external factor). This combination of evolving external factors and internal response of the material allows
for the identification of a coupled transient stability point for the landslides. Because this stability point is
a combination of the effects of external loading and internal response, it allows extending the results of
Veveakis et al. (2007) toward offering operational criteria for deep‐seated creeping landslides. This could
be achieved by measuring the shear‐band material properties, which would allow identifying the critical
loading conditions that would drive a landslide unstable (through its Gruntfest number) and operate below
these critical conditions.

In this work, we have assumed a rigid (i.e., undeformable) block sliding over a visco‐plastic shear band, with
the material exhibiting velocity hardening and thermal softening as the two counteracting mechanisms.
However, numerous additional mechanisms (such as slip weakening, volume change induced or thermal
pressurization, weathering, and phase transformations) could also be triggered and reduce the shearing
resistance of the basal material. Furthermore, a major assumption of the present work is that the landslides
are creeping in a reactivation phase, allowing the material of the shear band to be considered at critical state,

Figure 9. Velocity data from the field (calculated from the displacement obtained from Huang et al., 2014) shown as
black dashed line. Velocity calculated from the model as blue. The red dashed/dotted line indicates the ratio of the
real temperature with the reference temperature in the shear band.
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thereby deforming without any volume changes. This assumption eliminates the possibility of excess pore
pressure generation inside the shear band due to volume changes, which has been shown in the literature
(Garagash & Rudnicki, 2003; Iverson, 2005) to be a major mechanism that can destabilize Earth masses
and landslides in particular (Alonso & Pinyol, 2010; Dykes & Bromhead, 2018a, 2018b; Vardoulakis,
2002b). It was adopted here because clay materials have experimentally shown to reach critical state after
small amounts of accumulated shear strain, of the order of 1–2% (Tika & Hutchinson, 1999), and poses a
strong limitation of the applicability of the present model to landslide events that are either a first‐time event
or not at critical state, or where the overburden is not rigid but deformable (Handwerger et al., 2016).
Another limitation of the model is that the 1D nature of the shear band does not allow for
two‐dimensional effects like heat and mass advection to be admitted. These effects could prove of major
importance in shear bands featuring high permeability that could further require extension of the current
approach to more complicated, two‐dimensional geometries.

Despite the strong limitations of the model for the basal material's response, the analysis included ground-
water level variations (i.e., seasonal variations of the pore fluid pressure inside the landslide mass) which, in
turn, feedback on the applied shear and normal stresses on the shear band's interface. The application of the
model to the two case studies revealed that tracing the mechanical dissipation could determine the stability
of the material, becoming unstable at the point where heat dissipation becomes significant enough to over-
come the diffusive capabilities of the material and establish essentially adiabatic conditions. The inclusion of
the groundwater variations offered the possibility of assessing this stability threshold in terms of reservoir
level, precipitation, or groundwater level in general (Handwerger et al., 2016). Although the influence of
the external factors (groundwater level variation) was shown not to be of primary importance to the evolu-
tion of the Vaiont landslide (the results we obtained were comparable to the results of Veveakis et al., 2007
with constant groundwater level), since the landslide seemed to be driven primarily by the internal response
of the basal material, this is not the case for Shuping landslide. In the latter, the evolution of the groundwater
level affects the response of the landslide strongly, as the seepage force is predominantly driving the loading
stresses. In cases like this, where external and internal factors are simultaneously affecting the response of
the slide, the present model can offer valuable information on the time‐dependent stability threshold of
the sliding mass.

Furthermore, the parameters used in reproducing the velocity history of both case studies (listed in Table 1)
are falling within realistic range of values met in the literature. In the case of the Vaiont landslide, the values
used for the parameters are comparable to the values used by Veveakis et al. (2007), with the notable excep-
tion of the reference strain‐rate (which is orders of magnitude higher in this work). The reasons for this dis-
crepancy are the differences in the boundary conditions imposed (in Veveakis et al., 2007 the system was
solved as a Cauchy problem, without specifying boundary conditions) and that in the present study we
are considering both a different time interval (we are inverting for 2 years of motion whereas Veveakis
et al., 2007 only studied the last 6 months of the landslide) and a different shear stress evolution. In the pre-
sent study, the shear stress is evolving with the groundwater level, ranging between 0.9 and 1.12 MPa,
whereas Veveakis et al. (2007) considered a constant value of the shear stress of 1 MPa at an average ground-
water level. It is therefore reasonable to say that, while in both cases (Vaiont and Shuping) we were able to
determine a region of stability of the system, additional information on the properties of the shear band
material is required to constrain further the values of the parameters and obtain a more accurate point of
instability (especially for the currently active case of Shuping). This could be achieved, for example, by per-
forming experimental shear tests on the shear band's material at various loading rates and temperatures.

In summary, we have shown with the analysis applied in this paper, that taking into account the energy bal-
ance inside the clayey gouge, the model allows to determine and calculate a stability point of the landslide.
This method showcases that, even for different behaviors of landslides regarding the groundwater level, the
approach could offer useful information to design operational protocols and procedures.

Appendix A: Limit Equilibrium Analysis for the Double Wedge Mechanism
The forces acting on Wedge 1 and Wedge 2 (Figure 2) are the weight and seepage, calculated considering a
unit thickness. The weight W of each wedge is calculated as
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W ¼ γsat Asat þ γdry Adry (A:1)

where γdry is the specific unit weight of the soil (a force defined as the density of the soil times the
acceleration of gravity), γdry can also be calculated as the difference between γsat (the specific unit weight
of saturated soil) and γw (the specific unit weight of water), Asat is the area of saturated soil (beneath
the groundwater table), and Adry is the area of dry soil (above the groundwater table). The seepage
force, S, acts as a positive force on each wedge (because this force follows the direction of the flux)
and is calculated as

S ¼ Asat γwDh ¼ Asat γwsin
tþ β
2

� �
(A:2)

where Dh is the difference of the hydraulic head (see Bear, 1972, chapter 8, for an in‐depth discussion on
the geometric representation of the hydraulic head difference in an unconfined aquifer).

Applying the Earth pressure theory of Rankine (see chapter 11 of Craig, 2004), we can calculate the active
and the passive forces of the landslide. The active force (i.e., the force acting on Wedge 2 from Wedge 1) is

E12 ¼ 0:5 γsat Hsat
2 ka − 2 c Hsat

ffiffiffiffiffi
ka

p� �
þ 0:5 γdry Hdry

2 ka − 2 c Hdry

ffiffiffiffiffi
ka

p� �
(A:3)

where Hsat and Hdry are the normalized heights of saturated and dry soil, respectively, at the interface line
between the two wedges, c is the cohesion, and ka is the active lateral Earth pressure coefficient calculated
as follows:

ka ¼ sin2 α1 þ ϕð Þ

sin2α1sin α1 − δ2ð Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϕþ δ2ð Þsin ϕ − β2ð Þ
sin α1 − δ2ð Þsin α1 þ β2ð Þ

s" # (A:4)

with α1 being the angle of the interface line (which divides the two blocks) with the horizontal, ϕ is the
friction angle, δ2 is set at 2/3 of the friction angle (Craig, 2004), and β2 is the angle of the topography of
the Wedge 2 against the horizontal.

The passive Earth force, E21 (i.e., the force acting on Wedge 1 from Wedge 2), is calculated as

E21 ¼ 0:5 γsat Hsat
2 kp − 2 c Hsat

ffiffiffiffiffi
kp

p� �þ 0:5 γdry Hdry
2 kp − 2 c Hdry

ffiffiffiffiffi
kp

p� �
(A:5)

where kp is the passive lateral Earth pressure coefficient, calculated as follows:

kp ¼ sin2 α2 − ϕð Þ

sin2α2sin α2 þ δ1ð Þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ϕþ δ1ð Þsin ϕþ β1ð Þ
sin α2 þ δ1ð Þsin α2 þ β1ð Þ

s" # (A:6)

In this expression A.6, α2 is calculated as α2 = π − α1, δ1 is 1/3 times the friction angle (Craig, 2004), and
β1 is the angle of the topography of the Wedge 1 with the horizontal.

Thus, the equilibrium of horizontal forces acting at the center of mass of Wedge 1 gives:

T þ E21H − S cos β2 − α2ð Þ þ Nsin φ′ð Þ −Wcos β2ð Þ ¼ 0 (A:7)

where N is the normal force acting on both wedges, T is the shear force acting at the bottom of the wedge
(as negative on both wedges), and φ′ is the friction angle of the soil.

Correspondingly, horizontal force equilibrium at the center of mass of the Wedge 2 is

T − E12H − S cos β1 − α1ð Þ þ Nsin φ′ð Þ −Wcos β1ð Þ ¼ 0 (A:8)

where β1 is the slope of the sliding surface of the Wedge 1 with the horizontal.
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The vertical equilibrium forces acting on Wedge 1 (Equation A.9) and on Wedge 2 (Equation A.10) are

Ncos φ0ð Þ −Wsin β2ð Þ þ Ssin β2 − α2ð Þ þ E21V ¼ 0 (A:9)

Ncos φ′ð Þ −Wsin β1ð Þ þ Ssin β1 − α1ð Þ − E12V ¼ 0 (A:10)

Hence, we calculate the normal (N) and shear (S) forces (as a system of equations) for Wedge 1 with
Equations A.7 and A.9, and for Wedge 2 with Equations A.8 and A.10. The forces calculated by
Equations A.7–A.10 are referred to as the center of mass of each wedge. Thus, applying the results of
the forces to the conceptual Model B, the shear stress forces calculated are admitted in the shear band
(i.e., the base of the infinite rigid‐elastic block). By then dividing S by the length, L, (assuming
unit‐length in the third direction) of the sliding surface, we calculate the mean basal shear stress force
of the landslide (Muller, 1968) to populate the average values of Equation 8. In addition, the values of
H(1) and H(2) from Equation 8 are the total height of each wedge transformed into an infinite block
(Figure 1b). Each wedge height is calculated as follows:

H 1ð Þ ¼ H 1ð Þ
sat þ H 1ð Þ

dry (A:11)

H 2ð Þ ¼ H 2ð Þ
sat þ H 2ð Þ

dry (A:12)

where the indices (1) and (2) indicate the wedge, Hsat is the height of the saturated material, and Hdry is
the height of the dry material. To obtain the dry and saturated heights of each wedge, we have taken the
areas calculated (saturated and dry) and divide them by a large value of horizontal distance (for example,
100 m) to transform the real shape of the landslide (Figure 1a) into an infinite block (Figure 1b).
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