
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 282 (2021) 184–232
www.elsevier.com/locate/jde

Stochastic Lotka-Volterra competitive reaction-diffusion 

systems perturbed by space-time white noise: Modeling 

and analysis ✩

Nhu N. Nguyen, George Yin ∗

Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA

Received 18 September 2020; revised 8 February 2021; accepted 9 February 2021

Abstract

Motivated by the traditional Lotka-Volterra competitive models, this paper proposes and analyzes a class 
of stochastic reaction-diffusion partial differential equations. In contrast to the models in the literature, the 
new formulation enables spatial dependence of the species. In addition, the noise process is allowed to 
be space-time white noise. In this work, well-posedness, regularity of solutions, existence of density, and 
existence of an invariant measure for stochastic reaction-diffusion systems with non-Lipschitz and non-
linear growth coefficients and multiplicative noise are considered. By combining the random field approach 
and infinite integration theory approach in SPDEs for mild solutions, analysis is carried out. Then this paper 
develops a Lotka-Volterra competitive system under general setting; longtime properties are studied with 
the help of newly developed tools in stochastic calculus.
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1. Introduction

Motivated by the classical Lotka-Volterra competitive model introduced in 1925 by Lotka 
[34], ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dU(t)

dt
= U(t) (m1 − a1U(t) − b1V (t)) , t ≥ 0,

dV (t)

dt
= V (t) (m2 − a2V (t) − b2U(t)) , t ≥ 0,

U(0) = U0,V (0) = V0,

(1.1)

much effort has been devoted to studying and generalizing this type of equations in different 
directions. In (1.1), U(t), V (t) are the densities of competing species at time t ; m1, m2 are the 
birth rates; a1, a2 represent the rates of self-limitation, and b1, b2 account for the rates of com-
petition. The motivation for the study comes from ecology and biology. For detailed biological 
and ecological background related to (1.1) and its variants, see [30,51].

If one takes into consideration of the spatial inhomogeneity, (1.1) can be generalized to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(t, x)

∂t
= �U(t, x) + U(t, x)(m1(x) − a1(x)U(t, x) − b1(x)V (t, x)), R+ × (0,1)

∂V (t, x)

∂t
= �V (t, x) + V (t, x)(m2(x) − a2(x)V (t, x) − b2(x)U(t, x)), R+ × (0,1)

∂U

∂x
U(t,0) = ∂U

∂x
U(t,1) = ∂U

∂x
V (t,0) = ∂U

∂x
V (t,1) = 0, t ≥ 0,

U(0, x) = U0(x),V (0, x) = V0(x), 0 < x < 1,

(1.2)
where U(t, x), V (t, x) represent the densities of species at time t and location x, mi(x), ai(x), 
bi(x), for i = 1, 2 are functions defined on [0, 1], and � is the Laplace operator. Such a model 
is the so-called reaction-diffusion equation in PDEs community and has received increasing at-
tention lately. For instant, in [9,20], the authors considered the existence and uniqueness of the 
coexistence states; the works [28,32] aimed to understand completely the dynamics of the sys-
tem; the work [29] studied small diffusion cases; the works [21–25,35] treated variants of (1.2).

Along another direction, noises are added to (1.1) to capture the random factors in the envi-
ronment. The corresponding stochastic system becomes⎧⎪⎨⎪⎩

dU(t) = U(t) (m1 − a1U(t) − b1V (t)) dt + σ1U(t)dB1(t), t ≥ 0,

dV (t) = V (t) (m2 − a2V (t) − b2U(t)) dt + σ2V (t)dB2(t), t ≥ 0,

U(0) = U0,V (0) = V0,

(1.3)

where B1(t) and B2(t) are real-valued standard Brownian motions, and σ1, σ2 are intensities of 
the noises. The system is modeled and studied under stochastic differential equations (SDEs) 
framework. Much effort has been devoted to studying (1.3) such as well-posedness, positivity of 
solution, Markov-Feller property, longtime dynamic behavior such as existence and uniqueness 
of stationary distribution, coexistence and extinction, and optimal harvesting strategy; see e.g., 
[13,14,27,38,54] and reference therein.
185



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184–232
In this work, we propose a model that captures features of both the random factors and the spa-

tial inhomogeneity. Let ∂2W1(t,x)
∂t∂x

, ∂2W2(t,x)
∂t∂x

be space-time white noises, to be defined rigorously 
in the subsequent section; mi(x), ai(x), bi(x), and σi(x), for i = 1, 2 be twice continuously 
differentiable functions in [0, 1], and suppose that mi(x), ai(x), and bi(x) are non-negative. 
Consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(t, x)

∂t
= �U(t, x) + U(t, x) (m1(x) − a1(x)U(t, x) − b1(x)V (t, x))

+σ1(x)U(t, x)
∂2W1(t, x)

∂t∂x
, 0 ≤ x ≤ 1, t ≥ 0,

∂V (t, x)

∂t
= �V (t, x) + V (t, x)(m2(x) − a2(x)V (t, x) − b2(x)U(t, x))

+σ2(x)V (t, x)
∂2W2(t, x)

∂t∂x
, 0 ≤ x ≤ 1, t ≥ 0,

∂U

∂x
U(t,0) = ∂U

∂x
U(t,1) = ∂U

∂x
V (t,0) = ∂U

∂x
V (t,1) = 0, t ≥ 0,

U(0, x) = U0(x),V (0, x) = V0(x), 0 ≤ x ≤ 1.

(1.4)

The use of Neumann boundary condition is motivated by applications in biology and ecology, 
namely, the population will not leave a finite domain.

Our results can be summarized as follows. After modeling the system as a stochastic reaction-
diffusion system perturbed by space-time white noise under a stochastic partially differential 
equation (SPDE) framework, we give a full analysis. The well-posedness of the problem (ex-
istence, uniqueness, positivity, and continuous dependence on initial data of the solution) is 
obtained first. In contrast to many existing works, we do not require the coefficients being Lip-
schitz, neither do we use linear growth condition. As a result, this part is also interesting in 
its own right from a SPDEs theory point of view. Then, the regularity of the solution is in-
vestigated. It is shown that in any compact interval not including 0, the solution satisfies the 
classical regularity, namely, Hölder continuous in the time variable with any exponent < 1/4
and Hölder continuous in the space variable with any exponent < 1/2, while on compact inter-
val containing 0, the Hölder continuity only holds with exponent < 1/2 ∧ α in space and with 
exponent < 1/4 ∧ α/2 in time provided that the initial value is α-Hölder continuous. Analytic 
and probabilistic representations of heat kernel are used in the proof. Next, using the Malliavin 
calculus, the absolute continuity with respect to Lebesgue measure of the law of the solution 
is proved and then the existence of density is obtained. The longtime behavior is also stud-
ied. We prove the existence of an invariant measure. Then, we consider an important problem 
in biology and ecology, namely, the coexistence and the extinction. Some ideas and methods 
for the study of this longtime property are introduced and a first attempt is given by using the 
newly developed mild stochastic calculus. An overview of the results, ideas, and methods of this 
point in other (simpler) frameworks and the difficulties in our own system are also discussed 
carefully. Finally, we extend our results to high dimensional setting by injecting “color” (or cor-
relation) into the space-time white noise for the trade off of the regularity of the noise and the 
dimension of space. The noise driving the equation in higher dimensional space will be white 
in time and colored in space. Nevertheless, one need not require the use of finite-trace covari-
ance.

Regarding the novelty, this paper is one of the first works on modeling and analysis of the 
competitive models in biological system when both the spatial inhomogeneity and the random 
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noises are taken into consideration. Note that the systems in SPDEs setting cannot be investigated 
by simply combining SDEs and PDEs. For example, the stochastic integral with respect to space-
time white noise requires integrating over the time and space variables simultaneously. Roughly, 
if we freeze the time, it looks like a Bochner integral while if the space variable is frozen, it 
turns out to be an integral in the Itô sense. However, putting them together will be different from 
considering and analyzing each of them separately. As a result, the analysis is much difficult 
compared with the existing results in either SDEs or PDEs setting.

Our work contributes to both the development of stochastic reaction-diffusion equations and 
particular applications to Lotka-Volterra systems. We consider well-posedness of the problem, 
regularity of the solutions, existence of density, existence of an invariant measure for a stochastic 
reaction-diffusion system with non-Lipschitz and non-linear growth coefficients and multiplica-
tive noise. Moreover, we use a unified approach by combining the random field approach and 
the infinite integration theory approach in SPDEs for mild solutions. Each of the approaches has 
its own advantage and is suitable for different purposes. From an application point of view, this 
paper models and analyzes the Lotka-Volterra competitive system in a more general setting. The 
longtime properties are also studied with the help of newly developed tools in stochastic calculus. 
We hope this work will open up a new window for studying biological systems as well as the 
applications of SPDEs in mathematical biology.

The rest of paper is organized as follows. Section 2 provides the formulation of our prob-
lem. The well-posedness of the problem is given in Section 3 while Section 4 is devoted to the 
regularity of the solution. The existence of the density of the law of the solution is obtained in 
Section 5. Section 6 considers the existence of an invariant measure. Section 7 is devoted to the 
coexistence and extinction in the competitive model. We extend our results to higher dimension 
in Section 8. Section 9 concludes our paper. Finally, an appendix containing some notation and 
results together with relevant literature is provided at the end of the paper to help the reading, 
which includes infinite-dimensional integration theory, random field approach, equivalence of 
the two different approaches, and the Malliavin calculus.

2. Formulation

The driving noise we consider has two parameters, space and time. There are several ways 
to construct stochastic partial differential equations (SPDEs) with respect to such noises. The 
theory of SPDEs was developed based on the random field approach by Walsh in [57], and was 
dealt with using stochastic evolution in Hilbert space by Da Prato and Zabczyk in [18]. In the 
results developed by Walsh, stochastic integrals are defined with respect to martingale measures, 
whereas in the work of Da Prato and Zabczyk, stochastic integrals are taken with respect to 
Hilbert space-valued Wiener processes. These two approaches lead to the developments of two 
distinct schools of study for SPDEs, both of which have advantages in their own rights.

In this paper, we prove that the solutions in the two approaches for the systems that we are 
interested in are equivalent. Then we treat the solution in each sense exchangeably whichever 
is more convenient for us under different scenarios. Unifying and using both approaches is one 
of our main ideas here and allows us to give a full analysis of the systems of interest. For easy 
references on the aforementioned approaches, we collect some notation and preliminary results 
in the appendix.

To proceed, let us formulate our problem. Let L2((0, 1), R) be the Hilbert space with usual 
inner product and C([0, 1], R) be the Banach space of continuous functions with the sup-norm. 
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Denote by H = L2((0, 1), R2) and E = C([0, 1], R2) the Hilbert space and Banach space, re-
spectively, endowed with the inner product and the norm as follows

〈h,g〉H = 〈(h1, h2), (g1, g2)〉H :=
2∑

i=1

〈hi, gi〉L2((0,1),R),

and

|u|E = |(u1, u2)|E := sup
x∈[0,1]

√
u2

1(x) + u2
2(x).

Let 
{
�, F, {Ft }t≥0, P

}
be a complete probability space and Lp(�; C([0, T ], E)) (resp. 

Lp(�; C([0, T ], H))) be the subspace of predicable process u, which take values in C([0, T ], E)

(resp. C([0, T ], H)) a.s. with the norm

|u|pLt,p
:= E sup

s∈[0,t]
|u(s)|pE , (resp. |u|p

Lt,p(H) := E sup
s∈[0,t]

|u(s)|pH ).

For ε > 0, p ≥ 1, denote by Wε,p((0, 1), R2) the Sobolev-Slobodeckij space (the Sobolev space 
with non-integer exponent) endowed with the norm

|u|ε,p := |u|Lp((0,1),R2) +
2∑

i=1

ˆ

(0,1)×(0,1)

|ui(x) − ui(y)|p
|x − y|εp+1 dxdy.

Neumann heat kernel and Neumann heat semi-group. Next, we denote by Gt(x, y) the fun-
damental solution of the heat equation on R+ × (0, 1) with the Neumann boundary condition. It 
is well known that Gt(x, y) has an explicit form as follows

Gt(x, y) = 1√
4πt

∞∑
n=−∞

[
exp

(
− (y − x − 2n)2

4t

)
+ exp

(
− (y + x − 2n)2

4t

)]
.

We recall the following properties of the Neumann heat kernel; see e.g., [1,57].

• There are some finite constants c and c′ such that

cGt−s(x, y) ≤ 1√
2π(t − s)

exp

(
−|x − y|2

2(t − s)

)
≤ c′Gt−s(x, y), (2.1)

where

1√
2π(t − s)

exp

(
−|x − y|2

2(t − s)

)
is the heat kernel.
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• For each q < 3, T > 0, one has

sup
(t,x)∈[0,T ]×[0,1]

tˆ

0

1ˆ

0

G
q
t−s(x, y)dyds < ∞. (2.2)

Moreover, let et�N be a semigroup in L2((0, 1), R) defined by

(
et�N u

)
(x) :=

1ˆ

0

Gt(x, y)u(y)dy.

We recall some properties of this semigroup as follows; see [6, Section 2.1] for more details.

• For any t > 0, ε > 0, p ≥ 1, et�N maps Lp((0, 1), R) into Wε,p((0, 1), R) and∣∣et�N u
∣∣
ε,p

≤ c(t ∧ 1)−ε/2|u|Lp((0,1),R), ∀u ∈ Lp((0,1),R), (2.3)

for some constant c independent of p.
• There is a constant c, independent of u such that

|et�N u|C([0,1],R) ≤ c|u|C([0,1],R), ∀u ∈ C([0,1],R). (2.4)

Moreover, we often use the notation et�N u for u = (u1, u2), in the following definition:

et�N u := (
et�N u1, e

t�N u2
)
. (2.5)

For simplicity of notation, in the remaining of the paper, et�N u with u being a function taking 
R2 values, should be understood as in (2.5).

Space-time white driving noise. Assume that {β1,k(t)}∞k=1, and {β2,i (t)}∞k=1 are two sequences 
of independent {Ft }t≥0-adapted one-dimensional standard Wiener processes. Now, let {ek}∞k=1 be 
a complete orthonormal system in L2((0, 1), R) including eigenfunctions of Neumann Laplace 
operator in [0, 1]. It is seen that they are uniformly bounded. That is,

sup
k∈N

sup
x∈[0,1]

|ek(x)| < ∞.

We define the standard cylindrical Q-Winner processes Wi(t), i = 1, 2 as follows

Wi(t) =
∞∑

k=1

βk,i(t)ek, i = 1,2.

In higher dimension, we will need to use colored noise in space to obtain more regularity but do 
not need to require it be a finite-trace Q-Wiener process. The detail is discussed in Section 8.
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Definition of solution. Now, we define a mild solution of (1.4) as a process

{Z(t, x) := (U(t, x),V (t, x)) : t ≥ 0, x ∈ (0,1)}

satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t, x) =
1ˆ

0

Gt(x, y)U0(y)dy

+
tˆ

0

1ˆ

0

Gt−s(x, y)U(s, y) (m1(y) − a1(y)U(s, y) − b1(y)V (s, y)) dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)σ1(y)U(s, y)W1(ds, dy),

V (t, x) =
1ˆ

0

Gt(x, y)V0(y)dy

+
tˆ

0

1ˆ

0

Gt−s(x, y)V (s, y) (m2(y) − a2(y)V (s, y) − b2(y)U(s, y)) dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)σ2(y)V (s, y)W2(ds, dy),

(2.6)

where the stochastic integrals are in Walsh’s sense with respect to the corresponding Brownian 
sheets of W1(t), W2(t) (denoted by W1(t, y), W2(t, y) for simplicity of notation) as in Sec-
tion 10.2 and 10.3; or satisfying the following stochastic integral equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t) = et�N U0 +
tˆ

0

e(t−s)�N U(s) (m1 − a1U(s) − b1V (s)) ds

+
tˆ

0

e(t−s)�N σ1U(s)dW1(s),

V (t) = et�N V0 +
tˆ

0

e(t−s)�N V (s) (m2 − a2V (s) − b2U(s)) ds

+
tˆ

0

e(t−s)�N σ2V (s)dW2(s),

(2.7)

where the stochastic integrals, in which σ1U(s) and σ2V (s) as multiplication operators, are de-
fined as in infinite-dimensional integration theory in Section 10.1 and U(t) = U(t, x), V (t) =
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V (t, x), mi = mi(x), ai = ai(x), bi = bi(x), σi = σi(x) (i = 1, 2) are understood as elements in 
a Hilbert space L2((0, 1), R).

As we discussed in Section 10.3, these solutions (in the sense of (2.6) and of (2.7)) are equiv-
alent if one of them exists uniquely and has continuous version and finite moment (it will be 
shown in Section 3). Because of this equivalence, we will use these forms exchangeably de-
pending on our purposes. To prove the existence and uniqueness of the solutions, to examine 
their longtime behavior, or to obtain estimates in functional spaces, the solution in the sense of 
infinite-dimensional theory (2.7) will be used. To investigate the regularity of solution and its 
distribution or to estimate pointwise, we use the solution in the sense of random field approach 
(2.6).

In the rest of paper, we often denote the functionals F1(U, V ), F2(U, V ) as the drift terms 
of (1.4). For u(x), v(x) ∈ L2((0, 1), R), we say u ≥ 0 if u(x) ≥ 0 almost everywhere x ∈ (0, 1); 
and u ≥ v if u(x) ≥ v(x) almost everywhere x ∈ (0, 1). Since we are treating a system motivated 
from ecological system and mathematical biology, we are only interested in “non-negative mild 
solution”, i.e., the mild solution (U(t), V (t)) satisfying U(t) ≥ 0 and V (t) ≥ 0 for all t ≥ 0
a.s. Moreover, operations with respect to vectors are understood in the usual sense although 

we will often write them in row instead of in column because of the simplicity of notations. 
Throughout this paper, the letter c denotes a generic finite positive constant whose values may 
change in different occurrences. We will write the dependence of the constants on parameters 
explicitly when it is needed.

3. Well-posedness

Regularity of stochastic integral. To start, it is similar to [6], we need the following proposition, 
which shows the regularity of the stochastic integral.

Proposition 3.1. Denote by γ the mapping

γ (u)(t) :=
⎛⎝ tˆ

0

e(t−s)�N σ1u1(s)dW1(s);
tˆ

0

e(t−s)�N σ2u2(s)dW2(s)

⎞⎠ , (3.1)

for u = (u1, u2) ∈ Lp(�; C([0, T ], E)). There is p∗ such that for all p ≥ p∗, γ maps 
Lp(�; C([0, T ], E)) into itself and for any u, v ∈ Lp(�; C([0, T ], E))

|γ (u) − γ (v)|LT ,p ≤ cp(T )|u − v|LT,p
, (3.2)

for some function cp(T ) satisfying cp(T ) ↓ 0 as T ↓ 0.

Proof. Let p∗ be sufficiently large such that for any p ≥ p∗, we can choose simultaneously 
α, ε > 0 satisfying

1
< α <

1
and

1
< ε < 2

(
α − 1 )

. (3.3)

p 4 p p
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By a factorization argument (see e.g., [18, Theorem 8.3]), one has

γ (u)(t) − γ (v)(t) = sinπα

π

tˆ

0

(t − s)α−1e(t−s)�N Yα(u, v)(s)ds, (3.4)

where

Yα(u, v)(s) :=
sˆ

0

(s − r)−αe(s−r)�N (u(r) − v(r))σdW(r),

and we shortened the notation by convention that for u = (u1, u2)

tˆ

0

e(t−s)�N u(s)σdW(s)

:=
( tˆ

0

e(t−s)�N u1(s)σ1dW1(s),

tˆ

0

e(t−s)�N u2(s)σ2dW2(s)
)
.

Applying (2.3) and Höder’s inequality to (3.4) yields that for any ε < 2(α − 1/p)

|γ (u)(t) − γ (v)(t)|ε,p

≤ cα

tˆ

0

((t − s) ∧ 1)α−1−ε/2|Yα(u, v)(s)|Lp((0,1),R2)ds

≤ cα

( tˆ

0

(s ∧ 1)
p

p−1 (α−1−ε/2)
ds
) p−1

p
( tˆ

0

|Yα(u, v)(s)|p
Lp((0,1),R2)

ds
) 1

p
.

(3.5)

We proceed to estimate Yα(u, v)(s). First, let

Y 1
α (u, v)(s) :=

sˆ

0

(s − r)−αe(s−r)�N (u1(r) − v1(r))σ1dW1(r).

It is noted that the stochastic convolution 
´ s

0 e(s−r)�N �(r)dW(r) (for some process � such that 
the integral is well defined) is not a martingale with respect to s in general. However, if we 
frozen s and consider the sequence 

´ s′
0 e(s−r)�N �(r)dW(r) with respect to s′ ∈ [0, s], then it is 

a martingale. Taking this idea, by Burkholder-Davis-Gundy inequality, we get
192



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184–232
E|Y 1
α (u, v)(s, x)|p

≤ cE

( sˆ

0

(s − r)−2α
∞∑

k=1

( 1ˆ

0

Gs−r (x, y)(u1(r, y) − v1(r, y))ek(y)dy
)2

dr

) p
2

= cE

( sˆ

0

(s − r)−2α
∞∑

k=1

〈Gs−r (x, ·)(u1(r, ·) − v1(r, ·)), ek(·)〉2
L2((0,1))

dr

) p
2

= cE

( sˆ

0

(s − r)−2α |Gs−r (x, ·)(u1(r, ·) − v1(r, ·))|2L2((0,1))
dr

) p
2

(3.6)

because of Parseval’s identity. Moreover,∣∣Gs−r (x, ·)(u1(r, ·) − u2(r, ·))
∣∣2
L2((0,1))

≤ |u1(r) − v1(r)|2C([0,1],R)

1ˆ

0

G2
s−r (x, y)dy

≤ c|u1(r) − v1(r)|2C([0,1],R)(s − r)−
1
2 (due to (2.1)).

(3.7)

The second component E|Y 2
α (u, v)(s, x)|p is estimated similarly. Hence, combining (3.6) and 

(3.7) allows us to obtain that

E|Yα(u, v)(s, x)|p ≤ c|u − v|pLs,p

⎛⎝ sˆ

0

(s − r)−(2α+ 1
2 )dr

⎞⎠
p
2

. (3.8)

By the Sobolev embedding theorem, Wε,p((0, 1)) is embedded into C([0, 1]) if ε > 1/p. Hence, 
we deduce from (3.5) and (3.8) that γ maps Lp(�; C([0, T ], E)) into itself, and

|γ (u) − γ (v)|Lt,p ≤ cp(t)|u − v|Lt,p ,

where

cp(t) = cα

( tˆ

0

(s ∧ 1)
p

p−1 (α−1−ε/2)
ds
) p−1

p
( tˆ

0

( sˆ

0

(s − r)−(2α+ 1
2 )dr

) p
2
ds
) 1

p

satisfying cp(t) ↓ 0 as t ↓ 0 due to (3.3). �
Existence and uniqueness of solutions. Since the coefficients are non-Lipschitz and non-linear 
growth, the existence and uniqueness of the mild solution are not obvious as usual. Although 
the existence of the mild solution of stochastic reaction-diffusion equations with non-Lipsschitz 
terms has been obtained in [6], we cannot apply the results in this paper because the coefficients 
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in [6] are required to satisfy either some suitable growth conditions [6, Hypothesis 4 and Theorem 
5.3] or condition [6, (5.17)]. That is, either the drift term has growth rate of power m (for some 
m > 0) resulting in the diffusion term having growth rate of at most power 1

m
or the drift decays 

outside large balls, which are needed to guarantee the (uniform) boundedness of the sequence of 
truncated solutions. These conditions are not satisfied in our model since the drift has polynomial 
growth of degree 2, while the diffusion term has linear growth. Moreover, the drift term in our 
own system only satisfies [6, (5.17)] if we assume further conditions such as a1(x), a2(x) are 
uniformly bounded below by positive numbers; see Section 6.

Given the problem mentioned above, we proceed as follows. We use the truncation method 
as in [6] to truncate the coefficients in compact balls so that it is Lipschitz continuous and linear 
growth, and we define the solution using the truncation. The non-negativity of truncated solu-
tions will be obtained in the next step. Then, the uniform boundedness of sequence of truncated 
solutions is obtained by using the idea of “ignoring negative terms in the drift”. The detail is in 
the next Theorem.

Theorem 3.1. For any initial data 0 ≤ U0, V0 with (U0, V0) ∈ E, there exists a unique mild 
solution Z(t) = (U(t), V (t)) of (2.7) in Lp(�; C([0, T ], E)) for any T > 0, p ≥ 1. Moreover, 
U(t), V (t) ≥ 0, ∀t ≥ 0 a.s.

Proof. First, we rewrite the coefficients by defining

f1(x,u, v) = u
(
m1(x) − a1(x)u − b1(x)v

)
,

f2(x,u, v) = v
(
m2(x) − a2(x)v − b2(x)u

)
,

where fi : [0, 1] ×R ×R → R. For each n ∈N , i = 1, 2, we define

fn,i(x,u, v) :=
⎧⎨⎩fi(x,u, v) if |(u, v)|R2 ≤ n,

fi

(
x,

nu

|(u, v)|R2
,

nv

|(u, v)|R2

)
if |(u, v)|R2 > n.

For each n, fn(x, ·, ·) = (
fn,1(x, ·, ·), fn,2(x, ·, ·)) :R2 → R2 is Lipschitz continuous, uniformly 

with respect to x ∈ [0, 1], so that the composition operator Fn(z) associated to fn (with z(x) =
(u(x), v(x))) defined by

Fn(z)(x) =: (Fn,1(z)(x),Fn,2(z)(x)
) := (

fn,1(x, z(x)), fn,2(x, z(x))
)
, x ∈ [0,1],

is Lipschitz continuous in both L2((0, 1), R2) and C([0, 1], R2).
We proceed to consider the following problem

dZn(t) = [
�NZn(t) + Fn(Zn(t))

]
dt + σZn(t)dW(t), Zn(0) = (U0,V0), (3.9)

where Zn(t) =
(
Un(t), Vn(t)

)
, �NZn(t) :=

(
�NUn(t), �NVn(t)

)
, and �N is the Laplacian to-

gether with the Neumann boundary condition and

σZn(t)dW(t) := (
σ1Un(t)dW1(t), σ2Vn(t)dW2(t)

)
.
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Lemma 3.1. For any initial condition (U0, V0) ∈ E, (3.9) has a unique mild solution; the solution 
is in Lp(�; C([0, T ], E)) for any p ≥ p∗ and T > 0.

Proof. Since the coefficients in (3.9) are Lipschitz continuous and because of Proposition 3.1, 
by contraction mapping argument [45, Proof of Theorem 3.1] or [18], we obtain that equation 
(3.9) admits a unique mild solution Zn(t) = (Un(t), Vn(t)) ∈ Lp(�; C([0, T0], E)) for some 
sufficiently small T0. Therefore, for any finite T > 0, there is a unique mild solution of (3.9) in 
Lp(�; C([0, T ], E)) by repeating the arguments in [T0, 2T0], [2T0, 3T0], and so on. �

Next, we prove the non-negativity of Un(t), Vn(t).

Lemma 3.2. For any initial condition 0 ≤ U0, V0, (U0, V0) ∈ E, one has Un(t), Vn(t) ≥ 0, ∀t ∈
[0, T ] a.s.

Proof. The proof is similar to the proof of [45, Lemma 3.1] or [39, Lemma 3.2]. �
We are in a position to show that the sequence {Zn}∞n=1 is uniformly bounded. The result is in 

the following lemma.

Lemma 3.3. For all n ∈N ,

E sup
s∈[0,t]

|Zn(s)|pE ≤ cp(t)
(
1 + |Z0|pE

)
, (3.10)

where cp(t) is a positive constant depending on p and t , but independent of n.

Proof. By the definition of mild solution, we have

Un(t)(x) = (
et�N U0

)
(x) +

⎛⎝ tˆ

0

e(t−s)�N Fn,1(Un(s),Vn(s))ds

⎞⎠ (x) + WUn(t)(x),

where WUn(t) :=
´ t

0 e(t−s)�N σ1Un(s)dW1(s). Since et�N is positivity preserving and Un(t), 
Vn(t) are non-negative, by definition of Fn,1 and (2.4), we obtain

|Un(t)|C([0,1],R)

= sup
x∈[0,1]

[ (
et�N U0

)
(x) +

⎛⎝ tˆ

0

e(t−s)�N Fn,1(Un(s),Vn(s))ds

⎞⎠ (x) + WUn(t)(x)
]

≤ sup
x∈[0,1]

[ (
et�N U0

)
(x) +

⎛⎝ tˆ

0

e(t−s)�N Un(s)m1ds

⎞⎠ (x) + WUn(t)(x)
]

≤ c(t)
(∣∣U0

∣∣
C([0,1],R)

+
tˆ ∣∣∣Un(s)

∣∣∣
C([0,1],R)

ds +
∣∣∣WUn(t)

∣∣∣
C([0,1],R)

)
,

(3.11)
0
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where c(t) is a constant depending only on t and independent of n.
There is a small t0 > 0 such that

c
γ
p(t0)c0(t0) <

1

2
,

where cγ
p(t0) is the constant in (3.2) in Proposition 3.1 and c0(t0) is the constant in the last line 

of (3.11). Hence, we obtain from (3.11) and Proposition 3.1 that

E sup
s∈[0,t0]

|Zn(s)|pE ≤ cp(t0)
(

|Z0|pE +
t0ˆ

0

E sup
r∈[0,s]

∣∣∣Zn(r)

∣∣∣p
E
ds
)
. (3.12)

Therefore, Gronwall’s inequality implies that

E sup
s∈[0,t0]

|Zn(s)|pE ≤ cp(t0)
(
1 + |Z0|pE

)
,

for some constant cp(t0), independent of n. To proceed, we can repeat the same arguments in the 
intervals [t0, 2t0], [2t0, 3t0], and so on. Thus the Lemma is proved. �
Completion of the proof of Theorem 3.1. At this stage, we are able to define the solution using 
the truncation [6] as follows. For any n ∈N , we define

ζn := inf{t ≥ 0 : |Zn(t)|E ≥ n}, (3.13)

with the usual convention that inf∅ = ∞, and define ζ = supn∈N ζn. Then we have

P {ζ < ∞} = lim
T →∞P {ζ < T },

and for each T ≥ 0,

P {ζ ≤ T } = lim
n→∞P {ζn ≤ T }.

For any fixed n ∈N and T ≥ 0, it follows from Lemma 3.3 that

P {ζn ≤ T } = P
{

sup
t∈[0,T ]

|Zn(t)|pE ≥ np
}

≤ 1

np
E sup

t∈[0,T ]
|Zn(t)|pE ≤ cp(T )

(
1 + |Z0|pE

)
np

.

It leads to that P {ζn ≤ T } goes to zero as n → ∞ so P {ζ = ∞} = 1. Hence, for any t ≥ 0, and 
ω ∈ {ζ = ∞}, there exists an n = n(ω) ∈ N such that t ≤ ζn(ω). Thus we can define

Z(t)(ω) := Zn(t)(ω). (3.14)
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We need to show that it is well defined, i.e., for any t ≤ ζn ∧ ζm, Zn(t) = Zm(t) a.s. This is 
because of the definitions of truncated coefficients and stopping times ζn, ζm. The details of this 
argument can be found in [6, Theorem 5.3].

Note that the process Z(t) = (U(t), V (t)) defined above is a mild solution of (1.4). Indeed, 
for any t ≥ 0, ω ∈ {ζ = ∞}, there exists an n ∈N such that t ≤ ζn and

Z(t) = Zn(t) = etAZ0 +
tˆ

0

e(t−s)AFn(Zn(s))ds + WZn(t)

= etAZ0 +
tˆ

0

e(t−s)AF (Z(s))ds + WZ(t),

where WZn(t) := (WUn(t), WVn(t)) and WZ(t) = (WU(t), WV (t)). Moreover, if there exists an-
other solution Ẑ(t) of (1.4), it is not difficult to obtain that

Z(t ∧ ζn) = Ẑ(t ∧ ζn), ∀n ∈N, t ≥ 0.

Since ζn → ∞ as n → ∞ a.s., we get Z(t) = Ẑ(t). So, the solution is unique. Finally, for any 
p ≥ 1, T > 0,

sup
t∈[0,T ]

|Z(t)|pE = lim
n→∞ sup

t∈[0,T ]
|Z(t)|pE 1{T ≤ζn} = lim

n→∞ sup
t∈[0,T ]

|Zn(t)|pE 1{T ≤ζn}.

Hence, by the boundedness of Zn(t) in Lemma 3.3, one has Z(t) ∈ Lp(�; C([0, T ], E)). As 
a result, we obtain that equation (1.4) admits a unique mild solution Z(t) = (U(t), V (t)) ∈
Lp(�; C([0, T ], E)). The non-negativity of U(t), V (t) follows from that of Un(t), Vn(t). �
Continuous dependence on initial data. To proceed, we prove that the solution depends con-
tinuously on initial data, which is stated in the following Proposition. This property plays an 
important role in studying the semigroup associated with the solution and its Feller property, 
which will be investigated in Section 6.

Proposition 3.2. The solution given in Theorem 3.1 depends continuously on initial data in 
the sense that for any T > 0, p ≥ 1 the map z ∈ E+ := {z = (u, v) ∈ E : u, v ≥ 0} �→ Zz ∈
Lp(�; C([0, T ], E)), (where Zz(t) is the solution of (1.4) with initial data z) is continuous, 
uniformly on bounded sets of E+.

Proof. With the help of (3.10), the proof is similar to [6, Proposition 5.6]. Thus we provide a 
sketch of the main ideas only. Let Zz1(t), Zz2(t) and Zz1

n (t), Zz2
n (t) be the solutions of (1.4) and 

(3.9) with initial data Z(0) = Zn(0) = z1 and Z(0) = Zn(0) = z2, respectively. As in the proof 
of the first part, because of the Lipschitz continuity of Fn, it is easy to obtain that∣∣Zz1

n − Zz2
n

∣∣p
LT,p

≤ cn,p(T ) |z1 − z2|pE . (3.15)

Consider the stopping times ζ z1
n and ζ z2

n as in (3.13) corresponding to initial values z1, z2, re-
spectively, we have
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∣∣Zz1 − Zz2
∣∣p
LT,p

≤ ∣∣Zz1
n − Zz2

n

∣∣p
LT,p

+ cp

(
1 + ∣∣Zz1

∣∣p
LT,2p

+ ∣∣Zz2
∣∣p
LT,2p

)(
P {ζ z1

n ∧ ζ z2
n ≤ T })1/2

.
(3.16)

Moreover, it follows from (3.10) that

P {ζ z1
n ∧ ζ z2

n ≤ T } ≤ c(T )

n2

(
1 + |z1|2E + |z2|2E

)
.

Therefore, by applying (3.10) again, we obtain from (3.16) and (3.15) that

∣∣Zz1 − Zz2
∣∣p
LT,p

≤ cn,p(T ) |z1 − z2|pE + c(T )

n

(
1 + |z1|p+1

E + |z2|p+1
E

)
. (3.17)

Now, for any z1, z2 in a bounded set of E+ and arbitrary ε > 0, we first find n ∈N such that

c(T )

n

(
1 + |z1|p+1

E + |z2|p+1
E

)
<

ε

2
,

where c(T ) is the constant in (3.17). Let 0 < δ < 1 be such that

cn,p(T ) |z1 − z2|pE <
ε

2
whenever |z1 − z2|E < δ,

where cn,p(T ) is the constant in (3.17) corresponding to n. Therefore, continuous dependence of 
the solution on initial data is proved. �
Positivity. We have obtained that the solutions are non-negative provided the initial data are non-
negative. In fact, we expect that the solution to be positive under weak conditions on positivity of 
the initial data. This property is also interesting in both SPDEs theory and different applications. 
Moreover, the results and techniques will also be used to examine the existence of the density (of 
the law of solution) in Section 5. We have the following Proposition.

Proposition 3.3. Suppose (U0, V0) ∈ E such that U0, V0 ≥ 0 but not identical to 0. Then, 
U(t), V (t) > 0, ∀t > 0; a.s.

Proof. Since U(t), V (t) is continuous a.s., it suffices to prove that for any fixed t , U(t), V (t) > 0
a.s. We use truncation schemes as in Theorem 3.1. As in [36, Theorem 2] or [47, Proposition 3.1], 
we obtain the positivity of Un(t), Vn(t), i.e., for any t > 0, Un(t) and Vn(t) > 0 a.s. Let t > 0
be fixed but otherwise arbitrary. Since there are countable number of truncated equations, the set 
in which the positive property does not hold for some truncated solution is a null set. Therefore, 
because of the definitions of U(t), V (t) and Un(t), Vn(t), one can see that outside a null set, 
there is an n = n(ω) such that U(t) = Un(t), V (t) = Vn(t). So, the positivity of U(t), V (t)

follows from the positivity of Un(t), Vn(t). �
Discussion on initial condition. To close this section, we discuss briefly conditions on the initial 
data for the existence and uniqueness of the mild solution. In fact, the initial values are required 
to be in E, the space of continuous functions to guarantee the well-posedness of the problem in 
E. If one only wants to obtain the well-posedness in the space of square integrable function H , 
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the required continuity of initial condition is not needed. Let us state this fact in the following 
theorem.

Theorem 3.2. For any initial data 0 ≤ U0, V0, (U0, V0) ∈ L∞((0, 1), R2), there exists a unique 
mild solution Z(t) = (U(t), V (t)) of (2.7) belonging to Lp(�; C([0, T ], H)) for any T > 0, p ≥
1. The solution is non-negative, i.e., U(t), V (t) ≥ 0 for any t ≥ 0 a.s. Moreover, the solution 
depends continuously on the initial data.

Proof. The proof of this Theorem is the same as that of Theorem 3.1. The truncation functions 
are defined first and then the sequence of truncated solutions are obtained. We need only take 
care the uniform boundedness of the sequence of truncated solutions. By the same arguments as 
that of Lemma 3.3, we have the following Lemma.

Lemma 3.4. For all n ∈N then

E sup
s∈[0,t]

|Zn(s)|pL∞((0,1),R2)
≤ cp(t)

(
1 + |Z0|pL∞((0,1),R2)

)
,

where cp(t) is a positive constant depending on p and t but is independent of n.

With this boundedness, we can mimic the remaining proof of Theorem 3.1 to obtain the de-
sired results. �
Remark 1. One may expect that to obtain the well-posedness in H , the initial condition Z0
is required only to be in H . However, this does not seem possible to us now. The truncation 
process may be unavoidable in non-Lipschitz cases. Then, the uniform boundedness of sequence 
of truncated solutions in L∞((0, 1), R2) is needed to guarantee the solution to be well defined. 
The uniform boundedness in H is not enough and thus, the initial conditions need to be almost 
everywhere bounded.

4. Regularity of solution

In Section 3, we have proved the existence and uniqueness of the solution belonging to the 
space of continuous functions. In this section, we obtain additional regularities of the solution.

Hölder continuity on t > 0. We consider the Hölder continuity of the solution on intervals 
excluding 0 first. On these intervals, the solution satisfies the classical regularity, namely, Hölder 
continuity with exponent < 1/2 in space and exponent < 1/4 in time.

Theorem 4.1. Let Z(t) be the solution of (1.4) with initial value Z0 = (U0, V0) ∈ E, U0, V0 ≥ 0. 
On compact set of {t > 0}, the function Z(t, x) is Hölder continuous in space with any exponent 
< 1

2 and Hölder continuous in time with any exponent < 1
4 . That is, for any 0 < t0 < T < ∞, 

and β1 ∈ (0, 1/2), β2 ∈ (0, 1/4), there is a finite random variable CH = CH (t0, T , β1, β2) a.s. 
such that

|Z(t, x) − Z(s, y)| ≤ CH

(|x − y|β1 + |t − s|β2
)
, ∀x, y ∈ [0,1], s, t ∈ [t0, T ] a.s.
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We need the following auxiliary results to prove Theorem 4.1.

Proposition 4.1. (Kolmogov’s test; see e.g., [18, Theorem 3.5]) Let O ⊂ Rd be a bounded do-
main. There are C, δ, and ε > 0 such that

E |X(ξ) − X(η)|δ ≤ C|ξ − η|d+ε.

Then X(·) has a Hölder continuous modification (with any exponent < ε/δ).

Lemma 4.1. We have the following basic property of Neumann heat kernel. For any 0 < s < t <

T , x, y ∈ [0, 1], one has

1ˆ

0

(
Gt(x, ξ) − Gt(y, ξ)

)2
dξ ≤ C|x − y|2

t
3
2

, (4.1)

tˆ

0

⎛⎝ 1ˆ

0

(
Gs(x, ξ) − Gs(y, ξ)

)2
dξ

⎞⎠ds ≤ C|x − y|, (4.2)

tˆ

s

⎛⎝ 1ˆ

0

G2
t−r (x, ξ)dξ

⎞⎠dr ≤ C|t − s| 1
2 , (4.3)

sˆ

0

1ˆ

0

(
Gt−r (x, ξ) − Gs−r (x, ξ)

)2
dξdr ≤ C|t − s| 1

2 . (4.4)

Moreover, for any 0 < T1 < T2, there is a C = C(T1, T2) such that

1ˆ

0

(Gt (x, ξ) − Gs(x, ξ))2 dξ ≤ C|t − s| 1
2 , ∀s, t ∈ [T1, T2], x ∈ [0,1]. (4.5)

Proof. The proof is standard and can be found in [57]. For example, one can obtain these results 
by using the eigenfunction expansions [57] of Gt(x, y) in the form

1 +
∞∑

n=1

2e−n2π2t cos(nπx) cos(nπy).

Therefore, we have

1ˆ (
Gt(x, ξ) − Gt(y, ξ)

)2
dξ
0
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=
∞∑

n=1

2e−2n2π2t | cos(nπx) − cos(nπy)|2, (due to Parseval’s identity)

(4.6)

≤ C

∞∑
n=1

e−2n2π2t
(

4 ∧ n2|x − y|2
)

≤ C

∞̂

1

e−tξ2
(

4 ∧ ξ2|x − y|2
)

dξ

≤ C|x − y|2
∞̂

1

e−tξ2
ξ2dξ ≤ C|x − y|2

t
3
2

.

As a result, (4.1) is proved. Moreover, it follows from (4.6) that

tˆ

0

1ˆ

0

(
Gs(x, ξ) − Gs(y, ξ)

)2
dξds ≤ C

tˆ

0

∞̂

1

e−sξ2
(

4 ∧ ξ2|x − y|2
)
dξds

≤ C

∞̂

1

( 4

ξ2 ∧ |x − y|2
)
dξ ≤ C|x − y|.

As a consequence, (4.2) is proved. Similarly, inequalities (4.3) and (4.4) are obtained. Finally, 
(4.5) can be proved by the same way as that of (4.6) and using the fact 1 − e−n2(t−s) ≤ 1 ∧n2(t −
s). �
Proof of Theorem 4.1. It is known that

Z(t, x) = (
et�N Z0

)
(x) +

( tˆ

0

e(t−s)�N F (Z(s))ds
)
(x) + γ (Z)(t, x)

=:A0(t, x) + A1(t, x) + γ (Z)(t, x),

(4.7)

where γ is the mapping defined as in (3.1).
First, by (4.1) and (4.5) in Lemma 4.1, it can be seen that for any k ∈N ,

E|A0(t, x) − A0(t, y)|2k ≤ ck|Z0|2k
E

t
3k
2

|x − y|k, ∀t ≥ 0, x, y ∈ [0,1], (4.8)

E|A0(t, x) − A0(s, x)|4k ≤ ck,t0,T |Z0|4k
E |t − s|k, ∀t, s ∈ [t0, T ], x, y ∈ [0,1]. (4.9)

Combining (4.8), (4.9), and Proposition 4.1, we obtain the Hölder continuity of A0(t, x) in space 
with any exponent < 1 and in time with any exponent < 1 .
2 4
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Second, we have that A1(t, x) − A1(t, y) consists of two components with one of them being

tˆ

0

1ˆ

0

Gt−s(x, ξ)F1(Z(s, ξ))dξds −
tˆ

0

1ˆ

0

Gt−s(y, ξ)F1(Z(s, ξ))dξds

=
tˆ

0

⎛⎝ 1ˆ

0

(Gt−s(x, ξ) − Gt−s(y, ξ))F1(Z(s, ξ))dξ

⎞⎠ds.

(4.10)

Because F1(Z) has polynomial growth with the boundedness of solutions in the sense of for any 
p ≥ 1

E sup
t∈[0,T ]

|Z(t)|pE < ∞,

we have that for all t ≤ T , x, y ∈ [0, 1], k ∈N ,

E
∣∣∣ tˆ

0

( 1ˆ

0

(Gt−s(x, ξ) − Gt−s(y, ξ))F1(Z(s, ξ))dξ
)
ds

∣∣∣2k

≤ ck(T )

∣∣∣ tˆ

0

( 1ˆ

0

|Gt−s(x, ξ) − Gt−s(y, ξ)|2dξ
)
ds

∣∣∣k
≤ ck(T )|x − y|k due to (4.2).

(4.11)

Combining (4.10) and (4.11) implies that

E|A1(t, x) − A1(t, y)|2k ≤ ck(T )|x − y|k, ∀t ∈ [0, T ], x, y ∈ [0,1], k ∈N. (4.12)

Similarly, using the boundedness of E supt∈[0,T ] supx∈[0,1] |Z(t, x)| and (4.3), we obtain

E|A1(t, x) − A1(s, x)|4k ≤ ck(t0, T )|t − s|k, ∀s, t ∈ [t0, T ], x, y ∈ [0,1], k ∈N. (4.13)

Proposition 4.1, (4.12), and (4.13) allow us to obtain the desired Hölder continuity with any 
exponent < 1/2 in space and any exponent < 1/4 in time of A2(t, x).

Finally, by the Burkholder-Davis-Gundy inequality and a similar process as above (the cal-
culation is similar to proof of Proposition 3.1), we obtain similar regularity for γ (Z)(t, x). In 
more detailed, as in Proposition 3.1, we have seen that γ (Z)(t, x) ∈ Wε,p((0, 1)) for any p and 
ε satisfying (3.3). Moreover, Wε,p((0, 1)) embeds continuously to the Hölder space with any 
exponent θ < ε − 1/p. On the other hand, for any θ < 1/2, we can choose p large and then 
ε satisfying (3.3) and ε − 1/p > θ . The proof for the regularity in time for stochastic integral 
turns out to be similar to that of (4.13) after using the Burkholder-Davis-Gundy inequality and 
then using (4.3). Because of the above Hölder continuity of A1(t, x), A2(t, x) and γ (Z)(t, x), 
the Theorem is proved. �
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Hölder continuity on intervals containing t = 0. In contrast to the case of considering compact 
interval in {t > 0}, the regularity of Z(t, x) in a compact set containing t = 0 is more subtle. The 
difficulty comes from the singularity of Neumann heat semigroup et�N generated by Neumann 
heat kernel Gt(x, y) when t ↓ 0. First, we have the following properties for et�N on interval 
containing t = 0 as follows.

Lemma 4.2. If z0 is α-Hölder continuous, then there exists L = L(T ) > 0 such that

∣∣(et�N z0)(x) − (et�N z0)(y)
∣∣≤ L|x − y|α, ∀t ∈ [0, T ], (x, y) ∈ [0,1],

and

∣∣(et�N z0)(x) − (es�N z0)(x)
∣∣≤ L|t − s|α/2, ∀s, t ∈ [0, T ], x ∈ [0,1].

Proof. A proof can be obtained by the same approach as that of Lemma 4.1 by using the eigen-
function expansion formula for Neumann heat kernel Gt(x, y). The reader can find similar details 
in [57]. We provide a sketch of an alternative proof, which is interesting in its own right. The 
proof is based on the relationship between heat dynamics and Brownian motion or the probabilis-
tic solution of a PDE problem (specifically, heat equation with Neumann boundary condition).

Let us recall some facts for the case of Dirichlet boundary condition first. Let GD
t (x, y) be 

the fundamental solution of heat equation on (0, 1) with Dirichlet boundary condition and et�D

be the Dirichlet heat semigroup, defined by

(
et�Du

)
(x) :=

1ˆ

0

GD
t (x, y)u(y)dy.

Then GD
t (x, y) describes the transition densities of a Brownian motion killed upon reaching 

{0, 1} and for each u, et�Du(x) will be the expectation of a functional of a Brownian motion 
killed on boundary given the initial condition x. More precisely, if we let B(t) be a standard 
one-dimensional Brownian motion and τ be the first time t that B(2t) exists (0, 1), then we have 
(see e.g., [2, Chapter 2, Section 7])

et�Du(x) =Ex (u(B2t ); τ < t) , (4.14)

where Ex denotes the expectation with initial value x. It is well known that the fundamental 
solution of heat equation in R is the density of a Gaussian distribution. When the dynamics is 
restricted in a domain with zero boundary condition, it should be associated with the Brownian 
motion killed on the boundary. Note that the operator 1

2� corresponds to the standard Brownian 
motion. That is why we have to scale the time index as above. Because of (4.14) and the (local) 
Hölder continuity with any exponent < 1

2 of Brownian motion and α-Hölder continuity of z0, we 
obtain the conclusion in Lemma 4.2 for Dirichlet boundary condition case. The detail of these 
arguments can be found for example, in [31, Proofs of Lemma 4.4 and Lemma 4.5].

Coming back to our own case, thanks to [4, Theorem 2.5], a similar expression to (4.14) is 
obtained for the case of Neumann boundary condition by replacing the Brownian motion killed 
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on boundary by the Brownian motion reflecting on boundary, namely, reflecting Brownian mo-
tion (RBM). By [4, Theorem 2.5], for example, if we let BR be a one-dimensional reflecting 
Brownian motion in (0, 1) ([4, Theorem 2.1] for definition), then

et�N u(x) =Ex (u(BR(2t)) . (4.15)

Moreover, it is also noted that BR(t) is local Hölder continuous with any exponent < 1
2 ; see 

e.g., [53, Section 2] and also [33]. Therefore, the expression (4.15), the local Hölder continuity 
of RBM, and the α-Hölder continuity of z0 yields the results in the Lemma as in the case of 
Dirichlet boundary condition. �
Theorem 4.2. Assume that the non-negative initial value Z0 is α-Hölder continuous, for some 
α ∈ (0, 1]. On a compact set of time containing t = 0, the solution Z(t, x) of (1.4) is Hölder 
continuous in space with exponent < α ∧ 1

2 and is Hölder continuous in time with exponent 
< α

2 ∧ 1
4 . That is, for any 0 < T < ∞, and β1 ∈ (0, α ∧ 1/2), β2 ∈ (0, α/2 ∧ 1/4), there is a finite 

random variable CH = CH (T , β1, β2) such that

|Z(t, x) − Z(s, y)| ≤ CH

(|x − y|β1 + |t − s|β2
)
, ∀x, y ∈ [0,1], s, t ∈ [0, T ] a.s.

Proof of Theorem 4.2. Once we have Lemma 4.2 in hand, we are able to take care of the sin-
gularity of et� at 0. Hence, the proof of this Theorem is similar to that of Theorem 4.1 and is 
left to the reader. Note that as in proof of Theorem 4.1, we have already established the bound-
edness (on compact interval of time) of solutions on the space of continuous function with any 
order. �
5. Existence of density

This section is devoted to the existence of densities of U(t, x), V (t, x). By using Malliavin 
calculus, we prove that for any t > 0, x ∈ (0, 1), U(t, x) and V (t, x) have absolutely continuous 
laws with respect to the Lebesgue measure and hence possess densities. It is noted that the coef-
ficients for our system are neither Lipschitz continuous nor having linear growth. Some notation 
and preliminary results in the Malliavin calculus used in this Section are given in Section 10.4.

Proposition 5.1. Suppose that (U0, V0) ∈ E, U0, V0 ≥ 0. For any t > 0 and x ∈ (0, 1), U(t, x)

and V (t, x) belong to D1,2
loc .

Proof. In Section 3, we have already known that for any T > 0, p ≥ 1,

E
(

sup
t∈[0,T ]

sup
x∈[0,1]

|U(t, x)|p + |V (t, x)|p
)

< ∞. (5.1)

Therefore, by Proposition 10.6, we can assume that the coefficients together with their derivatives 
are bounded in the proof of this Proposition (with U(t, x), V (t, x) ∈ D1,2). In fact, we can trun-
cate the coefficients similarly to the process in the proof of Theorem 3.1 such that the truncated 
functions are bounded together with their derivatives and coincide with the original coefficients 
in finite balls.
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It is shown in [47, Proposition 2.4] that by approximating PDEs using finite elements method 
and then, approximating SDEs driven by infinite dimensional noise by SDEs driven by finite 
dimensional noise (alternatively, see [1, Section 4]), one has that for any h(t, x) = ρ(t)ei(x), 
where ρ(t) is some function satisfying ρ(t) ∈ L2(R+), U(t, x), V (t, x) ∈ Dh and DhU(t, x), 
DhV (t, x) is the solution of the following SPDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DhU(t, x) =
tˆ

0

1ˆ

0

Gt−s(x, y)σ1(y)U(s, y)h(s, y)dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)
(∂F1

∂U
(U,V )DhU(s, y) + ∂F1

∂V
(U,V )DhV (s, y)

)
dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)σ1(y)DhU(s, y)W1(ds, dy)

DhV (t, x) =
tˆ

0

1ˆ

0

Gt−s(x, y)σ2(y)V (s, y)h(s, y)dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)
(∂F2

∂U
(U,V )DhU(s, y) + ∂F2

∂V
(U,V )DhV (s, y)

)
dyds

+
tˆ

0

1ˆ

0

Gt−s(x, y)σ2(y)DhV (s, y)W2(ds, dy).

(5.2)

It remains to show that if {hk}∞k=1 is an orthonormal basis of L2(R+ × (0, 1)), then

∞∑
k=1

E
(
|Dhk

U(t, x)|2
)

< ∞,

∞∑
k=1

E
(
|Dhk

V (t, x)|2
)

< ∞.

Using the assumption on boundedness of F1, F2 as well as their derivatives in this Proposition, 
we have that

E
(
|Dhk

U(t, x)|2 + |Dhk
V (t, x)|2

)
≤ c E

tˆ

0

tˆ

0

G2
t−s(x, y)

(
(Dhk

U(s, y))2 + (Dhk
U(s, y))2

)
dyds

+ c E

⎛⎝ tˆ

0

tˆ

0

Gt−s(x, y)
(
U(s, y) + V (s, y)

)
dyds

⎞⎠2

.

(5.3)

In the above, the stochastic integral is estimated with the help of the Burkholder-Davis-Gundy 
inequality as in Proposition 3.1. Let
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Nm(t) := sup
x∈[0,1]

E
m∑

k=1

(
|Dhk

U(t, x)|2 + |Dhk
V (t, x)|2

)
.

The boundedness of U(s, y), V (s, y) developed in Section 3 (see also (5.1)) and property (2.1)
of Gt(x, y) allows us to obtain from (5.3) that

Nm(t) ≤c

tˆ

0

1ˆ

0

G2
t−s(x, y)Nm(s)dyds + c

tˆ

0

1ˆ

0

G2
t−s(x, y)dyds

≤c
(

1 +
tˆ

0

Nm(s)√
t − s

ds
)

≤ c
(

1 +
tˆ

0

Nm(s)ds
)
,

where c is a finite constant, independent of m. As a consequence, Nm(t) ≤ cect , ∀m and thus,

sup
x∈[0,1]

E
∞∑

k=1

(
|Dhk

U(t, x)|2 + |Dhk
V (t, x)|2

)
< ∞.

The proof is complete. �
Theorem 5.1. Suppose that the initial value (U0, V0) ∈ E, U0, V0 ≥ 0 such that σ1U0, σ2V0 ≥ 0
but not identical to 0. For each t > 0 and x ∈ (0, 1), the law of U(t, x) and V (t, x) are absolutely 
continuous with respect to the Lebesgue measure.

Proof. Let t > 0 and x ∈ (0, 1) be fixed. Using a standard localization procedure, it suffices to 
prove the results under the assumption that F1 and F2 have bounded derivatives. We deduce from 
the proof of Proposition 5.1 (or see [1, Remark 4.2]) that if θ < t , Dθ,ξU(t, x), Dθ,ξV (t, x) is 
the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dθ,ξU(t, x) = Gt−θ (x, ξ)σ1(ξ)U(θ, ξ)

+
tˆ

θ

1ˆ

0

Gt−s(x, y)
(∂F1

∂U
(U,V )Dθ,ξU(s, y) + ∂F1

∂V
(U,V )Dθ,ξV (s, y)

)
dyds

+
tˆ

θ

1ˆ

0

Gt−s(x, y)σ1(y)Dθ,ξU(s, y)W1(ds, dy)

Dθ,ξV (t, x) = Gt−θ (x, ξ)σ2(ξ)V (θ, ξ)

+
tˆ

θ

1ˆ

0

Gt−s(x, y)
(∂F2

∂U
(U,V )Dθ,ξU(s, y) + ∂F2

∂V
(U,V )Dθ,ξV (s, y)

)
dyds

+
tˆ 1ˆ

Gt−s(x, y)σ2(y)Dθ,ξV (s, y)W2(ds, dy),

(5.4)
θ 0
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and if θ > t , Dθ,ξU(t, x) = Dθ,ξV (t, x) = 0. It can be seen that

‖DU(t, x)‖ > 0 ⇐⇒
tˆ

0

1ˆ

0

|Dθ,ξU(t, x)|dξdθ > 0.

Let

UD(θ; t, x) :=
1ˆ

0

Dθ,ξU(t, x)dξ, VD(θ; t, x) :=
1ˆ

0

Dθ,ξV (t, x)dξ.

Then, UD(θ; t, x), VD(θ; t, x) is the solutions to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UD(θ; t, x) =
1ˆ

0

Gt−θ (x, y)σ1(y)U(θ, y)dy

+
tˆ

θ

1ˆ

0

Gt−s(x, y)
(∂F1

∂U
(U,V )UD(θ; s, y) + ∂F1

∂V
(U,V )VD(θ; s, y)

)
dyds

+
tˆ

θ

1ˆ

0

Gt−s(x, y)σ1(y)UD(θ; s, y)W1(ds, dy)

VD(θ; t, x) =
1ˆ

0

Gt−θ (x, y)σ2(y)V (θ, y)dy

+
tˆ

θ

1ˆ

0

Gt−s(x, y)
(∂F2

∂U
(U,V )UD(θ; s, y) + ∂F2

∂V
(U,V )VD(θ; s, y)

)
dyds

+
tˆ

θ

1ˆ

0

Gt−s(x, y)σ2(y)VD(θ; s, y)W2(ds, dy).

(5.5)

It is noted again that as at the beginning of the proof of this Proposition, we can assume that F1
and F2 are smooth functions with bounded derivatives. Moreover, under this assumption, as in 
[47, Proposition 3.1] or [36, Theorem 2] (see also Proposition 3.3 in Section 3), one has that for 
any t > θ , x ∈ (0, 1), UD(θ; t, x) > 0, VD(θ; t, x) > 0 a.s. Therefore, applying Proposition 10.7
yields the desired result. �
6. Existence of invariant measure

From an application point of view in general and a biological point of view in particular, the 
longtime behavior is one of the most important properties. A fundamental question in investi-
gating the longtime behavior is whether an invariant measure exists. This section is devoted to 
answering this question.
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In what follows, we will consider the process Zz(t) on E+ := {(u, v) ∈ E : u, v ≥ 0} (E+ is a 
Polish space since it is closed subset of E). Non-negativity of solutions (Theorem 3.1) guarantees 
that Zz(t) ∈ E+, ∀t ≥ 0 a.s. provided z ∈ E+. We first recall some notation and preliminaries as 
in [6] as follows. Let Bb(E+) be the Banach space of bounded measurable functions ϕ : E+ → R
endowed with the sup-norm

‖ϕ‖0 = sup
z∈E+

|ϕ(z)|,

and Cb(E+) be the subspace of Bb(E+) containing continuous functions, and C1
b(E+) be the Ba-

nach space of differentiable functions ϕ : E+ → R having continuous and bounded derivatives. 
We define the transition semigroup Pt associated with system (1.4) as follows. For any z ∈ E+, 
t ≥ 0, ϕ ∈ Bb(E+), define

Ptϕ(z) := Eϕ(Zz(t)),

where Zz(t) = (U(t), V (t)) is the solution of (1.4) with initial condition Z(0) = z.

Proposition 6.1. The transition semigroup Pt is Feller.

Proof. It follows immediately from Proposition 3.2 that for ϕ ∈ C1
b(E+)

|Ptϕ(z1) − Ptϕ(z2)| ≤ E|ϕ(Zz1(t)) − ϕ(Zz2(t))|
≤ ‖ϕ‖C1

b
E|Zz1(t) − Zz2(t)| → 0 as |z1 − z2|E → 0.

Moreover, if ϕ ∈ Cb(E+), we can approximate ϕ (in the sup-norm) by a sequence {ϕn}, ϕn ∈
C1

b(E+). Therefore, we can obtain Ptϕ ∈ Cb(E+) for any ϕ ∈ Cb(E+) and then, the proof is 
complete. �

A probability measure μ on (E+, B(E+)) is an invariant measure of Pt if for any t ≥ 0, 
ϕ ∈ Cb(E+),

ˆ

E+

Ptϕ(z)dμ(z) =
ˆ

E+

ϕ(z)dμ(z).

Our aim in this section is to prove that Pt has an invariant measure.
The challenges come from the infinite-dimensional space, in which, a bounded set is not nec-

essarily relatively compact. Since the Hölder space Cθ([0, 1], R2) (space of θ -Hölder continuous 
function) is compactly embedded to E for any θ > 0, if we can prove that

sup
t≥t0

E|Zz(t)|Cθ ([0,1],R2) < ∞, (6.1)

for some z ∈ E+, θ > 0, t0 ≥ 0 then the family of (probability) measures {Pt(z, ·)} is tight. 
Therefore, the Krylov-Bogoliubov theorem (see e.g., [19, Section 3.1]) implies the existence of 
an invariant measure of Pt . Hence, the remaining of this Section is devoted to proof of (6.1).
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Proposition 6.2. Assume that

inf
x∈[0,1]a1(x) > 0 and inf

x∈[0,1]a2(x) > 0. (6.2)

Let z = (U0, V0) ∈ E, U0, V0 ≥ 0. For any p ≥ 1,

E sup
t≥0

|Zz(t)|pE ≤ cp(1 + |z|pE).

Proof. This Proposition is proved by applying [6, Proposition 6.1]. The validity of [6, Proposi-
tion 6.1] for our system in this Proposition is shown as follows.

As mentioned earlier, the condition on growth rates of coefficients used in [6] is not satisfied 
in our setting. However, we have already established some “nice” properties for the solution. 
Therefore, these conditions are not needed in this section since we still guarantee necessary 
properties used in [6, Proof of Proposition 6.1].

There is one condition that we need to verify, which is essentially, a “decaying outside a large 
ball” condition for the reaction term [6, Condition (5.17) or (5.19)], namely

〈F(z + h) − F(z), δh〉E ≤ −a|h|2E + b(1 + |z|2E), ∀z,h ∈ E, (6.3)

for some constants a, b > 0. In the above, δh and 〈·, δh〉E are defined as follows. For any δ ∈ E∗
having norm 1, δh ∈ E∗ defined for any z ∈ E by

〈z, δh〉E :=
{

1
|h|E

∑2
i=1 zi(ξi)hi(ξi), if h �= 0

〈δ, z〉E∗ if h = 0,

where ξi ∈ [0, 1], i = 1, 2 is such that |hi(ξi)| = maxx∈[0,1] |hi(x)|.
The original coefficient F = (F1, F2) of (1.4) does not satisfy this condition. However, we 

make use of the non-negativity of solutions by considering

F+(U,V )(x) := F(x,U(x) ∨ 0,V (x) ∨ 0),

and let U+(t), V+(t) be the solution to (1.4) when F is replaced by F+ with the same initial 
condition. Thanks to (6.2), it is easy to verify that F+ satisfies the condition (6.3). Therefore, the 
conclusion holds for Z+ = (U+, V+).

Finally, since the initial data z = (U0, V0) satisfy U0, V0 ≥ 0, by the non-negativity of the 
solution in Section 3, we have U+(t), V+(t) ≥ 0 for all t ≥ 0. As a consequence, U+(t) = U(t), 
V+ = V (t), ∀t ≥ 0. Therefore, the proof is complete. �
Proposition 6.3. Assume that infx∈[0,1] a1(x) > 0 and infx∈[0,1] a2(x) > 0. Let z = (U0, V0) ∈ E, 
U0, V0 ≥ 0. There are θ > 0 and t0 > 0 such that

supE|Zz(t)|Cθ ([0,1],R2) < ∞.

t≥t0
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Proof. Once we have Proposition 6.2, the proof is similar to [6, Proof of Theorem 6.2]. Because 
Proposition 6.2 has already established the uniformly bounded in space of continuous function E
of the solution, the remaining task is to obtain this property in Cθ , the space of Hölder continuous 
function, with some sufficiently small θ . In fact, we can take care of the stochastic integral by 
using the Proposition 3.1 and the fact Wε,p is embedded into Cθ , for some θ < ε − 1/p. The 
convolution of initial condition and the drift term can be handled by using Proposition 6.2 and 
[6, property (2.6) and Theorem 2.6]. �

We state the results we have just proved to close this section.

Theorem 6.1. Assume that infx∈[0,1] a1(x) > 0 and infx∈[0,1] a2(x) > 0. The transition semi-
group Pt associated to Zz(t) admits an invariant measure in E+.

Remark on uniqueness of invariant measure. In contrast to the existence of invariant measure, 
the uniqueness is more subtle. Compared with stochastic differential equations (SDEs), the strong 
Feller property of the solutions of SPDEs is not easy to obtain, and without strong Feller property 
Doob’s method cannot be used to prove uniqueness of the invariant measure. Much effort has 
been devoted to proving the uniqueness of invariant measure for the solutions of SPDEs in the 
literature. In [48], Peszat and Zabczyk proved that if the coefficients are Lipschitz continuous and 
the diffusion term is non-degenerate, the transition semigroup is strong Feller and irreducible, and 
then, the uniqueness of invariant measure is ensured. Moreover, the class of SPDEs with non-
Lipschitz and bounded drift but additive noise (constant diffusion) was investigated in [8]. The 
reader can gain more insights by consulting the book [19]. To the best of our knowledge, with 
non-Lipschitz coefficients and multiplicative noise, proving the strong Feller property and/or the 
uniqueness of invariant measure still remains to be an open question.

7. Coexistence and extinction

One of the most important questions studied widely in mathematical biology is whether a 
species under consideration is extinct or not. Sufficient conditions for coexistence and extinc-
tion of the species in stochastic population in general and competitive system in particular are 
interesting and attractive to biologists.

This section presents some ideas and methods for this problem in our setting as well as the first 
attempt in providing sufficient condition for extinction for stochastic Lotka-Volterra competitive 
reaction-diffusion system perturbed by space-time white noise. The study of longtime properties 
of deterministic and/or stochastic populations in more simple frameworks has a long history. An 
overview of that and the difficulties in our own system are discussed carefully in the Section 7.3.

7.1. Mild stochastic calculus

One of the main difficulties in studying longtime properties of the system in our setting is the 
lack of machinery to handle the change of variables. For ODEs and PDEs, the usual calculus tools 
can be used. In stochastic differential equations (SDEs) and stochastic functional differential 
equations (SFDEs), Itô rule and/or functional Itô rules enable us to change the variable relatively 
easily. However, the classical Itô formula is no longer valid for mild solutions of SPDEs.
210



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184–232
In this section, we recall briefly the mild stochastic calculus and the mild Itô formula devel-
oped recently by Da Prato, Jentzen, and Röcker in [17]; see also the construction and results in 
the paper.

Let Ȟ ⊆ H ⊆ Ĥ and U be real Hilbert spaces, W be cylindrical Q-Wiener process on 
{�, F, {Ft }, P } with covariance operator Q and U0 := Q1/2(U), and HS(U0, Ĥ ) be the space 
of Hilbert-Schmidt operator from U0 to Ĥ .

Definition 7.1. We say that X is a mild Itô process on {�, F, {Ft }, P , W, Ȟ , H, Ĥ } with evolu-
tion family S, mild drift F and mild diffusion G if and only if the followings hold

(i) X : [0, ∞) × � → H is an Ft -predictable stochastic process,
(ii) F : [0, ∞] × � → Ĥ is an Ft -predictable stochastic process,

(iii) G : [0, ∞) × � → HS(U0, Ĥ ) is an Ft -predictable stochastic process,
(iv) S : {(t1, t2) : 0 ≤ t1 < t2} → L(Ĥ , Ȟ ) is a measurable function (see [17, Section 2.1] for 

detailed construction of the σ -algebra on L(Ĥ , Ȟ )) satisfying that for all t1 < t2 < t3, 
St2,t3St1,t2 = St1,t3 ,

(v) for all t > 0, it holds a.s. that

tˆ

0

‖Ss,tFs‖Ȟ
+ ‖Ss,tGs‖2

HS(U0,Ȟ )
ds < ∞,

and

Xt = S0,tX0 +
tˆ

0

Ss,tFsds +
tˆ

0

Ss,tGsdWs.

Theorem 7.1. ([17, Theorem 1, Section 2]) (The mild Itô formula). Let X : [0, ∞) × � → H

be a mild Itô formula with evolution family S : {(t1, t2) : 0 ≤ t1 < t2} → L(Ĥ , Ȟ ), mild drift 
F : [0, ∞] × � → Ĥ and mild diffusion G : [0, ∞) × � → HS(U0, Ĥ ). Let V be a real 
separable Hilbert space and U ⊂ U0 be an arbitrary orthonormal basis of U0. Then, for all 
ϕ ∈ C1,2([0, ∞) × Ȟ , V ), t0 < t ∈ [0, ∞), it holds a.s. that

tˆ

0

∥∥∥∥ ∂ϕ

∂X
(s, Ss,tXs)Ss,tFs

∥∥∥∥
V

+
∥∥∥∥ ∂ϕ

∂X
(s, Ss,tXs)Ss,tGs

∥∥∥∥2

HS(U0,V )

ds < ∞,

and

tˆ

0

∥∥∥∥∂ϕ

∂t
(s, Ss,tXs)

∥∥∥∥
V

+
∥∥∥∥ ∂2ϕ

∂X2 (s, Ss,tXs)

∥∥∥∥∥∥Ss,tGs

∥∥2
HS(U0,Ȟ )

ds < ∞,

and
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ϕ(t,Xt ) =ϕ(t0, St0,tXt0) +
tˆ

t0

∂ϕ

∂t
(s, Ss,tXs)ds +

tˆ

t0

∂ϕ

∂X
(s, Ss,tXs)Ss,tFsds

+ 1

2

∑
u∈U

tˆ

t0

∂2ϕ

∂X2 (s, Ss,tXs)(Ss,tGsu,Ss,tGsu)ds

+
tˆ

t0

∂ϕ

∂X
(s, Ss,tXs)Ss,tZsdWs.

7.2. A first result

In this section, we provide a first result on sufficient condition for the extinction (and equiva-
lently, of course, necessary conditions for permanence) of the Lotka-Volterra competitive model 
in SPDEs setting.

Theorem 7.2. Assume that supx∈[0,1] m1(x) < 1
2 infx∈[0,1] σ 2

1 (x). For any initial (U0, V0) ∈ E, 
U0, V0 ≥ 0, one has that

lim sup
t→∞

E ln

1ˆ

0

U(t, x)dx = −∞.

Similarly, if supx∈[0,1] m2(x) < 1
2 infx∈[0,1] σ 2

2 (x) then

lim sup
t→∞

E ln

1ˆ

0

V (t, x)dx = −∞.

Proof. For arbitrarily fixed η > 0, directed calculations show that at v ∈ L2((0, 1), R) satisfying 

v ≥ 0, the first and second Fréchet derivative of the functional ϕη(v) := ln
(´ 1

0 v(y)dy + η
)

, 

denoted by ∂ϕη

∂X
(v) and ∂

2ϕη

∂X2 (v), are as follows

∂ϕη

∂X
(v)h =

´ 1
0 h(y)dy

η + ´ 1
0 v(y)dy

, h ∈ L2((0,1),R),

and

∂2ϕη

∂X2 (v)(h1, h2) = −
´ 1

0 h1(y)dy
´ 1

0 h2(y)dy(
η + ´ 1

0 v(y)dy
)2 , h1, h2 ∈ L2((0,1),R).

By the mild Itô formula (see Theorem 7.1), we have that
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ln
(
η +

1ˆ

0

U(t, x)dx
)

= ln
(
η +

1ˆ

0

(
et�N U0

)
(x)dx

)

+
tˆ

0

´ 1
0

(
e(t−s)�N U(s)(m1 − a1U(s) − b1V (s))

)
(x)dx

η + ´ 1
0

(
e(t−s)�N U(s)

)
(x)dx

ds

− 1

2

tˆ

0

∞∑
k=1

(´ 1
0

(
e(t−s)�N U(s)ekσ1

)
(x)dx

)2

(
η + ´ 1

0 e(t−s)�N U(s)(x)dx
)2 +

tˆ

0

Jη(t, s)dW1(s),

(7.1)

where Jη(t, s) is linear operator from L2((0, 1), R) to R defined by

Jη(t, s)(h) :=
´ 1

0

(
e(t−s)�N U(s)hσ1

)
(x)dx

η + ´ 1
0

(
e(t−s)�N U(s)

)
(x)dx

, h ∈ L2((0,1),R).

Set

Mη(U, t, s) =
∞∑

k=1

(´ 1
0

(
e(t−s)�N U(s)ek

)
(x)dx

)2

(
η + ´ 1

0 e(t−s)�N U(s)(x)dx
)2 . (7.2)

Parseval’s identity and Hölder’s inequality show that

∞∑
k=1

( 1ˆ

0

(
e(t−s)�N U(s)ek

)
(x)dx

)2

=
∞∑

k=1

( 1ˆ

0

1ˆ

0

Gt−s(x, y)U(s, y)ek(y)dydx
)2

=
∞∑

k=1

〈 1ˆ

0

Gt−s(x, ·)U(s, ·)dx, ek(·)
〉2
L2((0,1),R)

=
1ˆ

0

( 1ˆ

0

Gt−s(x, y)U(s, y)dx
)2

dy

≥
( 1ˆ 1ˆ

Gt−s(x, y)U(s, y)dxdy
)2

.

(7.3)
0 0
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We deduce from (7.2) and (7.3) that

lim
η→0

Mη(U, t, s) ≥ 1. (7.4)

It is seen that

1ˆ

0

(
e(t−s)�N U(s)(m1 − a1U(s) − b1V (s))

)
(x)dx

η +
1ˆ

0

(
e(t−s)�N U(s)

)
(x)dx

≤ sup
x∈[0,1]

m1(x). (7.5)

Taking expectation to (7.1) and then applying (7.5) imply that

E ln

⎛⎝η +
1ˆ

0

U(t, x)dx

⎞⎠≤ ln

⎛⎝η +
1ˆ

0

U0(x)dx

⎞⎠
+

tˆ

0

(
sup

x∈[0,1]
m1(x) − 1

2
inf

x∈[0,1]σ
2
1 (x)Mη(U, t, s)

)
ds.

(7.6)

Letting η → 0 in (7.6) and applying (7.4), we get

E ln

1ˆ

0

U(t, x)dx ≤ ln

1ˆ

0

U0(x)dx + Rt,

where

R := sup
x∈[0,1]

m1(x) − 1

2
inf

x∈[0,1]σ
2
1 (x) < 0.

As a consequence,

lim sup
t→∞

E ln

1ˆ

0

U(t, x)dx = −∞.

Similarly, the results for V (t, x) are also obtained. The proof is complete. �
Remark on other estimates. Let us comment on the difficulty in providing estimates in proba-
bility one. For example, one may expect that the conclusion in Theorem 7.2 is replaced by
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P

⎛⎝lim sup
t→∞

1ˆ

0

U(t, x)dx = 0

⎞⎠= 1,

and

P

⎛⎝lim sup
t→∞

1ˆ

0

V (t, x)dx = 0

⎞⎠= 1.

In fact, in [44], we used the following Lemma, whose proof is in [44, Lemma 4.2] and obtained 
some results of probability one estimates for SIS epidemic model.

Lemma 7.1. Let �(s) be L(U, R)-valued process and W be a (finite trace) Q-Wiener process 
such that 

´ t

0 �(s)dW(s) is well defined for any t ≥ 0 and a, b be two positive real numbers. We 
have the following estimate

P

⎧⎨⎩
∣∣∣∣∣∣

tˆ

0

�(s)dW(s)

∣∣∣∣∣∣− a

2

tˆ

0

‖�(s)‖2
HS(U,R) ds < b,∀t ≥ 0

⎫⎬⎭≥ 1 − e−ab.

However, in contrast to the strong solution, where the stochastic integral is in fact a 
martingale, for mild solution, this result is no longer valid since the stochastic convolution ´ t

0 e(t−s)�N �(s)dW(s) is not a martingale with respect to t . Moreover, it is noted that we are 
dealing with cylindrical Wiener processes rather than (finite trace) Q-Wiener processes.

7.3. Discussion

Much effort has been placed on the study of longtime behavior of biological model in general 
and competitive model in particular. Let us review some important methods, ideas and results 
in the literature. At the beginning, the dynamics of individuals in the environment are usually 
modeled by original differential equations (ODEs). The characterization of long-term properties 
is often obtained by using Lyapunov functional method, see e.g., [27,37]. To capture the random 
factors, the stochastic terms are added into ODEs and turn out to study stochastic differential 
equations (SDEs). In contrast to numerous papers that used Lyapunov function method to analyze 
the underlying systems with limited success, Chesson and Ellner [7], Schreiber and Benaïm 
[50] initiated the study by examining the corresponding boundary behavior and considered the 
stochastic rate of growth. This idea is applied and developed by Nguyen and Yin [38] to obtain the 
characterization of coexistence and extinction for Lotka-Volterra competitive equation modeled 
by SDEs; and then Hening and Nguyen generalized the results for a general Kolmogorov model 
in [26] and Benaïm [3] established a general abstract theory for this kind problem. The readers 
can consult [12,16,15,26,40,43,50] the references therein for works on biological and ecological 
models under the SDE framework.

Very recently, a class of functional SDEs model was considered by Nguyen, Nguyen, and 
Yin in [41,42], which allows the dynamics depend on the past history. By combining the ideas 
in SDEs (considering the growth rate), techniques in SDEs in infinite dimensions, and new 
developed theory in functional analysis (the functional Itô formula), the authors were able to 
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provide sufficient and almost necessary condition for persistence and extinction with applica-
tions to Lotka-Volterra competitive system in stochastic functional differential equation setting; 
see [41, Section 4.1].

All of above references assume the densities to be homogeneous in the state (or location) 
variable. The inhomogeneous case needs to be considered. One of the first attempts in studying 
this situation is to embed them into PDEs framework and often is known with the name “reaction-
diffusion” system. Note that the word “diffusion” here indicates the diffusion of dynamics in 
space, not the diffusion driven by noise as in the SDEs and in fact, it is still non-random system. 
The coexistence state of Lotka-Volterra competitive reaction-diffusion is investigated by Gui 
and Lou in [20]. In this work, the authors provided sufficient conditions for uniqueness and 
non-uniqueness of coexistence of states. One of the most effective theories and technique in 
investigating the coexistence and extinction of a population in PDEs setting introduced by Wang 
and Zhao in [58] is to consider the problem for equilibrium solution and its eigenvalues. Similar 
idea and theory is also applied and developed in [5,52] to characterize the longtime behavior 
of epidemic reaction-diffusion equation. In addition, there are also important works on Lotka-
Volterra competitive reaction-diffusion equation in [21–25,32,35].

In contrast to the existing works, our model takes care both of the spatial inhomogeneity and 
the random factor and hence, we must study them in the SFDEs frameworks. Unfortunately, all 
of ideas, methods, and machinery in calculations in the literature fail to be applicable to obtain 
sufficient conditions and not to mention sharp condition for coexistence and extinction. At this 
moment, it does not seem that we can the growth rate as the indicator in the SDE models to 
characterize extinction and persistence. This mainly due to the dependence of the models on the 
space variables. The theory using eigenvalues of equilibrium equation is failed to be applicable 
here due to the appearance of stochastic noises. In general, using the chain rule seems to be 
unavoidable. However, the chain rule for mild solutions of SPDEs is more subtle and cannot be 
applied effectively.

In the previous section, we have tried to overcome the second difficulty by applying newly 
developed tools in stochastic calculus, namely, the mild Itô formula and obtain sufficient condi-
tions for extinction. However, due to the lack of a strong and effective abstract theory, we have 
not been able to provide a sharp condition.

Why is the “growth rate method” in SDEs no longer works? The growth rate idea is the 
most effective to characterize the persistence and extinction of a stochastic population modeled 
by SDEs; see [3,7,16,26,40,50,55,56] and the reference therein. The main idea is to define the 
growth rate of a species using its Lyapunov exponent. If the growth rate is positive, the number 
of this species will increase and thus the population will never be extinct or it will be persistent. 
Conversely, when the growth rate is negative, they will be extinct exponentially fast in the long 
run.

However, the growth rate appears not to be able to characterize the longtime behavior for the 
SPDE cases. Intuitively, the dynamics of the population of the species depend not only on the 
time but also on the space variable. As a consequence, even the growth rate of a population is 
positive at some location x, the population at x can still tend to 0 since they can diffuse (in space) 
to their neighbors. Similarly, in case the growth rate at x is negative, the population at location x
can still be persistent since the individuals may return to the neighbors infinitely often if certain 
conditions hold. The key is that dynamics of populations in SPDEs setting depend on the time 
and space simultaneously while the “growth rate” is only able to characterize the behavior in 
“time flow”.
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Why is the “eigenvalue method” in PDEs no longer working? There is a nice idea in PDEs 
to study the asymptotic stability and hence, investigate the longtime property. It considers the 
equilibrium problem and the associated eigenvalues; see e.g., [5,52,58] as well as [21–25,32,35]. 
The equilibrium problem is defined with the time variable being frozen. Roughly speaking, the 
solutions of PDEs will tend to the equilibria (functions independent of time variable t ). Hence, 
the eigenvalues will play some role in studying the stability. In SPDEs setting, it is not clear 
how to have a similar “equilibrium problem” like PDEs case since the stochastic integral with 
respect to space-time white noise does not work the way as the Lebesgue integral and/or Bochner 
integral did. If we integrate over dx for fixed t , the integral can be viewed as a Bochner integral 
while over dt for fixed dx, can be viewed as an Itô integral. However, as given in the appendix, 
the stochastic integral with respect to space-time white noise requires to integrate over space 
variable dx and time variable dt simultaneously. Hence, the problems in SPDEs turn out to be 
much different compared with PDEs at this point.

Approximation by strong solutions: There is also another approach to overcome the second 
difficulty (being lack of tools regarding change variable), which is introduced in our early works 
in [39,44,45]. The idea is to approximate the mild solution by a sequence of strong solutions 
(e.g., the solutions corresponding to the stochastic differential equation driving by finite dimen-
sional noise) and then, we work on these strong solutions, for which the classical Itô’s formula is 
valid. However, this method does not work well for cylindrical Wiener process (having infinite 
trace). Moreover, the convergence of the sequence of strong solutions to the mild solution is in 
expectation and in L2((0, 1))-norm. That will be not useful in some estimates.

What do we expect? As was mentioned, our results in this section are not sharp compared with 
our results in SDEs case or even SFDEs case. Formally, we expect to introduce a Hypothesis (E) 
such that under (E),

lim sup
t→∞

sup
x∈[0,1]

U(t, x) = 0, lim sup
t→∞

sup
x∈[0,1]

V (t, x) = 0,

in some sense (almost surely or in expectation or in probability); and a Hypothesis (C) such that 
under C,

lim inf
t→∞ inf

x∈[0,1]U(t, x) > δ, lim inf
t→∞ inf

x∈[0,1]V (t, x) > δ,

for some positive constant δ (independent of the initial value) in some sense (almost surely or in 
expectation or in probability). Moreover, the Hypotheses (E) and (C) cover almost all possible 
cases and only critical cases are left.

To obtain this sharp condition may require developing from two different angles. The first 
one is an abstract theory to characterize the longtime behavior of a stochastic population in both 
of “space flow” and “time flow” in SPDEs setting. The second one is a useful tool to derive 
estimates using the stochastic mild calculus more effectively.

8. High-dimensional problems

One of problems of SPDEs is the trade off of the dimension and the “regularity” of the noise. 
By the phase “trade off”, we mean that the higher dimension one consider, the more regularity the 
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noise needs. To handle the problem in general Euclidean space Rd with d > 1, we can “inject” 
color into the noise and replace space-time white noise by a noise, which is white in time but 
color in space. But how much “color” we need to inject into the noise?

The easiest case is to use the finite-trace Q-Wiener process and we refer this case as “nuclear 
case”. Such cases were also considered in some our works in [39,44,45] for epidemic model 
and predator-prey models. In fact, we considered the “nuclear case” in order to simplify the 
arguments and help us in investigating the longtime property (sufficient conditions for persistence 
and extinction). The “nuclear case” is more advantageous for approximating mild solutions by 
sequence of strong solutions and in estimating some quantity like “ln

´
(· · · )”; see [39,44,45]

for the details. However, the “finite trace” assumption is too strong and unnecessary in some 
problems. We will consider problem of reducing this condition in high dimension case.

Extending our work to higher-dimensional spaces. Now, we will illustrate the extension of 
some of our results [well-posedness of the problems and longtime behavior (existence of invari-
ant measure)] to high-dimensional space, i.e., the domain (0, 1) of space variable x is replaced 
by O ⊂ Rd , where O is a bounded domain (having smooth boundary) of Rd with d ≥ 1. In the 
case d > 1, we will not require the Wiener process be “nuclear” and we will clarify how much 
color is needed for the Wiener process.

We reconstruct the noise, the driving force in our system as follows. For simplicity of nota-
tion, we only consider the case for W1 only (it is denoted by W for notational simplicity), which 
is the driving noise for the first equation. The case W2 is similar. Let {βk}∞k=1 be an indepen-
dent sequence of {Ft }t≥0-adapted one-dimensional Wiener processes and {ek}∞k=1 be a complete 
and uniformly bounded orthonormal system in L2(O, R). We define the cylindrical Q-Winner 
process W(t) in (1.4) as follows

W(t) =
∞∑

k=1

λkekβk(t),

where {λk} is a sequence of real positive numbers and {ek} is a complete orthonormal system of 
L2(O) of eigenfunctions of A, the realization of Laplace operator endowed with the Neumann 
condition in L2(O), and {ek} is assumed to be equibounded in L∞(O). [Unlike the one dimen-
sion case, the property that {ek} is equibounded may fail in higher dimension for general domain 
(see [6, Remark 2.2]), so we need to assume that in this Section.] The following hypothesis (see 
[6, Hypothesis 1]) is the answer to the question “how much color we need for the noise.”

Hypotheses 8.1. If d = 1 then

sup
k

λk < ∞.

If d ≥ 2, then

∞∑
k=1

|λk|p < ∞,

for some
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2 < p <
2d

d − 2
.

Note that for p < q ,

∞∑
k=1

|λk|p < ∞ ⇒
∞∑

k=1

|λk|q < ∞,

and for p = 2, the condition turns out to be finite-trace condition.

Extension 1: Under Hypothesis 8.1, our results (Theorem 3.1 and Proposition 3.2) in Section 3
still hold. The reader can prove that by modifying Proposition 3.1, specially (3.6) and (3.7). In 
Proposition 3.1, α, p, ε will also be chosen to satisfy

d

p
< α <

1

4
and

d

p
< ε < 2

(
α − d

p

)
.

The general abstract computations and results can be found in [6, Section 3]. Once we have the 
analogous Proposition 3.1, we can mimic the remaining of the Section 3. It is noted again that 
our coefficients do not satisfy the “growth rate” condition in [6, Theorem 5.2], but we can still 
overcome the difficulty by a similar technique as we did in the one-dimensional case.

Extension 2: Under Hypothesis 8.1, our result (existence of invariant measure) in Section 6 still 
holds. In fact, once the results in Section 3 are valid for high-dimensional spaces, the arguments 
in Section 6 are almost the same. Note that in Proposition 3.1, α, p, ε will be chosen again to 
satisfy d/p < ε such that Wε,p(O) is embedded into Cθ(O) for some θ < ε − d/p, and then 
Cθ(O) is embedded compactly into C(O).

9. Conclusion

This work focuses on stochastic Lotka-Volterra competitive reaction-diffusions perturbed by 
space-time white noise. Our proposed model stems from biological and ecological points of view. 
The analysis is then provided for both the mathematical problem and applications.

The dynamics of population are modeled by a SPDEs with non-Lipschitz coefficients and 
multiplicative noise. Important properties including well-posedness, regularity of the solution, 
existence of density, existence of invariant measure, as well as the longtime behavior (coexis-
tence and extinction) of Lotka-Volterra competitive reaction-diffusion systems are addressed. 
The results are also extended to higher space dimensional systems by coloring the noise.

10. Appendix: background materials

The next three sections are devoted to constructions and comparisons of the two different 
approaches (infinite-dimensional integration theory of Da Prato and Zabczyk and random field 
approach of Walsh) and their equivalence in certain classes of SPDEs. The reader can find the full 
construction of Walsh’s theory in [57], and that of Da Prato and Zabczyk in [18]. A comparison 
of these two approaches can be found in [11,18]; see also [10].
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10.1. Infinite-dimensional integration theory

This section provides the formulation of a space-time white noise driving process in our 
stochastic systems together with the corresponding stochastic integral with respect to a standard 
cylindrical Q-Wiener process. First, we start with a finite trace Q-Wiener process.

Definition 10.1. Let V be a separable Hilbert space endowed with the inner product 〈·, ·〉V , and 
Q be a linear, symmetric (self-adjoint), non-negative definite, and bounded operator on V such 
that Tr Q < ∞. A V -valued stochastic process {W(t), t ≥ 0} is a Q-Wiener process if

• W(0) = 0, W has continuous trajectories, and W has independent increments.
• The law of W(t) −W(s) is Gaussian with mean zero and covariance operator (t − s)Q. That 

is, for any h ∈ V and 0 ≤ s ≤ t , the real-valued random variable 〈Wt − Ws, h〉V is Gaussian 
with mean zero and variance (t − s)〈Qh, h〉V .

Let {ek}∞k=1 be a complete orthonormal system in the Hilbert space V such that Qek = λkek , 
where λk is the strictly positive kth eigenvalue of Q corresponding to the eigenvector ek . If 

we define β̃k(t) = 〈W(t), ek〉V , for t ≥ 0, k ∈ N , and βk(t) = β̃k(t)√
λk

, then it can be seen that 
{βk(t)}∞k=1 is a sequence of independent, standard, one-dimensional {Ft}-Brownian motions, 
and

W(t) =
∞∑

k=1

〈W(t), ek〉V ek =
∞∑

k=1

√
λkβk(t)ek.

Conversely, given a sequence of independent standard Brownian motions {βk(t)}∞k=1, and a se-
quence {λk}∞k=1 of positive numbers satisfying that 

∑∞
k=1 λk < ∞, we can obtain a Q-Wiener 

process W by defining

W(t) :=
∞∑

k=1

√
λkβk(t)ek.

Definition 10.2. Let Q be a symmetric (self-adjoint) and non-negative definite bounded linear 
operator on the Hilbert space V . A family of random variables B = {Bt(h), t ≥ 0, h ∈ V } is a 
cylindrical Wiener process on V if the following conditions are satisfied:

• for any h ∈ V , {Bt(h), t ≥ 0} is a Brownian motion with covariance t〈Qh, h〉V ;
• for all s, t ≥ 0, and h, g ∈ V ,

E (Bs(h)Bt (g)) = (s ∧ t)〈Qh,g〉V .

We name Q the covariance of B . If Q is the identity operator in V , then we call B a standard 
cylindrical Wiener process.

Similarly, if we let {ek}∞k=1 be a complete orthonormal system in V , Bt(h) be a standard 
cylindrical Wiener process and set βk(t) := Bt(ek), then {βk(t)}∞ is a sequence of independent, 
k=1
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standard, one-dimensional Brownian motions. Conversely, given a sequence of independent real-
valued standard Brownian motions {βk(t)}∞k=1,

Bt(h) :=
∞∑

k=1

βk(t)〈ek, h〉V ,

defines a standard cylindrical Wiener process in V .
If {W(t), t ≥ 0} is a Q-Wiener process on V , we can associate it to a cylindrical Wiener pro-

cess in the sense of Definition 10.2 by setting Bt(h) = 〈Wt, h〉V for any h ∈ V , t ≥ 0. Conversely, 
one may imagine that any cylindrical Wiener process is associated to a Q-Wiener process on a 
Hilbert space. Unfortunately, this is not true in general. In fact, if V is an infinite dimensional 
space, there is no Q-Wiener process W associated to a given standard cylindrical Wiener process 
B; see [11, Theorem 3.2]. However, it is possible to construct a Hilbert-space-valued Wiener 
process in a larger Hilbert space V1, which is associated to B (in certain sense), and which will 
be called a cylindrical Q-Wiener process. The construction is as follows. Let V be a Hilbert 
space and Q be a symmetric non-negative definite and bounded operator on V with possibly 
Tr Q = ∞. Let {ek}∞k=1 be a complete orthonormal system of V that contains eigenvectors of Q
with respect to eigenvalues {λk}∞k=1. Define V0 := Q1/2(V ) as a subspace of V endowed with the 
inner product

〈h,g〉V0 := 〈Q−1/2h,Q−1/2g〉V ,

where Q−1/2 is the pseudo-inverse of the operator Q1/2. Then, V0 is also a Hilbert space. As 
in [49, Remark 2.5.1], it is always possible to find a Hilbert space V1 such that V is embedded 
continuously into V1 and the embedding of V0 into V1 is Hilbert-Schmidt, i.e., there is a bounded 
linear injective operator J : V → V1 such that the restriction J0 := J|V0 : V0 → V1 is a Hilbert-
Schmidt operator. Recall that the operator T : V → H is Hilbert-Schmidt if for some (and then 
all) complete orthonormal system {ek}∞k=1 of V ,

∞∑
k=1

‖T (ek)‖2
H < ∞. (10.1)

Let J ∗
0 be the adjoint of J0 and Q1 := J0J

∗
0 .

Proposition 10.1. ([18, Proposition 4.11] or [11, Proposition 3.6]) The formula

W(t) =
∞∑

k=1

βk(t)ẽk, (10.2)

where {ẽk}∞k=1 (ẽk = Q1/2(ek)) is a complete orthonormal system in V0 and {βk(t)}∞k=1 is a 
sequence of independent real-valued standard Wiener processes, defines a Q1-Wiener process 
on V1 with Tr Q1 < ∞. More precisely, this Q1-Wiener process has the following form in V1:

W(t) =
∞∑

J0(ẽk)βk(t),
k=1
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Definition 10.3. The process W(t) defined in (10.2) is called a cylindrical Q-Wiener process if 
Tr Q = ∞ and standard cylindrical Q-Wiener process if Q is the identity operator.

Let L(V, H) be the space of linear (not necessarily bounded) operators from V to H , and 
L0

2 := HS(V0, H), the Hilbert space of all Hilbert-Schmidt operators from V0 := Q1/2(V ) into 
H equipped with the inner product

〈�,�〉L0
2
:=

∞∑
k=1

〈�ẽk,�ẽk〉H ,

where {ẽk}∞k=1 is a complete orthonormal system of V0.
For � = {�(s) : s ∈ [0, T ]} being a measurable L0

2-valued process satisfying

‖�‖T :=
⎡⎣E

⎛⎝ T̂

0

‖�(s)‖L0
2
ds

⎞⎠⎤⎦1/2

< ∞,

the stochastic integral with respect to the cylindrical Q-Wiener process,

tˆ

0

�(s)dW(s),

is constructed as follows. First, the stochastic integral ́ t

0 �(s)dW(s), where W(t) is a Q-Wiener 
process with Tr Q < ∞, is defined through the class of simple functions and then using isometry 
property, the details of this construction can be found in [18, Chapter 4]. Now, if Q is the identity 
operator or in general, Tr Q = ∞, as in the above construction, there are a Hilbert space V1 and 
an operator J such that the restriction J0 of J in V0 is Hilbert-Schmidt and W(t) is a Q1-Wiener 
process on V1 with Tr Q1 < ∞.

Definition 10.4. As in [11, Proposition 3.6] or [18, Proposition 4.11] or [49, Proposition 2.5.2], 
we have

� ∈ L0
2 = L2(V0,H) ⇐⇒ � ◦ J−1

0 ∈ L2(Q
1/2
1 (V1),H).

Hence, the H -valued stochastic integral 
´ t

0 �(s)dW(s) with respect to the cylindrical Q-Wiener 
process is defined by

tˆ

0

�(s)dW(s) :=
tˆ

0

�(s) ◦ J−1
0 dW(s),

where the integral on the right-hand side is the integral with respect to the (finite trace) Q1-
Wiener process defined in V1 previously. Note that the above definition does not depend on the 
choice of space V1.
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Now, let B be a cylindrical Wiener process in V (Definition 10.2) and VQ be the Hilbert space 
V equipped with the inner product

〈h,g〉VQ
:= 〈Qh,g〉V , h, g ∈ V,

{vk}∞k=1 be a complete orthonormal system of VQ, and g ∈ L2(� × [0, T ]; VQ) be predictable 

process. We define the integral 
´ T

0 g(s)dB(s) as follows

T̂

0

g(s)dB(s) :=
∞∑

k=1

T̂

0

〈g(s), vk〉VQ
dBs(vk).

Moreover, we can associate B to a cylindrical Q-Wiener process defined by (10.2) with βk(t) =
Bt(ek), {ek}∞k=1 is a basic of V . Then, the above stochastic integrals are connected in the follow-
ing Proposition.

Proposition 10.2. ([11, Proposition 3.9]) Define �g
s : V → R by �g

s (η) = 〈g(s), η〉V . Then 
{�g

s , s ∈ [0, T ]} is a predictable process with value in L2(V0, R),

E

⎛⎝ T̂

0

‖�g
s ‖2

L2

⎞⎠=E

⎛⎝ T̂

0

‖g(s)‖2
VQ

ds

⎞⎠ ,

and

T̂

0

�
g
s dW(s) =

T̂

0

g(s)dB(s).

Definition 10.5. With �g
s being defined as in Proposition 10.2, define

tˆ

0

〈g(s), dW(s)〉V :=
T̂

0

�
g
s dW(s).

10.2. Random field approach

In this section, we recall some definitions of space-time white noise and random field approach 
introduced by Walsh. We discuss these briefly only for our own purpose while the details can be 
found in [57].

Definition 10.6. Let (E, E, ν) be a σ -finite measure space. A white noise based on ν is a random 
set function W on the set A ∈ E of finite ν-measure such that

• W(A) is an N(0, ν(A)) random variable,
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• if A ∩ B = ∅, then W(A) and W(B) are independent and

W(A ∩ B) = W(A) + W(B).

Definition 10.7. Let E =Rn+, ν be Lebesgue measure, and W be a white noise on E. The Brow-
nian sheet on Rn+ is the process {Wt : t ∈ Rn+} defined by Wt := W((0, t]), where t = (t1, . . . , tn), 
(0, t] := (0, t1] ×· · ·×(0, tn]. That is a mean-zero Gaussian process. Moreover, if s = (s1, . . . , sn)
and t = (t1, . . . , tn), the covariance function is

E(WsWt) = (s1 ∧ t1) . . . (sn ∧ tn).

The integral in Walsh’s sense is defined based on martingale measure theory, which is con-
structed as follows.

Definition 10.8. Let U(A, ω) be a (random) function defined on A × �, where A ⊂ E is an 
algebra and such that E(U2(A)) < ∞, ∀A ∈ A and U(A ∪B) = U(A) +U(B) a.s. for all A, B ∈
A, A ∩ B = ∅. We say that U is σ -finite if there exists an increasing sequence En ⊂ E whose 
union is E such that for all n

• En ⊂A where En := E|En ,

• sup{‖U(A)‖2 : A ∈ En} < ∞, where ‖U(A)‖2 := E 
(
U2(A)

)1/2
.

Moreover, if U is countably additive on En, ∀n, we can take an extension as follows. If A ∈ E , 
U(A) = limn→∞ U(A ∩ En) if the limit does exist in L2 (the space L2(�, F, P ) endowed with 
the above norm) and U(A) is not defined otherwise. Such a U is said to be a “σ -finite L2-valued 
measure”.

Definition 10.9. ([57, Chapter 1]) Let Ft be a right continuous filtration. A process {Mt(A), Ft ,

t ≥ t, A ∈ A} is a martingale measure if

• M0(A) = 0,
• if t > 0, Mt is a σ -finite L2-valued measure, and
• {Mt(A), Ft , t ≥ 0} is a martingale.

Definition 10.10. A martingale measure M is orthogonal if for any two disjoint sets A and B , 
the martingales {Mt(A), Ft , t ≥ 1} and {Mt(B), Ft , t ≥ 1} are orthogonal.

Let W be a white noise in R+ × E and Mt(A) = W([0, t] × A). Then it is clear that Mt(A)

is a martingale measure. Moreover, Mt(A) and Mt(B) are independent and orthogonal provided 
A ∩B = ∅. It is also worthwhile to note that we can integrate over dx for fixed t as in the Bochner 
integral and integrate over dt for fixed set A as in the Itô integral. However, we wish to integrate 
over dx and dt together. It is not possible to construct a stochastic integral with respect to all 
martingale measures. Hence, the following class of martingale measures is defined.

Definition 10.11. ([57, Chapter 2]) The covariance function of M is defined by

Qt(A,B) := 〈M(A),M(B)〉t .
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For a rectangle, i.e., the set A ×B × (s, t] ∈ E ×E ×R+, define a set function Q on rectangle by

Q(A × B × (s, t]) := Qt(A,B) − Qs(A,B),

and extend Q by additivity to finite disjoint union of rectangles.

Definition 10.12. ([57, Chapter 2]) A martingale measure M is “worthy” if there exists a random 
σ -finite measure K(�, ω), � ∈ E × E ×B, where B consists of Borel sets on R+ such that

• K is positive definite and symmetric in the first and the second variables,
• for fixed A, B ∈ E , {K(A × B × (0, t], t ≥ 0)} is predictable,
• for all n ∈N , E (K(En × En × [0, T ])) < ∞, where En ∈ E ,
• for any rectangle �, |Q(�)| ≤ K(�).

We call K the dominating measure of M .

Now, let M be a worthy martingale measure on the Lusin space (E, E), and QM and KM be 
its covariance and dominating measure, respectively. The stochastic integral (in Walsh’s sense) 
will be defined for the class of simple functions first.

Definition 10.13. A function f is elementary if it is of the form

f (s, x,ω) = X(ω)1(a,b](s)1A(x),

where 0 ≤ a ≤ b, X is bounded and F -measurable and A ∈ E . A function f is simple if it is a 
finite sum of elementary functions.

Definition 10.14. The predictable σ -field P on � × E ×R+ is the σ -field generated by class of 
simple function. A function is predictable if it is P-measurable.

Let PM be the class of all predictable functions f such that ‖f ‖M < ∞, where

‖f ‖M := E ((|f |, |f |)K)1/2 ,

and

(f, g)K :=
ˆ

E×E×R+

f (s, x)g(s, y)K(dxdyds).

Proposition 10.3. ([57, Proposition 2.3]) The class of simple function is dense in PM .

For an elementary function f (s, x, ω) = X(ω)1(a,b](s)1A(x), the martingale measure f · M
is defined by

f · Mt(B) := X(ω) (Mt∧b(A ∩ B) − Mt∧a(A ∩ B)) .
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Proposition 10.4. ([57, Lemma 2.4]) The martingale measure f · M is worthy and

E
(
(f · Mt(B))2

)
≤ ‖f ‖2

M, ∀B ∈ E, t ≤ T .

Now, for simple function f , we can define f · M by linearity. Since Proposition 10.3, we are 
able to define f · M for all f ∈PM as usual. Finally, we define the stochastic integral by

tˆ

0

ˆ

A

f (s, x)M(ds, dx) := f · Mt(A),

and

tˆ

0

ˆ

E

f (s, x)M(ds, dx) := f · Mt(E).

10.3. Equivalence of the two approaches

We proceed with the equivalence of the stochastic integrals by Da Prato and Zabczyk (with 
respect to standard cylindrical Q-Wiener processes) and the stochastic integrals in Walsh’s sense 
(with respect to space-time white noises or Brownian sheets associated to the cylindrical Wiener-
processes).

Now, let us assume Q is the identity operator on the space V = L2(U), with

U :=
{
x = (x1, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1, i = 1, . . . , d

}
,

and W is a standard cylindrical Q-Wiener process and BW(t) is the associated cylindrical Wiener 
process. Moreover, we define

B(t, x) :=
∞∑

k=1

βk(t)

ˆ

R(x)

ek(y)dy,

where {ek}∞k=1 is an orthonormal basis of L2(U), R(x) is the rectangle in U , i.e.,

R(x) := {a = (a1, . . . , ad) ∈ U : 0 ≤ ai ≤ xi, i = 1, . . . , d} .

Then, it is easy to verify that B(·, ·) is a Brownian sheet; see e.g., [18, Section 4.3.3].
Consider a real-valued stochastic process ϕ(s, x), s ∈ [0, T ], x ∈ U and assume that ϕ(s, ·), 

s ∈ [0, T ] is an L2(U)-valued predictable process and such that

E

⎛⎝ T̂

0

ˆ

U

ϕ2(s, x)dsdx

⎞⎠=E

⎛⎝ T̂

0

‖ϕ(s, ·)‖2
L2(U)

ds

⎞⎠< ∞.

Then, one has
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T̂

0

ˆ

U

ϕ(s, x)B(ds, dx) =
T̂

0

〈ϕ(s, ·), dW(s, ·)〉L2(U) =
T̂

0

ϕ(s)dBW(s), (10.3)

where the first integral is the stochastic integral with respect to the Brownian sheet in Wal-
sh’s sense in Section 10.2, the second is the stochastic integral with respect to the cylindrical 
Q-Wiener process in Da Prato’s and Zabczyk’s sense in Section 10.1 (see Definition 10.5 and 
Proposition 10.2) and the last one is the stochastic integral with respect to the cylindrical Wiener 
process in the sense of Section 10.1. To gain more insight, the reader is referred to [11,18].

Solutions of the two approaches and their equivalence.Now, we demonstrate that the solutions 
of stochastic heat equation in one dimension in these approaches are equivalent. Actually, this 
fact holds for large classes of SPDEs in general (including stochastic heat equation and stochastic 
wave equation with dimension ≤ 3).

Consider a class of non-linear SPDEs of the following form

∂u(t, x)

∂t
= Au(t, x) + b(u(t, x)) + σ(u(t, x))Ẇ (t, x), (10.4)

where t > 0, x ∈ O ⊂Rd , A = � together with some boundary condition on O if O is a bounded 
domain (in fact, we can consider non-linear wave equation with the assumptions d ≤ 3), b(·) and 
σ(·) are continuous, and Ẇ(t, x) is a space-time white noise.

Let Tt (x, y) be a fundamental solution of the problem ∂u(t,x)
∂t

= Au(t, x) and etA be the ana-
lytic semi-group generated by A, alternatively defined by

(etAu)(x) :=
ˆ

O

Tt (x, y)u(y)dy.

Mild random field solution. A mild random field solution {u(t, x) : (t, x) ∈ [0, T ] ×O} of (10.4)
is such that the following stochastic integral equation is satisfied

u(t, x) =
ˆ

O

Tt (x, y)u0(y)dy +
tˆ

0

ˆ

O

Tt−s(x, y)b(u(s, y))dyds

+
tˆ

0

ˆ

O

Tt−s(x, y)σ (u(s, y))W(ds, dy).

In the above, the first and the second integrals are understood as usual and the last one is the 
stochastic integral in Walsh’s sense (that is, the two parameters in integration are taken at the 
same time).

Mild L2(O)-valued solution. A mild L2(O)-valued solution {u(t, ·) : t ∈ [0, T ]}, u(t, ·) ∈
L2(O) of (10.4) is such that the following stochastic integral equation is satisfied (in L2(O))
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u(t) = etAu0 +
tˆ

0

e(t−s)Ab(u(s))ds +
tˆ

0

e(t−s)Aσ (u(s))dW(s).

In the above, the second integral is a Bochner integral while the last integral is a stochastic 
integral in the sense of infinite dimensional integration theory in Section 10.1 (with σ(u(s))

being understood as a multiplication operator). To end this subsection, we state the following 
Proposition.

Proposition 10.5. Consider O = (0, 1), A = ∂2

∂x2 endowed with homogeneous Neumann bound-

ary condition. The mild random field solution and the mild L2(O)-valued solution are equiv-
alent if one of them exists uniquely and has continuous paths (in both space and time), i.e., 
u(s, ·) ∈ C

([0, t], C([0, 1], R)
)

a.s. and satisfies

sup
[0,T ]×[0,1]

E(|u(t, x)|2) < ∞. (10.5)

The equivalence is in the sense that if we let u(t, x) be the mild random field solution then 
u(t) := u(t, ·) is the mild L2(O)-valued solution and vice versa.

The above Proposition follows the equivalence of stochastic integrals in random field ap-
proach and in infinite-dimensional approach (as in (10.3)). The condition “has continuous paths” 
and (10.5) may be a bit restrictive. In fact, we imposed this condition to prove the equivalence 
without much effort. In certain cases, this condition may not be needed and one can verify di-
rectly that the “mild random field solution” is equivalent to the “mild L2(O)-valued solution”. 
For the details of the proof of this Proposition, the reader is referred to [11, Proposition 4.9].

10.4. Malliavin calculus

We describe briefly the Malliavin calculus in this section for our own purpose, and refer to [46]
for a complete presentation of this subject. Denote by S the space of smooth random variables 
such that for F ∈ S , F has the form

F = f (W(h1), . . . ,W(hn)),

where f ∈ C∞
b (Rn), and h1, . . . , hn is an orthonormal sequence in L2(R+ × (0, 1)), and W(t, x)

is a Brownian sheet,1 and for h ∈ L2(R+ × (0, 1)),

W(h) :=
¨

h(s, y)W(ds, dy).

For F ∈ S , the first-order Malliavin derivative DF is defined to be the L2(R+ × (0, 1))-valued 
random variable as follows

1 For sake of simplicity of notation, in this section, we can assume the Brownian sheet is the canonical process.
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Dt,xF :=
n∑

k=1

∂kf (W(h1), . . . ,W(hn))hk(t, x).

Let D1,2 be the completion of S with respect to the semi-norm

‖F‖2
1,2 := E|F |2 +E|DF |2

L2(R+×(0,1))
.

Moreover, for each h ∈ L2(R+ × (0, 1)), we define DhF (in fact, it is also the directional deriva-
tive) by

DhF :=
∞∑

k=1

〈hk,DF 〉L2(R+×(0,1))〈hk,h〉L2(R+×(0,1)) = 〈DF,h〉L2(R+×(0,1)).

The operator Dh can be extended as a closed operator with domain Dh and D1,2 ⊂ Dh. In addi-
tion, one has

Dt,xF =
∞∑

k=1

〈DF,hk〉L2(R+×(0,1))hk(t, x) =
∞∑

k=1

Dhk
Fhk(t, x)

(if one of them exists). Furthermore, F ∈ D1,2 if and only if F ∈Dhk for each k and

∞∑
k=1

E
(
|Dhk

F |2
)

< ∞.

Since our system has non-Lipschitz and unbounded coefficients, we need to localize the sys-
tem. The “local” criterion for absolute continuity of the law of a random variable is stated as 
follows.

Definition 10.15. (see [47, Definition 2.1]) A random variable F is said to belong to the class 
D1,2

loc if there exists a sequence of measurable subsets of �: �n ⊂ �n+1 and ∪n�n = � a.s. and 
a sequence {Fn} ⊂D1,2 such that

F |�n = Fn|�n∀n.

We say that F is localized by the sequence {(�n, Fn), n ∈ N}.

Proposition 10.6. ([47, Proposition 2.2]) Let F ∈ D1,2
loc . There exists a unique measurable func-

tion of (t, x, ω) DF such that for any localizing sequence (�n, Fn),

1�nDF = 1�nDFn.

Proposition 10.7. ([47, Proposition 2.3]) Let F be a real random variable. A sufficient condition 
for the law of F to be absolutely continuous with respect to the Lebesgue measure is that
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(i) F ∈D1,2
loc

(ii) ‖DF‖L2(R+×(0,1)) > 0 a.s.

To close this section, we state the following chain rule, which is used in Section 5.

Proposition 10.8. ([46, Proposition 1.2.2]) Let ϕ : Rn → R be a continuously differentiable func-
tion with bounded partial derivative and fixed p ≥ 1. Suppose that F = (F1, . . . , Fn) is a random 
vector, whose components are in D1,p. Then, ϕ(F ) ∈D1,p and

Dϕ(F) =
m∑

i=1

∂ϕ

∂xi

(F )DFi.
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