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Abstract

This work, Part II, together with its companion-Part I develops a new framework for stochastic functional 
Kolmogorov equations, which are nonlinear stochastic differential equations depending on the current as 
well as the past states. Because of the complexity of the problems, it is natural to divide our contributions 
into two parts to answer a long-standing question in biology and ecology. What are the minimal conditions 
for long-term persistence and extinction of a population? Part I of our work provides characterization of 
persistence, whereas in this part, extinction is the main focus. The techniques used in this paper are com-
bination of the newly developed functional Itô formula and a dynamic system approach. Compared to the 
study of stochastic Kolmogorov systems without delays, the main difficulty is that infinite dimensional sys-
tems have to be treated. The extinction is characterized after investigating random occupation measures and 
examining behavior of functional systems around boundaries. Our characterizations of long-term behavior 
of the systems reduce to that of Kolmogorov systems without delay when there is no past dependence. 
A number of applications are also examined.
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1. Introduction

Motivated by a wide variety of applications in ecology and biology, we aim to develop a new 
framework of stochastic functional Kolmogorov equations. To keep our work with a manageable 
length, we divide the contributions to two parts. We aim to answer the long-standing question 
of fundamental importance pertaining to biology and ecology: What are the minimal (necessary 
and sufficient) conditions for long-term persistence and extinction of a population? This work, 
Part II, focuses on extinction, whereas its companion-Part I [46] concentrates on persistence. The 
extinction and persistence are phenomena go far beyond biological and ecological systems. Such 
long-term properties are shared by all processes of Kolmogorov type. One of the main difficulties 
is that we need to deal with infinite dimensional processes.

Taking random fluctuations of the environment into consideration, a stochastic Kolmogorov 
differential equation is given by

dxi(t) = xi(t)fi(x1(t), . . . , xn(t))dt + xi(t)gi(x1(t), . . . xn(t))dBi(t), i = 1, . . . , n, (1.1)

where B1(t), . . . , Bn(t) are n real-valued Brownian motions (independent or not). Such stochas-
tic Kolmogorov system are used extensively in the modeling and analysis of ecological and bio-
logical systems such as Lotka-Volterra predator-prey models, Lotka-Volterra competitive model, 
replicator dynamic systems, stochastic epidemic models, stochastic tumor-immune system, and 
stochastic chemostat models, among others. Apart from ecological and biological systems, 
numerous problems arising in mathematical physics, statistical mechanics, and many related 
fields, use Kolmogorov nonlinear stochastic differential equations. For example, the generalized 
Ginzburg-Landau equation is used for bistable systems, chemical turbulence, phase transitions 
in non-equilibrium systems, among other. Because of its prevalence in applications, Kolmogorov 
equations (1.1) have attracted much attention in the past decades; substantial progress has been 
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made. To proceed, let us briefly recall some important works of the developments to date. Some 
early mathematical formulations were introduced by Verhulst [63] for logistic models, by Lotka 
and Volterra [39,64] for Lotka-Volterra systems, and by Kermack and McKendrick [29,30] for 
infectious diseases. By now, Kolmogorov stochastic population systems (using stochastic dif-
ferential equations or difference equations) together with their longtime behavior have been 
relatively well understood; see [5,55,57] for Kolmogorov stochastic systems in compact domains 
and [4,25] for Kolmogorov systems in non-compact domains, [9,13,16,17,40,45,48,62] for vari-
ants of Kolmogorov systems such as epidemic models, migration and spatial heterogeneity on 
single and multiple species, chemostat models, tumor-immune system, and [28,27] for replicator 
dynamics. For the most recent developments and substantial progress, we refer to Benaïm [4], 
Henning and Nguyen [25], Schreiber and Benaïm [57], and references therein. For related works 
on Markov processes, stochastic differential equation, stochastic equations with switching, delay, 
and jumps, we mention [3,6,21,31,42,43,47,54], among others.

In contrast to existing works, our work in this paper and its companion [46] aim to substan-
tially advance the existing literature for a class of stochastic functional Kolmogorov systems 
allowing delay and past dependence, so as to provide essential utility to a wide range of appli-
cations. Clearly, the delays or past dependence are unavoidable natural phenomena in dynamic 
systems; the framework of stochastic functional differential equations is more realistic, more ef-
fective, and more general for the population dynamics in real life than a stochastic differential 
equation counterpart. In population dynamics, some delay mechanisms studied in the literature 
include age structure, feeding times, replenishment or regeneration time for resources [12]. Al-
though there are many excellent treatises of Kolmogorov stochastic differential equations, the 
work on Kolmogorov stochastic differential equations with delay is relatively scarce. In addition, 
other than the specific models and applications treated, there has not been a unified framework 
and a systematic treatment for Kolmogorov stochastic functional differential systems yet, and 
most of the existing results involving delay are not as sharp as desired. There is a strong moti-
vation and pressing need to develop a unified framework for stochastic functional Kolmogorov 
systems. New methods and techniques need to be developed to carry out the analysis.

While the models with functional stochastic differential equations are more realistic and more 
general, the analysis of such systems is far more difficult. Perhaps, part of the difficulties in 
studying stochastic delay systems is that there had been virtually no bona fide operators and 
functional Itô formulas except some general setup in a Banach space such as [44] before 2009. 
In [18], Dupire generalized the Itô formula to a functional setting by using pathwise functional 
derivatives. The Itô formula developed has substantially eased the difficulties and encouraged 
subsequent development with numerous applications. His work was developed further by Cont 
and Fournié [10,11]. Using the newly developed functional Itô formula enables us to analyze 
effectively the segment processes in the stochastic functional Kolmogorov equations. Moreover, 
while the solutions of stochastic differential equations (without delays) are Markovian processes, 
the solutions of stochastic differential equations with delay are non-Markov. One uses the so-
called segment processes for the delay equations. Nevertheless, such segment processes live in 
an infinite dimensional space. Many of the known results in the usual stochastic differential 
equation setup are no longer applicable. Because Kolmogorov is highly nonlinear, analyzing 
such systems with delay becomes even more difficult.

Our goal in this paper, is to characterize the long-term behavior focusing on extinction. The re-
sults of this paper combined with the persistence presented in [46] provide a complete long-term 
characterization for the stochastic functional Kolmogorov system. We show that our results will 
cover, improve, and outperform many existing results of Kolmogorov systems (with and with-
3
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out delays) such as the study on stochastic delay Lotka-Volterra competitive models [2,35], the 
work on stochastic delay Lotka-Volterra predator-prey models [23,32–34,67], the treatment of 
stochastic delay epidemic SIR models [8,36–38,41], and the study on stochastic delay chemostat 
models [58,59,68] and the delayed replicator models. It should be mentioned that for replicator 
dynamics, it seems to be no investigation of stochastic delay systems to date to the best of our 
knowledge. It is also worth noting that our sufficient conditions for extinction in this part and the 
conditions of persistence in [46] are almost necessary in the sense that excluding critical cases, 
if the system is not persistent, the extinction will happen and vice versa.

By combining the newly developed functional Itô formula and the dynamic system point of 
view, we advance knowledge to treat infinite dimensional systems. Characterization of the ex-
tinction is obtained after investigating the random occupation measures and examining carefully 
the behavior of a functional system around the boundary. It is worth noting that handling ran-
dom occupation measures in an infinite dimensional space to obtain the tightness and its limit 
is far more challenging. Examining the behavior of solutions near the boundary for functional 
Kolmogorov systems requires more delicate analysis than that for systems without delay because 
even if the state is close to the boundary, its history may not be.

The rest of the paper is organized as follows. Section 2 presents the formulation of our problem 
and main results of stochastic functional Kolmogorov systems. Section 3 recalls basic properties 
of Kolmogorov equations with delays, including well-posedness of the system, positivity of so-
lutions, which have been proved in [46]. We then study the tightness of families of random 
occupation measures and the convergence properties. Next, Section 4 studies the conditions for 
extinction of Kolmogorov systems. Finally, Section 5 provides several applications involving 
Kolmogorov dynamic systems and detailed accounts on how to use our results on stochastic 
functional Kolmogorov equations to treat each of the application examples.

2. Formulation and main results

We first provide a glossary of symbols and notation to be used in this paper to help the reading.

r a fixed positive number
|·| Euclidean norm
C([a;b];Rn) set of Rn-valued continuous functions defined on [a;b]
C := C([−r;0];Rn)

ϕ = (ϕ1, . . . , ϕn) ∈ C
x = (x1, . . . , xn) := ϕ(0) ∈Rn

‖ϕ‖ := sup{|ϕ(t)| : t ∈ [−r,0]}
Xt := Xt (s) := {X(t + s) : −r ≤ s ≤ 0} (segment function)
Xi,t := Xi,t (s) := {Xi(t + s) : −r ≤ s ≤ 0}
C+ := {ϕ = (ϕ1, . . . , ϕn) ∈ C : ϕi(s) ≥ 0 ∀s ∈ [−r,0], i = 1, . . . , n}
∂C+ := {ϕ = (ϕ1, . . . , ϕn) ∈ C : ‖ϕi‖ = 0 for some i = 1, . . . , n}
C◦+ := {ϕ ∈ C+ : ϕi(s) > 0,∀s ∈ [−r,0], i = 1, . . . , n} 	= C+ \ ∂C+
‖ϕ‖α := ‖ϕ‖ + sup−r≤s<t≤0

|ϕ(t)−ϕ(s)|
(t−s)α

, for some 0 < α < 1
Cα space of Hölder continuous functions endowed with the norm ‖·‖α

� n × n matrix
�
 transpose of �

B(t) = (B1(t), . . . ,Bn(t))

, a n-dimensional standard Brownian motion

E(t) = (E1(t), . . . ,En(t))

 := �
B(t)
4
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� = (σij )n×n := �
�

M set of ergodic invariant probability measures of Xt supported on ∂C+
Conv(M) convex hull of M
0 the zero constant function in C
δ∗ the Dirac measure concentrated at 0
1A the indicator function of set A

Dε,R := {ϕ ∈ C+ : ‖ϕ‖ ≤ R,xi ≥ ε ∀i;x := ϕ(0)} , ε,R > 0
D space of Cádlág functions mapping [−r,0] to Rn

A0,A1,A2 constants satisfying Assumption 2.1
γ0, γb,M constants satisfying Assumption 2.1
c, h(·),μ vector, function and probability measure satisfying Assumption 2.1
K̃, b1, b2 constants satisfying Assumption 2.2
h1(·),μ1 function and probability measure satisfying Assumption 2.2
B0,B1,B2 constants satisfying Assumption 2.5
B3,p2 constants satisfying Assumption 2.5
I a subset of {1, . . . , n}
I c :={1, . . . , n} \ I

CI+ := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c}
CI,◦

+ := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c and ϕi(s) > 0 ∀s ∈ [−r,0] if i ∈ I }
∂CI+ := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c and ‖ϕi‖ = 0 for some i ∈ I }
MI sets of ergodic invariant probability measure on CI+
MI,◦ sets of ergodic invariant probability measure on CI,◦

+
∂MI sets of ergodic invariant probability measure on ∂CI+
Iπ the subset of {1, . . . , n} such that π(CIπ ,◦

+ ) = 1,π ∈ M
γ,p0,A constants satisfying the condition in Lemma 3.1
ρ = (ρ1, . . . , ρn) vector satisfying the condition in Lemma 3.1

Vρ(ϕ) :=
(

1 + c
x
)∏n

i=1 x
ρi

i exp
{
A2
∫ 0
−r

μ(ds)
∫ 0
s

eγ (u−s)h
(
ϕ(u)

)
du
}

V0(ϕ) :=
(

1 + c
x
)

exp
{
A2
∫ 0
−r

μ(ds)
∫ 0
s

eγ (u−s)h
(
ϕ(u)

)
du
}

CV,M := {ϕ ∈ C+ : A2γ
∫ 0
−r

μ(ds)
∫ 0
s

eγ (u−s)h
(
ϕ(u)

)
du ≤ A0 and |x| ≤ M}

n∗ constant satisfying γ0(n
∗ − 1) − A0 > 0

p1 constant satisfying condition (3.1) and p1 > p0

CV (̂δ) := {ϕ ∈ C◦+ ∩ CV,M and |ϕi(0)| ≤ δ̂ for some i}
α̂i , α∗, κe constants satisfying (4.2)
Te, δe constants determined in Lemma 4.2

In this paper, we treat a stochastic delay Kolmogorov system of equations{
dXi(t) = Xi(t)fi(Xt )dt + Xi(t)gi(Xt )dEi(t), i = 1, . . . , n,

X0 = φ ∈ C+.
(2.1)

Denote the solution of (2.1) by Xφ(t). For convenience, we often suppress the superscript “φ” 
and use Pφ and Eφ to denote the probability and expectation given the initial value φ, respec-
tively. We also assume that the initial value is non-random. Denote by {Ft}t≥0 the filtration 
satisfying the usual conditions and assume that the n-dimensional Brownian motion B(t) is 
5
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adapted to {Ft }t≥0. Note that a segment process is also referred to as a memory segment function. 
We assume the following assumptions hold in the rest of the paper.

Assumption 2.1. The coefficients of (2.1) satisfy

(1) diag(g1(ϕ), . . . , gn(ϕ))�
�diag(g1(ϕ), . . . , gn(ϕ)) = (gi(ϕ)gj (ϕ)σij )n×n is a positive def-
inite matrix for any ϕ ∈ C+.

(2) fi(·), gi(·) : C+ → R are Lipschitz continuous in each bounded set of C+ for any i =
1, . . . , n.

(3) There exist c = (c1, . . . , cn) ∈ Rn, ci > 0, ∀i and γb, γ0 > 0, A0 > 0, A1 > A2 > 0, M > 0, a 
continuous function h :Rn →R+ and a probability measure μ concentrated on [−r, 0] such 
that for any ϕ ∈ C+∑n

i=1 cixifi(ϕ)

1 + c
x
− 1

2

∑n
i,j=1 σij cicj xixj gi(ϕ)gj (ϕ)

(1 + c
x)2

+ γb

n∑
i=1

(
|fi(ϕ)| + g2

i (ϕ)
)

≤ A01{|x|<M} − γ0 − A1h(x) + A2

0∫
−r

h
(
ϕ(s)

)
μ(ds),

(2.2)

where x := ϕ(0). We assume without loss of generality that h :Rn → [1, ∞), otherwise, we 
can always change γ0 and A1, A2 to fulfill this requirement.

Assumption 2.2. One of following conditions holds:

(a) There is a constant K̃ such that for any ϕ ∈ C+, x = ϕ(0),

n∑
i=1

|fi(ϕ)| +
n∑

i=1

g2
i (ϕ) ≤ K̃

[
h(x) +

0∫
−r

h(ϕ(s))μ(ds)
]
. (2.3)

(b) There exist b1, b2 > 0, a function h1 : Rn → [1, ∞], and a probability measure μ1 on [−r, 0]
such that for any ϕ ∈ C+, x = ϕ(0)

b1h1(x) ≤
n∑

i=1

|fi(ϕ)| +
n∑

i=1

g2
i (ϕ) ≤ b2

[
h1(x) +

0∫
−r

h1(ϕ(s))μ1(ds)
]
. (2.4)

Remark 1.

• The assumptions above and additional assumptions to follow are not restrictive and are eas-
ily verifiable. Such conditions are common in population dynamics in the literature; see 
Section 5.
6
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• Parts (2) and (3) of Assumption 2.1 guarantee the existence and uniqueness of a strong 
solution to (2.1). We need part (1) of Assumption 2.1 to ensure that the solution to (2.1) is 
a non-degenerate diffusion. Moreover, as will be shown later that (3) implies the tightness 
of the family of transition probabilities associated with the solution to (2.1). One difficulty 
stems from the positive term A2

∫ 0
−r

h
(
ϕ(s)

)
μ(ds) on the right-hand side of (2.2), which 

cannot be relaxed in practice.
• Assumption 2.2 plays an important role in ensuring the π -uniform integrability of 

∑
i

( |fi(·)|
+ g2

i (·)
)
, for any invariant measure π .

As was mentioned, persistence and extinction are concepts of vital importance in biology 
and ecology. It turns out that such concepts are features in all stochastic functional Kolmogorov 
systems. The termination of a species in biology is referred to as extinction, the moment of 
extinction is generally considered to be the death of the last individual of the species. In contrast 
to extinction, we have the persistence of a species. We first define persistence and extinction 
similar to [25,56,57].

Definition 2.1. Let X(t) = (X1(t), . . . , Xn(t))

 be the solution of (2.1). The process X is 

strongly stochastically persistent if for any ε > 0, there exists an R > 0 such that for any φ ∈ C◦+

lim inf
t→∞ Pφ

{
R−1 ≤ |Xi(t)| ≤ R

}
≥ 1 − ε for all i = 1, . . . , n. (2.5)

Definition 2.2. With X(t) given in Definition 2.1, for φ ∈ C◦+ and some i ∈ {1, . . . , n}, we say Xi

goes extinct with probability pφ > 0 if

Pφ

{
lim

t→∞Xi(t) = 0
}

= pφ .

Let M be the set of ergodic invariant probability measures of Xt supported on the boundary 
∂C+. Letting δ∗ be the Dirac measure concentrated at 0, then δ∗ ∈ M so that M 	= ∅. For a 
subset M̃ ⊂ M, denote by Conv(M̃) the convex hull of M̃ (the set of probability measures π
of the form π(·) =∑ν∈M̃ pνν(·) with pν ≥ 0 and 

∑
ν∈M̃ pν = 1). For any π ∈ Conv(M), we 

define

λi(π) :=
∫

∂C+

(
fi(ϕ) − σiig

2
i (ϕ)

2

)
π(dϕ).

For a subset I of {1, . . . , n}, denote I c := {1, . . . , n} \ I ,

CI+ := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c
}
,

CI,◦
+ := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c and ϕi(s) > 0 for all s ∈ [−r,0] if i ∈ I

}
,

and

∂CI := {ϕ ∈ C+ : ‖ϕi‖ = 0 if i ∈ I c and ‖ϕi‖ = 0 for some i ∈ I
}
.
+

7
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In case I = ∅, CI+ = CI,◦
+ = {0}. Denote by MI , MI,◦, ∂MI the sets of ergodic probability mea-

sures on CI+, CI,◦
+ and ∂CI+, respectively.

Consider π ∈ M \ {δ∗}. Since the diffusion Xt is non-degenerate in each subspace, there 
exists a subset of {1, . . . , n}, denoted by Iπ such that π(CIπ ,◦

+ ) = 1. The following conditions 
will imply persistence cannot happen.

Assumption 2.3. There exists a subset I ⊂ {1, . . . , n} such that

max
i∈I c

π , π∈MI,◦
{λi(π)} < 0. (2.6)

If I 	= ∅, we assume further that

max
i∈I

{λi(ν)} > 0, (2.7)

for any ν ∈ Conv(∂MI ).

Assumption 2.4. The inverse of the matrix (xixjσij gi(ϕ)gj (ϕ))n×n is uniformly bounded in 
Dε,R for each ε, R > 0, where

Dε,R := {ϕ ∈ C+ : ‖ϕ‖ ≤ R,xi ≥ ε ∀i;x := ϕ(0)} .

Theorem 2.1. Assume Assumptions 2.1, 2.2, 2.3, and 2.4 hold. For any p < p0 with p0 being a 
sufficiently small constant (as given in Lemma 3.1), and any initial value φ ∈ C◦+, we have

lim
T →∞

1

T

T∫
0

Eφ

n∧
i=1

∥∥Xi,t

∥∥p
dt = 0, (2.8)

where 
∧n

i=1 xi := mini=1,...,n{xi} and Xt =: (X1,t , . . . , Xn,t ).

With additional technical conditions, we can determine which species goes extinct, and which 
persists. First, we define random normalized occupation measures

�̃t (·) := 1

t

t∫
0

1{Xs∈·}ds, t > 0. (2.9)

For any initial condition φ ∈ C+, denote the weak∗-limit set of the family 
{
�̃t (·), t ≥ 1

}
by 

U = U(ω).

Assumption 2.5. Assume one of the following conditions holds.

• Assumption 2.2(a) holds and there exist constants p2 > 0 and B1 > B2 > 0, B0 > 0, and 
B3 > 0 such that for any ϕ ∈ C+, x := ϕ(0)
8
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(1 + c
x)p2

(∑n
i=1 cixifi(ϕ)

1 + c
x
− 1

2

∑n
i,j=1 σij cicj xixj gi(ϕ)gj (ϕ)

(1 + c
x)2

)
≤ B0 − B1(1 + c
x)p2h(x)

+ B2

0∫
−r

(1 + c
ϕ(s))p2h
(
ϕ(s)

)
μ(ds),

(2.10)

and

(1 + c
x)2p2

n∑
i=1

g2
i (ϕ)≤ B3(1 + c
x)p2h(x)

+B3

0∫
−r

(1 + c
ϕ(s))p2h
(
ϕ(s)

)
μ(ds).

(2.11)

• Assumption 2.2(b) is satisfied, (2.10), and (2.11) hold with h, μ replaced by h1, μ1.

Assumption 2.6. Let S be a family of subsets I satisfying Assumption 2.3. We assume either 
that Sc := 2{1,...,n} \ S is empty, where 2{1,...,n} denotes the family of all subsets of {1, . . . , n}, or

max
i=1,...,n

{λi(ν)} > 0 for any ν ∈ Conv(∪J /∈SMJ,◦).

Theorem 2.2. Suppose that Assumptions 2.1, 2.3, 2.4, 2.5, and 2.6 are satisfied. Then for any 
φ ∈ C◦+, ∑

I∈S

P I
φ = 1, P I

φ > 0, (2.12)

where for φ ∈ C◦+,

P I
φ := Pφ

{
U(ω) ⊂ Conv(MI,◦) and lim

t→∞
lnXi(t)

t
⊂
{
λi(π) : π ∈ Conv(MI,◦)

}
, i ∈ I c

}
.

In the above, limt→∞ x(t) can be understood as the set of limit points of x(·) as t → ∞.

Remark 2. From a dynamic system point of view, we have the following observations; see also 
[25].

• Assumption 2.3 states the existence of an attracting subspace on the boundary which nor-
mally results in extinction.

• Assumption 2.6 is a technical condition ensuring that the interior of the attracting subspace 
in Assumption 2.3 is an attractor in that subspace.

• Assumption 2.5 is a condition to control the volatility of the diffusion part while the nondege-
naracy of the diffusion part due to Assumption 2.4 leads to the accessibility to the boundary 
from any interior point.
9
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3. Technical results

3.1. Well-posedness of the problem

The well-posedness of the problem (2.1) and some basic properties have been studied in the 
first part [46]. We restate some results, while the proofs are referred to [46]. The following series 
of results provide the estimating of the infinitesimal operator LVρ , the well-posedness of the 
problem, the “local” compactness of the solution, the regularity of the solution and the continuity 
on the initial data, respectively. The formula of the infinitesimal operator and the functional Itô 
formula are referred to the first part [46].

Lemma 3.1. For any γ < γb and p0 > 0, ρ = (ρ1, . . . , ρn) ∈ Rn satisfying

|ρ| < min

{
γb

2
,

1

n
,

γb

4σ ∗

}
and p0 < min

{
1,

γb

8nσ ∗
}

, (3.1)

where σ ∗ := max{σij : 1 ≤ i, j ≤ n}, let

Vρ(ϕ) :=
(

1 + c
x
) n∏

i=1

x
ρi

i exp

⎧⎨⎩A2

0∫
−r

μ(ds)

0∫
s

eγ (u−s)h
(
ϕ(u)

)
du

⎫⎬⎭ .

Then, we have

LV
p0
ρ (ϕ) ≤ p0V

p0
ρ (ϕ)

[
A01{|x|<M} − γ0 − Ah(x)

− A2γ

0∫
−r

μ(ds)

0∫
s

eγ (u−s)h
(
ϕ(u)

)
du − γb

2

n∑
i=1

(
|fi(ϕ)| + g2

i (ϕ)
)]

,

(3.2)

where x := ϕ(0) and A is a positive number satisfying A < A1 − A2
∫ 0
−r

e−γ sμ(ds). Recall that 
c, M , A0, A1, A2, γ0, γb , h(·), μ(·) are defined in Assumption 2.1(3).

Theorem 3.1. For any initial condition φ ∈ C+, there exists a unique global solution of (2.1). It 
remains in C+ (resp. C◦+), provided φ ∈ C+ (resp. φ ∈ C◦+). Moreover, for any p0, ρ satisfying 
condition (3.1), we have

EφV
p0
ρ (Xt ) ≤ V

p0
ρ (φ)eA0p0t . (3.3)

In addition, if ρi ≥ 0, ∀i, then

EφV
p0
ρ (Xt ) ≤ V

p0
ρ (φ)e−γ0p0t + Mp0,ρ, (3.4)

where
10
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Mp0,ρ := A0

γ0
sup

ϕ∈CV,M

V
p0
ρ (ϕ) < ∞ provided ρi ≥ 0 ∀i,

and CV,M = {ϕ ∈ C+ : A2γ
∫ 0
−r

μ(ds) 
∫ 0
s

eγ (u−s)h
(
ϕ(u)

)
du ≤ A0 and |x| ≤ M}.

Lemma 3.2. For any R1 > 0, T > r , ε > 0, there exists an R2 > 0 such that

Pφ

{
‖Xt‖ ≤ R2, ∀t ∈ [r, T ]

}
> 1 − ε,

for any initial point φ satisfying V0(φ) < R1, where V0 is defined as in Lemma 3.1 corresponding 
to ρ = 0 = (0, . . . , 0).

Lemma 3.3. There is a sufficiently small α > 0 such that for any R > 0 and ε > 0, there exists 
R3 = R3(R, ε) > 0 satisfying

if ‖φ‖ ≤ R then Pφ {‖Xt‖2α ≤ R3 ∀t ∈ [r,3r]} ≥ 1 − ε

2
. (3.5)

As a consequence, for any R > 0 and ε > 0, there exists an R4 = R4(ε, R) > 0 satisfying that

if V0(φ) ≤ R then Pφ {‖Xt‖2α ≤ R4 ∀t ∈ [2r,3r]} ≥ 1 − ε. (3.6)

Proposition 3.1. The following results hold.

(i) Let ρ(3)
1 be a fixed constant satisfying 0 < ρ

(3)
1 < min

{ γb

2 , 1
n
,

γb

4σ ∗
}
. For any T > r and m > 0

there exists a finite constant Km,T such that

Eφ

∥∥Xi,t

∥∥p0ρ
(3)
1 ≤ Km,T φ

p0ρ
(3)
1

i (0), ∀t ∈ [r, T ], i = 1, . . . , n,

given that

|φ(0)| +
0∫

−r

μ(ds)

0∫
s

eγ (u−s)h
(
φ(u)

)
du < m,

where Xt =: (X1,t , . . . , Xn,t ) and φ =: (φ1, . . . , φn) is the initial value.
(ii) For any T > r , ε > 0, R > 0, there exists an ε1 > 0 such that

P
{∥∥Xφ1

T −Xφ2
T

∥∥≤ ε
}

≥ 1 − ε whenever V0(φi ) < R,
∥∥φ1 − φ2

∥∥≤ ε1. (3.7)

Moreover, the solution (Xt ) has the Feller property in C+.
11



D.H. Nguyen, N.N. Nguyen and G. Yin Journal of Differential Equations 294 (2021) 1–39
3.2. Random occupation measures: tightness and convergence

Next, we deal with the tightness and uniform integrability of the random normalized occupa-
tion measures, which are defined by

�̃t (·) := 1

t

t∫
0

1{Xs∈·}ds, t > 0.

Lemma 3.4. Suppose that Assumptions 2.1 and 2.5 are satisfied. Then the following results hold

• There is a G̃ > 0 such that for all φ ∈ C+

Pφ

{
lim sup
T →∞

1

T

T∫
0

[(
1 +

∑
i

ciXi(t)

)p2

h(X(t))

+
0∫

−r

(
1 +

∑
i

ciXi(t + s)

)p2

h(X(t + s))μ(ds)

⎤⎦dt ≤ G̃

}
= 1,

where p2 is as in Assumption 2.5.
• Suppose that we have a sample path of X satisfying

lim sup
T →∞

1

T

T∫
0

[(
1 +

∑
i

ciXi(t)
)p2

h(X(t))

+
0∫

−r

(
1 +

∑
i

ciXi(t + s)
)p2

h(X(t + s))μ(ds)
]
dt ≤ G̃,

and that there is a sequence (Tk)k∈N ⊂ Rn+ such that limk→∞ Tk = ∞ and 
{
�̃Tk

(·)}
k∈N

converges weakly to an invariant probability measure π of X when k → ∞. Then for this 
sample path, we have ∫

C+

K(ϕ)�̃Tk
(dϕ) →

∫
C+

K(ϕ)π(dϕ),

for any continuous function K : C+ → R satisfying ∀ϕ ∈ C+, 0 < p < p2,

|K(ϕ)| < CK

⎡⎣(1 + c
x
)p

h(x) +
0∫

−r

(
1 + c
ϕ(s)

)p

h(ϕ(s))μ(ds)

⎤⎦ ,

with CK being a positive constant.
12
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• There is a constant K̂1 > 1 such that

Pφ

⎧⎨⎩lim inf
t→∞

1

t

t∫
0

1{‖Xs‖≤K̂1}ds ≥ 1

2

⎫⎬⎭= 1, φ ∈ C+. (3.8)

Moreover, for any ε1 and ε2 > 0, there is a β > 0 such that for each i = 1, . . . , n,

Pφ{Xi(t) > β ,∀ t ∈ [0, n∗Te]} > 1 − ε1 if φ ∈ C+,V0(φ) ≤ K̂1, φi(0) > ε2, (3.9)

where n∗ and Te are as in Lemma 4.2.

Proof. Consider the first assertion. We obtain from the functional Itô formula and (2.10) that

(
1 + c
X(t)

)p2 − (1 + c
X(0)
)p2

t

≤ B0 − B1

t

t∫
0

(1 + c
X(s))p2h(X(s))ds

+ B2

t

t∫
0

ds

0∫
−r

(1 + c
X(u + s))p2h(X(u + s))μ(du) + L(t)

t

≤ B0 + B2

t

r∫
0

ds

0∫
−r

(1 + c
X(u + s))p2h(X(u + s))μ(du)

− B1 − B2

t

t∫
0

(1 + c
X(s))p2h(X(s))ds + L(t)

t
,

(3.10)

where L(t) is the diffusion part of 
(
1 + c
X(t)

)p2 . Due to (2.11), we have the following estimate 
for the quadratic variation 〈L., L.〉t of L(t)
13
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〈L.,L.〉t ≤B3

t∫
0

(1 + c
X(s))p2h(X(s))ds

+ B3

t∫
0

ds

0∫
−r

(1 + c
X(u + s))p2h(X(u + s))μ(du)

≤B3

r∫
0

ds

0∫
−r

(1 + c
X(u + s))p2h(X(u + s))μ(du)

+ 2B3

t∫
0

(1 + c
X(s))p2h(X(s))ds.

It follows from the strong law of large numbers for local martingales that

lim sup
t→∞

⎛⎝−B1 − B2

2t

t∫
0

(1 + c
X(s))p2h(X(s))ds + L(t)

t

⎞⎠≤ 0 a.s. (3.11)

Applying (3.11) and noting lim inft→∞
(1 + c
X(t))p2 − (1 + c
X(0))p2

t
≥ 0 to (3.10), we 

have

lim sup
t→∞

1

t

t∫
0

(1 + c
X(s))p2h(X(s))ds ≤ 2B0

B1 − B2
a.s.

Therefore, the first part of Lemma 3.4 is proved.
The proof of the second part is the same as that of [46, Lemma 3.5] and is omitted. The proof 

of the third part can be found in [25, Proof of Lemma 5.5]. �
Compared to [25, Lemma 5.7], it is much more difficult to prove the tightness and charac-

terize the limit of the normalized occupation measures in this setting because C is an infinite 
dimensional space.

Lemma 3.5. Let Assumptions 2.1 and 2.5 be satisfied. For any initial condition φ ∈ C+, the 
family 

{
�̃t (·), t ≥ 1

}
is tight in C+, and its weak∗-limit set, denoted by U = U(ω), is a family of 

invariant probability measures of Xt with probability 1.
14
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Proof. For simplicity of notation, denote ̃h(x) = (1 + c
x)p2h(x). We have

T∫
0

⎡⎣ 0∫
−r

h̃(Xt (u))du

⎤⎦dt =
T∫

0

⎡⎣ 0∫
−r

h̃(X(t + u))du

⎤⎦dt

≤
0∫

−r

⎡⎣ T∫
−r

h̃(X(t))dt

⎤⎦du ≤ r

T∫
0

h̃(X(t))dt + r

0∫
−r

h̃(X(u))du.

(3.12)

Hence, by Lemma 3.4 and (3.12), we deduce that

lim
T →∞

T∫
0

⎡⎣h̃(X(t)) +
0∫

−r

h̃(Xt (u))du

⎤⎦dt ≤ G̃(1 + r). (3.13)

Define

C̃R :=
⎧⎨⎩ϕ ∈ C◦+ : h̃(x) +

0∫
−r

h̃(ϕ(u))du < R,x= ϕ(0)

⎫⎬⎭ .

A consequence of (3.13) is that for any ε > 0, there is an R > 0 such that

lim
T →∞

1

T

T∫
0

1{Xt∈C̃R}dt > 1 − ε. (3.14)

It is easily seen that

sup
ϕ∈C̃R

V
p0
0 (ϕ) < ∞ ∀R > 0.

By Lemma 3.3, there is a compact set K := {ϕ : ‖ϕ‖2α < R4} of Cα , for some α > 0 and R4 =
R4(ε, R) such that

Pφ{Xt ∈K ∀t ∈ [2r,3r]} ≥ 1 − ε, φ ∈ C̃R. (3.15)

Let Yk := 1{Xkr∈K} for k ∈N , then 
∑k

l=1 Yl = Ak + Mk with

Ak :=
k∑

l=1

E
[
Yl |F(l−1)r

] ; Mk := Y0 +
k∑

l=1

(
Yl −E

[
Yl |F(l−1)r

])
.

By strong law of large number for martingales, it is easily seen that

lim
Mk = 0 a.s. (3.16)
k→∞ k

15
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To proceed, we estimate E 
[
Yl |F(l−1)r

]
for l ≥ 2. In the event⎧⎪⎨⎪⎩1

r

(l−1)r∫
(l−2)r

1{Xt∈C̃R}dt > 0

⎫⎪⎬⎪⎭ ,

Xt ∈ C̃R for some t ∈ [(l − 2)r, (l − 1)r] and then, by the strong Markov property of Xt and 
(3.15), we have

E

⎡⎢⎣Yl

∣∣∣1
r

(l−1)r∫
(l−2)r

1{Xt∈C̃R}dt > 0

⎤⎥⎦≥ 1 − ε.

Thus, owing to 1
r

∫ (l−1)r

(l−2)r
1{Xt∈C̃R}dt ≤ 1, we can write

E
[
Yl |F(l−1)r

]≥ 1 − ε

r

(l−1)r∫
(l−2)r

1{Xt∈C̃R}dt a.s.

As a result,

Ak

k
≥ 1 − ε

kr

(k−1)r∫
0

1{Xt∈C̃R}dt a.s. ,

which together with (3.14) implies that

lim inf
k→∞

Ak

k
≥ (1 − ε)2 a.s. (3.17)

We deduce from (3.16) and (3.17) that

lim inf
k→∞

∑k
l=1 Yl

k
≥ 1 − 2ε a.s. (3.18)

We have the following estimate

1 − 1{Xlr∈K and X(l+1)r∈K} ≤ (1 − Yl) + (1 − Yl+1). (3.19)

Due to (3.18) and (3.19), we get

lim
k→∞

∑k
l=1 1{Xlr∈K and X(l+1)r∈K}

k
≥ 1 − 4ε a.s. (3.20)

By Lemma 3.3, it is easy to show that there is a compact set K̃ of C such that
16
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Xt ∈ K̃,∀t ∈ [lr, (l + 1)r] if Xlr ∈ K and X(l+1)r ∈K. (3.21)

A consequence of (3.20) and (3.21) is that

lim
T →∞

1

T

T∫
0

1{Xt∈K̃} ≥ 1 − 4ε a.s. (3.22)

As a result, the tightness of {�̃t (·)} is obtained.
Moreover, from (3.22), we obtain a family of compact sets {Kε ⊂ C+, ε ∈ (0, 1)} such that 

for any ε > 0, Pφ {U(ω) ∈ UK} = 1, where UK is the set of probability measures on C satisfying 
π(Kε) > 1 − ε for all ε ∈ (0, 1). From the definition of UK, there exists a countable family {vk}
of bounded and continuous functions from C to R such that for any bounded and continuous 
function v and measure π ∈ UK, we have∫

v(ϕ)π(dϕ) = lim
kn→∞

∫
vkn(ϕ)π(dϕ). (3.23)

Using the standard arguments in [20, Proof of Theorem 4.2], we can show that outside a null set, 
any weak limit of {�̃t (·)}, denoted by π̃ , satisfies∫

C+

π̃ (dϕ)

∫
P(t,ϕ,ψ)vk(ψ) =

∫
vk(ϕ)π̃(dϕ). (3.24)

From (3.23) and (3.24), we have that outside a null set, for any bounded and continuous function 
v, ∫

C+

π̃(dϕ)

∫
P(t,ϕ,ψ)v(ψ) =

∫
v(ϕ)π̃(dϕ). (3.25)

The lemma is thus proved. �
4. Extinction

Following the development in the last section, this section focuses on obtaining the criteria of 
extinction. To start, we have the following Lemma, whose proof is easily obtained by modifying 
the proof of [25, Lemma 5.1].

Lemma 4.1. For any π ∈M and i ∈ Iπ , we have λi(π) = 0.

The intuition behind Lemma 4.1 is clear. If the process evolves in the interior of the support of 
an ergodic invariant measure μ, it will eventually approach the “stationary” state with probability 
measure μ and it cannot grow or decay exponentially fast.

It is shown in [57, Lemma 4], by the min-max principle, that condition (2.7) is equivalent to 
the existence of 0 < α̂i < p0, i ∈ I such that
17
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inf
ν∈∂MI

∑
i∈I

α̂iλi(ν) > 0.

Thus, there is an α∗ > 0 sufficiently small such that

inf
ν∈∂MI

∑
i∈I

α̂iλi(ν) − α∗ max
i∈I c

{λi(ν)} > 0. (4.1)

In view of (4.1), (2.6), and Lemma 4.1, there is a κe > 0 such that for any ν ∈MI ,

∑
i∈I

α̂iλi(ν) − α∗ max
i∈I c

{λi(ν)} > 3κe. (4.2)

Now, denote

Q0(ϕ) =A2h(x)

0∫
−r

e−γ sμ(ds) − A2

0∫
−r

h
(
ϕ(s)

)
μ(ds)

− A2γ

0∫
−r

μ(ds)

0∫
s

eγ (u−s)h
(
ϕ(u)

)
du

+
∑n

i=1 cixifi(ϕ)

1 + c
x
− 1

2

n∑
i,j=1

cicjσij xixj gi(ϕ)gj (ϕ)(
1 + c
x

)2 ,

and let n∗ be a sufficient large integer such that

γ0(n
∗ − 1) − A0 > 0. (4.3)

Lemma 4.2. Assume that Assumptions 2.1, 2.2, and 2.3 hold. Let I ⊂ {1, . . . , n} satisfy As-
sumption 2.3. Then there are Te ≥ 0 and δe > 0 such that for any T ∈ [Te, n∗Te], φ ∈ C◦+ ∩
CV,M, φi(0) < δe, ∀i ∈ I c, we have

1

T

T∫
0

EφQ0(Xt )dt −
∑
i∈I

α̂i

1

T

T∫
0

Eφ

(
fi(Xt ) − σiig

2
i (X(t))

2

)
dt

+ α∗ max
i∈I c

⎧⎨⎩ 1

T

T∫
0

Eφ

(
fi(Xt ) − σiig

2
i (Xt )

2

)
dt

⎫⎬⎭≤ −κe,

(4.4)

Proof. The proof is similar to [46, Lemma 4.2]. First, using (4.2), we can prove that for any 
compact set K, there exists a TK > 0 such that for any T > TK, φ ∈ C◦+ ∩K, we have
18
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1

T

T∫
0

EφQ0(Xt )dt −
∑
i∈I

α̂i

1

T

T∫
0

Eφ

(
fi(Xt ) − σiig

2
i (Xt )

2

)
dt

+ α∗ max
i∈I c

⎧⎨⎩ 1

T

T∫
0

Eφ

(
fi(Xt ) − σiig

2
i (Xt )

2

)
dt

⎫⎬⎭≤ −2κe.

(4.5)

Then, although the Feller property of (Xt ) is not directly applied here because a bounded set in 
an infinite dimensional space is not necessarily pre-compact, we can overcome the difficulty by 
using Lemma 3.3 and Proposition 3.1(ii). The detailed calculations are analogous to that of [46, 
Lemma 4.2] and are omitted. �
Lemma 4.3. Suppose that Assumptions 2.1, 2.2, and 2.3 hold, and α̂i , α∗, δe, n∗, Te are as in 
Lemma 4.2. Then there is a θ ∈ (0, p0) such that for any T ∈ [Te, n∗Te] and φ ∈ C◦+ ∩ CV,M

satisfying φi(0) < δe , ∀i ∈ I c one has

EφÛθ (XT ) ≤ exp

(
−1

4
θκeT

)
Ûθ (φ),

where

Ûθ (ϕ) :=
∑
i∈I c

V θ
ρi,e (ϕ)

=
∑
i∈I c

[
(1 + c
x)

x
α∗
i∏

j∈I x
α̂j

j

exp
{
A2

0∫
−r

μ(ds)

0∫
s

eγ (u−s)h
(
ϕ(u)

)
du
}]θ

,

and ρi,e = (ρ
i,e
1 , . . . , ρi,e

n ) and

ρ
i,e
j = α∗ if j = i, ρ

i,e
j = −α̂j if j 	= i, j ∈ I and otherwise, ρ

i,e
j = 0.

Proof. The argument to prove this proposition is similar to that of [46, Proposition 4.1]. For 
each i ∈ I c, by making use of Lemma 4.2, there exists a θ > 0 such that for T ∈ [Te, n∗Te], 
φ ∈ C◦+ ∩ CV,M with φi(0) < δe, we have

EφV θ
ρi,e (XT ) ≤ exp

(
−1

4
θκeT

)
V θ

ρi,e (φ).

Therefore, the proposition follows from the definition of Ûθ . �
Proposition 4.1. Under Assumptions 2.1, 2.2, and 2.3. For any ε > 0, there exists δ = δ(ε) > 0
such that

Pφ

{
lim Ûθ (Xt ) = 0

}
≥ 1 − ε, for all φ satisfying Ûθ (φ) < δ. (4.6)
t→∞

19



D.H. Nguyen, N.N. Nguyen and G. Yin Journal of Differential Equations 294 (2021) 1–39
Proof. Let

C0 := sup
ϕ∈C◦+

⎧⎨⎩
∏

i∈I x
α̂i

i

(1 + c
x) exp
{
A2
∫ 0
−r

μ(ds)
∫ 0
s

eγ (u−s)h
(
ϕ(u)

)
du
} : x= ϕ(0)

⎫⎬⎭
< ∞,

and

d(δe) := (δe)
θα∗

Cθ
0

, (4.7)

where δe is as in Lemma 4.2. By (3.2), we have

LÛθ (ϕ) ≤ −θγ0Ûθ (ϕ) if φ ∈ C◦+,ϕ /∈ CV,M. (4.8)

Because of (4.8), (3.3), and Proposition 4.1, by the same procedure as [46, Theorem 4.1], we 
obtain that

if Ûθ (φ) ≤ d(δε) then EφZ(1) ≤ q1Z(0), for some q1 ∈ (0,1), (4.9)

where Z(k) := d(δe) ∧ Ûθ (Xkn∗Te ), k ∈ N . The reader can also see [25, Proof of Theorem 5.1]
for detailed calculations of this argument.

For each m < d(δe), define the stopping time

βm := inf{k ∈N : Z(k) ≥ m}.

By (4.9),

Eφ1{βm>k}Z(k) ≤ qk
1Z(0). (4.10)

In view of (4.10), we have

Pφ {βm > k} ≥ 1 − ε,∀k ∈N if Ûθ (φ) < mε.

Hence, letting k → ∞ yields

Pφ {βm = ∞} ≥ 1 − ε if Ûθ (φ) < mε. (4.11)

On the other hand, using (3.2) again and by the definition of Ûθ , we have

LÛθ (ϕ) ≤ A0θÛθ (ϕ).

Hence, by a standard argument as in [46, Proof of Theorem 3.1], we get

Eφe−A0θ(t∧ζu)Ûθ (Xt∧ζu) ≤ Ûθ (φ),
20
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where for each u > 0

ζu := inf{t ≥ 0 : Ûθ (Xt ) > uÛθ (φ)},

which implies that

ue−A0θt Ûθ (φ)Pφ{ζu > t} ≤ Ûθ (φ).

Thus, for any u > 0,

Pφ{ζu > n∗Te} ≤ eA0θn∗Te

u
. (4.12)

Let q2, q3 ∈ (0, q1), q2 < q3, where q1 is as in (4.9). We obtain from (4.10) that

Pφ

{
1{βm>k}Z(k) ≤ Z(0)qk

2

}
≥ 1 −

(
q1

q2

)k

. (4.13)

We deduce from (4.12), the Markov property of Xt , and (4.13) that

Pφ

{
1{βm>k} sup

s∈[kn∗Te,(k+1)n∗Te]
Ûθ (Xs) ≤ Z(0)qk

3

}

≥
⎛⎜⎝1 − eA0θn∗Te(

q3
q2

)k

⎞⎟⎠Pφ

{
1{βm>k}Z(k) ≤ Z(0)qk

2

}

≥
⎛⎜⎝1 − eA0θn∗Te(

q3
q2

)k

⎞⎟⎠ ·
(

1 −
(

q1

q2

)k
)

≥ 1 −
(

eA0θn∗Te

(
q2

q3

)k

+
(

q1

q2

)k
)

,

(4.14)

for any k > k0, where k0 satisfies

eA0θn∗Te <

(
q3

q2

)k0

.

Since

∞∑
k=k0

(
eA0θn∗Te

(
q2

q3

)k

+
(

q1

q2

)k
)

< ∞,

by the Borel-Cantelli Lemma, we deduce from (4.14) that
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Pφ

{
lim

k→∞1{βm>k} sup
s∈[kn∗Te,(k+1)n∗Te]

Ûθ (Xs) = 0

}
= 1. (4.15)

Combining (4.15) and (4.11) implies that

Pφ

{
lim

s→∞ Ûθ (Xs) = 0
}

≥ 1 − ε if Ûθ (φ) < mε.

Then the proposition is proved. �
Lemma 4.4. Assume Assumption 2.1 and 2.4 hold. For any ε, R > 0, y∗ = (y∗

1 , . . . , y∗
n) ∈

Rn,◦
+ := {y ∈ Rn : yi > 0 ∀i}, δ > 0, t∗ ≥ 2r

inf
φ∈Dε,R

Pφ

{
Xt∗ ∈ By∗,δ

}
> 0, (4.16)

where

By∗,δ := {ϕ ∈ C◦+ : ∣∣ϕ(s) − y∗∣∣< δ; ∀s ∈ [−r,0]} .
Proof. To prove (4.16), we modify slightly the proof of [24, Lemma 3.8] as follows. Let δ1 ∈
(0, δ2 ) be sufficiently small such that

min

{
min

i=1,...,n
y∗
i − δ1, ε − δ1

}
=: 2δ2 > 2δ1.

Define

D(t) := |X(t) − k(t)|2 − (δ1/2)2,

where k : [0, t∗] → Rn is continuously differentiable with Lipschitz constant at most 2(R+|y∗|+δ)
r

satisfying

ki(t) ≥ 2δ2 ∀t ∈ [0, t∗] ∀i, and k(0) = φ(0) − (δ1/2,0, . . . ,0);k(t) = y∗, t ∈ [r, t∗].

It is noted that

Xi(t) ≥ δ2 ∀i and |X(t)| < 2(R + |y∗| + δ), t ∈ [0, t∗] whenever |D(t)| ≤ (δ1/4)2. (4.17)

Hence, under Assumption 2.4 for the diffusion coefficients and (4.17), we can mimic the remain-
ing of proof in [24, Lemma 3.8] (with k in place of h) and obtain that

inf Pφ

{
Xt∗ ∈ By∗,δ

}
> 0. �
φ∈Dε,R
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Theorem 4.1. Assume that Assumptions 2.1, 2.2, 2.3, and 2.4 hold. For any p < p0 and any 
φ ∈ C◦+, we have

lim
T →∞

1

T

T∫
0

Eφ

n∧
i=1

∥∥Xi,t

∥∥p
dt = 0, (4.18)

where 
∧n

i=1 xi = mini=1,...,n{xi} and Xt = (X1,t , . . . , Xn,t ).

Proof. It is clear that if limt→∞ Ûθ (Xt ) = 0 then Xt tends to the boundary of C+ as t → ∞. 
Moreover, we can choose suitable y∗ and δ1 such that ∀ϕ ∈ By∗,δ1 , Ûθ (ϕ) is small enough. 
Therefore, in view of Proposition 4.1 and Lemma 4.4, the probability that Xt tends to the bound-
ary is positive for any initial data. As a consequence, there is no invariant probability measure 
in C◦+. Therefore, we can deduce that the weak∗-limit of �φ

t (·) is a probability measure concen-
trated on ∂C+. By noting that the function 

(∧n
i=1 ϕ

p
i (0)

)
, p < p0 of variable ϕ satisfies condition 

[46, (3.41)], the theorem follows from [46, Lemma 3.5]. �
Lemma 4.5. Suppose that Assumption 2.1, 2.3, and 2.5 are satisfied and let I be the subset of 
{1, . . . , n} in Assumption 2.3. Then the following results hold:

• For any φ ∈ C◦+,

Pφ

{
U(ω) ⊂ Conv(MI )

}
= Pφ

{
U(ω) ⊂ Conv(MI,◦)

}
.

• For any m > 0, δ > 0, and ε > 0, there is a R > 0 such that

Pφ

{
U(ω) ⊂ Conv(MI,◦) and

lim
t→∞

lnXi(t)

t
⊂
{
λi(π),π ∈ Conv(MI,◦)

}
, i ∈ I c

}
> 1 − ε, for all φ ∈ �

m,δ,R
I ,

where

�
m,δ,R
I :=

{
ϕ ∈ C◦+ : m ≤ xi for i ∈ I, xi < δ for i ∈ I c and

V0(ϕ) < R,x := ϕ(0)

}
.

Proof. The proof of the first part is similar to [25, Proof of Lemma 5.8].
We proceed to prove the second part. By the third part of Lemma 3.4, there is a k0 > 0 such 

that

Pφ

{
max

c
{Xi(t)} > k0 ,∀ t ∈ [0, n∗Te]

}
>

1
, φ ∈AI , (4.19)
i∈I 2
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where

AI = {ϕ ∈ C+ : V0(ϕ) ≤ K̂1, max
i∈I c

{xi} ≥ 1,x := ϕ(0)}.

It can be seen that

ν(AI ) > 0 for ν ∈ M \MI . (4.20)

As in Proposition 4.1, consider Ue(ϕ) := d(δe) ∧ Ûθ (ϕ), where δe is defined in (4.7). By the 
definition of Ue(·), there is a δ > 0 sufficiently small such that

sup
ϕ∈�

m,δ,R
I

{Ue(ϕ)} ≤ ε

2
inf

ϕ∈C◦+,xi≥k0, for some i∈I c
{Ue(ϕ)}. (4.21)

In view of (4.11), we obtain if φ ∈ �
m,δ,R
I

Pφ

{
Ue(X(kn∗Te)) < inf

ϕ∈C◦+,xi≥k0, for some i∈I c
{Ue(ϕ)}, ∀k ∈N

}
> 1 − ε

2
.

Thus

Pφ

{
max
i∈I c

{Xi(kn∗Te)} < k0 for all k ∈N

}
> 1 − ε

2
if φ ∈ �

m,δ,R
I . (4.22)

Now, we prove

Pφ

⎧⎨⎩ lim
t→∞

1

t

t∫
0

1{Xs∈AI }ds = 0

⎫⎬⎭> 1 − ε, φ ∈ �
m,δ,R
I , (4.23)

by a contradiction argument. Assume that there is a φ ∈ �
m,δ,R
I satisfying

Pφ

⎧⎨⎩lim sup
t→∞

1

t

t∫
0

1{Xs∈AI }ds > 0

⎫⎬⎭> ε. (4.24)

Then

Pφ{τAI
< ∞} > ε, (4.25)

where τAI
= inf{t > 0 : Xt ∈AI }. By the strong Markov property of {Xt}, it follows from (4.19)

and (4.25) that

Pφ

(
{τAI

< ∞}
⋂{

max
c
{Xi(t)} ≥ k0 for t ∈ [τAI

, τAI
+ n∗Te]

})
>

1
ε,
i∈I 2
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which contradicts (4.22) and hence, (4.23) holds.
We observe that if for an ω ∈ � and a sequence {tj } with limj→∞ tj = ∞, �̃tj (·) con-

verges weakly to an invariant probability of the form π0 = (1 − q)π1 + qπ2 with q ∈ [0, 1], 
π1 ∈ Conv(MI ), and π2 ∈ Conv(M \MI ), then by (4.20)

lim sup
j→∞

1

tj

tj∫
0

1{Xs∈AI }ds ≥ π0(AI ) ≥ qπ2(AI ).

This inequality combined with Lemma 3.5, (4.20), and (4.23) implies that q = 0 and

Pφ

{
U(ω) ⊂ Conv(MI )

}
> 1 − ε, φ ∈ �

m,δ,R
I .

The first claim of Lemma 4.5 and the above estimates lead to

Pφ

{
U(ω) = {Conv(MI,◦)}

}
> 1 − ε,φ ∈ �

m,δ,R
I . (4.26)

In view of Lemma 3.4 and (4.26), we have for φ ∈ �
m,δ,R
I and for each i = 1, . . . , n that

Pφ

⎧⎨⎩ lim
t→∞

1

t

t∫
0

(
fi(Xs) − σiig

2
i (Xs)

2

)
ds ⊂

{
λi(π) : π ∈ Conv(MI,◦)

}⎫⎬⎭> 1 − ε. (4.27)

On the other hand, it is easy to see

Pφ

⎧⎨⎩ lim
t→∞

1

t

t∫
0

gi(Xs)dEi(s) = 0, i = 1, . . . , n

⎫⎬⎭= 1. (4.28)

The second claim of Lemma 4.5 follows from (4.27), (4.28), and an application of the functional 
Itô formula. �

With the above Lemmas in hand, we can modify slightly the proof of [25, Theorem 5.2] to 
obtain the following Theorem.

Theorem 4.2. Suppose that Assumptions 2.1, 2.3, 2.4, 2.5, and 2.6 are satisfied. Then for any 
φ ∈ C◦+, ∑

I∈S

P I
φ = 1, P I

φ > 0, (4.29)

where for φ ∈ C◦+,

P I
φ := Pφ

{
U(ω) ⊂ Conv(MI,◦) and

lim
t→∞

lnXi(t) ∈
{
λi(π),π ∈ Conv(MI,◦)

}
, i ∈ I c

}
.

t
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5. Applications

This section presents a number of applications of our main results Theorems 2.1 and 2.2. We 
provide sufficient conditions for the extinction of several popular biological and ecological sys-
tems. These results are complements of the permanence characterization in [46] in that excluding 
the critical cases, if the system is not permanent, the extinction will happen and vice versa.

5.1. Stochastic delay Lotka-Volterra competitive model

Introduced in [39,64] by Lotka and Volterra in 1926, the Lotka-Volterra model is one of the 
most important models in mathematical biology and has been studied widely in the literature. 
The Lotka-Volterra competitive models are used to describe the dynamics of the species when 
they live in proximity, share the same basic resources, and compete for food, habitat, territory, 
etc. Because of the influences of many complex properties in real life, other terms (white noises, 
Markov switching, delayed time, etc.) are added to the original system to reflect better the phe-
nomena. Stochastic delay Lotka-Volterra competitive models have also been widely studied; see, 
for example, [2,35] and references therein. However, there is no unified general framework to 
handle that except the work [46, Section 5.1], which provided criteria for persistence.

For the case of two-dimensional competitive stochastic delay system, this kind model takes 
the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX1(t) = X1(t)

(
a1 − b11X1(t) − b12X2(t) − b̂11X1(t − r) − b̂12X2(t − r)

)
dt

+X1(t)dE1(t),

dX2(t) = X2(t)
(
a2 − b21X1(t) − b22X2(t) − b̂21X1(t − r) − b̂22X2(t − r)

)
dt

+X2(t)dE2(t),

(5.1)

where Xi(t) denotes the size of the species i at time t ; ai > 0 represents the growth rate of the 
species i; bii > 0 stands for the intra-specific competition of the ith species; bij ≥ 0, (i 	= j ) is the 
inter-specific competition; ̂bij > −bii (i, j = 1, 2) (i.e., ̂bij can be negative); r is the delay time; 
(E1(t), E2(t))


 = �
B(t) with B(t) = (B1(t), B2(t))

 being a vector of independent standard 

Brownian motions and � being a 2 × 2 matrix such that �
� = (σij )2×2 is a positive definite 
matrix.

As a complement of [46, Section 5.1] that provides the conditions for the persistence, we 
characterize the extinction to complete the long-time characterization in this paper. Applying 

our Theorems in Section 2, we have that λi(δ
∗) = ai − σii

2
, i = 1, 2. In view of Theorem 2.1, if 

λ1(δ
∗) < 0, (resp. λ2(δ

∗) < 0) there is no invariant probability measure on C◦
1+ := {(ϕ1, 0) ∈ C+ :

ϕ1(s) > 0 ∀s ∈ [−r, 0]} (resp. C◦
2+ := {(0, ϕ2) ∈ C+ : ϕ2(s) > 0 ∀s ∈ [−r, 0]}). By Lemma 4.1, 

we have

λi(πi) = ai − σii

2
−
∫
C◦

i+

(
biiϕi(0) + b̂iiϕi(−r)

)
πi(dϕ) = 0, where ϕ = (ϕ1, ϕ2),

which implies
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∫
C◦

i+

(
biiϕi(0) + b̂iiϕi(−r)

)
πi(dϕ) = ai − σii

2
. (5.2)

Since πi is an invariant probability measure of {Xt}, it is easy to see that

∫
C◦

i+

ϕi(0)πi(dϕ) = lim
T →∞

1

T

T∫
0

Xi,t (0)dt = lim
T →∞

1

T

T∫
0

Xi(t)dt, (5.3)

where (X1,t , X2,t ) =Xt . Similarly,

∫
C◦

i+

ϕi(−r)πi(dϕ) = lim
T →∞

1

T

T∫
0

Xi(t − r)dt. (5.4)

By virtue of (5.3) and (5.4), we can prove that∫
C◦

i+

ϕi(0)πi(dϕ) =
∫
C◦

i+

ϕi(−r)πi(dϕ). (5.5)

Combining (5.2) and (5.5) yields that∫
C◦

i+

ϕi(0)πi(dϕ) =
∫
C◦

i+

ϕi(−r)πi(dϕ) = ai − σii

2

bii + b̂ii

.

Therefore, we have

λ2(π1) =
∫
C◦

1+

[
a2 − σ22

2
− b21ϕ1(0) − b̂21ϕ1(−r)

]
π1(dϕ)

= a2 − σ22

2
−
(
a1 − σ11

2

)
· b21 + b̂21

b11 + b̂11
,

and

λ1(π2) =
∫
C◦

2+

[
a1 − σ11

2
− b12ϕ2(0) − b̂12ϕ2(−r)

]
π2(dϕ)

= a1 − σ11

2
−
(
a2 − σ22

2

)
· b12 + b̂12

b22 + b̂22
.

By applying Theorem 2.2 to characterize the extinction together with the characterization of 
persistence in [46, Section 4.1], we have the following results.
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• If λi(δ
∗) < 0, i = 1, 2 then Xi(t) converges to 0 almost surely with the exponential rate 

λi(δ
∗) for any initial condition φ = (φ1, φ2) ∈ C◦+.

• If λi(δ
∗) > 0, λj (δ

∗) < 0 for one i ∈ {1, 2} and j ∈ {1, 2} \ {i}, then λj (πi) < 0 and Xj(t)

converges to 0 almost surely with the exponential rate λj (πi) for any initial condition 
φ = (φ1, φ2) ∈ C◦+ and the randomized occupation measure converges weakly to πi almost 
surely.

• If λi(δ
∗) > 0, i ∈ {1, 2} and λ1(π2) < 0, λ2(π1) < 0 then P φ

i > 0, i = 1, 2 and P φ
1 + P

φ
2 = 1

where

P
φ
i = Pφ

{
U(ω) = {πi} and lim

t→∞
lnXj(t)

t
= λj (πi), j ∈ {1,2} \ {i}

}
.

• If λ1(δ
∗) > 0, λ2(δ

∗) > 0, λj (πi) < 0, λi(πj ) > 0 for i, j ∈ {1, 2}, i 	= j then Xj(t) con-
verges to 0 almost surely with the exponential rate λj(πi) and the randomized occupation 
measure converges weakly to πi almost surely for any initial condition φ = (φ1, φ2) ∈
C◦+.

• If λ1(δ
∗) > 0, λ2(δ

∗) > 0 and λ1(π2) > 0, λ2(π1) > 0, any invariant probability measure in 
∂C+ has the form π = q0δ

∗ + q1π1 + q2π2 with 0 ≤ q0, q1, q2 and q0 + q1 + q2 = 1. Then, 
one has maxi=1,2 {λi(π)} > 0 for any π having the form above. Therefore, there is a unique 
invariant probability measure π∗ on C◦+.

The above characterization generalizes the results of long-term properties in [35].
Although we only provide the explicit computations for 2-dimension cases, our results (in 

both this paper and [46]) can be applied to characterize the long-time behavior of solutions for 
stochastic delay Lotka-Volterra competitive models with n-species,

5.2. Stochastic delay Lotka-Volterra predator-prey model

This section is devoted to the application of our results to stochastic delay Lotka-Volterra 
predator-prey models. In contrast to Lotka-Volterra competitive model in which two species 
compete for food, habitat, territory, etc, the Lotka-Volterra predator-prey models are frequently 
used to describe the dynamics of biological systems in which two species interact, one as a 
predator and the other one as prey. The Lotka-Volterra predator-prey system with one prey and 
two competing predators is given as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) = X1(t)
{
a1 − b11X1(t) − b12X2(t) − b13X3(t)

−b̂11X1(t − r) − b̂12X2(t − r) − b̂13X3(t − r)
}
dt + X1(t)dE1(t),

dX2(t) = X2(t)
{

− a2 + b21X1(t) − b22X2(t) − b23X3(t)

−b̂21X1(t − r) − b̂22X2(t − r) − b̂23X3(t − r)
}
dt + X2(t)dE2(t),

dX3(t) = X3(t)
{

− a3 + b31X1(t) − b32X2(t) − b33X3(t)

−b̂31X1(t − r) − b̂32X2(t − r) − b̂33X3(t − r)
}
dt + X3(t)dE3(t),

(5.6)

where X1(t), X2(t), and X3(t) denote the densities at time t of the prey, and two predators, 
respectively; a1 > 0 denotes the growth rate; a2, a3 > 0 represent the death rate of X2, X3; 
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bii > 0, i = 1, 2, 3 are the intra-specific competition coefficient of Xi ; bij ≥ 0, i 	= j = 1, 2, 3, 
in which b12, b13 represent the capture rates, b21, b31 represent the growth from food, and b23
and b32 signify the competitions between predators (species 2 and 3); b̂ij is either positive or 
in (−bii, 0]; r is the time delay for each i, j ∈ {1, 2, 3}; (E1(t), E2(t), E3(t))


 = �
B(t) with 
B(t) = (B1(t), B2(t), B3(t))


 being a vector of independent standard Brownian motions and �
being a 3 × 3 matrix such that �
� = (σij )3×3 is a positive definite matrix. It is worth noting 
that system (5.6) is the (stochastic delay) Lotka-Volterra model with two predators competing for 
one prey, which was considered in [33]. If we switch the sign of ai or bij , i 	= j , we can obtain 
a stochastic time-delay Lotka-Volterra system with the prey and the mesopredator or intermedi-
ate predator. The case involving a superpredator or top predator, was studied in [34,67], and the 
stochastic time-delay Lotka-Volterra system with one predator and two preys was investigated in 
[23].

Our assumptions are verified for (5.6) in the first part [46, Section 5.2]. To characterize the 
extinction, first, let us consider the equation on the boundary {(0, ϕ2, ϕ3) ∈ C+ : ϕ2(s), ϕ3(s) ≥
0 ∀s ∈ [−r, 0]}. Since λi(δ

∗) = −ai − σii

2 < 0, i = 2, 3, by applying Theorem 2.1 for the space 
{(0, ϕ2, ϕ3) : ϕ2(s), ϕ3(s) ≥ 0 ∀s ∈ [−r, 0]}, we obtain that there is only one invariant probability 
measure on {(0, ϕ2, ϕ3) : ϕ2(s), ϕ3(s) ≥ 0 ∀s ∈ [−r, 0]}, which is δ∗. It indicates that without the 
prey, both predators die out.

Second, we consider the equation on the boundaries C12+ := {(ϕ1, ϕ2, 0) ∈ C+ : ϕ1(s), ϕ2(s) ≥
0 ∀s ∈ [−r, 0]} and C13+ := {(ϕ1, 0, ϕ3) ∈ C+ : ϕ1(s), ϕ3(s) ≥ 0, ∀s ∈ [−r, 0]}. If λ1(δ

∗) =
a1 − σ11

2 < 0, an application of Theorem 2.1 implies that δ∗ is the unique invariant probability 
measure on C+. If λ1(δ

∗) > 0, there is an invariant probability measure π1 on C◦
1+ := {(ϕ1, 0, 0) ∈

C+ : ϕ1(s) > 0 ∀s ∈ [−r, 0]}.
In view of Lemma 4.1, we obtain∫

C◦
1+

(
b11ϕ1(0) + b̂11ϕ1(−r)

)
π1(dϕ) = a1 − σ11

2
. (5.7)

Similar to the process of getting (5.5), we obtain from (5.7) that

∫
C◦

1+

ϕ1(0)π1(dϕ) =
∫
C◦

1+

ϕ1(−r)π1(dϕ) = a1 − σ11
2

b11 + b̂11
.

Therefore,

λi(π1) =
∫
C◦

1+

[
−ai − σii

2
+ bi1ϕ1(0) − b̂i1ϕ1(−r)

]
π1(dϕ)

= −ai − σii

2
+
(
a1 − σ11

2

)
· bi1 − b̂i1

b11 + b̂11
, i = 2,3.

If λ1(δ
∗) > 0 and λi(π1) < 0, i = 2, 3, in view of Theorem 2.1, there is no invariant probability 

measure on C◦
1i+.

By Theorem 2.1 and Theorem 2.2, we have the following classification for extinction.
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• If λ1(δ
∗) < 0 then for any initial condition φ ∈ C◦+, X1(t), X2(t), X3(t), converge to 0 almost 

surely with the exponential rates λi(δ
∗), i = 1, 2, 3, respectively.

• If λ1(δ
∗) > 0, λi(π1) < 0, i = 2, 3 then Xi(t), i = 2, 3 converge to 0 almost surely with the 

exponential rate λi(π1), i = 2, 3, respectively, and the occupation measure converges almost 
surely for any initial condition φ ∈ C◦+ to π1.

• If λ1(δ
∗) > 0, λi(π1) > 0, λj (π1i ) < 0, and λj (π1) < 0 for i, j ∈ {2, 3} and i 	= j , then Xj(t)

converges to 0 almost surely with the exponential rate λj (π1i ) and the occupation measure 
converges almost surely for any initial condition φ ∈ C◦+ to π1i .

• If λ1(δ
∗) > 0, λ2(π1) > 0, λ3(π1) > 0, λj (π1i ) < 0, λi(π1j ) > 0 for i, j ∈ {2, 3} and i 	= j , 

then Xj(t) converges to 0 almost surely with the exponential rate λj(π1i ) and the occupation 
measure converges almost surely for any initial condition φ ∈ C◦+ to π1i .

• If λ1(δ
∗) > 0, λ2(π1) > 0, λ3(π1) > 0, λ2(π13) < 0, λ3(π12) < 0, then pφ

i > 0, i = 2, 3 and 

p
φ
2 + p

φ
3 = 1, where

p
φ
i = Pφ

{
U(ω) = {π1i} and lim

t→∞
lnXi(t)

t
= λi(π1j ), i ∈ {2,3} \ {j}

}
.

The above assertions generalize the results in [33]. Moreover, if we switch the sign of ai or 
bij , i 	= j as we mentioned at the beginning of this section and modify slightly the above charac-
terization, we improve the results in [23,34,67].

Confining our analysis and setting to C12+, which describes the evolution of one predator and 
its prey, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dX1(t) = X1(t)
[
a1 − b11X1(t) − b̂11X1(t − r) − b12X2(t) − b̂12X2(t − r)

]
dt

+X1(t)dE1(t),

dX2(t) = X2(t)
[
− a2 + b21X1(t) + b̂21X1(t − r) − b22X2(t) − b̂22X2(t − r)

]
dt

+X2(t)dE2(t).

(5.8)

The above characterization can be specialized as:

• If λ1(δ
∗) < 0 then X1(t), X2(t) converge to 0 almost surely with the exponential rates λ1(δ

∗)
and λ2(δ

∗), respectively.
• If λ1(δ

∗) > 0 and λ2(π1) < 0 then X2(t) converges to 0 almost surely with the exponential 
rate λ2(π1) and the occupation measure converges to π1.

This result generalizes that of [32].

5.3. Stochastic delay replicator equation

The replicator equation, which is a deterministic monotone, non-linear, and non-innovative 
game dynamic system plays a popular and important role in evolutionary game theory. Such an 
equation was introduced in 1978 by Taylor and Jonker in [60]. Since then significant contribu-
tions have been made in biology [26,50], economics [65], and optimization and control for a 
variety of systems [7,51,53,61]. To capture the random factors in nature, the deterministic sys-
tem has been generalized to stochastic systems. This section is devoted to applying our main 
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results to stochastic delay replicator equation. The replicator dynamics for a game with n strate-
gies, involving social-type time delay (see, e.g., [1] for details of such delays) and white noise 
perturbation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) = xi(t)

(
fi(x(t − r)) − 1

X

n∑
j=1

xj (t)fj (x(t − r))

)
dt

+xi(t)

(
σidBi(t) − 1

X

n∑
j=1

σjxjdBj (t)

)
; i = 1, . . . , n,

x(s) = x0(s); t ∈ [−r,0],

(5.9)

where X is the size of the populations; xi(t) is the portion of population that has selected the 
ith strategy and the distribution of the whole population among the strategy; the fitness functions 
fi(·) : Rn+ → R, i = 1, . . . , n are the payoffs obtained by the individuals playing the ith strategy; 
r is the time delay; and x0(s) ∈ �X := {x ∈ Rn+ :∑n

i=1 xi = X} for all s ∈ [−r, 0] is the initial 
value. Some special cases of (5.9) have been studied in literature. For instance, [27,28] considered 
equation (5.9) without time delay in the case fi(·) : Rn+ → R, i = 1, . . . , n being linear mappings; 
and [1,52] studied the deterministic version of equation (5.9).

Recall that by a similar argument as in [52,65], we can show that �X remains invariant a.s. 
As a consequence, our assumptions are verified. Hence, our results in this paper (Theorem 2.1
and Theorem 2.2) hold for (5.9); see [46, Section 4.3]. We first apply our results to characterize 
the extinction for some low-dimensional systems. Consider equation (5.9) for two-dimensional 
systems. Define

CX+ := {(ϕ1, ϕ2) : ϕ1(s) + ϕ2(s) = X and ϕ1(s), ϕ2(s) ≥ 0 for all s ∈ [−r,0]},
∂CX+ := {(ϕ1, ϕ2) ∈ CX+ : ‖ϕ1‖ = 0 or ‖ϕ2‖ = 0},

CX,◦
+ := {(ϕ1, ϕ2) ∈ CX+ : ϕ1(s), ϕ2(s) > 0 for all s ∈ [−r,0]}.

In this case, it is clear that there are two invariant probability measures on the boundary ∂CX+ , 
which are δ1 and δ2 concentrating on (X, 0) and (0, X), respectively, where 0, X are understood 
to be constant functions. We have

λ1(δ2) = f1((0,X)) − f2((0,X)) − σ 2
1 + σ 2

2

2
,

λ2(δ1) = f2((X,0)) − f1((X,0)) − σ 2
1 + σ 2

2

2
.

Using Theorem 2.1, and Theorem 2.2, we have the following classification for the extinction 
of (5.9): If λ1(δ2) < 0 (resp., λ2(δ1) < 0), there is no invariant probability measure on CX,◦

+ . 
Moreover, x1(t) tends to 0 (resp., x2(t)) almost surely.

To proceed, we consider (5.9) for three-dimensional systems. We define the following sets

CX+ :=
{
(ϕ1, ϕ2, ϕ3) : ϕ1(s) + ϕ2(s) + ϕ3(s) = X and

ϕ1(s), ϕ2(s), ϕ3(s) ≥ 0 for all s ∈ [−r,0]
}
,
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∂CX+ := CX
12+ ∪ CX

23+ ∪ CX
13+,

CX
ij+ := {(ϕ1, ϕ2, ϕ3) ∈ CX+ : ‖ϕk‖ = 0, k 	= i, j}, for i 	= j ∈ {1,2,3},

CX,◦
+ := {(ϕ1, ϕ2, ϕ3) ∈ CX+ : ϕ1(s), ϕ2(s), ϕ3(s) > 0 for all s ∈ [−r,0]}.

Denote by δ1, δ2, δ3 the invariant probability measures on the boundary ∂CX+ of (5.9), concen-
trating on (X, 0, 0), (0, X, 0), and (0, 0, X), respectively. We have

λi(δ1) = fi((X,0,0)) − f1((X,0,0)) − σ 2
1 + σ 2

i

2
, i = 2,3,

λj (δ2) = fj ((0,X,0)) − f2((0,X,0)) − σ 2
2 + σ 2

j

2
, j = 1,3,

and

λk(δ3) = fk((0,0,X)) − f3((0,0,X)) − σ 2
3 + σ 2

k

2
, k = 1,2.

If maxj=1,3 λj (δ2) > 0 and maxk=1,2 λk(δ3) > 0, there is a unique invariant probability measure 
on CX

23+, denoted by π23. If maxj=1,3 λj (δ2) < 0 or maxk=1,2 λk(δ3) < 0, the invariant probabil-
ity measure on CX

23+ does not exist. If π23 exists, we have

λ1(π23) = −σ 2
1

2
+
∫

CX
23+

(
f1(ϕ) − 2Xϕ2(0)f2(ϕ) + σ 2

2 ϕ2
2(0)

X2

− 2Xϕ3(0)f3(ϕ) + σ 2
3 ϕ2

3(0)

X2

)
π23(dϕ).

By Lemma 4.1 and λ2(π23) = λ3(π23) = 0, we have

∫
CX

23+

(
2Xϕ2(0)f2(ϕ) + σ 2

2 ϕ2
2(0)

2X2 + 2Xϕ3(0)f3(ϕ) + σ 2
3 ϕ2

3(0)

2X2

)
π23(dϕ)

= σ 2
2

2
+
∫

CX
23+

f2(ϕ)π23(dϕ)

= σ 2
3

2
+
∫

CX
23+

f3(ϕ)π23(dϕ).

As a result, one has
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λ1(π23) = −σ 2
1 + σ 2

2

2
+
∫

CX
23+

(f1(ϕ) − f2(ϕ))π23(dϕ)

= −σ 2
1 + σ 2

3

2
+
∫

CX
23+

(f1(ϕ) − f3(ϕ))π23(dϕ).

The conditions to guarantee the existence of the unique invariant probability measure π12, π13 on 
the boundary CX

12+, CX
13+ are similarly obtained and λ2(π13), λ3(π12) can be computed similar to 

λ1(π23). Therefore, we have the following classification for the extinction of solution of (5.9). 
For l ∈ {1, 2, 3}, Xl(t) tends to 0 almost surely exponentially fast if one of following conditions 
holds:

• maxi 	=l λi(δl) < 0,
• maxi=2,3 λi(δ1) > 0, maxj=1,3 λj (δ2) > 0, maxk=1,2 λk(δ3) > 0 and λl(πij ) < 0, {i, j, l} =

{1, 2, 3}.

The explicit characterization of (5.9) in n-dimensional systems is more complex. However, our 
results (Theorem 2.1, and Theorem 2.2) as well as that of [46] are applicable under suitable con-
ditions. Finally, it is worth noting that if r = 0 (i.e., there is no time delay) and fi(·), i = 1, . . . , n
are linear, the characterization of the long-term behavior of (5.9) in this section is equivalent to 
the results in [27,28].

5.4. Stochastic delay epidemic SIR model

The epidemic SIR model is one of the basic building blocks of compartmental models, from 
which many infectious disease models are derived; and was first introduced by Kermack and 
McKendrick in [29,30], and are deemed effective to depict the spread of many common diseases 
with permanent immunity such as rubella, whooping cough, measles, and smallpox. The model 
consists of three compartments, S (the number of susceptible), I (the number of infectious), 
and R (the number of recovered (or immune)). Much effort has been devoted to studying the 
behavior of the SIR epidemic systems and its variants; see [13–16] and the references therein. 
In this subsection, we investigate the stochastic epidemic SIR model with time delay. First, we 
consider the equation with linear incidence rate of the following form

{
dS(t) = (a − b1S(t) − c1I (t)S(t) − c2I (t)S(t − r)) dt + S(t)dE1(t),

dI (t) = (−b2I (t) + c1I (t)S(t) + c2I (t)S(t − r)) dt + I (t)dE2(t),
(5.10)

where S(t) is the density of susceptible individuals, I (t) is the density of infected individuals, 
a > 0 is the recruitment rate of the population, bi > 0, i = 1, 2 are the death rates, ci > 0, 
i = 1, 2 are the incidence rates, r is the delayed time, (E1(t), E2(t))


 = �
B(t) with B(t) =
(B1(t), B2(t))


 being a vector of independent standard Brownian motions, and � being a 2 × 2
matrix such that �
� = (σij )2×2 is a positive definite matrix. It is well-known that the dynamics 
of recovered individuals have no effect on the disease transmission dynamics and that is why we 
only consider the dynamics of S(t), I (t) in (5.10).
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While the conditions for persistence of (5.10) were given in [46, Section 5.4], we develop the 
conditions for extinction here. First, we consider the equation on the boundary {(ϕ1, 0) : ϕ1(s) ≥
0 ∀s ∈ [−r, 0]} and let Ŝ(t) be the solution of the equation on this boundary as following

dŜ(t) = (a − b1Ŝ(t)
)
dt + Ŝ(t)dE1(t). (5.11)

Since the drift coefficient of this equation is negative if Ŝ(t) is sufficiently large and positive, 
if Ŝ(t) is sufficiently small, we can show that there is a unique invariant probability measure π
of (5.10) on C◦

1+ := {(ϕ1, 0) : ϕ1(s) > 0 ∀s ∈ [−r, 0]}. On the other hand, since λ2(δ
∗) = −b2 −

σ22

2
< 0, there is no invariant probability measure in C◦

2+ := {(0, ϕ2) : ϕ2(s) > 0; ∀s ∈ [−r, 0]}. 
We define the following threshold

λ(π) = −b2 − σ22

2
+
∫
C◦

1+

(c1ϕ1(0) + c2ϕ1(−r))π(dϕ), (5.12)

whose sign will be able to characterize the permanence and extinction. As an application of 
Lemma 4.1, we get ∫

C◦
1+

ϕ1(0)π(dϕ) = a

b1
. (5.13)

By (5.5), we have that ∫
C◦

1+

ϕ1(−r)π(dϕ) =
∫
C◦

1+

ϕ1(0)π(dϕ) = a

b1
.

Therefore, under this condition, we obtain from (5.12) and (5.13) that

λ(π) = −b2 − σ22

2
+ a(c1 + c2)

b1
.

Using the same idea and technique, it is possible to obtain similar results of Theorem 2.1, and 
Theorem 2.2. Therefore, we have the following classifications:

• If λ(π) < 0, I (t) converges to 0 almost surely with exponential rate λ(π) while S(t) tends 
to Ŝ(t).

• If λ(π) > 0, (5.10) has a unique invariant probability measure in C◦+ (follows the first part 
[46, Section 5.4]).

This characterization is equivalent to the result in [36,37].
In the above, we consider the linear incidence to make our computations be more explicit. 

The characterizations still hold for the following stochastic delay SIR epidemic model with more 
general incidence rate
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{
dS(t) = (a − b1S(t) − I (t)f1

(
S(t), S(t − r), I (t), I (t − r)

))
dt + S(t)dE1(t),

dI (t) = (−b2I (t) + I (t)f2
(
S(t), S(t − r), I (t), I (t − r)

))
dt + I (t)dE2(t),

(5.14)

where fi : R4 → R, i = 1, 2 are the incidence functions satisfying

• f1(0, 0, i1, i2) = f2(0, 0, i1, i2) = 0.
• there exists some κ ∈ (0, ∞) such that for all ϕ ∈ C+

f2
(
ϕ1(0),ϕ1(−r), ϕ2(0), ϕ2(−r)

)≤ κf1
(
ϕ1(0), ϕ1(−r), ϕ2(0), ϕ2(−r)

)
≤ κ2 (1 + |ϕ(0)| + |ϕ(−r)|) .

• f2(s1, s2, i1, i2) is non-decreasing in s1, s2 and is non-increasing in i1, i2.

It is important to mention that our conditions are verified by almost all incidence functions 
used in the literature, including linear functional response, Holling type II functional response, 
Beddington-DeAngelis functional response, etc. In the general case, the long-run behavior is al-
most completely characterized the same as the case of linear incidence rate by the threshold λ(π)

given by

λ(π) = −b2 − σ22

2
+
∫
C◦

1+

f2
(
ϕ1(0), ϕ1(−r), ϕ2(0), ϕ2(−r)

)
π(dϕ),

where ϕ = (ϕ1, ϕ2) and π is the invariant probability measure of (5.11). These results signifi-
cantly generalize and improve that of [8,38,41].

5.5. Stochastic delay chemostat model

Chemostat models, introduced by Novick and Szilard in [49], play an important role in mi-
crobiology, biotechnology, and population biology. A chemostat is a bio-reactor, in which fresh 
medium is continuously added, and culture liquid containing left-over nutrients, metabolic end 
products, and microorganisms are continuously removed at the same rate to keep a constant cul-
ture volume.

This section studies a model of n-microbial populations competing for a single nutrient in 
a chemostat, in which we take both the delayed times and the white noises into consideration. 
Consider the following system of stochastic functional differential equations⎧⎪⎨⎪⎩dS(t) =

(
1 − S(t) + aS(t − r) −

n∑
i=1

xi(t)pi(S(t))

)
dt + S(t)dE0(t),

dxi(t) = xi(t) (pi(S(t − r)) − 1) dt + xi(t)dEi(t), i = 1, . . . , n,

(5.15)

where S(t) is the concentration of nutrient at time t ; 0 ≤ a < 1 is a constant; xi(t), i =
1, . . . , n are the concentrations of the competing microbial populations; pi(S), i = 1, . . . , n
are the density-dependent uptakes of nutrient by population xi ; r is the delayed time; and 
(E0(t), . . . , En(t))


 = �
B(t) with B(t) = (B0(t), . . . , Bn(t))

 being a vector of indepen-

dent standard Brownian motions and � being a (n + 1) × (n + 1) matrix such that �
� =
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(σij )(n+1)×(n+1) is a positive definite matrix. Moreover, C := C([−r, 0], Rn+1) instead of 
C([−r, 0], Rn). While the deterministic version of (5.15) was studied with the long-time be-
havior characterized in [19,22,66], recent attention on the stochastic counterpart can be found in 
[58,59,68].

Similar to Section 5.4 as well as [46, Section 5.5], if we assume that pi : R → R, i = 1, . . . , n
satisfying non-decreasing and bounded properties and pi(0) = 0, then our Assumptions hold. 
Therefore, our results in this paper can be applied to (5.15). Before considering the higher 
dimensional systems, we consider n = 1 and 2. If n = 1, there is only one population x1
together with the nutrient S(t). Similar to Section 5.4, there is no invariant probability mea-
sure of (St , x1t ) in C◦

1+ := {(0, ϕ1) ∈ C+ : ϕ1(s) > 0, ∀s ∈ [−r, 0]}, where x1t is the memory 
segment function of x1(t). Moreover, there is a unique invariant probability measure π0 in 
C◦

0+ := {(ϕ0, 0) ∈ C+ : ϕ0(s) > 0, ∀s ∈ [−r, 0]}. Hence, it is easy to see that for any invariant 
probability measure π in ∂C+, we have

λ1(π) = λ1(π0) = −1 − σ11

2
+
∫
C◦

0+

p1(ϕ0(−r))π0(dϕ).

Therefore, our results yield the following classification.

• If λ1(π0) > 0 then (St , x1t ) admits a unique invariant probability measure in C◦+; followed 
by [46, Section 5.5].

• If λ1(π0) < 0 then x1(t) tends to 0 almost surely with exponential rate λ1(π0) while S(t)

tends to Ŝ(t), where Ŝ(t) is the solution of

dŜ(t) = (1 − Ŝ(t) + aŜ(t − r)
)
dt + Ŝ(t)dE0(t).

To proceed, we study the characterization of the longtime behavior in the case n = 2. Similar to 
the case of n = 1, there is no invariant probability measure in C◦

i+ := {(0, ϕ1, ϕ2) ∈ C+ : ∥∥ϕj

∥∥=
0, j 	= i and ϕi(s) > 0, ∀s ∈ [−r, 0]}, and there is a unique measure π0 in C◦

0+ := {(ϕ0, 0, 0) ∈
C+ : ϕ0(s) > 0, ∀s ∈ [−r, 0]}. If λi(π0) > 0, where

λi(π0) = −1 − σii

2
+
∫
C◦

0+

pi(ϕ0(−r))π0(dϕ), i = 1,2,

then there is a unique invariant probability measure π0i in C◦
0i+ := {(ϕ0, ϕ1, ϕ2) ∈ C+ : ∥∥ϕj

∥∥=
0, j 	= i and ϕ0(s), ϕi(s) > 0, ∀s ∈ [−r, 0]}. Hence, let

λj (π0i ) = −1 − σjj

2
+
∫
C◦

0+

pj (ϕ0(−r))π0i (dϕ), j 	= i.

The extinction is classified as follows.

• If λ1(π0) < 0, λ2(π0) < 0 then x1(t), x2(t) tend to 0 almost surely with exponential rate 
λ1(π0), λ2(π0), respectively, while S(t) tends to Ŝ(t), where Ŝ(t) is the solution of
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dŜ(t) = (1 − Ŝ(t) + aŜ(t − r)
)
dt + Ŝ(t)dE0(t).

• If λi(π0) > 0, λj (π0) < 0, λj (π0i ) < 0, i 	= j ∈ {1, 2} then xj (t) converges to 0 almost 
surely with exponential rate λj(π0i ) and the random occupation measure converges to π0i .

• If λ1(π0) > 0, λ2(π0) > 0, λi(π0j ) > 0, λj (π0i ) < 0, i 	= j ∈ {1, 2} then xj (t) converges to 
0 almost surely with exponential rate λj(π0i ) and the random occupation measure converges 
to π0i .

• If λ1(π0) > 0, λ2(π0) > 0, λ1(π02) < 0, λ2(π01) < 0 then qi > 0, i = 1, 2 and q1 + q2 = 1
where

qi = Pφ

{
U(ω) = {π0i} and lim

t→∞
lnXi(t)

t
= λi(π1j ), i ∈ {1,2} \ {j}

}
.

On the other hand, combining this section and [46, Section 5.5] leads to that (St , x1t , x2t ) admits 
a unique invariant probability measure in C◦+ if one of following conditions holds

• λ1(π0) > 0, λ2(π0) < 0, λ2(π01) > 0.
• λ1(π0) < 0, λ2(π0) > 0, λ1(π02) > 0.
• λ1(π0) > 0, λ2(π0) > 0, λ1(π02) > 0, λ2(π01) > 0.

For higher dimensional systems, although, it is somewhat difficult to show concretely in case 
of general functions pi(·), it is computable in certain cases. These classifications improve the 
results in [58,68].

Remark 3. In Sections 5.1-5.5, to present the main ideas without notation complication we used 
a single delay. However, the results for models with multi-delays or distributed delays can be 
obtained similarly. On the other hand, if r = 0, i.e., there is no time delay, the above results are 
consistent with and/or even improve the existing results in the literature.
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