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Abstract

This work is devoted to the study of long-term qualitative behavior of randomly perturbed dynamical 
systems. The focus is on certain stochastic differential equations (SDE) with Markovian switching, when 
the switching is fast varying and the diffusion (white noise) is slowly changing. Consider the system

dXε,δ(t)= f (Xε,δ(t), αε(t))dt + √
δσ (Xε,δ(t), αε(t))dW(t), Xε,δ(0)= x, αε(0)= i,

where αε(t) is a finite state Markov chain with irreducible generator Q = (qι�). The relative chang-
ing rates of the switching and the diffusion are highlighted by two small parameters ε and δ. Asso-
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ciated with the above stochastic differential equation, there is an averaged ordinary differential equa-
tion (ODE)

dX(t)= f (X(t))dt, X(0)= x,

where f (·) = ∑m0
ι=1 f (·, ι)νι and (ν1, . . . , νm0) is the unique stationary distribution of the Markov chain 

with generator Q. Suppose that for each pair (ε, δ), the process has an invariant probability measure με,δ , 
and that the averaged ODE has a limit cycle in which there is an averaged occupation measure μ0 for the 
averaged equation. It is proved in this paper that under weak conditions, if f has finitely many stable or 
hyperbolic fixed points, then με,δ converges weakly to μ0 as ε → 0 and δ → 0. Our results generalize to 
the setting where the switching process αε is state-dependent in that

P {αε(t +	)= �|αε = ι,Xε,δ(s), αε(s), s ≤ t} = qι�(X
ε,δ(t))	+ o(	), ι �= �

as long as the generator Q(·) = (qι�(·)) is locally bounded, locally Lipschitz, and irreducible for all x ∈Rd . 
Finally, we provide two examples in two and three dimensions to showcase our results.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Natural phenomena are almost always influenced by different types of random noise. In or-
der to better understand the world around us, it is important to study random perturbations of 
dynamical systems. In the continuous dynamical systems setup, the focus then shifts from the 
study of the behavior of deterministic differential equations to that of differential equations with 
switching (piecewise deterministic Markov processes) or stochastic differential equations with 
switching. The long-term behavior of these systems can be analyzed by a careful study of the 
ergodic properties of the induced Markov processes.
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Quite often, the “white noise” in the system is small compared to the deterministic com-
ponent. In such cases, one is usually interested in knowing how well the deterministic system 
approximates the stochastic one. It is common to model continuous-time phenomena by stochas-
tic differential equations of the type

dxδ(t)= f (xδ(t))dt + √
δσ (xδ(t))dW(t), (1.1)

where f (·) and σ(·) are sufficiently smooth functions, W(·) is a standard m-dimensional Brow-
nian motion, and δ > 0 is a small parameter. If we let δ → 0, one would expect that the solutions 
of (1.1) converge to that of a deterministic differential equation in an appropriate sense.

Different aspects of the problem have been studied extensively starting with Freidlin and 
Wentzell [36,17], Fleming [16], Kifer [27] and Day [11]. If the process xδ(t) has a unique ergodic 
probability measure μδ for each δ > 0 and the origin of the corresponding deterministic ODE

dx = f (x)dt, (1.2)

is a globally asymptotic stable equilibrium point, Holland established in [21] asymptotic expan-
sions of the expectation of the underlying functionals with respect to the unique ergodic proba-
bility measures μδ . In addition, in [22], Holland considered the case when the ODE (1.2) has an 
asymptotically stable limit cycle and proved the weak convergence of the family (μδ)δ>0 to the 
unique stationary distribution that is concentrated on the limit cycle of the process from (1.2).

Our interest in the current work stems from applications in ecology. Quite often, one models 
the dynamics of populations with continuous-time processes. This way we implicitly assume that 
organisms can respond instantaneously to changes in the environment. However, in some cases 
the dynamics are better described by discrete-time models, in which demographic decisions are 
not made continuously. In order to model more complex systems, one has to analyze ‘hybrid’ 
systems where both continuous and discrete dynamics coexist. Such systems arise naturally in 
ecology, engineering, operations research, and physics as well as in emerging applications in 
wireless communications, internet traffic modeling, and financial engineering; see [38] for more 
references.

Recently, there has been renewed interest in studying piecewise deterministic Markov pro-
cesses (PDMP) [10]. One may describe a PDMP by the use of a two component process. The 
first component is a continuous state process represented by the solution of a deterministic dif-
ferential equation, whereas the second component is a discrete event process taking values in a 
finite set. This discrete event process is often modeled as a continuous-time Markov chain with a 
finite state space. At any given instance, the Markov chain takes a value (say i in the state space), 
and the process sojourns in state i for a random duration. During this period, the continuous state 
follows the flow given by a differential equation associated with i. Then at a random instance, the 
discrete event switches to another state j �= i. The Markov chain sojourns in j for a random dura-
tion, during which, the continuous state follows another flow associated with the discrete state j .

A careful study of such processes has recently led to a better understanding of predator-prey 
communities where the predator evolves much faster than the prey [9] and for a possible explana-
tion of how the competitive exclusion principle from ecology, which states that multiple species 
competing for the same number of small resources cannot coexist, can be violated because of 
switching [6,20].

It is natural to study the stochastic differential equation (SDE) counter-part of PDMP, that is, 
SDEs with switching. Similarly to the piecewise deterministic Markov processes mentioned in 
315



N.H. Du, A. Hening, D.H. Nguyen et al. Journal of Differential Equations 293 (2021) 313–358
the previous paragraph, in this setting one follows a specific system of SDEs for a random time 
after which the discrete event switches to another state, and the process is governed by a different 
system of SDE. The resulting stochastic process has a discrete component (that switches among 
a finite number of discrete states) and a continuous component (the solution of SDE associate 
with each fixed discrete event state). We refer the reader to [38] for an introduction to SDEs with 
switching. Most of the work inspired by Freidlin and Wentzell has been concerned with local 
phenomena that involve the exit times and exit probabilities from neighborhoods of equilibria. 
One usually uses the theory of large deviations to analyze the exit problem from the domain 
of attraction of a stable equilibrium point. Nevertheless, in applications such as those arising 
in ecology, one faces even more complex situations such as the one treated in this paper, in 
which large deviation techniques are not applicable, and one needs to analyze the distributional 
scaling limits for the exit distributions [2]. There have been some previous important studies 
for multi-scale systems with fast and slow scales [14,15]. These previous papers have looked 
at large deviations in the related setting where one has a slow diffusion and the coefficients are 
fast oscillating. However, in contrast to our framework, the fast oscillations come from having 
periodic coefficients and inclusion of a factor 1

ε
into the periodic component of the coefficients. 

The way the fast oscillations are introduced in these previous papers is similar to how it is done 
when one does stochastic homogenization. In the present paper, the switching comes from a 
discrete random process αε .

In this paper, we consider dynamic systems represented by switching diffusions, in which 
the switching is rapidly varying whereas the diffusion is slowly changing. To be more precise, 
let (
, F, {Ft }, P ) be a filtered probability space satisfying the usual conditions. Consider the 
process (Xε,δ)t≥0 defined by

dXε,δ(t)= f (Xε,δ(t), αε(t))dt + √
δσ (Xε,δ(t), αε(t))dW(t), Xε,δ(0)= x, αε(0)= i, (1.3)

where W(t) is an m-dimensional standard Brownian motion, αε(t) is a finite-state Markov chain 
that is independent of the Brownian motion and that has a state space M = {1, ..., m0} and 
generator Q/ε = (

qij /ε
)
m0×m0

, Xε,δ is an Rd -valued process, f : Rd × M → Rd, σ : Rd ×
M →Rd×m, and ε, δ > 0 are two small parameters. We assume that the matrix Q is irreducible. 
The irreducibility of Q implies that the Markov chain associated with Q, denoted by (α̃(t))t≥0, is 
ergodic thus has a unique stationary distribution (ν1, . . . , νm0). We denote by Xε,δ

x,i (t) the solution 
of (1.3) at time t ≥ 0 when the initial value is (x, i) and by αεi (t) the Markov chain started at i.

Let us explore, intuitively, what happens when ε and δ are very small. In this setting, αε(t)
converges rapidly to its stationary distribution (ν1, . . . , νm0), while the diffusion is asymptotically 
small. As a result, on each finite time interval [0, T ] for T > 0, a solution of equation (1.3) can 
be approximated by the solution Xx(t) to

dX(t)= f (X(t))dt, X(0)= x, (1.4)

where f (x) =∑m0
i=1 f (x, i)νi .

However, if in lieu of a finite time horizon, we look at the process on the infinite time horizon 
[0, ∞), it is not clear that Xx(t) is a good approximation. Suppose that equation (1.4) has a 
stable limit cycle. A natural question is whether the invariant probability measures (με,δ) of the 
processes (1.3) converge weakly as ε → 0 and δ → 0, to the measure concentrated on the limit 
cycle. This is the main problem that we address in the current paper. In order to do this, we 
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substantially extend the results of [22] by considering the presence of both small diffusion and 
rapid switching. Because of the presence of both the switching and the diffusion we need to 
develop new mathematical techniques. In addition, even if there is no switching and we are in 
the SDE setting of [22], our assumptions are weaker than those used in [22].

The rest of the paper is organized as follows. The main assumptions and results are given in 
Section 1.1. To provide an insight of the proofs and to connect different parts of the arguments 
so as to provide something like a “road map”, Section 1.3 presents the main ideas of proofs. 
In Section 2, we estimate the exit time of the solutions of (1.3) from neighborhoods around the 
stable manifolds of the equilibria of f . The proofs of the main results are presented in Section 3. 
In Section 4, we apply our results to a general predator-prey model. In addition to showcasing 
our result in a specific setting, the proofs in Section 4 are interesting on their own right as they 
are quite technical and require the development of new tools. Finally, in Section 4.1, we provide 
some numerical examples to illustrate our results from the predator-prey setting in Section 4.

1.1. Assumptions and main results

We denote by A′ the transpose of a matrix A, by | · | the Euclidean norm of vectors in Rd , and 
by ‖A‖ := sup{|Ax| : x ∈ Rd , |x| = 1} the operator norm of a matrix A ∈ Rd×d . We also define 
a∧ b := min{a, b}, a∨ b := max{a, b}, and the closed ball of radius R > 0 centered at the origin 
BR := {x ∈ Rd : |x| ≤R}.

We recall some definitions due to Conley [8]. Suppose we are given a flow (�t(·))t∈R. A 
compact invariant set K is called isolated if there exists a neighborhood V of K such that 
K is the maximal compact invariant set in V . A collection of nonempty sets {M1, . . . , Mk}
is a Morse decomposition for a compact invariant set K if M1, . . . , Mk are pairwise disjoint, 
compact, isolated sets for the flow � restricted to K and the following properties hold: 1) 
For each x ∈ K there are integers l = l(x) ≤ m = m(x) for which the alpha limit set of x, 
α̂(x) = ⋂

t≤0 {�s(x), s ∈ (−∞, t]}, satisfies α̂(x) ⊂ Ml and the omega limit set of x, ω̂(x) :=⋂
t≥0 {�s(x), s ∈ [t,∞)}, satisfies ω̂(x) ⊂Mm 2) If l(x) =m(x) then x ∈Ml =Mm.

Assumption 1.1. We impose the following assumptions for the processes modeled by systems 
(1.3) and (1.4).

(i) For each i ∈M, f (·, i) and σ(·, i) are locally Lipschitz continuous.
(ii) There is an a > 0 and a twice continuously differentiable real-valued, nonnegative function 

�(·) satisfying lim
R→∞ inf{�(x) : |x| ≥ R} = ∞ and (∇�)′(x)f (x, i) ≤ a(�(x) + 1), for all 

(x, i) ∈ Rd ×M.
(iii) The vector field f (·) is C1 and it has finitely many equilibrium points {x1, . . . , xn0−1} and 

a unique limit cycle . The equilibrium points are hyperbolic points.
(iv) There exists a Morse decomposition {M1, M2, · · · , Mn0} of the flow associated with f such 

that Mn0 =  is the limit cycle and for any i < n0 we have Mi = {xi} where xi is an 
equilibrium point.

(v) There exists ε0 > 0 such that for all 0 < ε < ε0, the system (1.3) has a unique solution. Fur-
thermore, for any 0 < ε < ε0, the process (Xε,δ(t), αε(t)) has the strong Markov property 
and has an invariant probability measure με,δ . The family (με,δ)0<ε<ε0 is tight, i.e., for any 
γ > 0 there exists an R =Rγ > 0 such that με,δ(BR ×M) > 1 − γ for all 0 < ε < ε0.
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Remark 1.1. We note that using Assumption (ii), we can work in a compact state space K⊂Rn

if the diffusion term from (1.3) is zero. Assumptions (i) and (ii) are needed in order to deduce the 
existence and boundedness of a unique solution to equation (1.3) in the absence of the diffusion 
term. Assumption (iv) is used to make sure that there exist no heteroclinic cycles.

Assumption (v) ensures that (1.3) has a unique solution that is strong Markov. Sufficient 
conditions that imply uniqueness and the strong Markov property exist in the literature [32,38].

Remark 1.2. In [22] the author studied (1.1) under the assumptions that

(A1) f, σ ∈ C2(Rd).
(A2) System (1.2) has a unique limit cycle.
(A3) There exists at most a finite number of equilibria x∗ of f . At each equilibrium, the Jacobian 

matrix has only positive real parts and the matrix σ ′σ is positive definite.
(A4) For any compact set B not containing equilibria and any u > 0 there exists T > 0 such that 

if x ∈ B , then

d(x0
x(t),) < u, for t ≥ T .

(A5) There exists δ0 > 0 such that for 0 < δ < δ0 the stochastic differential equation has a unique 
ergodic measure μδ . Furthermore, the family (μδ)0<δ<δ0 is tight in Rd .

Our work generalizes [22] significantly in the following aspects. First, we work with two types 
of randomness - one comes from the diffusion term and the other from the switching mechanism. 
Second, Assumption 1.1 (i) is weaker than (A1). Third, we can have any hyperbolic fixed points 
whereas assumptions (A3)-(A4) imply that all fixed points are sources and the deterministic 
system converges uniformly to the limit cycle. In addition, we do not need σ ′σ to be positive 
definite at the equilibria.

Remark 1.3. There are several papers, which look at the exit time asymptotic behavior near 
hyperbolic fixed points of small perturbations of dynamical systems [27,1,2]. In contrast to these 
papers in which the noise is uniformly elliptic, we have to deal with the additional complications 
of a stable limit cycle as well as the switching due to αε.

Let T > 0 be the period of the limit cycle . We can define a probability measure μ0, which 
is independent of the starting point y ∈ , by

μ0(·)= 1

T

T∫
0

1(·)(Xy(s))ds, (1.5)

where Xy(t) is the solution to equation (1.4) starting at X(0) = y and 1{·} is the indicator 
function. The measure μ0(·) is the averaged occupation measure of the process X restricted 
to the limit cycle . Throughout the paper, we assume that δ depends on ε, i.e., δ = δ(ε), and 
lim
ε→0

δ(ε) = 0. We will investigate the asymptotic behavior of the invariant probability measures 

με,δ as ε → 0 in the following three cases:
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lim
ε→0

δ

ε
=
⎧⎨⎩
l ∈ (0,∞), case 1
0, case 2
∞, case 3.

(1.6)

The multi-scale modeling approach we use is similar to the one from [23].

Assumption 1.2. We impose additional conditions corresponding to the cases from (1.6).

1) Suppose limε→0
δ
ε

= l ∈ (0, ∞). For any equilibrium x∗ of f there exists i∗ ∈ M such that 
β ′f (x∗, i∗) �= 0 or β ′σ(x∗, i∗)σ ′(x∗, i∗)β �= 0 where β is a normal vector of the stable man-
ifold of (1.4) at x∗.

2) Suppose limε→0
δ
ε

= 0. For any equilibrium x∗ of f there exists i∗ ∈ M such that 
β ′f (x∗, i∗) �= 0 where β is a normal vector of the stable manifold of (1.4) at x∗.

3) Suppose limε→0
δ
ε

= ∞. For any equilibrium x∗ of f , there exists i∗ ∈ M such that 
β ′σ(x∗, i∗)σ ′(x∗, i∗)β �= 0 where β is a normal vector of the stable manifold of (1.4) at 
x∗.

Note that when x∗ is a source, the stable manifold is 0-dimensional and any non-zero vector can 
be considered as a normal vector.

The intuition for the conditions of Assumption 1.2 is as follows. In case 2, since δ tends to 0
much faster than ε, for sufficiently small δ, the behavior of Xε,δ(t) will be close to the process 
ξε(t) defined by

dξε(t)= f
(
ξε(t), αε(t)

)
dt. (1.7)

We denote from now on by ξεx,i(t) the solution of (1.7) at time t ≥ 0 if the initial condition is 
(x, i).

If for each i ∈ M, f (x∗, i) = 0 at a equilibrium x∗ of f , the Dirac mass function at x∗, δx∗ , 
will be an invariant measure for ξε(t). Because of this, the sequence of invariant probability 
measures (με,δ) (or one of its subsequences) may converge to δx∗ . In order to have the weak 
convergence of (μδ,ε)ε>0 to the measure μ0, we need to assume that there is an i∗ ∈M such that 
β ′f (x∗, i∗) �= 0 where β is a normal vector of the stable manifold of (1.4) at x∗. This guarantees 
that the process from (1.7) gets pushed away from the equilibrium x∗ and away from the stable 
manifold (where it could get pushed back towards the equilibrium).

In case 3, the switching is very fast compared to the diffusion term, so for small ε the process 
will behave like

dηε(t)= f (ηε(t))dt + √
δσ (ηε(t))dW(t),

where σ(x) = (∑
i∈M σ(x, i)σ�(x, i)νi

) 1
2 and W(t) is an independent n-dimensional Brownian 

motion.
In order for the limit of (με,δ) not to put mass on the equilibrium x∗ of f , we need to suppose 

that there exists an i∗ ∈ M such that β ′σ(x∗, i∗) �= 0 where β is a normal vector of the stable 
manifold of (1.4) at x∗.
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For case 1, since both the switching and the diffusion are on a similar scale, we need to 
assume that for each equilibrium x∗ of f there is i∗ ∈ M satisfying either β ′σ(x∗, i∗) �= 0 or 
β ′f (x∗, i∗) �= 0. The next theorem is the main result of this paper.

Theorem 1.1. Suppose Assumptions 1.1 and 1.2 hold. The family of invariant probability mea-
sures (με,δ)ε>0 converges weakly to the measure μ0 given by (1.5) in the sense that for every 
bounded and continuous function g :Rd ×M → R,

lim
ε→0

m0∑
i=1

∫
Rd

g(x, i)με,δ(dx, i)= 1

T

T∫
0

g(Xy(t))dt,

where T is the period of the limit cycle, y ∈  and g(x) =∑
i∈M g(x, i)νi .

Remark 1.4. Given that the switching component αε is state-dependent with generator Q(x) =
(qij (x))M×M, x ∈ Rd , Theorem 1.1 still holds with f (x) =∑m0

i=1 f (x, i)νi(x) and (ν1(x), . . . ,
νm0(x)) is the stationary distribution of a Markov chain with generator Q(x) = (qij (x)) as long 
as Q(x) is bounded and satisfies the following conditions:

• For all i the functions qii(·) and qij (·)
qii (x·) are Lipschitz continuous.

• If qij (x) > 0 for some x ∈Rd then infx∈Rd
qij (x)

|qii (x)| > 0.
• For all i we have infx∈Rd |qii(x)| > 0.
• infx∈Rd q̂

(m0)
ij (x) > 0 where Q̂(x) = (0 ∨ qij (x))M×M, and (q̂(m0)

ij (x)) is the m0-power of 

Q̂(x)

We explain how one can do this in Remark 2.1.

1.2. An application of Theorem 1.1

We will exhibit an example where the result of Theorem 1.1 applies. Recently there has been 
renewed interest in stochastic population dynamics [19,6,5,20]. Suppose we have a predator-prey 
system of the form

⎧⎪⎨⎪⎩
d

dt
x(t)= x(t) [a − bx(t)− y(t)h(x(t), y(t))]

d

dt
y(t)= y(t) [−c− dy(t)+ x(t)f h(x(t), y(t))] .

(1.8)

Here x(t), y(t) denote the densities of prey and predator at time t ≥ 0, respectively; a, b, c, d, f >
0 describe the per-capita birth/death and competition rates, and xh(x, y), yh(x, y) are the func-
tional responses of the predator and the prey. For instance, if h(x, y) is constant, the model is the 
classical Lotka-Volterra one [29,37,18]. If

h(x, y)= m1
,

m2 +m3x +m4y
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the functional response is of Beddington-DeAngelis type [7]. The setting of (1.8) is very general 
and encompasses many of the models used in the ecological literature.

We explore what happens in the fast-switching slow-noise limit for the following noisy exten-
sion of (1.8){

dXε,δ(t)=Xε,δ(t)ϕ
(
Xε,δ(t), Y ε,δ(t), αε(t))dt + √

δλ(αε(t))Xε,δ(t)dW1(t)

dY ε,δ(t)= Y ε,δ(t)ψ
(
Xε,δ(t), Y ε,δ(t), αε(t))dt + √

δρ(αε(t))Y ε,δ(t)dW2(t).
(1.9)

Here

ϕ(x, y, i)= a(i)− b(i)x − yh(x, y, i) and
ψ(x, y, i)= −c(i)− d(i)y + f (i)xh(x, y, i),

where a(·), b(·), c(·), d(·), f (·), λ(·), ρ(·) are positive functions defined on M, δ = δ(ε) depends 
on ε, lim

ε→0
δ = 0, W1(t) and W2(t) are independent Brownian motions, and αε is an independent 

Markov chain with generator Q/ε. As before, the generator Q is assumed to be irreducible so 
that the Markov chain has a unique stationary distribution given by (ν1, . . . , νn0). The function 
h(·, ·, ·) is assumed to be positive, bounded, and continuous on R2+ ×M.

For g(·) = a(·), b(·), c(·), d(·), f (·), ϕ(·), ψ(·), define the averaged quantities g :=∑
g(i)νi , 

gm = min{g(i) : i ∈ M}, gM = max{g(i) : i ∈ M}. Set h1(x, y) :=∑
h(x, y, i)νi and h2(x, y)

:=∑
f (i)h(x, y, i)νi . The existence and uniqueness of a global positive solution to (1.9) can be 

proved in the same manner as in [25] or [26] and is therefore omitted. We denote by Zε,δ
z,i (t) =

(X
ε,δ
z,i (t), Y

ε,δ
z,i (t)) the solution to (1.9) with initial value αε(0) = i ∈M, Zε,δ

z,i (0) = z ∈ R2+. Con-
sider the averaged equation⎧⎪⎨⎪⎩

d

dt
X(t)=X(t)ϕ(X(t), Y (t))=X(t)

[
a − bX(t)− Y(t)h1(X(t), Y (t))

]
d

dt
Y (t)= Y(t)ψ(X(t), Y (t)))= Y(t)

[−c− dY (t)+X(t)h2(X(t), Y (t))
]
.

(1.10)

We denote by Zz(t) = (Xz(t), Y z(t)), the solution to (1.10) with initial value Zz(0) = z.

Assumption 1.3.

(i) The system (1.10) has a finite number of positive equilibria and a unique stable limit cycle 
. In addition, any positive solution not starting at an equilibrium converges to the stable 
limit cycle.

(ii) The inequality

a

b
h2

(
a

b
,0

)
> c

is satisfied.

Remark 1.5. Note that the Jacobian of 
(
xφ(x, y), yψ(x, y)

)′
at 
(
a

b
,0
)

has two eigenvalues: 

−c + a h2(
a , 0) and − b

2

< 0. If −c + a h2(
a , 0) < 0, then 

(
a ,0

)
is a stable equilibrium of 
b b a b b b
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(1.10), which violates condition (i) of Assumption 1.3. This shows that condition (ii) is often 
contained in condition (i).

We note that model (1.10) is quite general. Conditions on the parameters for the existence and 
uniqueness of a limit cycle are in general complicated.

We can apply Theorem 1.1 to this model if we can verify part (v) of Assumption 1.1 since 
the other conditions are clearly satisfied. Since the process αε(t) is ergodic and the diffusion 
is nondegenerate, an invariant probability measure of the solution Zε,δ(t) is unique if it exists. 
It is unlikely that one could find a Lyapunov-type function satisfying the hypothesis of [38, 
Theorem 3.26] in order to prove the existence of an invariant probability measure. In addition, 
the tightness of the family of invariant probability measures (με,δ)ε>0 cannot be proved using 
the methods from [12,13].

These difficulties can be overcome with the help of a new technical tool. We partition the 
domain (0, ∞)2 into several parts and then construct a truncated Lyapunov-type function. We 
then estimate the average probability that the solution belongs to a specific part of our partition. 
This then enables us to prove that the family of invariant probability measures (με,δ)ε>0 is tight 
on the interior of R2+, i.e., for any η > 0, there are 0 < ε0, δ0 < 1 <L such that for all ε < ε0, δ <
δ0, the unique invariant probability measure με,δ of (Zε,δ(t), αε(t)) satisfies

με,δ([L−1,L]2)≥ 1 − η.

We are able to prove the following result.

Theorem 1.2. Suppose Assumption 1.3 holds. For sufficiently small δ and ε, the process given 
by (1.9) has a unique invariant probability measure με,δ with support in IntR2+ (where IntR2+
denotes the interior of R2+). In addition:

a) If lim
ε→0

δ

ε
= l ∈ (0, ∞], the family of invariant probability measures (με,δ)ε>0 converges 

weakly to μ0, the occupation measure of the limit cycle of (1.10), as ε → 0 (in the sense 
of Theorem 1.1).

b) If lim
ε→0

δ

ε
= 0 and at each equilibrium (x∗, y∗) of (ϕ(x, y), ψ(x, y)), there is i∗ ∈ M such 

that either ϕ(x∗, y∗, i∗) �= 0 or ψ(x∗, y∗, i∗) �= 0, then the family of invariant probability 
measures (με,δ)ε>0 converges weakly to μ0, the occupation measure of the limit cycle of 
(1.10) as ε → 0.

Remark 1.6. We note that on any finite time interval [0, T ], the solutions to (1.9) converge to 
the solutions of (1.10). However, in ecology, people are interested in the long-term behavior of 
ecosystems as T → ∞. Therefore, the above result shows rigorously that (1.10) gives the correct 
long-term behavior.

1.3. Main ideas of proof of Theorem 1.1: a road map

Because some parts of the proofs are very technical, in order to offer some insight, we present 
the main ideas in this subsection. It aims to provide something like a “road map” for the proofs.
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Condition (v) of Assumption 1.1 is a tightness assumption for the family of invariant prob-
ability measures (με,δ)0<ε<ε0 . This implies that any weak limit of (με,δ)0<ε<ε0 is an invariant 
probability measure of the limit system (1.4). The main technical issue is to show that any sub-
sequential limit of (με,δ)0<ε<ε0 does not assign any mass to any of the fixed points of f . This 
is done by a careful analysis of the nature of the deterministic and stochastic systems near the 
attracting region χl := {y : limt→∞Xy(t) = xl}, of an equilibrium xl of f . Note that if xl is 
a source then χl = {xl} while if xl is hyperbolic χl can be an unbounded set. This makes the 
problem difficult.

In Section 2, using large deviation techniques, we establish the following uniform estimate 
for the probability that the processes Xε,δ

x,i and Xx are close on a fixed time interval: For any R, 
T , and γ > 0, there is a κ = κ(R, γ, T ) > 0 such that

P
{∣∣∣Xε,δ

x,i (t)−Xx(t)

∣∣∣≥ γ for some t ∈ [0, T ]
}
< exp

(
− κ

ε + δ

)
, x ∈ BR. (1.11)

The main task is to estimate the time of exiting the attracting region, χl∩BR , of an equilibrium 
xl . To be precise, we show that Xε,δ

x,i leaves small neighborhoods of χl ∩BR with strictly positive 
probability in finite time if we start close to χl ∩ BR . We find uniform lower bounds for these 
probabilities.

In fact, for any sufficiently small 	 > 0 and sufficiently large R > 0, to include all the sets 
Mi, i = 1, . . . , n0, we can find θ1, θ3 > 0, H	

l > 0, and εl(	) such that for ε < εl(	),

P
{
τ̃
ε,δ
x,i ≤H	

l

}
≥ψ	,ε := exp

(
− 	

ε + δ

)
, |x − xl |< θ1, (1.12)

where

τ̃
ε,δ
x,i := inf{t ≥ 0 :Xε,δ

x,i (t) ∈ BR and dist(Xε,δ
x,i (t), χl)≥ θ3}.

We prove the estimate (1.12) in the different cases as follows.

1) Suppose that there is an i∗ ∈ M satisfying β ′f (xl, i∗) �= 0, where β is a normal unit vector 
of the stable manifold of (1.4) at xl . Then we estimate the time αε(t) stays in i∗ and consider 
the diffusion in this fixed state, that is

dZδ(t)= f (Zδ(t), i∗)dt + √
δσ (Zδ(t), i∗)dW(t).

Since the drift f (x, i∗) is nonzero and pushes us away from the stable manifold of x∗, and 
the diffusion term is small, we can estimate the exit time ̃τ ε,δx,i .

2) Suppose limε→0
δ
ε

∈ (0, ∞] and there is an i∗ such that β ′σ(xl, i∗) �= 0. If limε→0
δ
ε
< ∞, 

suppose in addition that β ′f (xl, i) = 0, i ∈ M. We estimate the time αε(t) to be in i∗ and 
consider the diffusion component in the direction β in this fixed state

dZε,δ = √
δβ ′σ(Zε,δ, αε)dW(t)

Since the diffusion coefficient does not vanish close to xl , we can do time change so that we 
get a Brownian motion. Then we can estimate the probability that the exit time exceeds a 
given number. Ultimately, we show that Zε,δ and β ′Xε,δ are close to each other.
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Comparing the rates in (1.11) with (1.12) is key to prove the main result in Section 3 (see e.g. [22,
28]). The idea is to estimate the time of exiting the attracting region, χl ∩BR , of an equilibrium xl
as well as the time of coming back to this region. Then we prove that eventually, the probability 
of entering χl ∩BR is very small compared to the probability of exiting the region.

If we start with X(0) close to χl ∩ BR then after a finite time X will be close to one of the 
equilibrium points or the limit cycle. Using this together with (1.11) and (1.12) we get that there 
exist neighborhoods N1, G1 of χl ∩BR with N1 ⊂G1 such that

P {τ ε,δx,i < L}> 1

8
ψ	,ε, x ∈N1

for some constant L > 0 and

τ
ε,δ
x,i = inf{t ≥ 0 :Xε,δ

x,i (t) ∈ BR \G1}.

This can be leveraged into showing that with high probability, if we start in N1, we will leave the 
region G1 ⊃N1 in a finite, uniformly bounded, time:

P
{
τ
ε,δ
x,i < T

ε,δ
	,1

}
>

1

2
, x ∈N1 (1.13)

where T ε,δ
	,1 := C exp

(
	

ε + δ

)
. Using (1.11) we can find a constant T̂ > 0, independent of ε such 

that

P
{
X
ε,δ
x,i (T̂ ) /∈G1

}
≥ 1 − exp

(
− κ

ε + δ

)
, x ∈ BR \N1 (1.14)

and that

P
{
X
ε,δ
x,i (t) /∈N1, for all t ∈ [0, T̂ ]

}
≥ 1 − exp

(
− κ

ε + δ

)
, x ∈ BR \G1. (1.15)

Note that T ε,δ
	,1 → ∞ as ε → 0. However, if we pick 	 < κ/2, we have

lim
ε→0

T
ε,δ
	,1 exp

(
− κ

ε + δ

)
= lim

ε→0
exp

(
	

ε + δ

)
exp

(
− κ

ε + δ

)
= 0. (1.16)

The estimate (1.16) shows the exit time is not long compared to the good rate of large deviations, 
which will be used to show that invariant probability measures cannot put much mass on the 
equilibria. Let X̃ε,δ(t) be the stationary solution, whose distribution is με,δ for every time t ≥ 0. 
Let τ ε,δ be the first exit time of X̃ε,δ(t) from G1. We can show that for any η > 0 we can find 
R > 0 such that με,δ(N1) ≤ 2η by using (1.14), (1.15), and (1.16) to find the probabilities of the 
events

K
ε,δ
1 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, τ

ε,δ ≥ T
ε,δ
	,1, X̃

ε,δ(0) ∈N1

}
K

ε,δ =
{
X̃ε,δ(T

ε,δ
) ∈N1, τ

ε,δ < T
ε,δ

, X̃ε,δ(0) ∈N1

}

2 	,1 	,1
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K
ε,δ
3 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, X̃

ε,δ(0) ∈ BR \N1

}
K

ε,δ
4 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, X̃

ε,δ(0) /∈ BR

}
.

Similar arguments show that for any η > 0, we can find R > 0 and neighborhoods 
N1, . . . , Nn0−1 of χ1 ∩BR, . . . , χn0−1 ∩BR such that

lim sup
ε→0

με,δ(∪n0−1
j=1 Nj)≤ 2n0η.

Using this fact together with Assumption 1.1 and Lemma 2.2 we can establish, by a straightfor-
ward modification of the proof of [22, Theorem 1], that for any η > 0 there is neighborhood N
of the limit cycle  such that

lim inf
ε→0

με,δ(N) > 1 − 2n0η.

2. Estimates of the first exit times

Define for any i = 1, . . . , n0 and θ > 0, the sets χi := {y : limt→∞ dist(Xy(t), Mi) = 0} and 
Mi,θ := {y : dist(y, Mi) < θ}. Let R0 > 1 be large enough such that BR0−1 contains all Mi , 
i = 1, . . . , n0. Fix θ0 ∈ (0, 1) such that {Mi,2θ0, i = 1, . . . , n0} are mutually disjoint and Mi,2θ0 ∩
χj = ∅ for j < i. For any η > 0, let R =Rη > 0 such that με,δ(BR) > 1 − η and R <R0.

The following lemma is a well-known exponential martingale inequality (see [30, Theorem 
1.7.4]).

Lemma 2.1. (Exponential martingale inequality) Suppose (g(t)) is a real-valued Ft -adapted 
process and 

∫ T
0 g2(t)dt <∞ almost surely. Then for any a, b > 0 one has

P

⎧⎨⎩ sup
t∈[0,T ]

⎡⎣ t∫
0

g(s)dW(s)− a

2

t∫
0

g2(s)ds

⎤⎦> b

⎫⎬⎭≤ e−ab.

We will make use of this lemma repeatedly in the proofs to follow. The next result gives us 
estimates on how close the solutions to (1.3) and (1.7) are on a finite time interval if they have the 
same starting points. The argument of the proof is pretty standard. For completeness, it relegated 
to Appendix A.

Lemma 2.2. For any R, T , and γ > 0, there is a κ = κ(R, γ, T ) > 0 such that

P
{∣∣∣Xε,δ

x,i (t)−Xx(t)

∣∣∣≥ γ for some t ∈ [0, T ]
}
< exp

(
− κ

ε + δ

)
, x ∈ BR.

Lemma 2.3. Let N be an open set in Rd and let τ̌ ε,δx,i be any stopping time. Suppose that there is 

an � > 0 such that for all starting points (x, i) ∈N ×M one has P {τ̌ ε,δx,i < �} ≥ aε,δ > 0, where 

lim aε,δ = 0. Then P
{
τ̌
ε,δ
x,i <

�

ε,δ

}
> 1/2 for (x, i) ∈N ×M if ε is sufficiently small.
ε→0 a
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Lemma 2.4. The following properties hold:

(1) For any θ > 0, R > 0, there exists T̃1 > 0 such that for any y ∈ BR , Xy(t) ∈ Mk,θ for some 
t < T̃1, and some k ∈ {1, . . . , n0}.

(2) For any y ∈ BR \ χ1 and any θ > 0, there exists ̃ty > 0 such that Xy(ty) ∈⋃n0
k=2 Mk,θ .

(3) For any θ1 > 0, R ≥R0, there exists θ2 > 0 such that dist(Xy(t), χ1) > θ2 for any t > 0 and 
y ∈ BR satisfying dist(y, χ1) > θ1.

(4) Let β be a normal unit vector of the stable manifold of (1.4) at an equilibrium xl . Then for 
any m > 0, we can find ̃θ0 > 0 such that {y : |β ′y| ≥ θ, |y| ≤mθ} ∩χl = ∅ for any θ ∈ (0, ̃θ0]

The following lemmas show that the process leaves small neighborhoods around the equi-
librium points with strictly positive probability in finite time if we start close to the equilibrium 
points. Furthermore, this probability can be bounded below uniformly for all starting points close 
to the equilibrium. We need this because we want to show the convergence of the process to the 
limit cycle .

Lemma 2.5. Consider an equilibrium xl and suppose there exists i∗ ∈M such that β ′f (xl, i∗) �=
0 where β is a normal unit vector of the stable manifold of (1.4) at xl . Then for any 	 > 0 that 
is sufficiently small and any R > R0, we can find θ1, θ3 > 0, H	

l > 0, and εl(	) such that for 
ε < εl(	),

P
{
τ̃
ε,δ
x,i ≤H	

l

}
≥ψ	,ε := exp

(
−	

ε

)
, x ∈Ml,θ1 ,

where

τ̃
ε,δ
x,i := inf{t ≥ 0 :Xε,δ

x,i (t) ∈ BR and dist(Xε,δ
x,i (t), χl)≥ θ3}.

Proof. Suppose without loss of generality that xl = 0. Let β be a normal vector of the stable 
manifold at 0 such that |β| = 1 and β ′f (0, i∗) > 0. Since f is locally Lipschitz we can find 
a1 > 0 such that

β ′f (x, i∗) > a1 > 0, |x|< θ0. (2.1)

Then A1 := supx<θ0

{ |f (x,i∗)|
β ′f (x,i∗)

}
<∞.

Since β is perpendicular to the tangent of the stable manifold at 0, we can find θ2 ∈(
0, 1

2+3A1

(
a1	

4|qi∗i∗ | ∧ θ0

))
such that

dist(Lθ2
l , χl) := θ3 > 0, (2.2)

where

L
θ2
l = {x : |x| ≤ (2 + 3A1)θ2 and |β ′x|> θ2}. (2.3)

The continuous dependence of the solutions of (1.4) on the starting point and the fact that 0 is 
an equilibrium of (1.4) imply that X stays close to 0 for a finite time if the starting point is close 
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enough to 0. Using this, we can derive from Lemma 2.2 that there exist numbers θ1 ∈ (0, θ2) and 
k > 0 such that

P

{
|Xε,δ

x,i (t)|< θ2,0 < t < 1 + 1

|qi∗i∗ |
}
> 1 − exp

(
− k

ε + δ

)
for all x ∈Ml,θ1 , i ∈M. (2.4)

First, we consider the case αε(0) = i∗. Because of the independence of αε(·) and W(·), if 
αε(t) = i∗ for all t ∈

[
0, 	

|qi∗i∗ |
]
, the process Xε,δ

x,i∗(·) has the same distribution on the time inter-

val 
[
0, 	

|qi∗i∗ |
]

as that of Zδ
x given by

dZδ(t)= f (Zδ(t), i∗)dt + √
δσ (Zδ(t), i∗)dW(t). (2.5)

Define the bounded stopping time

ρε,δx := 	

|qi∗i∗ | ∧ inf{t > 0 : |Zδ
x(t)| ≥ θ0} ∧ inf{t > 0 : β ′Zδ

x(t)≥ θ2}.

We have

β ′Zδ
x(ρ

ε,δ
x )= β ′x +

ρ
ε,δ
x∫

0

β ′f (Zδ
x(s), i

∗)ds +
ρ
ε,δ
x∫

0

√
δβ ′σ(Zδ

x(s), i
∗)dW(s), |x| ≤ θ0. (2.6)

By the exponential martingale inequality from Lemma 2.1, there exists a constant m3 > 0 inde-
pendent of δ such that

P
(

ε,δ,1
x

)
>

3

4
and P

(


ε,δ,2
x,i

)
>

3

4

where


ε,δ,1
x :=

{
−

t∫
0

√
δβ ′σ(Zδ

x(s), i
∗)dW(s)

− 1√
δ

t∫
0

δβ ′σ(Zδ
x(s), i

∗)σ (Zδ
x(s), i

∗)′βds <m3
√
δ, t ∈ [0, ρε,δx

]}

and


ε,δ,2
x :=

{∣∣∣∣∣∣
t∫

0

√
δσ (Zδ

x(s), i
∗)dW(s)

∣∣∣∣∣∣
− 1√

δ

t∫
δ
∣∣σ(Zδ

x(s), i
∗)σ (Zδ

x(s), i
∗)′
∣∣ds <m3

√
δ, t ∈ [0, ρε,δx

]}
.

0
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This implies that

P
(

ε,δ,1
x ∩


ε,δ,2
x,i

)
>

1

2
. (2.7)

Using (2.1) and (2.6), we note that on the set 
ε,δ,1
x

β ′Zδ
x(ρ

ε,δ
x ) >β ′x +

ρ
ε,δ
x∫

0

β ′f (Zδ
x(s), i

∗)ds

− 1√
δ

ρ
ε,δ
x∫

0

β ′δσ (Zδ
x(s), i

∗)′σ(Zδ
x(s), i

∗)βds −m3
√
δ

≥ − θ2 +
ρ
ε,δ
x∫

0

a1ds −m3
√
δ.

(2.8)

Let δ be so small that m3
√
δ <

a1

2

	

|qi∗i∗ | . If ρε,δx (ω) = 	

|qi∗i∗ | for some ω ∈ 

ε,δ,1
x,i , using θ2 ≤

a1	

4|qi∗i∗ | = a1ρ
ε,δ
x

4
, we get

|β ′Zδ
x(ρ

ε,δ
x (ω))| ≤ θ2 <−θ2 + a1ρ

ε,δ
x −m3

√
δ,

which contradicts (2.8). As a result, if x ≤ θ2, ω ∈

ε,δ,1
x and δ is sufficiently small, we have

ρε,δx (ω) <
	

|qi∗i∗ | , (2.9)

and by (2.6) we have

ρ
ε,δ
x∫

0

β ′f (Zδ
x(s), i

∗)ds ≤|β ′Zδ
x(ρ

ε,δ
x )| + |β ′x| + √

δ

ρ
ε,δ
x∫

0

∣∣σ(Zδ
x(s), i

∗)σ (Zδ
x(s), i

∗)′
∣∣ds +m3

√
δ

<3θ2

(2.10)
on 
ε,δ,1

x ∩ 

ε,δ,2
x . Using (2.5) and (2.10), one sees that if δ is sufficiently small and |x| < θ2, 

then for ω ∈

ε,δ,1
x ∩


ε,δ,2
x ,

|Zx(ρ
ε,δ
x )|<|x| +

ρ
ε,δ
x∫

|f (Zx(t), i
∗)|dt + √

δ

ρ
ε,δ
x∫ ∣∣σ(Zδ

x(s), i
∗)σ (Zδ

x(s), i
∗)′
∣∣ds +m3

√
δ

0 0
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<2θ2 +A1

ρ
ε,δ
x∫

0

β ′f (Zx(t), i
∗)dt

<(2 + 3A1)θ2 < θ0. (2.11)

Combining (2.11) with the definition of ρε,δx shows that β ′Zx(ρ
ε,δ
x ) = θ2 and |Zx(ρ

ε,δ
x )| < (2 +

3A1)θ2 on 
ε,δ,1
x ∩


ε,δ,2
x . As a result of this and (2.7), if |x| ≤ θ2,

P

{
β ′Zx(t)≥ θ2, |Zx(t)| ≤ (2 + 3A1)θ2 for some t ∈

[
0,

	

|qi∗i∗ |
]}

≥ P
(

ε,δ,1
x ∩


ε,δ,2
x,i

)
>

1

2
.

Let

ζ
ε,δ
x,i := inf{t > 0 : β ′Xε,δ

x,i (t)≥ θ2, |Xε,δ
x,i | ≤ (2 + 3A1)θ2} = inf{t > 0 :Xε,δ

x,i ∈L
θ2
l }.

Using the independence of αε, the paragraph before equation (2.5), and the last two equations, 
we obtain

P

{
ζ
ε,δ
x,i∗ ≤ 	

|qi∗i∗ |
}
>

1

2
P

{
αεi∗(t)= i∗, for all t ∈

[
0,

	

|qi∗i∗ |
]}

= 1

2
exp

(
−	

ε

)
, if |x| ≤ θ1.

(2.12)
Since αε(t) is ergodic, for any sufficiently small ε, i.e., small enough 	,

P {αεi (t)= i∗ for some t ∈ [0,1]}> 3

4
, i ∈M. (2.13)

By the strong Markov property, we derive from (2.4), (2.12), and (2.13) that for all (x, i) ∈
Ml,θ1 ×M and for ε sufficiently small

P

{
ζ
ε,δ
x,i < 1 + 	

|qi∗i∗ |
}

≥ 1

4
exp

(
−	

ε

)
. (2.14)

The proof is complete by combining this estimate with (2.2). �
Lemma 2.6. Suppose that lim

ε→0

δ
ε

= r > 0. Assume that at the equilibrium point xl , one has 

f (xl, i) = 0 for all i ∈ M, and there is i∗ ∈ M for which β ′σ(xl, i∗) �= 0, where β is a nor-
mal unit vector of the stable manifold of (1.4) at xl . Then for any sufficiently small 	 > 0 and 
any R >R0, we can find θ1, θ3 > 0, H	

l > 0, and εl(	) > 0 such that for ε < εl(	),

P
{
τ̃
ε,δ
x,i ≤H	

1

}
≥ψ	,ε := exp

(
− 	

δ

)
, for all (x, i) ∈Ml,θ1 ×M,

where

τ̃
ε,δ = inf{t ≥ 0 :Xε,δ

(t) ∈ BR and dist(Xε,δ
(t),χl)≥ θ3}.
x,i x,i x,i
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Proof. We can assume without loss of generality that xl = 0 and lim
ε→0

δ
ε

= 1. Since σ is locally 

Lipschitz, we can find a2 > 0 such that

a2 < β ′(σσ ′)(y, i∗)β, |y|< θ0. (2.15)

Let Kl > 0 be such that |f (x, i)| <Kl |x| and |(σ ′σ)(x, i)| <Kl if |x| < θ0, i ∈ M. Fix T > 0

such that 
a2νi∗T

2
> 1 and let θ1 > 0 be such that

(2 +KlT )
2eKlT θ1 < θ0 (2.16)

and dist(Lθ1
l , χl) := θ3 > 0 where

L
θ1
l := {x : |x| ≤ (2 +KlT )

2eKlT θ1 and |β ′x|> θ1}. (2.17)

Define

ζt,x,i := inf

⎧⎨⎩u > 0 :
u∫

0

β ′(σσ ′)
((

1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)
βds ≥ t

⎫⎬⎭ .

For all t ≥ 0, we have by (2.15) and the ergodicity of the Markov chain αεi that

P (ζt,x,i <∞)= 1, |x|< θ0.

As a result the process (M(t))t≥0 defined by

M(t)=
ζt,x,i∫
0

β ′σ
((

1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)
dW(s)

is a Brownian motion. This follows from the fact that M(t) is a continuous martingale with 
quadratic variation [M, M]t = t, t ≥ 0.

Set θ2 := (2 +KlT )θ1. Since M(1) has the distribution of a standard normal, for sufficiently 
small δ, we have the estimate

P {√δM(1) > θ2} ≥ 1

2
exp

(
−θ2

2

δ

)
, |x|< θ0. (2.18)

Using the large deviation principle (see [24]), we can find a3 = a3(T ) > 0 such that

P

⎧⎨⎩ 1

T

T∫
1{αεi (s)=i∗}ds >

νi∗

2

⎫⎬⎭≥ 1 − exp
(
−a3

ε

)
. (2.19)
0
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Equation (2.15), the definition of ζt,x,i , and 
a2νi∗T

2
> 1 yield

P

⎧⎨⎩
T∫

0

β ′(σσ ′)
((

1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)
βds ≥ a2νi∗T

2

⎫⎬⎭≥ 1 − exp
(
−a3

ε

)
,

|x|< θ0,

which leads to

P {ζ1,x,i ≤ T } ≥ 1 − exp
(
−a3

ε

)
, |x|< θ0. (2.20)

Define for |x| < θ0, i ∈ M



ε,δ,3
x,i :=

{∣∣∣∣∣∣√δ

t∫
0

σ

((
1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)
dW(s)

∣∣∣∣∣∣
<

θ2

δ

t∫
0

δ

∣∣∣∣∣(σ ′σ)
((

1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)∣∣∣∣∣ds + θ2

≤ (KlT + 1)θ2, t ∈ [0, T ]
}

and note that the last inequality holds by the definition of Kl. By Lemma 2.1

P (
ε,δ,3
x,i )≥ 1 − exp

(
−2θ2

2

δ

)
, |x|< θ0. (2.21)

Define the stopping time

ζx,i = inf{t > 0 : |β ′Xε,δ
x,i (t)| ≥ θ1} ∧ inf{t > 0 : |Xε,δ

x,i (t)| ≥ (Kl + 2)θ2e
KlT }.

If |x| ≤ θ1 and ω ∈ {√δM(1) > θ2} ∩ {ζ1,x,i ≤ T } ∩

ε,δ,3
x,i , we claim that we must have

ζx,i < T . (2.22)

We argue by contradiction. Suppose the three events {√δM(1) > θ2}, {ζ1,x,i ≤ T }, and {ζx,i ≥
ζ1,x,i} happen simultaneously. Then we get the contradiction

θ2 = (2 +KlT )θ1 <
√
δM(1)= √

δ

ζ1,x,i∫
β ′σ

((
1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s), α

ε
i (s)

)
dW(s)
0
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≤ |β ′Xε,δ
x,i (ζ1)| + |β ′x| +

∣∣∣ ζ1,x,i∫
0

β ′f (Xε,δ
x,i (s), α

ε
i (s))ds

∣∣∣
≤ 2θ1 +

ζ1,x,i∫
0

Kl |β ′Xε,δ
x,i (s)|ds < (2 +KlT )θ1 = θ2,

where we used that 
(

1 ∧ θ0

|Xε,δ
x,i (s)|

)
X
ε,δ
x,i (s) = X

ε,δ
x,i (s) if s < ζx,i by the definition of ζx,i and 

(2.16).
For |x| ≤ θ1 and ω ∈ {√δM(1) > θ2} ∩ {ζx,i ≤ T } ∩


ε,δ,3
x,i , for any 0 ≤ t ≤ ζ1,x,i ≤ T ,

|Xε,δ
x,i (t)| ≤|x| + √

δ

∣∣∣∣∣∣
t∫

0

σ
(
X
ε,δ
x,i (s), α

ε
i (s)

)
dW(s)

∣∣∣∣∣∣+
t∫

0

|f (Xε,δ
x,i (s), α

ε
i (s))|ds

<(KlT + 2)θ2 +Kl

t∫
0

|Xε,δ
x,i (s)|ds.

This together with Gronwall’s inequality implies that

|Xε,δ
x,i (t)|< (KlT + 2)θ2e

KlT , t ∈ [0, ζx,i]

Thus for |x| ≤ θ1 and ω ∈ {√δM(1) > θ2} ∩ {ζx,i ≤ T } ∩ 

ε,δ,3
x,i , we have that ζx,i < T and 

X
ε,δ
x,i (ζx,i ) < (KlT + 2)θ2e

KlT and β ′Xε,δ
x,i (ζx,i) ≥ θ1.

Since θ2 < a3 and limε→0
δ
ε

= 1 we have by (2.18), (2.20), (2.21) and (2.22) that for all 
sufficiently small ε

P ({√δM(1) > θ2} ∩ {ζx,i ≤ T } ∩

ε,δ,3
x,i )≥ 1

4
exp

(
−θ2

2

δ

)
≥ 1

4
exp

(
−	

δ

)
, |x|< θ1

if 	 < θ2
2 , which completes the proof. �

Lemma 2.7. Suppose that lim
ε→0

δ

ε
= ∞. Assume that at the equilibrium point xl one can find 

i∗ ∈ M such that β ′σ(xl, i∗) �= 0 where β is a normal unit vector of the stable manifold of (1.4)
at xl . Then for any sufficiently small 	 > 0 and any R <R0 we can find θ1, θ3 > 0, H	

l > 0, and 
ε1(	) such that for ε < ε1(	),

P
{
τ̃
ε,δ
x,i ≤H	

l

}
≥ψ	,ε := exp

(
− 	

δ

)
for all (x, i) ∈Ml,θ1 ×M,

where

τ̃
ε,δ = inf{t ≥ 0 :Xε,δ

(t) ∈ BR and dist(Xε,δ
(t),χl)≥ θ3}.
x,i x,i x,i
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Proof. Assume, as in the previous lemmas, that xl = 0. Pick a number a2 > 0 for which

a2 < β ′(σσ ′)(y, i∗)β, |y|< θ0.

Let Kl > 0 be such that |f (x)| <Kl |x| and |(σ ′σ)(x, i)| <Kl whenever |x| < θ0, and fix T > 0

such that 
a2νi∗T

2
> 1. Let θ1 > 0 be such that (3 +KlT )

2eKlT θ1 < θ0 and dist(Lθ1
l , χl) := θ3 > 0

where

L
θ1
l = {x : |x − xl | ≤ (3 +KlT )

2eKlT θ1 and |β ′(x − xl)|> θ1}. (2.23)

Define θ2 = (3 +KlT )θ1 and let a2, M(t), T , ζ1,x,i be as in the proof of Lemma 2.6. Arguing 
as in the proof of (2.20), we can find a3 > 0 such that

P
{
ζ1,x,i ≤ T

}≥ 1 − exp
(
−a3

ε

)
, |x|< θ0.

Since f (0) = 0, we can apply the large deviation principle (see [24]) to show that there is κ =
κ(	) > 0 such that

P (A)≥ 1 − exp
(
−κ

ε

)
, (2.24)

where A := {∣∣∫ u
0 f (0, αεi (s))ds

∣∣< θ1, for all u ∈ [0, T ]}. The estimates

M(1)=
ζ1,x,i∫
0

β ′σ(Xε,δ
x,i (s), α

ε
i (s))dW(s)

≤ |β ′Xε,δ
x,i (ζ1,x,i )| + |β ′x| +

∣∣∣ ζ1,x,i∫
0

β ′f (0, αεi (s))ds
∣∣∣

+
ζ1,x,i∫
0

∣∣β ′(f (Xε,δ
x,i (s), α

ε
i (s))− f (0, αεi (s))

)∣∣ds,
and

|Xε,δ
x,i (t)| ≤|x| + √

δ

∣∣∣∣∣∣
t∫

0

σ
(
X
ε,δ
x,i (s), α

ε
i (s)

)
dW(s)

∣∣∣∣∣∣+
t∫

0

|f (Xε,δ
x,i (s))|ds

+
t∫

0

|f (Xε,δ
x,i (s))− f (X

ε,δ
x,i (s), α

ε
i (s)|ds

together with arguments similar to those from the proof of Lemma 2.6 show that
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P
{
X
ε,δ
x,i (t) ∈L

θ1
l for some t ∈ [0, T ]

}
≥ 1

4
exp

(
−	

δ

)
, (x, i) ∈Ml,θ1 ×M

if δ is sufficiently small. �
Remark 2.1. The results in this section still hold true if one assumes the generator Q(·) of α(·)
is state dependent; see an explanation of the exact setting in Remark 1.4. By the large deviation 
principle in [3, Section 3] and the truncation arguments in Lemma A.1, we can obtain Lemma 2.2
for the case of state-dependent switching. It should be noted that while [3] only considers Case 
1 of (1.6), using the variational representation, the arguments in [3, Section 3] can be applied to 
obtain Lemma 2.2 for the other cases.

We can also infer from the large deviation principle that (2.13), (2.19) and (2.24) hold in 
this setting. As a result, Lemmas 2.5, 2.6 and 2.7 hold. These lemmas, in combination with the 
proofs from Section 3 imply that the main result, Theorem 1.1, remains unchanged if one has 
state-dependent switching.

3. Proof of main result

This section provides the proofs of the convergence of με,δ for the three cases given in (1.6).

Proposition 3.1. For every η > 0, there exists R > R0 and neighborhoods N1, . . . , Nn0−1 of 
χ1 ∩BR, . . . , χn0−1 ∩BR such that

lim sup
ε→0

με,δ(∪n0−1
j=1 Nj)≤ 2n0η.

Proof. For any η > 0, let R >R0 be such that με,δ(BR) ≥ 1 − η. Define

S1 = {y ∈ BR : dist(y,χ1 ∩BR) < θ0}.

In view of Lemma 2.4, there exists c2 > 0 such that for all t ≥ 0

dist(Xy(t),χ1)≥ 2c2 for any y ∈ BR \ S1. (3.1)

Define

G1 = {y ∈ BR : dist(y,χ1 ∩BR) < c2}.

There exists c3 > 0 such that

dist(Xy(t),χ1)≥ 2c3 for any y ∈ BR \G1, t ≥ 0. (3.2)

Note that we have 2c3 ≤ c2 and 2c2 ≤ θ0. Define

N1 = {y ∈ BR : dist(y,χ1 ∩BR) < c3}.
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In view of Lemma 2.4, for any y /∈ χ1, there exists ̃ty such that Xy(̃ty) ∈ Mi,θ0 ∩ (BR \ S1) for 
some i > 1. This together with the continuous dependence of solutions to initial values and (3.1)
implies that there exists T̂ > 0 such that

dist(Xy(t),χ1)≥ 2c2 for any t ≥ T̂ , y ∈ BR \N1. (3.3)

Let κ = κ(R, c3, T̂ ) be as in Lemma 2.2, 	 < κ
2 , θ1, and ψ	

ε be as in one of the Lemmas 2.5, 
2.6 and 2.7 (depending on which case we are considering). We have

P (̃τ ε,δx,i < H	)≥ψ	
ε , x ∈M1,θ1, (3.4)

where, as in Section 2, the stopping time is

τ̃
ε,δ
x,i = inf{t ≥ 0 :Xε,δ

x,i (t) ∈ BR and dist(Xε,δ
x,i (t), χ1)≥ θ3}.

Define

τ
ε,δ
x,i = inf{t ≥ 0 :Xε,δ

x,i (t) ∈ BR \G1}.

It follows from part (1) of Lemma 2.4 that for any x ∈ N1, there exists a T̃1 > 0 such that 
Xx(tx) ∈⋃n0

j=1 Mj,
θ1
2

for some tx ≤ T̃1.

Suppose Xx(tx) ∈⋃n0
j=2 Mj,

θ1
2

. Note that 
⋃n0

j=2 Mj,
θ1
2

∩M1,c3 = ∅, θ1 < θ0 and that by con-

struction, M1,2θ0 ∩ χj = ∅, j > 1. These facts imply that 
⋃n0

j=2 Mj,
θ1
2

∩ N1 = ∅. This together 

with Lemma 2.2 and (3.3) implies

P {τ ε,δx,i < T̃1 + T̂ }> 1

2
(3.5)

for small ε > 0.
When ε is sufficiently small, we have by Lemma 2.2 (applied with γ = θ1

2 ) that for any x ∈N1

satisfying Xx(tx) ∈M
1,

θ1
2

that

P {Xε,δ
x,i (tx) ∈M1,θ1}>

1

2
. (3.6)

Similarly to (3.3), there exists a T̃2 > 0 such that

dist(Xy(t),χ1)≥ 2c2 for any t ≥ T̃2, y ∈ BR,dist(y,χ1)≥ θ3,

which implies that by Lemma 2.2, for sufficiently small ε > 0,

P
{

dist(Xε,δ
x,i (T̃2),χ1)≥ c2

}
>

1
for any x ∈ BR,dist(x,χ1)≥ θ3, i ∈M. (3.7)
2
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Putting together (3.4), (3.6), and (3.7) we deduce that

P {τ ε,δx,i < T̃1 +H	 + T̃2}> 1

4
ψ	
ε , (3.8)

for ε sufficiently small. Combining (3.5) and (3.8), we get that

P {τ ε,δx,i < H	 + T̃1 + T̃2 + T̂ }> 1

8
ψ	
ε , x ∈N1. (3.9)

Define T ε,δ
	,1 := 4

H	 + T̃1 + T̃2 + T̂

ψ	
ε,δ

. Applying Lemma 2.3 to (3.9), we have

P
{
τ
ε,δ
x,i < T

ε,δ
	,1

}
>

1

2
, x ∈N1. (3.10)

We will argue by contradiction that lim sup
ε→0

με,δ(N1) ≤ 2η. Assume that lim sup
ε→0

με,δ(N1) > 2η >

0. Since 	 < κ/2, we have

lim
ε→0

T
ε,δ
	,1 exp

(
− κ

ε + δ

)
= 0. (3.11)

Let X̃ε,δ(t) be the stationary solution, whose distribution is με,δ for every time t ≥ 0. Let τ ε,δ be 
the first exit time of X̃ε,δ(t) from G1. Define the events

K
ε,δ
1 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, τ

ε,δ ≥ T
ε,δ
	,1, X̃

ε,δ(0) ∈N1

}
K

ε,δ
2 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, τ

ε,δ < T
ε,δ
	,1, X̃

ε,δ(0) ∈N1

}
K

ε,δ
3 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, X̃

ε,δ(0) ∈ BR \N1

}
K

ε,δ
4 =

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, X̃

ε,δ(0) /∈ BR

}
.

Note that the above events are disjoint with union N1 such that

με,δ(N1)=
4∑

n=1

P {Kε,δ
n }.

Using (3.10), we get that

P (Kε,δ
1 )≤ 1

2
με,δ(N1) and P (Kε,δ

4 )≤ 1 −με,δ(BR) < η. (3.12)

Next, we estimate P (Kε,δ
3 ). It follows from Lemma 2.2, (3.2), and (3.3) that if ε is sufficiently 

small then
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P
{
X
ε,δ
x,i (T̂ ) /∈G1

}
≥ 1 − exp

(
− κ

ε + δ

)
, x ∈ BR \N1,

and

P
{
X
ε,δ
x,i (t) /∈N1, for all t ∈ [0, T̂ ]

}
≥ 1 − exp

(
− κ

ε + δ

)
, x ∈ BR \G1.

Using the last two estimates together with the Markov property one sees that for any x ∈ BR \
G1, i ∈M, s ∈ [0, T ε,δ

	,1],

P
{
X
ε,δ
x,i (s) ∈N1

}
= P

{
X
ε,δ
x,i (s) ∈N1,X

ε,δ
x,i (T̂ ) /∈ BR \G1

}
+

�s/T̂ �∑
n=2

P
{
X
ε,δ
x,i (s) ∈N1,X

ε,δ
x,i (nT̂ ) /∈ BR \G1,X

ε,δ
x,i (ιT̂ ) ∈ BR \G1, ι= 1, ..., n− 1

}
+ P

{
X
ε,δ
x,i (s) ∈N1,X

ε,δ
x,i (ιT̂ ) ∈ BR \G1, ι= 1, ..., [s/T̂ ]

}
≤ P

{
X
ε,δ
x,i (T̂ ) /∈ BR \G1

}
+

�s/T̂ �∑
n=2

P
{
X
ε,δ
x,i (nT̂ ) /∈ BR \G1,X

ε,δ
x,i ((n− 1)T̂ ) ∈ BR \G1}

+ P
{
X
ε,δ
x,i (t) ∈N1, for some t ∈

[⌊
s/T̂

⌋
T̂ ,
⌊
s/T̂

⌋
T̂ + T̂

]
,X

ε,δ
x,i

(⌊
s/T̂

⌋
T̂
)

∈ BR \G1

}
≤
(⌊

s/T̂
⌋

+ 1
)

exp

(
− κ

ε + δ

)
≤
(
s/T̂ + 1

)
exp

(
− κ

ε + δ

)
,

(3.13)
where �s/T̂ � denotes the integer part of s/T̂ .

Note that similar arguments show that (3.13) also holds for all s ∈ [T̂ , T ε,δ
x,i ] and x ∈ BR \N1. 

It follows from this with s = T
ε,δ
	,1,

P (Kε,δ
3 )= P

{
X̃ε,δ(T

ε,δ
	,1) ∈N1, X̃

ε,δ(0) ∈ BR \N1

}
≤
(
T
ε,δ
	,1/T̂ + 1

)
exp

(
− κ

ε + δ

)
.

This together with (3.11) implies that

lim
ε→0

P (Kε,δ
3 )= 0. (3.14)

Using (3.13) and the strong Markov property, we get

P (Kε,δ
)=P

{
X̃ε,δ(T

ε,δ
) ∈N1, τ

ε,δ < T
ε,δ

, X̃ε,δ(0) ∈N1

}

2 	,1 	,1
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=
T
ε,δ
	,1∫

0

P {τ ε,δ ∈ dt}
⎡⎢⎣∑
i∈M

∫
∂G1

P
{
X
ε,δ
x,i (T

ε,δ
	,1 − t) ∈N1

}
P
{
αε(t)= i, X̃ε,δ(t) ∈ dx

}⎤⎥⎦
≤
(
T
ε,δ
	,1/T̂ + 1

)
exp

(
− κ

ε + δ

)
→0 as ε → 0 due to (3.11). (3.15)

Putting together the estimates (3.12), (3.15), and (3.14), we see that

lim sup
ε→0

με,δ(N1)≤ 1

2
lim sup
ε→0

με,δ(N1)+ 0 + 0 + η,

which contradicts the assumption that lim sup
ε→0

με,δ(N1) > 2η. Thus, we have shown that

lim
ε→0

με,δ(N1)≤ 2μ.

Define

S2 = {y ∈ BR \ S1 : dist(y,χ2 ∩BR \ S1) < θ0}.

There exists c4 > 0 such that dist(Xy(t), χ1) ≥ 2c4 for any y ∈ BR \ S1. Define

G2 = {y ∈ BR \ S1 : dist(y,χ2 ∩ (BR \ S1)) < c4}

There exists c5 > 0 such that dist(Xy(t), χ1) ≥ 2c5 for any y ∈ BR \G1. Define

N2 = {y ∈ BR \ S1 : dist(y,χ1 ∩BR \ S1) < c5}

Let T̂2 be such that Xy(T̂2) ∈ BR \ (S1 ∪ S2) given that y ∈ BR \ (S1 ∪N2). We can show, just as 

above, that there exists a T ε,δ
	,2 such that limε→0 T

ε,δ
	,2 exp

(
− κ

ε + δ

)
= 0 and

P {τ ε,δx,i < T
ε,δ
	,2}>

1

2
.

Define events

K
ε,δ
1,2 =

{
X̃ε,δ(T

ε,δ
	,2) ∈N2, τ

ε,δ
2 ≥ T

ε,δ
	,2, X̃

ε,δ(0) ∈N2

}
K

ε,δ
2,2 =

{
X̃ε,δ(T

ε,δ
	,2) ∈N2, τ

ε,δ
2 < T

ε,δ
	,2, X̃

ε,δ(0) ∈N2

}
K

ε,δ
3,2 =

{
X̃ε,δ(T

ε,δ
	,2) ∈N2, X̃

ε,δ(0) ∈ BR \ (S1 ∪N2)
}

K
ε,δ
4,2 =

{
X̃ε,δ(T

ε,δ
	,2) ∈N2, X̃

ε,δ(0) /∈ BR \ S1

}
.
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Applying the same arguments as in the previous part, we can show that lim supε→0 μ
ε,δ(N2) ≤

4η. Continuing this process, we can construct neighborhoods N1, . . . , Nn0−1 of χ1 ∩ BR , . . . , 
χn0−1 ∩BR such that

lim sup
ε→0

με,δ(∪n0−1
j=1 Nj)≤ 2n0η. �

Theorem 1.1. Suppose Assumptions 1.1 and 1.2 hold. The family of invariant probability mea-
sures (με,δ)ε>0 converges weakly to the measure μ0 given by (1.5) in the sense that for every 
bounded and continuous function g :Rd ×M → R,

lim
ε→0

m0∑
i=1

∫
Rd

g(x, i)με,δ(dx, i)= 1

T

T∫
0

g(Xy(t))dt,

where T is the period of the limit cycle, y ∈  and g(x) =∑
i∈M g(x, i)νi .

Proof. We have proved in Proposition 3.1 that for any η > 0 we can find R > 0 and neighbor-
hoods N1, . . . , Nn0−1 of χ1 ∩BR, . . . , χn0−1 ∩BR such that

lim sup
ε→0

με,δ(∪n0
j=1Nj)≤ 2n0+1η.

Using this fact together with Assumption 1.1 and Lemma 2.2, by a straightforward modification 
of the proof of [22, Theorem 1], we can establish that for any ϑ > 0 there is neighborhood N of 
the limit cycle  such that

lim inf
ε→0

με,δ(N) > 1 − ϑ. �
4. Proof of Theorem 1.2

To proceed, we first need some auxiliary results.

Lemma 4.1. There exist numbers K1 and K2 > 0 such that for any 0 < ε, δ < 1 and any (i0, z0) ∈
M × IntR2+, we have

1

t
E

t∫
0

|Zε,δ
z0,i0

(s)|2ds ≤K1(1 + |z0|), t ≥ 1,

and

lim supE|Zε,δ
z0,i0

(t)|2 ≤K2.

t→∞
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Proof. Let θ < min{fMb(i), d(i) : i ∈M}. Define

K̂1 = sup
(x,y,i)∈R2+×M

{fMx(a(i)− b(i)x)− y(c(i)+ d(i)y)+ θ(x2 + y2)}<∞.

Consider V̂ (x, y, i) = fMx+y. We can check that Lε,δV̂ (x, y, i) ≤ K̂1 −θ(x2 +y2), where Lε,δ

the generator associated with (1.9) (see [32, p. 48] or [38] for the formula of Lε,δ). Similarly, we 
can verify that there is K̂2 > 0 such that for all ε < 1, δ < 1, Lε,δ(V̂ 2(x, y, i)) ≤ K̂2 −V̂ 2(x, y, i). 
For each k > 0, define the stopping time σk = inf{t : x(t) + y(t) > k}. By the generalized Itô 
formula for V̂ (x(t), y(t), αε(t))

EV̂ (Z
ε,δ
z0,i0

(t ∧ σk),α
ε(t ∧ σk))= V̂ (z0, i0)+E

t∧σk∫
0

Lε,δV̂ (Z
ε,δ
z0,i0

(s), αε(s))ds

≤ fMx0 + y0 +E

t∧σk∫
0

[
K̂1 − θ |Zε,δ

z0,i0
(s)|2]ds.

(4.1)

Hence

θE

t∧σk∫
0

|Zε,δ
z0,i0

(s)|2ds ≤ fMx0 + y0 + K̂1t.

Letting k → ∞ and dividing both sides by θt we have

1

t
E

t∫
0

|Zε,δ
z0,i0

(s)|2ds ≤ fMx0 + y0

θt
+ K̂1

θ
. (4.2)

Applying the generalized Itô formula to et V̂ 2(Z
ε,δ
z0,i0

(t), αε(t)),

Eet∧σk V̂ 2(Z
ε,δ
z0,i0

(t ∧ σk),α
ε(t ∧ σk))

= V̂ 2(z0, i0)+E

t∧σk∫
0

es
[
(V̂ 2(Z

ε,δ
z0,i0

(s), αε(s))+Lε,δV̂ 2(Z
ε,δ
z0,i0

(s), αε(s))
]
ds

≤ (fMx0 + y0)
2 + K̂2E

t∧σk∫
0

esds ≤ (fMx0 + y0)
2 + K̂2e

t .

(4.3)

Taking the limit as k → ∞, and then dividing both sides by et , we have

E
[
fMX

ε,δ
z0,i0

(t)+ Y
ε,δ
z0,i0

(t)
]2 ≤ (fMx0 + y0)

2e−t + K̂2. (4.4)

The assertions of the lemma follow directly from (4.2) and (4.4). �
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Lemma 4.2. There is a number K3 > 0 such that

1

t
E

t∫
0

[
ϕ2(Z

ε,δ
z,i (s), α

ε
i (s))+ψ2(Z

ε,δ
z,i (s), α

ε
i (s))

]
ds ≤K3(1 + |z|)

for all ε, δ ∈ (0, 1], z ∈ IntR2+, t ≥ 1.

Proof. Since the function h(·, ·, i) is bounded, we can find C > 0 such that

ϕ2(z, i)+ψ2(z, i)≤C(1 + |z|2).

The claim follows by an application of Lemma 4.1. �
Recall that the two equilibria of (1.10) on the boundary are both hyperbolic. Note that the 

Jacobian of 
(
xφ(x, y), yψ(x, y)

)�
at 
(
a

b
,0
)

has two eigenvalues: −c + a

b
h2

(
a

b
,0
)
> 0 and 

− b
2

a
< 0. At (0, 0), the two eigenvalues are a > 0 and −c < 0, respectively. If we consider the 

weighted average Lyapunov exponent, we can see that the growth rate of 
2c

a

d lnX(t)
dt

+ d lnY(t)
dt

is positive both at (0, 0) and 
(
a

b
,0
)

. This suggests we should look at 
2c

a

d lnX(t)
dt

+ d lnY(t)
dt

in 

order to prove that the dynamics of (1.10) is pushed away from the boundary. Then we can use 
approximation arguments to obtain the tightness of (Zε,δ) on IntR2+. Define

ϒ(z, i) := 2c

a
ϕ(z, i)+ψ(z, i)

and

ϒ(z) := 2c

a
ϕ(z)+ψ(z).

We have the following lemma.

Lemma 4.3. Let γ0 = 1

2

(
c ∧ (− c + a

b
h1(

a

b
, 0)

))
> 0. For any H > a

b
+ 1, there are numbers 

T , β > 0 such that for all z ∈ {(x, y) ∈ R2+ | x ∧ y ≤ β, x ∨ y ≤H }

Xz(T )∨ Y z(T )≤H and
1

T

T∫
0

ϒ(Zz(t))dt ≥ γ0. (4.5)

Proof. Since lim
t→∞Z(0,y)(t) = (0, 0), ∀y ∈ R+ and

ϒ(0,0)= 2c
ϕ(0,0)+ψ(0,0)= 2c

a − c = c ≥ 2γ0, (4.6)

a a
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there exists T1 > 0 such that

1

t

t∫
0

ϒ(Z(0,y)(s))ds ≥ 3

2
γ0 for t ≥ T1, y ∈ [0,H ]. (4.7)

By (4.6) and the continuity of ϒ(·), there exists β1 ∈ (0, a
b
) such that

ϒ(x,0)≥ 7

4
γ0, if x ≤ β1. (4.8)

Since

ϒ

(
a

b
,0

)
= 2c

a
ϕ

(
a

b
,0

)
+ψ

(
a

b
,0

)
= −c+ a

b
h1

(
a

b
,0

)
≥ 2γ0

and

lim
t→∞Z(x,0)(t)→

(
a

b
,0

)
, ∀x > 0,

there exists a T2 > 0 such that

1

t

t∫
0

ϒ(Z(x,0)(s))ds ≥ 7

4
γ0 for t ≥ T2, x ∈ [β1,H ]. (4.9)

Let MH = supx∈[0,H ]
{|ϒ(x,0)|}, tx = inf{t ≥ 0 :Xx,0 ≥ β1} and T3 =

(
4MH

γ0
+ 7

)
T2. It can 

be seen from the equation of X(t) that X(x,0)(t) ∈ [β1, H ] if t ≥ tx, x ∈ (0, β1]. For t ≥ T3, we 
can use (4.8) and (4.9) to estimate 1

t

∫ t
0 ϒ(Z(x,0)(s))ds in the following three cases.

Case 1. If t − T2 ≤ tx ≤ t then

t∫
0

ϒ(Z(x,0)(s))ds =
tx∫

0

ϒ(Z(x,0)(s))ds +
t∫

tx

ϒ(Z(x,0)(s))ds

≥ 7

4
γ0(t − T2)− T2MH ≥ 3

2
γ0t,

(
since t ≥

(
4
MH

γ0
+ 7

)
T2

)
.

Case 2. If tx ≤ t − T2, then

t∫
0

ϒ(Z(x,0)(s))ds =
tx∫

0

ϒ(Z(x,0)(s))ds +
t∫

tx

ϒ(Z(x,0)(s))ds

≥ 7
γ0(t − tx)+ 7

γ0tx ≥ 3
γ0t.
4 4 2

342



N.H. Du, A. Hening, D.H. Nguyen et al. Journal of Differential Equations 293 (2021) 313–358
Case 3. If tx ≥ t , then

t∫
0

ϒ(Z(x,0)(s))ds =
tx∫

0

ϒ(Z(x,0)(s))ds ≥ 7

4
γ0tx ≥ 3

2
γ0t.

As a result,

1

t

t∫
0

ϒ(Z(x,0)(s))ds ≥ 3

2
γ0, if t ≥ T3, x ∈ (0,H ]. (4.10)

Let T = T1 ∨T3. By the continuous dependence of solutions on initial values, there is β > 0 such 
that

Xz(T )∨ Y z(T )≤H and
1

T

T∫
0

∣∣ϒ(Zz1(s))−ϒ(Zz2(s))
∣∣ds ≤ 1

2
γ0 (4.11)

given that |z1 − z2| ≤ β, z1, z2 ∈ [0, H ]2. Combining (4.7), (4.10) and (4.11) we obtain the de-
sired result. �

Generalizing the techniques in [33], we divide the proof of the eventual tightness into two 
lemmas.

Lemma 4.4. For any 	 > 0, there exist ε0, δ0, T > 0 and a compact set K ⊂ IntR2+ such that

lim inf
k→∞

1

k

k−1∑
n=0

P
{
Z
ε,δ
z0,i0

(nT ) ∈ K
}

≥ 1 − 	

3
for any ε < ε0, δ < δ0, z ∈ IntR2+.

Proof. For any 	 > 0, let H = H(	) > a

b
+ 1 be chosen later and define D = {(x, y) : 0 <

x, y ≤H }. Let T > 0 and β > 0 such that (4.5) is satisfied and D1 = {(x, y) : 0 < x, y ≤H, x ∧
y < β} ⊂ D. Define V (x, y) = − 2c

a
lnx − lny + C where C is a positive constant such that 

V (z) ≥ 0 ∀ z ∈D. In view of the generalized Itô formula,

V (Z
ε,δ
z,i (t))− V (z)=

t∫
0

[
−ϒ

(
Z
ε,δ
z,i (s), α

ε(s)
)+ δ

2

(
2c

a
λ2(αε(s))+ ρ2(αε(s))

)]
ds

− 2c

a

t∫
0

√
δλ(αε(s))dW1(s)−

t∫
0

√
δρ(αε(s))dW2(s).

For A ∈F , using Holder’s inequality and Itô’s isometry, we have
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E
(
1A
∣∣V (Z

ε,δ
z,i (T ))− V (z)

∣∣)
≤
∣∣∣∣∣∣E1A

T∫
0

ϒ
(
Z
ε,δ
z,i (t), α

ε(t)
)
dt

∣∣∣∣∣∣+E1A

T∫
0

δ

2

(
2c

a
λ2(αε(t))+ ρ2(αε(t))

)
dt

+ 2c

a
E1A

∣∣∣∣∣∣
T∫

0

√
δλ(αε(t))dW1(t)

∣∣∣∣∣∣+E1A

∣∣∣∣∣∣
T∫

0

√
δρ(αε(t))dW2(t)

∣∣∣∣∣∣
≤T (E1A)

1
2

⎛⎝E

T∫
0

[
ϒ
(
Z
ε,δ
z,i (t), α

ε(t)
)+ δ

2

(
2c

a
λ2(αε(t))+ ρ2(αε(t))

)]
dt

⎞⎠
1
2

+ δ
√
P (A)

⎛⎝E

T∫
0

(
2c

a
λ2(αε(t))+ ρ2(αε(t))

)
dt

⎞⎠
1
2

≤K4T (1 + |z|)√P (A),

(4.12)

where the last inequality follows from (4.2) and the boundedness of ρ(i) and λ(i). If A =
, we 
have

1

T
E
(∣∣V (Z

ε,δ
z,i (T ))− V (z)

∣∣)≤K4(1 + |z|). (4.13)

Let ĤT > H such that Xz(t) ∨ Y z(t) ≤ ĤT for all z ∈ [0, H ]2, 0 ≤ t ≤ T and

dH = sup

{∣∣∣∣∣∂ϒ∂x (x, y)
∣∣∣∣∣ ,
∣∣∣∣∣∂ϒ∂y (x, y)

∣∣∣∣∣ : (x, y) ∈ R2+, x ∨ y ≤ ĤT

}
.

Let ς > 0. Lemma 2.2 implies that there are δ0, ε0 such that if ε < ε0, δ < δ0,

P

{
|Xz(t)−X

ε,δ
z,i (t)| + |Y z(t)− Y

ε,δ
z,i (t)|< 1 ∧ γ0

2dH
, for all t ∈ [0, T ]

}
> 1 − ς

6
, z ∈D.

(4.14)

On the other hand, if |Xz(t) −X
ε,δ
z,i (t)| + |Y z(t) − Y

ε,δ
z,i (t)| < 1 ∧ γ0

2dH
, we have

∣∣∣∣ 1

T

T∫
0

ϒ(Z
ε,δ
z,i (t), α

ε(t))dt − 1

T

T∫
0

ϒ(Zz,i(t))dt

∣∣∣∣
≤ 1

T

∣∣∣∣∣∣
T∫ (

ϒ(Z
ε,δ
z,i (t))−ϒ(Zz,i(t))

)
dt

∣∣∣∣∣∣

0
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+ 1

T

∣∣∣∣∣∣
T∫

0

(
ϒ(Z

ε,δ
z,i (t), α

ε(t))−ϒ(Z
ε,δ
z,i (t))

)
dt

∣∣∣∣∣∣
≤γ0

2
+ FH

T

T∫
0

∑
j∈M

∣∣1{αε(t)=j} − vj
∣∣dt, (4.15)

where FH := sup{|ϒ(z, i)|i ∈M, z ∈ [0, KT + 1]2}. In view of [24, Lemma 2.1],

E

∣∣∣∣ 1

T

T∫
0

∑
j∈M

∣∣1{αε(t)=j} − vj
∣∣dt∣∣∣∣2 =E

∣∣∣∣ εT
T/ε∫
0

∑
j∈M

∣∣1{α(t)=j} − vj
∣∣dt∣∣∣∣2 ≤ κ

T
ε (4.16)

for some constant κ > 0. On the one hand,

E
1

T

∣∣∣∣∣∣
T∫

0

(
− 2c

a
λ(αε(t))dW1(t)− ρ(αε(t))dW2(t)

)∣∣∣∣∣∣
2

≤ 4c2

a2 λ2
M + ρ2

M. (4.17)

Combining (4.5), (4.14), (4.15), (4.16), and (4.17), we can reselect ε0 and δ0 such that for 
ε < ε0, δ < δ0 we have

P

⎧⎨⎩−1

T

T∫
0

ϒ(αε(t),Z
ε,δ
z,i (t))dt ≤ −0.5γ0

⎫⎬⎭≥ 1 − ς

3
, z ∈D1, i ∈ M, (4.18)

P
{
X
ε,δ
z,i (T )∨ Y

ε,δ
z,i (T )≤H (or equivalently Z

ε,δ
z,i (T ) ∈D)

}
≥ 1 − ς

3
, z ∈D1, (4.19)

and

P

⎧⎨⎩δϑ +
√
δ

T

∣∣∣∣∣∣
T∫

0

(2c

a
λ(αε(t))dW1(t)+ ρ(αε(t))dW2(t)

)
dt

∣∣∣∣∣∣< 0.25γ0

⎫⎬⎭> 1 − ς

3
(4.20)

where ϑ = 1
2

(
2c
a
λ2
M + ρ2

M

)
. Consequently, for any (z, i) ∈D1 ×M, there is a subset 
ε,δ

z,i ⊂


with P (
ε,δ
z,i ) ≥ 1 − ς in which we have Zε,δ

z,i (T ) ∈D and

1

T

(
V (Z

ε,δ
z,i (T ))− V (z)

)≤−1

T

T∫
0

ϒ(αε(t),Z
ε,δ
z,i (t))dt + δϑ

+ 1

T

∣∣∣ T∫
0

√
δ
(2c

a
λ(αε(t))dW1(t)+ ρ(αε(t))dW2(t)

)∣∣∣ (4.21)
≤ − 0.25γ0
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On the other hand, we deduce from (4.13) that for z ∈D,

P

{
1

T

(
V (Z

ε,δ
z,i (T ))− V (z)

)≤!

}
≥ 1 − ς, (4.22)

where ! := K4(1+2H)
ς

. Moreover, it also follows from (4.13) that for z ∈D \D1

EV (Z
ε,δ
z,i (T )≤ sup

z∈D\D1

(
V (z)+K4T |z|).

Define

L1 := sup
z∈D\D1

V (z)+!T, L2 := L1 + 0.25γ0, (4.23)

as well as D2 := {(x, y) ∈ IntR2+ : (x, y) ∈ D, V (x, y) > L2} and U(z) = V (z) ∨ L1. It is clear 
that

U(z2)−U(z1)≤ |V (z2)− V (z1)| for any z1, z2 ∈ R2◦+ . (4.24)

It follows from (4.12) that for any δ, ε < 1, A ∈F , and z ∈D, we have

1

T
E1A

∣∣∣V (Z
ε,δ
z,i (T ))− V (z)

∣∣∣≤K4(2H + 1)
√
P (A). (4.25)

Applying (4.25) and (4.24) with A =
 \
ε,δ
z,i , we get

1

T
E1


\
ε,δ
z,i

[
U(Z

ε,δ
z,i (T ))−U(z)

]
≤K4(2H + 1)

√
ς, if z ∈D1. (4.26)

In view of (4.21), for z ∈ D2 we have V
(
Z
ε,δ
z,i (T )

)
< V (z) − 0.25γ0T . By the definition of D2, 

we also have L1 ≤ V (z) − 0.25γ0T . Thus, for any z ∈D2 and ω ∈

ε,δ
z,i

U
(
Z
ε,δ
z,i (T )

)= L1 ∨ V
(
Z
ε,δ
z,i (T )

)≤ V (z)− 0.25γ0T =U(z)− 0.25γ0T ,

which implies

1

T

[
E1



ε,δ
z,i
U(Z

ε,δ
z,i (T ))−E1



ε,δ
z,i
U(z)

]
≤ −0.25γ0P (


ε,δ
z,i )≤ −0.25γ0(1 − ς). (4.27)

Combining (4.26) with (4.27)

1

T

[
EU(Z

ε,δ
z,i (T ))−U(z)

]
≤ −0.25γ0(1 − ς)+K4(2H + 1)

√
ς, ∀z ∈D2. (4.28)

For z ∈ D1 \ D2, and ω ∈ 

ε,δ
z,i , we have from (4.21) that V (Z

ε,δ
z,i (T )) ≤ V (z). This shows that 

U(Z
ε,δ
z,i (T )) = L1 ∨V (Z

ε,δ
z,i (T )) ≤U(z) = V (z) ∨L1. Hence, for z ∈D1 \D2 and ω ∈


ε,δ
z,i one 

has
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U(Z
ε,δ
z,i (T ))−U(z)≤ 0.

This and (4.26) imply

1

T

[
EU(Z

ε,δ
z,i (T ))−U(z)

]
≤K4(2H + 1)

√
ς, ∀z ∈D1 \D2. (4.29)

If z ∈D \D1, U(z) = L1 and we have from (4.22) and (4.23) that

P
{
U(Z

ε,δ
z,i (T ))= L1

}= P
{
V (Z

ε,δ
z,i (T ))≤ L1

}≥ 1 − ς.

Thus

P {U(Z
ε,δ
z,i (T ))=U(z)} ≥ 1 − ς.

Use (4.25) and (4.24) again to arrive at

1

T

[
EU(Z

ε,δ
z,i (T ))−U(z)

]
≤K4(2H + 1)

√
ς, ∀ z ∈D \D1. (4.30)

On the other hand, equations (4.13) and (4.24) imply

1

T

[
EU(Z

ε,δ
z,i (T ))−U(z)

]
≤K4(1 + |z|), z ∈ IntR2+. (4.31)

Pick an arbitrary (z0, i0) ∈ IntR2+ ×M. An application of the Markov property yields

1

T

[
EU(Z

ε,δ
z0,i0

((n+ 1)T ))−EU(Z
ε,δ
z0,i0

(nT ))
]

=
∑
i∈M

∫
IntR2+

1

T

[
EU(Z

ε,δ
z,i (T ))−U(z)

]
P
{
Z
ε,δ
z0,i0

(nT ) ∈ dz,αε(t)= i
}
.

Combining (4.28), (4.29), (4.30), and (4.31), we get

1

T

[
EU(Z

ε,δ
z0,i0

((n+ 1)T ))−EU(Z
ε,δ
z0,i0

(nT ))
]

≤ − [
0.25γ0(1 − ς)−K4(2H + 1)

√
ς
]
P
{
Z
ε,δ
z0,i0

(nT ) ∈D2
}

+K4(2H + 1)
√
ςP

{
Z
ε,δ
z0,i0

(nT ) ∈D \D2
}

+K4E1{Zε,δ
z0,i0

(nT )/∈D}
(
1 + |Zε,δ

z0,i0
(nT )|)

≤ − 0.25γ0(1 − ς)P
{
Z
ε,δ
z0,i0

(nT ) ∈D2
}+K4(2H + 1)

√
ς

+K4P
{
Z
ε,δ
z0,i0

(nT ) /∈D
}
E
(
1 + |Zε,δ

z0,i0
(nT )|).
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Note that

lim inf
k→∞

1

k

k−1∑
n=0

1

T

[
EU(Z

ε,δ
z0,i0

((n+ 1)T ))−EU(Z
ε,δ
z0,i0

(nT ))
]

= lim inf
k→∞

1

kT
EU(Z

ε,δ
z0,i0

(kT ))≥ 0.

This forces

0.25γ0(1 − ς) lim sup
k→∞

1

k

k−1∑
n=0

P
{
Z
ε,δ
z0,i0

(nT ) ∈D2
}

≤K4(2H + 1)
√
ς +K3 lim sup

k→∞
1

k

k∑
n=1

P
{
Z
ε,δ
z0,i0

(nT ) /∈D
}
E
(
1 + |Zε,δ

z0,i0
(nT )|).

(4.32)
In view of Lemma 4.1, we can choose H =H(	) independent of (z0, i0) such that

lim sup
t→∞

P
{
Z
ε,δ
z0,i0

(t) /∈D
}≤ lim sup

t→∞
E(|Zε,δ

z0,i0
(t)|)

H
≤ 	

6
, (4.33)

and

K4 lim sup
t→∞

P
{
Z
ε,δ
z0,i0

(t) /∈D
}
E
(
1 + |Zε,δ

z0,i0
(t)|)

≤K4 lim sup
t→∞

[
E
(
1 + |Zε,δ

z0,i0
(t)|)]2

H
≤ 0.1γ0

6
	.

Hence, we have

K4 lim sup
k→∞

1

k

k∑
n=1

P
{
Z
ε,δ
z0,i0

(nT ) /∈D
}
E
(
1 + |Zε,δ

z0,i0
(nT )|)≤ 0.1γ0

6
	. (4.34)

Choose ς = ς(H) > 0 such that 0.25γ0(1 − ς) ≥ 0.2γ0 and K4(2H + 1)
√
ς ≤ 0.1γ0

6
	 and let 

ε0 = ε0(ς, H), δ0(ς, H) such that (4.18), (4.19), and (4.20) hold. As a result, we get from (4.32)
and (4.34) that

lim sup
k→∞

1

k

k∑
n=1

P
{
Z
ε,δ
z0,i0

(nT ) ∈D2
}≤ 	

6
. (4.35)

This together with (4.33) and (4.35) shows that for any ε < ε0, δ < δ0, we have

lim inf
k→∞

1

k

k∑
P
{
Z
ε,δ
z0,i0

(nT ) ∈D \D2
}≥ 1 − 	

3
. (4.36)
n=1
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One can conclude the proof by noting that the set D \D2 is a compact subset of IntR2+. �
Lemma 4.5. There are L > 1, ε1 = ε(	) > 0, and δ1 = δ1(	) > 0 such that as long as 0 < ε <

ε1, 0 < δ < δ1, we have

lim inf
T→∞

1

T

T∫
0

P {Zε,δ
z0,i0

(t) ∈ [L−1,L]2} ≥ 1 −	,(z0, i0) ∈ IntR2+ ×M.

Proof. Let D and T be as in Lemma 4.4. Since D \ D2 is a compact set in IntR2+, by a mod-
ification of the proof of [25, Theorem 2.1], we can show that there is a positive constant L > 1

such that P {Zz,i(t) ∈ [L−1, L]2} > 1 − 	

3
, z ∈D \D2, i ∈M, 0 ≤ t ≤ T . Hence, it follows from 

the Markov property of the solution that

P {Zε,δ
z0,i0

(t) ∈ [L−1,L]2}

≥
(

1 − 	

3

)
P
{
Z
ε,δ
z0,i0

(jT ) ∈D \D2
}
, t ∈ [jT , jT + T ].

Consequently,

lim inf
k→∞

1

kT

kT∫
0

P
{
Z
ε,δ
z0,i0

(t) ∈ [L−1,L]2}dt
≥
(

1 − 	

3

)
lim inf
k→∞

1

k

k−1∑
j=0

P
{
Z
ε,δ
z0,i0

(jT ) ∈D \D2)
}≥ 1 −	.

It is readily seen from this estimate that

lim inf
T→∞

1

T

T∫
0

P
{
Z
ε,δ
z0,i0

(t) ∈ [L−1,L]2}dt ≥ 1 −	. �

Theorem 1.2. Suppose Assumption 1.3 holds. For sufficiently small δ and ε, the process given 
by (1.9) has a unique invariant probability measure με,δ with support in IntR2+ (where IntR2+
denotes the interior of R2+). In addition:

a) If lim
ε→0

δ

ε
= l ∈ (0, ∞], the family of invariant probability measures (με,δ)ε>0 converges 

weakly to μ0, the occupation measure of the limit cycle of (1.10), as ε → 0 (in the sense 
of Theorem 1.1).

b) If lim
ε→0

δ

ε
= 0 and at each equilibrium (x∗, y∗) of (ϕ(x, y), ψ(x, y)), there is i∗ ∈ M such 

that either ϕ(x∗, y∗, i∗) �= 0 or ψ(x∗, y∗, i∗) �= 0, then the family of invariant probability 
measures (με,δ)ε>0 converges weakly to μ0, the occupation measure of the limit cycle of 
(1.10) as ε → 0.
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Proof. The conclusion of Lemma 4.5 is sufficient for the existence of a unique invariant proba-
bility measure με,δ in IntR2+ ×M of (Zε,δ(t), αε(t)) (see [4] or [31]). Moreover, the empirical 
measures

1

t

t∫
0

P
{
Z
ε,δ
z0,i0

(s) ∈ ·}ds, t > 0

converge weakly to the invariant probability measure με,δ as t → ∞. Applying Fatou’s lemma 
to the above estimate yields

με,δ([L−1,L]2)≥	, ∀ ε < ε0, δ < δ0.

This tightness implies Theorem 1.2. �
4.1. An example

In this section we provide a specific example under the setting of Section 4. We consider 
the following stochastic predator-prey model with Holling functional response in a switching 
regime

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε,δ(t)=
[
r(αε(t))xε,δ(t)

(
1 − xε,δ(t)

K(αε(t)

)
− m(αε(t))xε,δ(t)yε,δ(t)

a(αε(t))+ b(αε(t))xε,δ(t)

]
dt

+√
δλ(αε(t))xε,δ(t)dW1(t)

dyε,δ(t)= yε,δ(t)

[
− d(αε(t))+ e(αε(t))m(αε(t))xε,δ(t)

a(αε(t))+ b(αε(t))xε,δ(t)
− f (αε(t))yε,δ(t)

]
dt

+√
δρ(αε(t))xε,δ(t)dW2(t),

(4.37)

where W1 and W2 are two independent Brownian motions, αε(t) is a Markov chain, that is 
independent of the Brownian motions, with state space M = {1, 2} and generator Q/ε where

Q=
(−1 1

1 −1

)
, (4.38)

and r(1) = 0.9, r(2) = 1.1, K(1) = 4.737, K(2) = 5.238, m(1) = 1.2, m(2) = 0.8, a(1) =
a(2) = 1, b(1) = b(2) = 1, d(1) = 0.85, d(2) = 1.15, e(1) = 1, e(2) = 2.5, f (1) = 0.03, f (2) =
0.01, λ(1) = 1, λ(2) = 2, ρ(1) = 3, ρ(2) = 1. As ε and δ tend to 0, solutions of equation (4.37)
converge to the corresponding solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
x(t)= x(t)

(
1 − x(t)

5

)
− x(t)y(t)

1 + x(t)
,

d
y(t)= y(t)

(
−1 + 1.6x(t) − 0.02y(t)

) (4.39)
dt 1 + x(t)
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Fig. 1. From left to right: Graphs of the xε,δ(t) component of (4.37) with (ε, δ) = (0.001, 0.001), (ε, δ) =
(0.00005, 0.00005) and x(t) of the averaged system (4.39) respectively.

Fig. 2. From left to right: Graphs of the yε,δ(t) component of (4.37) with (ε, δ) = (0.001, 0.001), (ε, δ) =
(0.00005, 0.00005) and y(t) of the averaged system (4.39), respectively.

on any finite time interval [0, T ]. The system (4.39) has the unique equilibrium (x∗, y∗) =
(1.836, 1.795). Modifying [35, Theorem 2.6] it can be seen that the solution of equation (4.39)
has a unique limit cycle  that attracts all positive solutions except for (x∗, y∗). Moreover, it is 
easy to check that the drift

⎛⎜⎜⎜⎝
r(i)x(t)

(
1 − x(t)

K(i)

)
− m(i)x(t)y(t)

a(i)+ b(i)x(t)

y(t)

(
−d(i)− e(i)m(i)x(t)

a(i)+ b(i)x(t)

)
− f (i)y(t)

⎞⎟⎟⎟⎠ (4.40)

does not vanish at (1.836, 1.795). The assumptions of Theorem 1.2 hold in this example. As a 
result, the family (με,δ)ε>0 converges weakly as ε → 0 to the stationary distribution of (4.39)
that is concentrated on the limit cycle . We illustrate this convergence in Figs. 1, 2 and 3 by 
graphing sample paths of (4.37) for different values of (ε, δ). Fig. 4 provides the corresponding 
occupation measure.
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Fig. 3. Phase portraits of (4.37) for different values of ε and δ. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 4. The two figures illustrate an approximate density of the occupation measure on the time interval [0, 1000] with 
ε = δ = 0.001 on the right and ε = δ = 0.0001 on the left. The step size is h = 0.0001. We divide the domain in 50 × 50
cells, approximate the density by the frequency of the process staying in each cell, and then interpolate. The simulations 
support the theoretical results that the occupation measures converge to the invariant probability measure.

4.2. Another example

Consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε,δ(t)= [−yε,δ(t)+ xε,δ
(
1 − a(αε(t))

(
(xε,δ(t))2 + (yε,δ(t))2

))
(1 + (zε,δ(t))2)

]
dt

+√
δdW1(t)

dyε,δ(t)= [−xε,δ(t)+ yε,δ
(
1 − a(αε(t)) ∗ ((xε,δ(t))2 + (yε,δ(t))2

))
(1 + (zε,δ(t))2)

]
+√

δdW2(t)

dzε,δ(t)= [
zε,δ(t)

(
1 − (zε,δ(t))2 − b(αε(t)

(
(xε,δ(t))2 + (yε,δ(t))2

))]
dt + √

δdW3(t)

(4.41)
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Fig. 5. The left figure is a sample path starting at the equilibrium (0, 0, 0) of the limit system. We see that this path has 
a tendency of approaching (0, 0, 1) before it is finally attracted to the proximity of the limit cycle. The right figure is an 
approximated density of the occupation measure of two components x, y on the time interval [0, 1000].

with a(1) = 0.8, a(2) = 1.2, b(1) = 3.5 and b(2) = 4.5 and Q defined as in (4.38). The limit 
system is

⎧⎪⎪⎨⎪⎪⎩
dx
dt

= −y + x(1 − x2 − y2)(1 + z2)

dy
dt

= x + y(1 − x2 − y2)(1 + z2)

dz
dt

= z(1 − z2 − 4x2 − 4y2),

(4.42)

which has a unique limit cycle {z = 0, x2 + y2 = 1} and three hyperbolic equilibria: (0, 0, 0)
whose eigenvalues have both negative and positive parts and (0, 0, ±1) which are sources 
(Fig. 5).

Appendix A. Proofs of lemmas in Section 2

Lemma A.1. For any R, T , γ > 0, there exists a number k1 = k1(R, T , γ ) > 0 such that for all 
sufficiently small δ,

P {|Xε,δ
x,i (t)− ξεx,i(t)| ≥ γ, for some t ∈ [0, T ]}< exp

(
−k1

δ

)
, x ∈ BR,

where Xε,δ
x,i (t) and ξεx,i(t) are the solutions to the systems (1.3) and (1.7) that have initial value 

(x, i).

Proof. By (i) and (ii) of Assumption 1.1, we can deduce the existence and boundedness of a 
unique solution to equation (1.7) using the Lyapunov function method. Moreover, we can find 
RT > R > 0 such that almost surely
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|ξεx,i (t)|<RT − γ, for all t ∈ [0, T ], x ∈ BR. (A.1)

Let h(·) be a twice differentiable function with compact support such that h(x) = 1 if |x| ≤ RT

and h(x) = 0 if |x| ≥ RT + 1. Put fh(x, i) = h(x)f (x, i), σh(x, i) = h(x)σ (x, i) and let Y ε,δ
x,i (t)

be the solution starting at (x, i) of

dY (t)= fh(Y (t), α
ε(t))dt + √

δσh(Y (t), α
ε(t)dW(t) (A.2)

Note that Y ε,δ
x,i (t) =X

ε,δ
x,i (t) up to the time ζ = inf{t > 0 : |Xε,δ

x,i (t)| >RT }. Because of (A.1), the 
solution ξεx,i(t) to (1.7) coincides with the solution to

dZ(t)= fh(Z(t), α
ε(t))dt

with starting point x ∈ BR and t ∈ [0, T ]. We have from the generalized Itô’s formula that for all 
x ∈ BR and t ∈ [0, T ],

|Y ε,δ
x,i (t)− ξεx,i(t)|2

≤2

t∫
0

|Y ε,δ
x,i (s)− ξεx,i(s)||fh(Y ε,δ

x,i (s), α
ε(s))− fh(ξ

ε
x,i (s), α

ε(s))|ds

+
t∫

0

δtrace
(
(σhσ

′
h)(Y

ε,δ
x,i (s), α

ε(s))
)
ds

+ 2
√
δ

∣∣∣∣∣∣
t∫

0

(
Y
ε,δ
x,i (s)− ξεx,i(s)

)′
σh(Y

ε,δ
x,i (s), α

ε(s)
)
dW(s)

∣∣∣∣∣∣ .

(A.3)

Define

A=
{
ω ∈
 :

∣∣∣∣∣∣
t∫

0

√
δ
(
Y
ε,δ
x,i (s)− ξεx,i(s)

)′
σh(Y

ε,δ
x,i (s), α

ε(s))dW(s)

∣∣∣∣∣∣
− 1

δ

t∫
0

δ

∣∣∣Y ε,δ
x,i (s)− ξεx,i(s)

∣∣∣2 ∥∥∥σhσ ′
h(Y

ε,δ
x,i (s), α

ε(s))

∥∥∥ds ≤ k1 for all t ∈ [0, T ]
}
.

By the exponential martingale inequality, we get that for any δ < k1

P (A)≥ 1 − 2 exp

(
−2k1

δ

)
≥ 1 − exp

(
−k1

δ

)
.

Since fh is Lipschitz and σh is bounded, there is an M1 > 0 such that for all ω ∈A,
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|Y ε,δ
x,i (t)− ξεx,i(t)|2

≤2

t∫
0

|Y ε,δ
x,i (s)− ξεx,i(s)||fh(Y ε,δ

x,i (s), α
ε(s))− fh(ξ

ε
x,i (s), α

ε(s))|ds

+ 2

t∫
0

∣∣Y ε,δ
x,i (s)− ξεx,i(s)

∣∣2‖σhσ ′
h(Y

ε,δ
x,i (s), α

ε(s)
)‖ds

+
t∫

0

δtrace
(
(σhσ

′
h)(Y

ε,δ
x,i (s), α

ε(s))
)
ds + 2

t∫
0

k1ds

≤M1

t∫
0

|Y ε,δ
x,i (t)− ξεx,i(t)|2ds + (2k1 +M1δ)t.

(A.4)

For each t ∈ [0, T ], an application of Gronwall’s inequality implies that on the set A,

|Y ε,δ
x,i (t)− ξεx,i(t)|2 ≤ (2k1 +M1δ)T exp(M1T ) < γ 2

for 0 < δ < k1 sufficiently small. It also follows from this inequality that for ω ∈ A and 0 < δ <

k1 sufficient small, we have ζ > T , which implies

|Xε,δ
x,i (t)− ξεx,i(t)|2 = |Y ε,δ

x,i (t)− ξεx,i(t)|2 < γ 2,

for all t ∈ [0, T ]. �
Lemma A.2. For each x and γ , we can find kγ,x = kγ,x(T ) > 0 such that

P
{∣∣ξεx,i(t)−Xx(t)

∣∣≥ γ for some t ∈ [0, T ]}≤ exp

(
−kγ,x

ε

)
,

where Xx(t) is the solution to equation (1.4) with the initial value x.

Proof. This follows from the large deviation principle shown in [24]. We note that the exis-
tence and boundedness of a unique solution to equation (1.7) follows from parts (i) and (ii) of 
Assumption 1.1. �

By combining the results of Lemmas A.1 and A.2 we can prove Lemma 2.2.

Proof of Lemma 2.2. By virtue of Lemma A.2, for each x and γ , we have

P
{∣∣ξεx,i(t)−Xx(t)

∣∣≥ γ

6
for some t ∈ [0, T ]

}
≤ exp

(
−kγ/6,x

ε

)
.

By part (ii) of Assumption 1.1 together with the Lyapunov method for (1.7), we can find HR,T >

0 such that |ξε (t)| ≤ HR,T and |Xx(t)| ≤ HR,T for all |x| ≤ R and 0 ≤ t ≤ T . Since f (·, i)
x,i
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is locally Lipschitz for all i ∈ M, there is a constant M2 > 0 such that |f (u, i) − f (v, i)| ≤
M2|u − v| for all |u| ∨ |v| ≤ HR,T and i ∈ M. Using the Gronwall inequality, we have for 
|x| ∨ |y| ≤R, i ∈ M and any t ∈ [0, T ]

|ξεx,i(t)− ξεy,i(t)| ≤ |x − y| exp(M2T ),

|Xx(t)−Xy(t)| ≤ |x − y| exp(M2T ).

Let λ = γ

6
exp(−M2T ). It is easy to see that for |x − y| < λ,

P
{∣∣∣ξεy,i(t)−Xy(t)

∣∣∣≥ γ

2
for some t ∈ [0, T ]

}
≤ exp

(
− kγ/6,x

ε

)
.

By the compactness of BR , for γ > 0, there is k2 = k2(R, T , γ ) > 0 such that for all x ∈ BR ,

P
{∣∣ξεx,i(t)−Xx(t)

∣∣≥ γ

2
for some t ∈ [0, T ]

}
≤ exp

(
−k2

ε

)
.

Combining this with Lemma A.1, we have

P
{∣∣∣Xε,δ

x,i (t)−Xx(t)

∣∣∣≥ γ for some t ∈ [0, T ]
}
< exp

(
−k1(R,T , γ /2)

δ

)
+ exp

(
−k2

ε

)
< exp

(
− κ

ε + δ

)
for a suitable κ = κ(R, T , γ ) and for all sufficiently small ε and δ. �
Proof of Lemma 2.3. Let nε,δ ∈ N such that nε,δ − 1 <

1

aε,δ
≤ nε,δ . We consider events Ak =

{Xε,δ
x,i (t) ∈N, ∀(k − 1)� < t ≤ k�}. We have P (A1) ≤ 1 − aε,δ . By the Markov property,

P (Ak|A1, ...,Ak−1)=
∫
N

P
{
τ̌ ε,δy ≤ �

}
P
{
X
ε,δ
x,i ((k − 1)�) ∈ dy

∣∣∣A1, ...,Ak−1

}
≤ 1 − aε,δ.

As a result,

P (A1A2 · · ·An)≤ (1 − aε,δ)n
ε,δ

Since lim
ε→0

aε,δ = 0, we deduce that lim
ε→0

(1 −aε,δ)n
ε,δ = e−1, which means that (1 −aε,δ)n

ε,δ
< 1/2

for sufficiently small ε. �
Proof of Lemma 2.4. The proof is omitted because it states some standard properties of dynam-
ical systems. Interested readers can refer to [34]. �
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