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Abstract

Motivated by the traditional Lotka-Volterra competitive models, this paper proposes and analyzes a class
of stochastic reaction-diffusion partial differential equations. In contrast to the models in the literature, the
new formulation enables spatial dependence of the species. In addition, the noise process is allowed to
be space-time white noise. In this work, well-posedness, regularity of solutions, existence of density, and
existence of an invariant measure for stochastic reaction-diffusion systems with non-Lipschitz and non-
linear growth coefficients and multiplicative noise are considered. By combining the random field approach
and infinite integration theory approach in SPDEs for mild solutions, analysis is carried out. Then this paper
develops a Lotka-Volterra competitive system under general setting; longtime properties are studied with
the help of newly developed tools in stochastic calculus.
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1. Introduction

Motivated by the classical Lotka-Volterra competitive model introduced in 1925 by Lotka
[34],

du(t)
7 =U@®)(m —aiU@)—b1V()), t =0,

d‘;t(t) =V(@)(my—arV()—byU(t)), t >0, (1.1

U(0) =Uy, V(0) =V,

much effort has been devoted to studying and generalizing this type of equations in different
directions. In (1.1), U(¢), V(¢) are the densities of competing species at time ¢; m, m, are the
birth rates; ay, a, represent the rates of self-limitation, and by, by account for the rates of com-
petition. The motivation for the study comes from ecology and biology. For detailed biological
and ecological background related to (1.1) and its variants, see [30,51].

If one takes into consideration of the spatial inhomogeneity, (1.1) can be generalized to

aU(t, x)

TR =AU, x)+ U, x)(m(x) —ai(x)U(t,x) —b1(x)V(t,x)), Ry x(0,1)
aV(t,x)

v =AV(t,x)+ V(t, x)(ma(x) —ar(x)V(t,x) —ba(x)U(t, x)), Ry x (0, 1)
8—UU(I,O) = 8—UU(I, )= a—UV(t,O) = 8—UV(I, 1)=0, t >0,

0x 0x 0x 0x

U,x)=Upx),V(0,x)=Vp(x), 0<x <1,

(1.2)
where U (¢, x), V (¢, x) represent the densities of species at time ¢ and location x, m; (x), a; (x),
bi(x), for i = 1, 2 are functions defined on [0, 1], and A is the Laplace operator. Such a model
is the so-called reaction-diffusion equation in PDEs community and has received increasing at-
tention lately. For instant, in [9,20], the authors considered the existence and uniqueness of the
coexistence states; the works [28,32] aimed to understand completely the dynamics of the sys-
tem; the work [29] studied small diffusion cases; the works [21-25,35] treated variants of (1.2).
Along another direction, noises are added to (1.1) to capture the random factors in the envi-
ronment. The corresponding stochastic system becomes

dUt)=U@)(m —aiU(@) —bV(t)dt +o,U(t)dB;(t), >0,
dV()=V (@) (my—aV(t) —byU@))dt + o0V (t)dBy(t), t=>0, (1.3)
U(0) =Uop, V(0) =W,

where Bj(t) and B;(t) are real-valued standard Brownian motions, and o1, o, are intensities of
the noises. The system is modeled and studied under stochastic differential equations (SDEs)
framework. Much effort has been devoted to studying (1.3) such as well-posedness, positivity of
solution, Markov-Feller property, longtime dynamic behavior such as existence and uniqueness
of stationary distribution, coexistence and extinction, and optimal harvesting strategy; see e.g.,
[13,14,27,38,54] and reference therein.
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In this work, we propose a model that captures features of both the random factors and the spa-

2 a2
tial inhomogeneity. Let 9 Vat]a(;’x), 9 g/fa(; 1) be space-time white noises, to be defined rigorously

in the subsequent section; m;(x), a; (x), b;(x), and o;(x), for i = 1,2 be twice continuously
differentiable functions in [0, 1], and suppose that m;(x), a;(x), and b;(x) are non-negative.
Consider

aU (¢, x)
TZAU(I,X)JrU(I,X) (m1(x) —ar(x)U(t, x) —b1(x)V (¢, x))
2w, (1, x)
+o1X)U(t, x)——F—, 0=<x=<1,1>0,
ordx
m =AV(it,x)+V(t,x)(mo(x) —ar(x)V(t,x) — by(x)U (¢, x))
5 = , ) 2 22 , 2 ) (1.4)

oV 28D g1 s,

U U U 8U8t8x

—Ut,0)=—Ut,1))=—V(t,0=—V(t,1)=0, >0,

0x 0x 0x 0x

U@0,x)=Up(x),V(0,x) =W(x), 0=<x=<1.

The use of Neumann boundary condition is motivated by applications in biology and ecology,
namely, the population will not leave a finite domain.

Our results can be summarized as follows. After modeling the system as a stochastic reaction-
diffusion system perturbed by space-time white noise under a stochastic partially differential
equation (SPDE) framework, we give a full analysis. The well-posedness of the problem (ex-
istence, uniqueness, positivity, and continuous dependence on initial data of the solution) is
obtained first. In contrast to many existing works, we do not require the coefficients being Lip-
schitz, neither do we use linear growth condition. As a result, this part is also interesting in
its own right from a SPDEs theory point of view. Then, the regularity of the solution is in-
vestigated. It is shown that in any compact interval not including O, the solution satisfies the
classical regularity, namely, Holder continuous in the time variable with any exponent < 1/4
and Holder continuous in the space variable with any exponent < 1/2, while on compact inter-
val containing 0, the Holder continuity only holds with exponent < 1/2 A « in space and with
exponent < 1/4 A /2 in time provided that the initial value is «-Holder continuous. Analytic
and probabilistic representations of heat kernel are used in the proof. Next, using the Malliavin
calculus, the absolute continuity with respect to Lebesgue measure of the law of the solution
is proved and then the existence of density is obtained. The longtime behavior is also stud-
ied. We prove the existence of an invariant measure. Then, we consider an important problem
in biology and ecology, namely, the coexistence and the extinction. Some ideas and methods
for the study of this longtime property are introduced and a first attempt is given by using the
newly developed mild stochastic calculus. An overview of the results, ideas, and methods of this
point in other (simpler) frameworks and the difficulties in our own system are also discussed
carefully. Finally, we extend our results to high dimensional setting by injecting “color” (or cor-
relation) into the space-time white noise for the trade off of the regularity of the noise and the
dimension of space. The noise driving the equation in higher dimensional space will be white
in time and colored in space. Nevertheless, one need not require the use of finite-trace covari-
ance.

Regarding the novelty, this paper is one of the first works on modeling and analysis of the
competitive models in biological system when both the spatial inhomogeneity and the random

186



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184-232

noises are taken into consideration. Note that the systems in SPDEs setting cannot be investigated
by simply combining SDEs and PDEs. For example, the stochastic integral with respect to space-
time white noise requires integrating over the time and space variables simultaneously. Roughly,
if we freeze the time, it looks like a Bochner integral while if the space variable is frozen, it
turns out to be an integral in the Itd sense. However, putting them together will be different from
considering and analyzing each of them separately. As a result, the analysis is much difficult
compared with the existing results in either SDEs or PDEs setting.

Our work contributes to both the development of stochastic reaction-diffusion equations and
particular applications to Lotka-Volterra systems. We consider well-posedness of the problem,
regularity of the solutions, existence of density, existence of an invariant measure for a stochastic
reaction-diffusion system with non-Lipschitz and non-linear growth coefficients and multiplica-
tive noise. Moreover, we use a unified approach by combining the random field approach and
the infinite integration theory approach in SPDEs for mild solutions. Each of the approaches has
its own advantage and is suitable for different purposes. From an application point of view, this
paper models and analyzes the Lotka-Volterra competitive system in a more general setting. The
longtime properties are also studied with the help of newly developed tools in stochastic calculus.
We hope this work will open up a new window for studying biological systems as well as the
applications of SPDEs in mathematical biology.

The rest of paper is organized as follows. Section 2 provides the formulation of our prob-
lem. The well-posedness of the problem is given in Section 3 while Section 4 is devoted to the
regularity of the solution. The existence of the density of the law of the solution is obtained in
Section 5. Section 6 considers the existence of an invariant measure. Section 7 is devoted to the
coexistence and extinction in the competitive model. We extend our results to higher dimension
in Section 8. Section 9 concludes our paper. Finally, an appendix containing some notation and
results together with relevant literature is provided at the end of the paper to help the reading,
which includes infinite-dimensional integration theory, random field approach, equivalence of
the two different approaches, and the Malliavin calculus.

2. Formulation

The driving noise we consider has two parameters, space and time. There are several ways
to construct stochastic partial differential equations (SPDEs) with respect to such noises. The
theory of SPDEs was developed based on the random field approach by Walsh in [57], and was
dealt with using stochastic evolution in Hilbert space by Da Prato and Zabczyk in [18]. In the
results developed by Walsh, stochastic integrals are defined with respect to martingale measures,
whereas in the work of Da Prato and Zabczyk, stochastic integrals are taken with respect to
Hilbert space-valued Wiener processes. These two approaches lead to the developments of two
distinct schools of study for SPDEs, both of which have advantages in their own rights.

In this paper, we prove that the solutions in the two approaches for the systems that we are
interested in are equivalent. Then we treat the solution in each sense exchangeably whichever
is more convenient for us under different scenarios. Unifying and using both approaches is one
of our main ideas here and allows us to give a full analysis of the systems of interest. For easy
references on the aforementioned approaches, we collect some notation and preliminary results
in the appendix.

To proceed, let us formulate our problem. Let L?((0, 1), R) be the Hilbert space with usual
inner product and C ([0, 1], R) be the Banach space of continuous functions with the sup-norm.
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Denote by H = L?((0,1),R?) and E = C([0, 1], R?) the Hilbert space and Banach space, re-
spectively, endowed with the inner product and the norm as follows

2
(h,ghu = ((h1, h2), (g1, 8201 = Y _(hi» &) 12(0.1),R)»

i=1

and

lule =11, u2)lg = sup Jul(x)+u3(x).

x€[0,1]

Let {Q,F,{Fi}i=0.P} be a complete probability space and LP(Q; C([0,T], E)) (resp.
LP(2; C([0,T], H))) be the subspace of predicable process u«, which take values in C ([0, T'], E)
(resp. C([0, T], H)) a.s. with the norm

|M|Z ) =FE sup |u(s)|5, (resp. |”|i, () :=FE sup |u(s)|1;1)
! s€[0,1] Ny sel0.1]

For ¢ > 0, p > 1, denote by W#7((0, 1), R2) the Sobolev-Slobodeckij space (the Sobolev space
with non-integer exponent) endowed with the norm

|ui (x) —ui (PP

PN dxdy.

2
Jule,p = Il Logo.1). 82 + )
i=10,1)%(0,1)

Neumann heat kernel and Neumann heat semi-group. Next, we denote by G, (x, y) the fun-

damental solution of the heat equation on R x (0, 1) with the Neumann boundary condition. It
is well known that G, (x, y) has an explicit form as follows

0= i e85 wen (-00572) |

We recall the following properties of the Neumann heat kernel; see e.g., [1,57].

e There are some finite constants ¢ and ¢’ such that

Ix — yI?

1
Vi —s) P <_ )

cGi—s(x,y) < ) <Gis(x,y), 2.1

where

1 ( x — y|2)
exp| —
N2 (t — ) 2(t — )
is the heat kernel.
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e Foreach g <3, T > 0, one has

r 1
sup //G?fs (x, y)dyds < 0. 2.2)
(t,x)E[O,T]x[O,l]O J

Moreover, let ¢'2N be a semigroup in L2((0, 1), R) defined by

1

(etANu) (x) := /G,(x, Vu(y)dy.

0

We recall some properties of this semigroup as follows; see [6, Section 2.1] for more details.

e Foranyt>0,&>0, p>1, e maps LP((0, 1), R) into W&P((0, 1), R) and
e ul, < et ADTPlulror),  Yue LP((0, 1), R), (2.3)

for some constant ¢ independent of p.
e There is a constant ¢, independent of u such that

e N ul e o, Ry < cluleqo.n R Yu € C((0, 11, R). 24

Moreover, we often use the notation e!2¥y for u = (41, u2), in the following definition:
BNy = (elANul, e’ANuz) ) (2.5)

For simplicity of notation, in the remaining of the paper, ¢/~ u with u being a function taking
RZ values, should be understood as in (2.5).

Space-time white driving noise. Assume that {8 x(1)}72 |, and {8, (¢)}72, are two sequences
of independent {;},>0-adapted one-dimensional standard Wiener processes. Now, let {e;}72 | be
a complete orthonormal system in L2((0, 1), R) including eigenfunctions of Neumann Laplace
operator in [0, 1]. It is seen that they are uniformly bounded. That is,

sup sup |ex(x)| < oo.
keN x€[0,1]

We define the standard cylindrical Q-Winner processes W;(t),i = 1, 2 as follows
o
W)=Y Brier, i=12.
k=1

In higher dimension, we will need to use colored noise in space to obtain more regularity but do
not need to require it be a finite-trace Q-Wiener process. The detail is discussed in Section 8.
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Definition of solution. Now, we define a mild solution of (1.4) as a process
{(Z(#t,x):=U@,x),V(t,x):1=0,x €0, 1)}

satisfying

1

Ut x) = / G (x, VUo()dy
0

t 1
+//Gt—s(x,y)U(S,y) (mi(y) —art(NU(s,y) —b1(MV (s, y)) dyds
00

t 1
+ / / Gy (x, o1 (WU (5, y) W1 ds, d),
00

1 (2.6)

V(I,X)=/Gr(x,y)Vo(y)dy
0

t 1
+ / / Gy (6, VIV (5, 3) (m2(y) — ax(0) V(5. ¥) — ba (U (s, ¥)) dyds
00

t 1
+ / / Gy (x. o2V (5. V) Walds. dy),
00

where the stochastic integrals are in Walsh’s sense with respect to the corresponding Brownian
sheets of Wi(¢), Wa(¢) (denoted by Wi(t,y), Wa(z, y) for simplicity of notation) as in Sec-
tion 10.2 and 10.3; or satisfying the following stochastic integral equation

t
U@t)=e®NUy+ / eI Y (s) (my —a1U(s) — bV (s))ds

0
t

n / 1IN G U (5)d W (s),
J 2.7

t
V() =e2VVy + /e(’_S)AN V(s) (my —aaV(s) — baU(s))ds

0
t

+ / 1IN 5, V (5)d Wals),
0

where the stochastic integrals, in which 01U (s) and o2V (s) as multiplication operators, are de-
fined as in infinite-dimensional integration theory in Section 10.1 and U(¢) = U (¢, x), V(t) =
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V(t,x),mi =m;(x), a; =a;(x), b =b;(x), 0; =0;(x) (i =1,2) are understood as elements in
a Hilbert space L2((0, 1), R).

As we discussed in Section 10.3, these solutions (in the sense of (2.6) and of (2.7)) are equiv-
alent if one of them exists uniquely and has continuous version and finite moment (it will be
shown in Section 3). Because of this equivalence, we will use these forms exchangeably de-
pending on our purposes. To prove the existence and uniqueness of the solutions, to examine
their longtime behavior, or to obtain estimates in functional spaces, the solution in the sense of
infinite-dimensional theory (2.7) will be used. To investigate the regularity of solution and its
distribution or to estimate pointwise, we use the solution in the sense of random field approach
(2.6).

In the rest of paper, we often denote the functionals F(U, V), F>(U, V) as the drift terms
of (1.4). For u(x), v(x) € L%((0, 1), R), we say u > 0 if u(x) > 0 almost everywhere x € (0, 1);
and u > v if u(x) > v(x) almost everywhere x € (0, 1). Since we are treating a system motivated
from ecological system and mathematical biology, we are only interested in “non-negative mild
solution”, i.e., the mild solution (U (t), V (¢)) satisfying U(¢) > 0 and V(t) >0 for all t > 0
a.s. Moreover, operations with respect to vectors are understood in the usual sense although
we will often write them in row instead of in column because of the simplicity of notations.
Throughout this paper, the letter ¢ denotes a generic finite positive constant whose values may
change in different occurrences. We will write the dependence of the constants on parameters
explicitly when it is needed.

3. Well-posedness

Regularity of stochastic integral. To start, it is similar to [6], we need the following proposition,
which shows the regularity of the stochastic integral.

Proposition 3.1. Denote by y the mapping

t t

y@)(t) == / UMV Gyuy (5)d Wy (s); / U™ G5 ($)d Wa(s) | 3.1)
0 0

for u = (uy,up) € LP(R2; C([0,T], E)). There is py such that for all p > p., y maps
LP(2; C([0,T], E)) into itself and for any u,v € LP(2; C([0, T], E))

ly (@) =y @)Ly p = cp(T)lu —vlLy . (3.2)
for some function c,(T) satisfying c,(T) | Oas T | 0.

Proof. Let p, be sufficiently large such that for any p > p,, we can choose simultaneously
a, & > 0 satisfying

1 1 1 1
—<a<- and —<8<2(Ol——). 3.3)
p 4 p P
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By a factorization argument (see e.g., [18, Theorem 8.3]), one has
) t
Y0 =y )(0) = =—— / (t — )% eIV, (u, v)(5)ds, (3.4)
0

where

s

Yo (u, v)(s) := / (s =) %eCIAY (u(r) — v(r)od W (r),

0

and we shortened the notation by convention that for u = (u1, u3)

t

/e(’_S)ANu(s)UdW(s)

0
t t

= (/e(l*S)ANul(s)aldWI(s),/e“*)ANm(s)adez(s)).

0 0

Applying (2.3) and Hoder’s inequality to (3.4) yields that for any ¢ < 2(a — 1/ p)
ly ) (@) =y )(D)le,p
(3.5)

t
<o / (= ) A DE 21 0, 0) ) L 0.1y m2)
0

P

t i z 1
L (a—1—¢/2 v
§Ca(/(s/\ e )d5> ’ (/|Ya(u,v)(s)lip«o,]),Rz)ds)p'
0 0

We proceed to estimate Y, (u, v)(s). First, let
S
Y, (u,v)(s) := / (s —r) e (uy (r) — v1(r)o1d Wi (r).
0

It is noted that the stochastic convolution fg eS AN D (r)d W (r) (for some process ® such that
the integral is well defined) is not a martingale with respect to s in general. However, if we

frozen s and consider the sequence fos / eSANG(r)d W (r) with respect to s € [0, s], then it is
a martingale. Taking this idea, by Burkholder-Davis-Gundy inequality, we get
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E|Y} (1, v)(s, x)|”

s 1
S 2
< cIEJ< / s=n23( / Gy (6, @1, 3) = 01, )ex (1)dly) dr)
0 k=19

i o0 £ (3.6)
= C]E(/(s - r)—ZOl Z(Gs—r(xa ')(M] (I", ) — V] (r7 ))7 ek(.)>iz((0,1))dr)
0

k=1

(SIS

P

y 7
= c]E</(s — 1) 2 Gy (x, ) (1, ) — w1 (1, '))|iz((0,1)) dr)
0

because of Parseval’s identity. Moreover,

2
|Gs—r(-xv ~)(u1(r, ) - u2(r7 '))|L2((0,1))
1

< Jur(r) = viegorr) / G;_,(x, y)dy (3.7)
0

_1
<clur(r) = vi()gqo.r) S — 172 (dueto (2.1).
The second component E|Y§(u, v)(s,x)|? is estimated similarly. Hence, combining (3.6) and
(3.7) allows us to obtain that

P

2

s
ElYa(u,v)(s,x)lp§c|u—v|£w /(s—r)—<2“+%>dr ) (3.8)
0

By the Sobolev embedding theorem, W#-7((0, 1)) is embedded into C([0, 1]) if ¢ > 1/p. Hence,
we deduce from (3.5) and (3.8) that y maps L?(€2; C([0, T'], E)) into itself, and

ly) —yWle,, <cp®lu—vlg, ,,
where
o
14

cp(t) =ca</t(s A 1)pp1(°‘18/2)ds>_1</t (/S(s _r)—(2&+%)dr)
0 0

0

P 1
2

ds) g
satisfying ¢, (t) | Oas¢ | Odue to (3.3). O

Existence and uniqueness of solutions. Since the coefficients are non-Lipschitz and non-linear
growth, the existence and uniqueness of the mild solution are not obvious as usual. Although
the existence of the mild solution of stochastic reaction-diffusion equations with non-Lipsschitz

terms has been obtained in [6], we cannot apply the results in this paper because the coefficients
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in [6] are required to satisfy either some suitable growth conditions [6, Hypothesis 4 and Theorem
5.3] or condition [6, (5.17)]. That is, either the drift term has growth rate of power m (for some
m > 0) resulting in the diffusion term having growth rate of at most power % or the drift decays
outside large balls, which are needed to guarantee the (uniform) boundedness of the sequence of
truncated solutions. These conditions are not satisfied in our model since the drift has polynomial
growth of degree 2, while the diffusion term has linear growth. Moreover, the drift term in our
own system only satisfies [6, (5.17)] if we assume further conditions such as aj(x), ax(x) are
uniformly bounded below by positive numbers; see Section 6.

Given the problem mentioned above, we proceed as follows. We use the truncation method
as in [6] to truncate the coefficients in compact balls so that it is Lipschitz continuous and linear
growth, and we define the solution using the truncation. The non-negativity of truncated solu-
tions will be obtained in the next step. Then, the uniform boundedness of sequence of truncated
solutions is obtained by using the idea of “ignoring negative terms in the drift”. The detail is in
the next Theorem.

Theorem 3.1. For any initial data 0 < Uy, Vo with (Uy, Vo) € E, there exists a unique mild
solution Z(t) = (U(t), V(t)) of (2.7) in LP(2; C([0, T], E)) for any T > 0, p > 1. Moreover,
U@),V()=0,Vt>0a.s.

Proof. First, we rewrite the coefficients by defining

Si(x,u,v) =u(my(x) — a1 (x)u — by (x)v),
fo(x,u,v) =v(ma(x) — ay(x)v — by(x)u),

where f; :[0,1] Xx R x R — R. Foreachn e N, i =1, 2, we define

fitx,u,v) if  |(u,v)|g2 <n,

SuiG,u,v) =3 . nu nv .
il [, v)lge |<u,v)|Rz) Tl lge > 5.

Foreachn, f,(x,, ) = (fu,1(x,, "), fa2(x,-, ) : R - R? is Lipschitz continuous, uniformly
with respect to x € [0, 1], so that the composition operator F},(z) associated to f,, (with z(x) =
(u(x), v(x))) defined by

Fo(2)(x) = (F,1(2) (0), Fu2(2)(0)) 1= (fa,1 (6, 2(0)), fu2(x, 2(x))), x €10, 1],

is Lipschitz continuous in both L>((0, 1), R?) and C([0, 1], R?).
We proceed to consider the following problem

dZ,(t) = [ANZn(1) 4+ Fo(Zp (1) ]dt + 0 Z,(1)dW (1), Z4(0) = (Uo, Vo), (3.9

where Z, (1) = (Un ), Vy (t)), ANZ,(1) = (ANU,, 1), ANV, (t)), and Ay is the Laplacian to-
gether with the Neumann boundary condition and

0 Zy (AW (1) = (01 Up (1)d W (2), 02 Vi (1)d W2 (1))
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Lemma 3.1. For any initial condition (Uy, V) € E, (3.9) has a unique mild solution; the solution
isin LP(2; C([0,T1, E)) forany p > pyand T > 0.

Proof. Since the coefficients in (3.9) are Lipschitz continuous and because of Proposition 3.1,
by contraction mapping argument [45, Proof of Theorem 3.1] or [18], we obtain that equation
(3.9) admits a unique mild solution Z,(t) = (U,(¢), V,(t)) € L?(2; C([0, Tp], E)) for some
sufficiently small Ty. Therefore, for any finite 7 > 0, there is a unique mild solution of (3.9) in
LP(2; C([0,T], E)) by repeating the arguments in [T, 27o], [2Tp, 3Tp], and soon. O

Next, we prove the non-negativity of U,(¢), V,(t).

Lemma 3.2. For any initial condition 0 < Uy, Vo, (Ug, Vo) € E, one has U,(t), V,(t) >0, Vt €
[0, T] a.s.

Proof. The proof is similar to the proof of [45, Lemma 3.1] or [39, Lemma 3.2]. O

We are in a position to show that the sequence {Z,}°° | is uniformly bounded. The result is in
the following lemma.

Lemma 3.3. Foralln € N,

E sup |Z,()If <cp®)(1+Z0lf). (3.10)
s€[0,1]

where ¢, (t) is a positive constant depending on p and t, but independent of n.

Proof. By the definition of mild solution, we have

t

Un () (x) = ("N Up) (x) + / eUTIANE 1 (Un(s), Va(s))ds | (x) + Wy, (1) (x),
0

where Wy, (1) := fot e"=DAN G U, (s)d W (s). Since €2V is positivity preserving and U, (?),
Vi (t) are non-negative, by definition of F, ; and (2.4), we obtain

Un (D cqo,11,R)

t
= sup [(€4000) 0+ | [ eIV W00, Vit | 0+ W, (0100
x€[0,1]
0
t

3.11
< sup [(efANUo)<x)+ / 1TIRNY, (sym ds <x>+Wu,,(r><x)] G4
x€[0,1] o

t

= C(t)(|UO|C([O,1],]R) +/ U"(s)’cuo,u,mods * ‘WU” (t)’C(lo,ll,R))’
0
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where c(t) is a constant depending only on ¢ and independent of r.
There is a small 75 > O such that

y 1
cp(to)co(to) < 2

where c; (to) is the constant in (3.2) in Proposition 3.1 and co(#p) is the constant in the last line
of (3.11). Hence, we obtain from (3.11) and Proposition 3.1 that

Iy

E sup |Zn(s>|§scp(m>(|zo|§+/za sup
s€l0,10] ref0,s]

Zn(r)‘st). (3.12)

Therefore, Gronwall’s inequality implies that

E sup [Zy(s)Ih <cplto)(1+1Zol%),

s€[0,10]

for some constant ¢ (#), independent of 7. To proceed, we can repeat the same arguments in the
intervals [t, 2t0], [2t9, 3%p], and so on. Thus the Lemma is proved. O

Completion of the proof of Theorem 3.1. At this stage, we are able to define the solution using
the truncation [6] as follows. For any n € N, we define

Goi=1nf{r > 0:|Z, ()| g = n}, (3.13)
with the usual convention that inf#) = oo, and define ¢ = sup, .y ¢». Then we have
P{¢ <o} = lim P{¢ < T},
T—o00
and foreach 7 > 0,
P{f <T}= lim P{{ <T}.
n—oo
For any fixed n € N and T > 0, it follows from Lemma 3.3 that

Plo <7)=P{ sup 1Z,0If =0
telo,

1 ¢, (TY(1 + |Zo|2
<—E sup |Z,(0)I} < P+ 1Z0lg),
n?l  ieo,1] np

It leads to that P{¢, < T} goes to zero as n — 0o so P{¢ = oo} = 1. Hence, for any ¢ > 0, and
w € {¢ = oo}, there exists an n = n(w) € N such that r < ¢, (w). Thus we can define

Z(1)(@) i= Zn () (). (3.14)
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We need to show that it is well defined, i.e., for any t < &, A &, Zn(t) = Z,(¢) a.s. This is
because of the definitions of truncated coefficients and stopping times &, . The details of this
argument can be found in [6, Theorem 5.3].

Note that the process Z(t) = (U(t), V (t)) defined above is a mild solution of (1.4). Indeed,
for any t > 0, w € {¢ = 00}, there exists an n € N such that r < ¢, and

t
Z(t)=Z,(t) =" Zo + / eU=AE (Z,(s))ds + Wz, (1)

0
t

=7 +/e(’_S)AF(Z(s))ds + Wz(1),
0

where Wz, (t) = Wu, ), Wy, (1)) and Wz(t) = (Wy (t), Wy (t)). Moreover, if there exists an-
other solution Z(t) of (1.4), it is not difficult to obtain that

ZANG)=Z(tNE), VneN,t>0.

Since ¢, — 0o as n — 00 a.s., we get Z(t) = 2(t). So, the solution is unique. Finally, for any
p>1,T >0,

sup |Z(0)|p = lim sup |Z(1)|p Yir<gy = lim sup |Z,(DI% Lz <,)-
t€[0,T1] =00 e[0,T] =00 1¢[0,T]

Hence, by the boundedness of Z, () in Lemma 3.3, one has Z(¢t) € LP(2; C([0,T], E)). As
a result, we obtain that equation (1.4) admits a unique mild solution Z(t) = (U(t), V(¢)) €
LP(2; C([0,T], E)). The non-negativity of U (t), V (¢) follows from that of U, (¢), V,, (). O

Continuous dependence on initial data. To proceed, we prove that the solution depends con-
tinuously on initial data, which is stated in the following Proposition. This property plays an
important role in studying the semigroup associated with the solution and its Feller property,
which will be investigated in Section 6.

Proposition 3.2. The solution given in Theorem 3.1 depends continuously on initial data in
the sense that for any T >0, p > 1 the map z € E4 :=={z= (u,v) € E :u,v>0} > Z* €
LP(2; C([0,T], E)), (Where Z%(t) is the solution of (1.4) with initial data 7) is continuous,
uniformly on bounded sets of E ..

Proof. With the help of (3.10), the proof is similar to [6, Proposition 5.6]. Thus we provide a
sketch of the main ideas only. Let Z%1(¢), Z%2(¢) and Z%'(¢), Z7*(¢) be the solutions of (1.4) and

(3.9) with initial data Z(0) = Z,(0) = z; and Z(0) = Z,(0) = z2, respectively. As in the proof
of the first part, because of the Lipschitz continuity of F},, it is easy to obtain that

|z — z;2|§w <cnp(T)|z1 — 22l (3.15)

Consider the stopping times ¢;' and ¢+? as in (3.13) corresponding to initial values z1, z2, re-
spectively, we have
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- zol) <z - z9l),

71 |P 2|P 1/2 (3.16)
+ep(1+]207,, +12207,, (Pl a2 <)
Moreover, it follows from (3.10) that
c(T)
P AL <T) = = (1+ Ik + laal} ).
Therefore, by applying (3.10) again, we obtain from (3.16) and (3.15) that
c(T)
20 =z2|)  <ap Dl —alf+ =1+l +12gT). @1

Now, for any z1, z2 in a bounded set of E and arbitrary ¢ > 0, we first find 7 € N such that

c(T) 1 1 3
= (1+ 1217 + 122l )<5,

where ¢(T) is the constant in (3.17). Let 0 < § < 1 be such that
e
ca,p(T)|z1 — z2|’;- < 3 whenever |z1 — 22| <6,

where ¢z, (T) is the constant in (3.17) corresponding to 7. Therefore, continuous dependence of
the solution on initial data is proved. O

Positivity. We have obtained that the solutions are non-negative provided the initial data are non-
negative. In fact, we expect that the solution to be positive under weak conditions on positivity of
the initial data. This property is also interesting in both SPDEs theory and different applications.
Moreover, the results and techniques will also be used to examine the existence of the density (of
the law of solution) in Section 5. We have the following Proposition.

Proposition 3.3. Suppose (Ugy, Vo) € E such that Uy, Vo > 0 but not identical to 0. Then,
U(),V(t)>0,Vt>0; as.

Proof. Since U(t), V (¢) is continuous a.s., it suffices to prove that for any fixed ¢, U (¢), V (¢) > 0
a.s. We use truncation schemes as in Theorem 3.1. As in [36, Theorem 2] or [47, Proposition 3.1],
we obtain the positivity of U,(¢), V,(¢), i.e., for any t > 0, U, (¢t) and V,,(¢) > 0 a.s. Let t > 0
be fixed but otherwise arbitrary. Since there are countable number of truncated equations, the set
in which the positive property does not hold for some truncated solution is a null set. Therefore,
because of the definitions of U(t), V(¢) and U,(t), V,(t), one can see that outside a null set,
there is an n = n(w) such that U(¢) = U,(t), V(t) = V,(¢). So, the positivity of U(¢), V(¢)
follows from the positivity of U,(t), V,,(¢). O

Discussion on initial condition. To close this section, we discuss briefly conditions on the initial
data for the existence and uniqueness of the mild solution. In fact, the initial values are required
to be in E, the space of continuous functions to guarantee the well-posedness of the problem in
E. If one only wants to obtain the well-posedness in the space of square integrable function H,
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the required continuity of initial condition is not needed. Let us state this fact in the following
theorem.

Theorem 3.2. For any initial data 0 < Uy, Vo, (U, Vo) € L*®((0, 1), R?), there exists a unique
mild solution Z(t) = (U (t), V(t)) of (2.7) belonging to L?(2; C([0, T], H)) forany T >0, p >
1. The solution is non-negative, i.e., U(t), V(t) > 0 for any t > 0 a.s. Moreover, the solution
depends continuously on the initial data.

Proof. The proof of this Theorem is the same as that of Theorem 3.1. The truncation functions
are defined first and then the sequence of truncated solutions are obtained. We need only take
care the uniform boundedness of the sequence of truncated solutions. By the same arguments as
that of Lemma 3.3, we have the following Lemma.

Lemma 3.4. For alln € N then

p P
E Y:E)pt] |Zn (S)lLOQ((O,l),RZ) S Cp(t)(l + |ZO|LOO((0’1)’R2) )9

where c,(t) is a positive constant depending on p and t but is independent of n.

With this boundedness, we can mimic the remaining proof of Theorem 3.1 to obtain the de-
sired results. O

Remark 1. One may expect that to obtain the well-posedness in H, the initial condition Zy
is required only to be in H. However, this does not seem possible to us now. The truncation
process may be unavoidable in non-Lipschitz cases. Then, the uniform boundedness of sequence
of truncated solutions in L°((0, 1), R?) is needed to guarantee the solution to be well defined.
The uniform boundedness in H is not enough and thus, the initial conditions need to be almost
everywhere bounded.

4. Regularity of solution

In Section 3, we have proved the existence and uniqueness of the solution belonging to the
space of continuous functions. In this section, we obtain additional regularities of the solution.

Holder continuity on ¢ > 0. We consider the Holder continuity of the solution on intervals
excluding O first. On these intervals, the solution satisfies the classical regularity, namely, Holder
continuity with exponent < 1/2 in space and exponent < 1/4 in time.

Theorem 4.1. Let Z(t) be the solution of (1.4) with initial value Zy = (Ug, Vo) € E, Uy, Vo > 0.
On compact set of {t > 0}, the function Z(t, x) is Holder continuous in space with any exponent

< % and Hélder continuous in time with any exponent < %. That is, for any 0 <tg < T < 00,

and B1 € (0,1/2), B2 € (0, 1/4), there is a finite random variable Cy = Cy (to, T, B1, B2) a.s.
such that

1Z(t,x) = Z(s, | < Ch (Ix =y + 1t —s12),  Vx,ye[0, 11,51 €[to, T] as.
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We need the following auxiliary results to prove Theorem 4.1.

Proposition 4.1. (Kolmogov’s test; see e.g., [18, Theorem 3.5]) Let O C R4 be a bounded do-
main. There are C, 8, and € > 0 such that

E[XE) — X < Cls —nl™**.
Then X (-) has a Holder continuous modification (with any exponent < g/§).

Lemma 4.1. We have the following basic property of Neumann heat kernel. For any 0 <s <t <
T, x,y €0, 1], one has

! 2
[ (69 -G o) s = S @)
0
t 1 5
[/ (6.or-Gu0.0) de | as =iy @2)
0 0
t 1
/ / G2, (x.6)dt | dr <Clt -2, 43)
N 0
s 1
//(G,_r(x,é)—Gx_r(x,S))zd&'dr§C|t—s|%. (4.4)
00

Moreover, for any 0 < Ty < T», there is a C = C(T1, T») such that

1
/(G,(x,?;‘) — G(x,8)*de <C|t — s|%, Vs, t € [Ty, T2],x € [0, 1]. 4.5)
0

Proof. The proof is standard and can be found in [57]. For example, one can obtain these results
by using the eigenfunction expansions [57] of G;(x, y) in the form

o0
1+ Z e cos(nmx) cos(nmy).
n=1

Therefore, we have

1
[ (6.0~ Guv.0)) ae
0
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o0
_ —2n27%; _ 2 I .
= E 2e |cos(nmx) —cos(nmy)|=, (due to Parseval’s identity)
n=1

(4.6)
00 o
< CZe‘Mﬂzf (4/\112|x _ y|2> < C/e—zsz (4/\§2|x —y|2) dg
n=1 1

[e,0]

<Clx —y|? /e“szf?ds <
1

Clx —y?
=

12
As aresult, (4.1) is proved. Moreover, it follows from (4.6) that

r oo

t 1
[ [(6eo-co.o)asas<c [ [ (anen-yP)deas
00 0

1

(o8]

4

<c [ (g Ab=sP)de <Cle =i
1

As a consequence, (4.2) is proved. Similarly, inequalities (4.3) and (4.4) are obtained. Finally,

(4.5) can be proved by the same way as that of (4.6) and using the fact 1 — e_”z(’_s) <1An?@-—
s). 0O

Proof of Theorem 4.1. It is known that

t

Z(t,2) = (" Z) () + / UM F(Z(5))ds ) () + y (2)(, )

4.7
0
=:Ao(t,x) + A1(t,x) + y(2)(t, x),
where y is the mapping defined as in (3.1).
First, by (4.1) and (4.5) in Lemma 4.1, it can be seen that for any k € N,
7012k
E|Ao(t, x) — Ao(t, y)I* < %u —ylf, vt=0.x.yel0.1], (4.8)
7
E|Ao(t, x) — Ao(s, OI* < i, 71 Zolf |t —sI*, Vi, s €lto, Tl x,y€[0,1].  (49)

Combining (4.8), (4.9), and Proposition 4.1, we obtain the Holder continuity of Ag(z, x) in space
with any exponent < % and in time with any exponent < %.
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Second, we have that A (¢, x) — A1 (¢, y) consists of two components with one of them being

t 1 t 1
/ / Gy (v E)FL(Z (s, £))dEds — / / Gy (v £ FL(Z (s, £))dEds
00 00

(4.10)
t /1

_ / / (Gros (5. 8) — Groy (v.£)) F1(Z(5. £))dE | ds.
0

0

Because F1(Z) has polynomial growth with the boundedness of solutions in the sense of for any
p=1

E sup |Z(t)|’l;<oo,
t€[0,T]

we have that forallt <T,x,y €[0,1], ke N,

t 1 "
B[ [ ([ 66 = Giostr.8) Fiz 5.6 )as|
0 0

to1 L 4.11)
<ol [ ([ 1608~ Gistr Pt )as|
0 0
<c(D)lx — y|*  dueto (4.2).
Combining (4.10) and (4.11) implies that
E|A1(t,x) — A1(t, I < (D)x —y*, Vte[0,T],x,yel0,1],keN. 4.12)

Similarly, using the boundedness of E sup, 9 71 SUpyc(o,17 1 Z (7, x)| and (4.3), we obtain

E|A (7, x) — A1 (s, )|* < (o, Tt —s|¥, Vs,t€lto,T],x,y€[0,1,keN. (4.13)

Proposition 4.1, (4.12), and (4.13) allow us to obtain the desired Holder continuity with any
exponent < 1/2 in space and any exponent < 1/4 in time of A;(z, x).

Finally, by the Burkholder-Davis-Gundy inequality and a similar process as above (the cal-
culation is similar to proof of Proposition 3.1), we obtain similar regularity for y (Z)(t, x). In
more detailed, as in Proposition 3.1, we have seen that y (Z)(t, x) € W&P((0, 1)) for any p and
¢ satisfying (3.3). Moreover, W7 ((0, 1)) embeds continuously to the Holder space with any
exponent & < & — 1/p. On the other hand, for any 6 < 1/2, we can choose p large and then
¢ satisfying (3.3) and ¢ — 1/p > 6. The proof for the regularity in time for stochastic integral
turns out to be similar to that of (4.13) after using the Burkholder-Davis-Gundy inequality and
then using (4.3). Because of the above Holder continuity of Aj(t, x), A2(¢, x) and y (Z)(¢, x),
the Theorem is proved. O
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Hoélder continuity on intervals containing = 0. In contrast to the case of considering compact
interval in {r > 0}, the regularity of Z(, x) in a compact set containing r = 0 is more subtle. The
difficulty comes from the singularity of Neumann heat semigroup ¢V generated by Neumann
heat kernel G,(x,y) when ¢ | 0. First, we have the following properties for ¢/2¥ on interval
containing ¢t = 0 as follows.

Lemma 4.2. If 7 is a-Hdlder continuous, then there exists L = L(T) > 0 such that

|(e"*¥z0) (x) = (¢'"*¥z0)(y)| < LIx — y|*, V¥t €[0,T], (x,y) €[0, 11,

and

[(e"2V20) (x) — (¥ z0) (x)| < LIt — s|*/%,  ¥s,t €[0, T1,x €0, 11.

Proof. A proof can be obtained by the same approach as that of Lemma 4.1 by using the eigen-
function expansion formula for Neumann heat kernel G, (x, y). The reader can find similar details
in [57]. We provide a sketch of an alternative proof, which is interesting in its own right. The
proof is based on the relationship between heat dynamics and Brownian motion or the probabilis-
tic solution of a PDE problem (specifically, heat equation with Neumann boundary condition).

Let us recall some facts for the case of Dirichlet boundary condition first. Let GP (x,y) be
the fundamental solution of heat equation on (0, 1) with Dirichlet boundary condition and e’4?
be the Dirichlet heat semigroup, defined by

1

(€42 )= [ 6P ey,
0

Then GtD (x,y) describes the transition densities of a Brownian motion killed upon reaching
{0, 1} and for each u, ¢'2Pu(x) will be the expectation of a functional of a Brownian motion
killed on boundary given the initial condition x. More precisely, if we let B(¢) be a standard
one-dimensional Brownian motion and t be the first time ¢ that B(2¢) exists (0, 1), then we have
(see e.g., [2, Chapter 2, Section 7])

e2Pu(x) =E, (u(By);t <t), (4.14)

where [E, denotes the expectation with initial value x. It is well known that the fundamental
solution of heat equation in R is the density of a Gaussian distribution. When the dynamics is
restricted in a domain with zero boundary condition, it should be associated with the Brownian
motion killed on the boundary. Note that the operator %A corresponds to the standard Brownian
motion. That is why we have to scale the time index as above. Because of (4.14) and the (local)
Holder continuity with any exponent < % of Brownian motion and «-Holder continuity of zg, we
obtain the conclusion in Lemma 4.2 for Dirichlet boundary condition case. The detail of these
arguments can be found for example, in [31, Proofs of Lemma 4.4 and Lemma 4.5].

Coming back to our own case, thanks to [4, Theorem 2.5], a similar expression to (4.14) is
obtained for the case of Neumann boundary condition by replacing the Brownian motion killed
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on boundary by the Brownian motion reflecting on boundary, namely, reflecting Brownian mo-
tion (RBM). By [4, Theorem 2.5], for example, if we let Bg be a one-dimensional reflecting
Brownian motion in (0, 1) ([4, Theorem 2.1] for definition), then

"MV y(x) = Ey (u(Br(21)). (4.15)

Moreover, it is also noted that Bg(¢) is local Holder continuous with any exponent < %; see
e.g., [53, Section 2] and also [33]. Therefore, the expression (4.15), the local Holder continuity
of RBM, and the «-Holder continuity of zg yields the results in the Lemma as in the case of
Dirichlet boundary condition. 0O

Theorem 4.2. Assume that the non-negative initial value Z is a-Holder continuous, for some
o € (0, 1]. On a compact set of time containing t = 0, the solution Z(t,x) of (1.4) is Holder
continuous in space with exponent < a A % and is Holder continuous in time with exponent
<FA % That is, forany 0 < T < oo, and B1 € (0, A1/2), B2 € (0, /2 A 1/4), there is a finite
random variable Cyg = Cy (T, B1, B2) such that

1Z(t,x) = Z(s. )| < Cp (Ix = yIP + 1t = s17), Vx,ye[0,1],5.1€[0,T] as.

Proof of Theorem 4.2. Once we have Lemma 4.2 in hand, we are able to take care of the sin-
gularity of ¢’2 at 0. Hence, the proof of this Theorem is similar to that of Theorem 4.1 and is
left to the reader. Note that as in proof of Theorem 4.1, we have already established the bound-
edness (on compact interval of time) of solutions on the space of continuous function with any
order. O

5. Existence of density

This section is devoted to the existence of densities of U (¢, x), V (¢, x). By using Malliavin
calculus, we prove that for any t > 0, x € (0, 1), U (¢, x) and V (¢, x) have absolutely continuous
laws with respect to the Lebesgue measure and hence possess densities. It is noted that the coef-
ficients for our system are neither Lipschitz continuous nor having linear growth. Some notation
and preliminary results in the Malliavin calculus used in this Section are given in Section 10.4.

Proposition 5.1. Suppose that (Uy, Vy) € E, Ug, Vo > 0. For any t > 0 and x € (0, 1), U(t, x)
and V (t, x) belong to pl2

loc*

Proof. In Section 3, we have already known that for any 7 > 0, p > 1,

E( sup  sup |U(t,x)|p+|V(t,x)|P><oo. (5.1)
t€[0,T] x€[0,1]

Therefore, by Proposition 10.6, we can assume that the coefficients together with their derivatives
are bounded in the proof of this Proposition (with U (¢, x), V (¢, x) € D'2). In fact, we can trun-
cate the coefficients similarly to the process in the proof of Theorem 3.1 such that the truncated
functions are bounded together with their derivatives and coincide with the original coefficients
in finite balls.
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It is shown in [47, Proposition 2.4] that by approximating PDEs using finite elements method
and then, approximating SDEs driven by infinite dimensional noise by SDEs driven by finite
dimensional noise (alternatively, see [1, Section 4]), one has that for any h(z, x) = p(t)e; (x),
where p(t) is some function satisfying p(t) € LZ(R+), U(t,x),V(t,x) € D" and D,U(t, x),
Dy V (¢, x) is the solution of the following SPDE

1
DAU(t,x) = / / G (x. )01 (WU (5. y)h(s, y)dyds
00
t 1
0 F) oF
+ / / G- ) (S U VIDLU (5, 3) + 5L (W, VIDV G5, )dvds
00
1
+ / / Gy (%, )01 () DU (5. ¥) W1 (ds, dy)
00 (5.2)

t 1
DAV (t,x) = / / Gy (5, o2V (5, Y)h(s, Y)dyds
00

t 1
0F> 0F,
+ [ [ G (SR U VIDUG ) + S VIDLY 6. ) ) dyds
0 0

t 1
+ / / Gy (X, )02 (y) Dy V (5. y) Wa(ds, dy).
00

It remains to show that if {/;}32 is an orthonormal basis of L*(R4 x (0, 1)), then

o0

Y E (thkU(t,x)|2) <00, i]E (IthV(t, x)|2> <00

k=1 k=1

Using the assumption on boundedness of Fp, F> as well as their derivatives in this Proposition,
we have that

E(1D U, x)2 + 1Dy V (1, )2)

t 1
<ck [ [ G0 ((Dn UG + (DU 3P )dyds
s (5.3)

2

t
e [ [t (Uen+ve.)dvas
0 0

In the above, the stochastic integral is estimated with the help of the Burkholder-Davis-Gundy
inequality as in Proposition 3.1. Let

205



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184-232

m
N (6) = sup ]EZ<|D;1kU(t,x)|2+IthV(t,x)|2).
xel0.1]1 o

The boundedness of U (s, y), V (s, y) developed in Section 3 (see also (5.1)) and property (2.1)
of G,(x, y) allows us to obtain from (5.3) that

1

t 1 t
Np (1) <c / / G?_.(x,y)Nu(s)dyds + ¢ / / G?_ (x,y)dyds
0 0

00

§c<1+ t ygds)fc(l—{—/tNm(s)ds),
0 0

where c is a finite constant, independent of m. As a consequence, N, (¢) < ce‘’, Vm and thus,

o0
sup EY (thkU(t,x)|2 n |thV(t,x)|2) <00
x€[0,1] k=1

The proof is complete. O

Theorem 5.1. Suppose that the initial value (Uy, Vo) € E, Uy, Vo > 0 such that 01Uy, 02 Vg > 0
but not identical to 0. For each t > 0 and x € (0, 1), the law of U (¢t, x) and V (t, x) are absolutely
continuous with respect to the Lebesgue measure.

Proof. Letr > 0 and x € (0, 1) be fixed. Using a standard localization procedure, it suffices to
prove the results under the assumption that 1 and F;, have bounded derivatives. We deduce from

the proof of Proposition 5.1 (or see [1, Remark 4.2]) that if 6 < ¢, Dg ¢U (¢, x), Dg e V (¢, x) is
the solution of

Dy U(t,x) = Gr0(x,5)01(§)U (0, §)

t 1
) ’ ) ’ i ’
t—s y 8(’ 9,5 8‘7 vé y y
6 0

t 1
+ [ [ Grastey)n )00 UGy Wads. dy)
0 0 54
DoVt %) = Gi_o(x, )02 )V (6, )

t 1
+//G— (x y)(a 2w, v) ( y)-i-8 2. v) ( )) y
IN =W, V)Dg U(s, — (U, V)DgeV(s,y)|dyds
t—s oU 0.& 3V 9.6 y
9 0

t 1
+ / / Gy (x. y)02(y) Dy e V (5. y) Wa(ds, dy),
0 0
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andif 6 > ¢, Dg ¢U(t, x) = Dg ¢V (t, x) = 0. It can be seen that

IDU(t, )| > 0 <= //|D9,§U(z,x)|dgd9 > 0.

Let

1 1

Up@;t,x) :=/Dg,gU(t,x)d$, Vp(6;t,x) ::/Dg,gV(t,x)déE.
0 0

Then, Up(@;t, x), Vp(O;t, x) is the solutions to

1

Up(©; 1,x) = / Gir_o(x, )01 (WU (6, )dy
0

oF oF
+ / / Gros () (U VYUD@: 5 3) + S LU, VIV ®: 5, ) dvds
+ / / G (X, )01 () Up (8: 5, ) Wi (ds, dy)
1 (5.5)
Vp(0;t,x) =/G,_9(x, o2 (»)V (O, y)dy

//Gt e (TEW VU O: 5,9+ 52U, VIV ;5. ) ) dvds

/ / Gy (x. )02 VD (6 5. ) Walds. dy).

It is noted again that as at the beginning of the proof of this Proposition, we can assume that Fj
and F, are smooth functions with bounded derivatives. Moreover, under this assumption, as in
[47, Proposition 3.1] or [36, Theorem 2] (see also Proposition 3.3 in Section 3), one has that for
anyt>60,x€(0,1),Up(;t,x) >0, Vp(0;t,x) > 0 a.s. Therefore, applying Proposition 10.7
yields the desired result. O

6. Existence of invariant measure

From an application point of view in general and a biological point of view in particular, the
longtime behavior is one of the most important properties. A fundamental question in investi-
gating the longtime behavior is whether an invariant measure exists. This section is devoted to

answering this question.
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In what follows, we will consider the process Z%(t) on E; :={(u,v) € E:u,v >0} (E; isa
Polish space since it is closed subset of E'). Non-negativity of solutions (Theorem 3.1) guarantees
that Z%(t) € E4,Vt > 0 a.s. provided z € E. We first recall some notation and preliminaries as
in [6] as follows. Let By (E ) be the Banach space of bounded measurable functions ¢ : E4 — R
endowed with the sup-norm

lello= sup | ()],

zeEy

and Cj(E+) be the subspace of B, (E ) containing continuous functions, and C bl (E+) be the Ba-
nach space of differentiable functions ¢ : E; — R having continuous and bounded derivatives.
We define the transition semigroup P; associated with system (1.4) as follows. For any z € E,
t>0,¢ € By(E;), define

Pip(2) :=E@(Z*(1)),
where Z*(t) = (U (t), V (¢)) is the solution of (1.4) with initial condition Z(0) = z.
Proposition 6.1. The transition semigroup Py is Feller.

Proof. It follows immediately from Proposition 3.2 that for ¢ € Cg (Ey)

|Pro(z1) — Prop(22)| SElo(Z7 (1)) — o(Z72 (1)
< gl EIZ* (1) = Z2(1)] = Oas |z1 — 22 = 0.

Moreover, if ¢ € Cp(E4), we can approximate ¢ (in the sup-norm) by a sequence {¢,}, ¢, €
Cé (E+). Therefore, we can obtain Prp € Cp(E4) for any ¢ € Cp(E4) and then, the proof is
complete. O

A probability measure p on (E4, B(E4)) is an invariant measure of Py if for any r > 0,
@ € Cp(Ey),

/Ptgo(z)du(z)=/<p(z)du(z).

Ey Ey

Our aim in this section is to prove that P; has an invariant measure.

The challenges come from the infinite-dimensional space, in which, a bounded set is not nec-
essarily relatively compact. Since the Holder space C? ([0, 1], R?) (space of 6-Hélder continuous
function) is compactly embedded to E for any 6 > 0, if we can prove that

supIE|ZZ(t)|C9([0,1],R2) < 00, (61)
=1

for some z € E4, 6 > 0, o > 0 then the family of (probability) measures {P(z,-)} is tight.
Therefore, the Krylov-Bogoliubov theorem (see e.g., [19, Section 3.1]) implies the existence of
an invariant measure of P;. Hence, the remaining of this Section is devoted to proof of (6.1).
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Proposition 6.2. Assume that

xei{gl]al(x) > 0 and xei%})i,:l]aZ(X) > 0. (6.2)
Let z = (Up, Vo) € E, Ug, Vo = 0. Forany p > 1,

Esup|Z* ()| < cp(1+Izlp).

>0

Proof. This Proposition is proved by applying [6, Proposition 6.1]. The validity of [6, Proposi-
tion 6.1] for our system in this Proposition is shown as follows.

As mentioned earlier, the condition on growth rates of coefficients used in [6] is not satisfied
in our setting. However, we have already established some “nice” properties for the solution.
Therefore, these conditions are not needed in this section since we still guarantee necessary
properties used in [6, Proof of Proposition 6.1].

There is one condition that we need to verify, which is essentially, a “decaying outside a large
ball” condition for the reaction term [6, Condition (5.17) or (5.19)], namely

(F(z+h) — F), ) < —alh|g +b(1 +|z[3). ¥z, h € E, (6.3)

for some constants a, b > 0. In the above, §;, and (-, 8;) g are defined as follows. For any § € E*
having norm 1, §, € E* defined for any z € E by

1 2 .
8y = | T Y ziEDhi&), ifh#0
(8,z)p+if h =0,
where &; € [0, 1],i =1, 2 is such that |A; (§;)| = max,¢[o,1] |4 (X)].
The original coefficient F = (F1, F2) of (1.4) does not satisfy this condition. However, we
make use of the non-negativity of solutions by considering

F (U, V)x):=Fx,Ux)Vv0,V(x)VvO0),

and let U4 (¢), V4 (¢) be the solution to (1.4) when F is replaced by F with the same initial
condition. Thanks to (6.2), it is easy to verify that F satisfies the condition (6.3). Therefore, the
conclusion holds for Z = (U4, V3).

Finally, since the initial data z = (Uy, Vy) satisfy Uy, Vp > 0, by the non-negativity of the
solution in Section 3, we have U, (¢), Vo (¢) > 0 for all t > 0. As a consequence, U, (t) = U(¢),
Vi = V(t),Vt > 0. Therefore, the proof is complete. O

Proposition 6.3. Assume that infyc[o,1)a1(x) > 0 and infyc[o,1)a2(x) > 0. Let z = (Up, Vo) € E,
Uo, Vo = 0. There are 6 > 0 and ty > 0 such that

supE|ZZ(t)|C9([0,1]’R2) < Q.
t>1o
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Proof. Once we have Proposition 6.2, the proof is similar to [6, Proof of Theorem 6.2]. Because
Proposition 6.2 has already established the uniformly bounded in space of continuous function E
of the solution, the remaining task is to obtain this property in C?, the space of Hélder continuous
function, with some sufficiently small 6. In fact, we can take care of the stochastic integral by
using the Proposition 3.1 and the fact W#? is embedded into C?, for some 6 < & — 1/p. The
convolution of initial condition and the drift term can be handled by using Proposition 6.2 and
[6, property (2.6) and Theorem 2.6]. O

We state the results we have just proved to close this section.

Theorem 6.1. Assume that infyc[o,11a1(x) > 0 and inf,¢[o,11a2(x) > 0. The transition semi-
group Py associated to Z*(t) admits an invariant measure in E .

Remark on uniqueness of invariant measure. In contrast to the existence of invariant measure,
the uniqueness is more subtle. Compared with stochastic differential equations (SDEs), the strong
Feller property of the solutions of SPDEs is not easy to obtain, and without strong Feller property
Doob’s method cannot be used to prove uniqueness of the invariant measure. Much effort has
been devoted to proving the uniqueness of invariant measure for the solutions of SPDEs in the
literature. In [48], Peszat and Zabczyk proved that if the coefficients are Lipschitz continuous and
the diffusion term is non-degenerate, the transition semigroup is strong Feller and irreducible, and
then, the uniqueness of invariant measure is ensured. Moreover, the class of SPDEs with non-
Lipschitz and bounded drift but additive noise (constant diffusion) was investigated in [8]. The
reader can gain more insights by consulting the book [19]. To the best of our knowledge, with
non-Lipschitz coefficients and multiplicative noise, proving the strong Feller property and/or the
uniqueness of invariant measure still remains to be an open question.

7. Coexistence and extinction

One of the most important questions studied widely in mathematical biology is whether a
species under consideration is extinct or not. Sufficient conditions for coexistence and extinc-
tion of the species in stochastic population in general and competitive system in particular are
interesting and attractive to biologists.

This section presents some ideas and methods for this problem in our setting as well as the first
attempt in providing sufficient condition for extinction for stochastic Lotka-Volterra competitive
reaction-diffusion system perturbed by space-time white noise. The study of longtime properties
of deterministic and/or stochastic populations in more simple frameworks has a long history. An
overview of that and the difficulties in our own system are discussed carefully in the Section 7.3.

7.1. Mild stochastic calculus

One of the main difficulties in studying longtime properties of the system in our setting is the
lack of machinery to handle the change of variables. For ODEs and PDEs, the usual calculus tools
can be used. In stochastic differential equations (SDEs) and stochastic functional differential
equations (SFDEs), Itd rule and/or functional It6 rules enable us to change the variable relatively
easily. However, the classical It6 formula is no longer valid for mild solutions of SPDE:s.
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In this section, we recall briefly the mild stochastic calculus and the mild 1t6 formula devel-
oped recently by Da Prato, Jentzen, and Rocker in [17]; see also the construction and results in
the paper.

Let HC H € H and U be real Hilbert spaces, W be cylindrical Q-Wiener process on
{Q, F, {F:}, P} with covariance operator Q and Uy := 0'2(U), and HS(Uy, H) be the space
of Hilbert-Schmidt operator from U to H.

Definition 7.1. We say that X is a mild It6 process on {2, F, {F;}, P, W, I-I( H, ﬁ} with evolu-
tion family S, mild drift F and mild diffusion G if and only if the followings hold

(i) X :[0,00) x Q — H is an F;-predictable stochastic process,

(i) F:[0,00] x Q — H is an JF-predictable stochastic process,

(iii) G :[0,00) x Q - HS Uy, ﬁ) is an J;-predictable stochastic process,

iv) S:{(t1,n):0<1t1 <t} — L(ﬁ, I-VI) is a measurable function (see [17, Section 2.1] for
detailed construction of the o-algebra on L(ﬁ . H)) satisfying that for all 7] < #, < 13,
Sty 1351, = Sty 13

(v) for all ¢+ > 0, it holds a.s. that

2
JUScaFull +180sGul g gy < 0.

and

t t
X[:SO,[X()‘F/SS’[FSdS+/SS’[GSdWS.
0 0

Theorem 7.1. ([17, Theorem 1, Section 2]) (The mild It6 formula). Let X : [O 00) x Q@ —> H
be a mild Ito formula with evolution family S : {(t;, 1) : 0 <t <t} —> L(H H) mild drift

1 [0,00] X Q — H and mild diffusion G : [0,00) X Q — HS(UO,H) Let V be a real
sepamble Hilbert space and U C Uy be an arbitrary orthonormal basis of Ug. Then, for all
@ € CL2([0,00) x H, V), ty <t € [0, 00), it holds a.s. that

t
% dg ?
a_X(ss Ss,th)Ss,th + B_X(Sa Ss,th)Ss,th ds < o0,
/ HSUy, V)
and
32
/ ‘ + H oY ~ds < 00,
0
and
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t t
0 0
0(t, X;) =0(t0, Ss Xny) + / a—f(s,ss,,xs)dw / a—é’;(s,ss,zxass,zmds

o )

—Z/ 2(s Ss.: X5)(Ss.1Gyut, Sg.,Gsu)ds

MEUI()
/ 0
%
+/a_X(SUSs,th)Ss,tstWY~

fo

7.2. A first result

In this section, we provide a first result on sufficient condition for the extinction (and equiva-
lently, of course, necessary conditions for permanence) of the Lotka-Volterra competitive model
in SPDEs setting.

Theorem 7.2. Assume that SUpP, 0,11 M1(x) < %infxe[o,l] olz(x). For any initial (Uy, Vp) € E,
Uo, Vo > 0, one has that

1
limsupIElln/U(t,x)dx =—0

t—00
0

Similarly, ifsupxe[o,l] ma(x) < %infxe[o,l]azz(x) then

1
lim supIEln/ V(t,x)dx = —o0.
11— 00
0
Proof. For arbitrarily fixed n > 0, directed calculations show that at v € L2((0,1),R) satisfying
v > 0, the first and second Fréchet derivative of the functional ¢,(v) :=In ( fol v(y)dy + n),

(Pn

denoted by i 21 (v) and (v), are as follows

X2
1
000 gy = Oy 2001y ),
1
IX n+ Jo v()dy
and
3%¢ Jo iy [y ha(ndy

e L () (hy, ho) = — , hi,hy € L*((0, 1), R).

(n+ fi virdy)
By the mild It6 formula (see Theorem 7.1), we have that
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1

ln( +/U(t x)dx)

(n+ [ (¥ Us) (x)dx )

o\_

(7.1)

+ / Jo (VU G)0m —aU(s) bV (s))0dx

/ n+ f (e"=92N U (s)) (x)dx

l/i (f S)ANU(s)ekc)'l)()C)d)C)z !
0

-+ [ nasdwie)
P n+f e A>ANU(s)(x)dx) 4

where J, (¢, 5) is linear operator from L2((0, 1), R) to R defined by

fol (e(”s)AN U(s)hoy)(x)dx
N+ fy (42U (s)) (x)dx

Jy(t, $)(h) := , he L*((0, 1), R).

Set

0o (fol (e(zﬂ)AzxfU(s)ek)(x)dx>2

M, (U, 1,5) = -
P (n + i e<t—s>ANU(s)(x)dx)

(7.2)

Parseval’s identity and Holder’s inequality show that

o 1
Z(/(e('ﬂ')ANU(s)ek)(x)dx)2
0

k=1

M

11
2
(] [ Grstemvyendyar)
0

»
I

1

([ Grsr v san. o), (13

L2((0,1),R)
19

1
( / G- (. MU (s, ) dy

M

k

1
OQM "

1

2

> ([ [ Grsteyvesyandy)”
0
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We deduce from (7.2) and (7.3) that
lim M, (U, 1,s) > 1. (7.4)
n—0

It is seen that

1
/(@(I_S)ANU(S)(ml — alU(S) — blv(s)))(x)dx
0

< sup mj(x). (7.5)
] x€[0,1]
n+ / (e“*)ANU(s)) (x)dx
0
Taking expectation to (7.1) and then applying (7.5) imply that
1 1
[Eln n+/U(t,x)dx <In 17+/Uo(x)dx
’ ‘ (7.6)

t

1
+/ sup mi(x) — = inf olz(x)M,,(U,t,s) ds.
x€[0,1] 2 x€[0,1]

Letting n — 0 in (7.6) and applying (7.4), we get

1 1
Eln/U(t,x)dx Sln/Uo(x)dx+Rt,
0 0

where

1
R:= sup mi(x) — = inf az(x) < 0.
xe[OI,)l] 2 x€0,1] !

As a consequence,
1
limsupIElln/ U(t,x)dx = —o0.

t—00
0

Similarly, the results for V (¢, x) are also obtained. The proof is complete. O

Remark on other estimates. Let us comment on the difficulty in providing estimates in proba-
bility one. For example, one may expect that the conclusion in Theorem 7.2 is replaced by
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1
P limsup/U(t,x)dsz =1,

—00

0
and

1
P limsup/V(t,x)dx=0 =1.

t—00
0

In fact, in [44], we used the following Lemma, whose proof is in [44, Lemma 4.2] and obtained
some results of probability one estimates for SIS epidemic model.

Lemma 7.1. Let ®(s) be L(U, R)-valued process and W be a (finite trace) Q-Wiener process
such that fot D (s)dW (s) is well defined for any t > 0 and a, b be two positive real numbers. We
have the following estimate

t

t
P /(b(s)dW(s) —%/||CI>(s)||%,S(U’R)ds<b,VtzO >1—e9b,
0 0

However, in contrast to the strong solution, where the stochastic integral is in fact a
martingale, for mild solution, this result is no longer valid since the stochastic convolution
fot e"=IAN B (5)dW (s) is not a martingale with respect to t. Moreover, it is noted that we are
dealing with cylindrical Wiener processes rather than (finite trace) Q-Wiener processes.

7.3. Discussion

Much effort has been placed on the study of longtime behavior of biological model in general
and competitive model in particular. Let us review some important methods, ideas and results
in the literature. At the beginning, the dynamics of individuals in the environment are usually
modeled by original differential equations (ODEs). The characterization of long-term properties
is often obtained by using Lyapunov functional method, see e.g., [27,37]. To capture the random
factors, the stochastic terms are added into ODEs and turn out to study stochastic differential
equations (SDEs). In contrast to numerous papers that used Lyapunov function method to analyze
the underlying systems with limited success, Chesson and Ellner [7], Schreiber and Benaim
[50] initiated the study by examining the corresponding boundary behavior and considered the
stochastic rate of growth. This idea is applied and developed by Nguyen and Yin [38] to obtain the
characterization of coexistence and extinction for Lotka-Volterra competitive equation modeled
by SDEs; and then Hening and Nguyen generalized the results for a general Kolmogorov model
in [26] and Benaim [3] established a general abstract theory for this kind problem. The readers
can consult [12,16,15,26,40,43,50] the references therein for works on biological and ecological
models under the SDE framework.

Very recently, a class of functional SDEs model was considered by Nguyen, Nguyen, and
Yin in [41,42], which allows the dynamics depend on the past history. By combining the ideas
in SDEs (considering the growth rate), techniques in SDEs in infinite dimensions, and new
developed theory in functional analysis (the functional Itd formula), the authors were able to
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provide sufficient and almost necessary condition for persistence and extinction with applica-
tions to Lotka-Volterra competitive system in stochastic functional differential equation setting;
see [41, Section 4.1].

All of above references assume the densities to be homogeneous in the state (or location)
variable. The inhomogeneous case needs to be considered. One of the first attempts in studying
this situation is to embed them into PDEs framework and often is known with the name “reaction-
diffusion” system. Note that the word “diffusion” here indicates the diffusion of dynamics in
space, not the diffusion driven by noise as in the SDEs and in fact, it is still non-random system.
The coexistence state of Lotka-Volterra competitive reaction-diffusion is investigated by Gui
and Lou in [20]. In this work, the authors provided sufficient conditions for uniqueness and
non-uniqueness of coexistence of states. One of the most effective theories and technique in
investigating the coexistence and extinction of a population in PDEs setting introduced by Wang
and Zhao in [58] is to consider the problem for equilibrium solution and its eigenvalues. Similar
idea and theory is also applied and developed in [5,52] to characterize the longtime behavior
of epidemic reaction-diffusion equation. In addition, there are also important works on Lotka-
Volterra competitive reaction-diffusion equation in [21-25,32,35].

In contrast to the existing works, our model takes care both of the spatial inhomogeneity and
the random factor and hence, we must study them in the SFDEs frameworks. Unfortunately, all
of ideas, methods, and machinery in calculations in the literature fail to be applicable to obtain
sufficient conditions and not to mention sharp condition for coexistence and extinction. At this
moment, it does not seem that we can the growth rate as the indicator in the SDE models to
characterize extinction and persistence. This mainly due to the dependence of the models on the
space variables. The theory using eigenvalues of equilibrium equation is failed to be applicable
here due to the appearance of stochastic noises. In general, using the chain rule seems to be
unavoidable. However, the chain rule for mild solutions of SPDEs is more subtle and cannot be
applied effectively.

In the previous section, we have tried to overcome the second difficulty by applying newly
developed tools in stochastic calculus, namely, the mild It6 formula and obtain sufficient condi-
tions for extinction. However, due to the lack of a strong and effective abstract theory, we have
not been able to provide a sharp condition.

Why is the “growth rate method” in SDEs no longer works? The growth rate idea is the
most effective to characterize the persistence and extinction of a stochastic population modeled
by SDEs; see [3,7,16,26,40,50,55,56] and the reference therein. The main idea is to define the
growth rate of a species using its Lyapunov exponent. If the growth rate is positive, the number
of this species will increase and thus the population will never be extinct or it will be persistent.
Conversely, when the growth rate is negative, they will be extinct exponentially fast in the long
run.

However, the growth rate appears not to be able to characterize the longtime behavior for the
SPDE cases. Intuitively, the dynamics of the population of the species depend not only on the
time but also on the space variable. As a consequence, even the growth rate of a population is
positive at some location x, the population at x can still tend to O since they can diffuse (in space)
to their neighbors. Similarly, in case the growth rate at x is negative, the population at location x
can still be persistent since the individuals may return to the neighbors infinitely often if certain
conditions hold. The key is that dynamics of populations in SPDEs setting depend on the time
and space simultaneously while the “growth rate” is only able to characterize the behavior in
“time flow”.

216



N.N. Nguyen and G. Yin Journal of Differential Equations 282 (2021) 184-232

Why is the “eigenvalue method” in PDEs no longer working? There is a nice idea in PDEs
to study the asymptotic stability and hence, investigate the longtime property. It considers the
equilibrium problem and the associated eigenvalues; see e.g., [5,52,58] as well as [21-25,32,35].
The equilibrium problem is defined with the time variable being frozen. Roughly speaking, the
solutions of PDEs will tend to the equilibria (functions independent of time variable ¢). Hence,
the eigenvalues will play some role in studying the stability. In SPDEs setting, it is not clear
how to have a similar “equilibrium problem” like PDEs case since the stochastic integral with
respect to space-time white noise does not work the way as the Lebesgue integral and/or Bochner
integral did. If we integrate over dx for fixed ¢, the integral can be viewed as a Bochner integral
while over dt for fixed dx, can be viewed as an Itd integral. However, as given in the appendix,
the stochastic integral with respect to space-time white noise requires to integrate over space
variable dx and time variable dt simultaneously. Hence, the problems in SPDEs turn out to be
much different compared with PDEs at this point.

Approximation by strong solutions: There is also another approach to overcome the second
difficulty (being lack of tools regarding change variable), which is introduced in our early works
in [39,44,45]. The idea is to approximate the mild solution by a sequence of strong solutions
(e.g., the solutions corresponding to the stochastic differential equation driving by finite dimen-
sional noise) and then, we work on these strong solutions, for which the classical It6’s formula is
valid. However, this method does not work well for cylindrical Wiener process (having infinite
trace). Moreover, the convergence of the sequence of strong solutions to the mild solution is in
expectation and in L2((0, 1))-norm. That will be not useful in some estimates.

What do we expect? As was mentioned, our results in this section are not sharp compared with
our results in SDEs case or even SFDEs case. Formally, we expect to introduce a Hypothesis (E)
such that under (E),

limsup sup U(t,x)=0, limsup sup V(¢,x)=0,

t—00 xel0,1] t—00 xel0,1]

in some sense (almost surely or in expectation or in probability); and a Hypothesis (C) such that
under C,

liminf inf U(f,x) >§, liminf inf V(z,x) > 6,
t—00 xel0,1] t—00 x€l0,1

for some positive constant § (independent of the initial value) in some sense (almost surely or in
expectation or in probability). Moreover, the Hypotheses (E) and (C) cover almost all possible
cases and only critical cases are left.

To obtain this sharp condition may require developing from two different angles. The first
one is an abstract theory to characterize the longtime behavior of a stochastic population in both
of “space flow” and “time flow” in SPDEs setting. The second one is a useful tool to derive
estimates using the stochastic mild calculus more effectively.

8. High-dimensional problems

One of problems of SPDEs is the trade off of the dimension and the “regularity” of the noise.
By the phase “trade off”’, we mean that the higher dimension one consider, the more regularity the
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noise needs. To handle the problem in general Euclidean space R with d > 1, we can “inject”
color into the noise and replace space-time white noise by a noise, which is white in time but
color in space. But how much “color” we need to inject into the noise?

The easiest case is to use the finite-trace Q-Wiener process and we refer this case as “nuclear
case”. Such cases were also considered in some our works in [39,44,45] for epidemic model
and predator-prey models. In fact, we considered the “nuclear case” in order to simplify the
arguments and help us in investigating the longtime property (sufficient conditions for persistence
and extinction). The “nuclear case” is more advantageous for approximating mild solutions by
sequence of strong solutions and in estimating some quantity like “In [(---)”; see [39,44,45]
for the details. However, the “finite trace” assumption is too strong and unnecessary in some
problems. We will consider problem of reducing this condition in high dimension case.

Extending our work to higher-dimensional spaces. Now, we will illustrate the extension of
some of our results [well-posedness of the problems and longtime behavior (existence of invari-
ant measure)] to high-dimensional space, i.e., the domain (0, 1) of space variable x is replaced
by O c R¢, where O is a bounded domain (having smooth boundary) of R? with d > 1. In the
case d > 1, we will not require the Wiener process be “nuclear” and we will clarify how much
color is needed for the Wiener process.

We reconstruct the noise, the driving force in our system as follows. For simplicity of nota-
tion, we only consider the case for Wy only (it is denoted by W for notational simplicity), which
is the driving noise for the first equation. The case W5 is similar. Let {8} be an indepen-
dent sequence of {F;};>0-adapted one-dimensional Wiener processes and {ex};2; be a complete
and uniformly bounded orthonormal system in L?(, R). We define the cylindrical Q-Winner
process W (t) in (1.4) as follows

o
W)= herr(t),
k=1
where {A;} is a sequence of real positive numbers and {ex} is a complete orthonormal system of
L?(O) of eigenfunctions of A, the realization of Laplace operator endowed with the Neumann
condition in L?(©), and {e;} is assumed to be equibounded in L>(0O). [Unlike the one dimen-
sion case, the property that {ex} is equibounded may fail in higher dimension for general domain

(see [6, Remark 2.2]), so we need to assume that in this Section.] The following hypothesis (see
[6, Hypothesis 1]) is the answer to the question “how much color we need for the noise.”

Hypotheses 8.1. If d = 1 then

sup Ay < 00.
k

If d > 2, then

o0
D 1l? < oo,
k=1

for some
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2d
2 —.
<p<d_2

Note that for p < g,

o 0
D Il <oo= ) ]! < oo,
k=1 k=1

and for p =2, the condition turns out to be finite-trace condition.

Extension 1: Under Hypothesis 8.1, our results (Theorem 3.1 and Proposition 3.2) in Section 3
still hold. The reader can prove that by modifying Proposition 3.1, specially (3.6) and (3.7). In
Proposition 3.1, &, p, & will also be chosen to satisfy

d 1 d
—<a<- and —<8<2((X——).
4 p P

The general abstract computations and results can be found in [6, Section 3]. Once we have the
analogous Proposition 3.1, we can mimic the remaining of the Section 3. It is noted again that
our coefficients do not satisfy the “growth rate” condition in [6, Theorem 5.2], but we can still
overcome the difficulty by a similar technique as we did in the one-dimensional case.

Extension 2: Under Hypothesis 8.1, our result (existence of invariant measure) in Section 6 still
holds. In fact, once the results in Section 3 are valid for high-dimensional spaces, the arguments
in Section 6 are almost the same. Note that in Proposition 3.1, «, p, ¢ will be chosen again to
satisfy d/p < & such that W8P (0) is embedded into C?(O) for some 6 < & — d/p, and then
C?(0) is embedded compactly into C 0).

9. Conclusion

This work focuses on stochastic Lotka-Volterra competitive reaction-diffusions perturbed by
space-time white noise. Our proposed model stems from biological and ecological points of view.
The analysis is then provided for both the mathematical problem and applications.

The dynamics of population are modeled by a SPDEs with non-Lipschitz coefficients and
multiplicative noise. Important properties including well-posedness, regularity of the solution,
existence of density, existence of invariant measure, as well as the longtime behavior (coexis-
tence and extinction) of Lotka-Volterra competitive reaction-diffusion systems are addressed.
The results are also extended to higher space dimensional systems by coloring the noise.

10. Appendix: background materials

The next three sections are devoted to constructions and comparisons of the two different
approaches (infinite-dimensional integration theory of Da Prato and Zabczyk and random field
approach of Walsh) and their equivalence in certain classes of SPDEs. The reader can find the full
construction of Walsh’s theory in [57], and that of Da Prato and Zabczyk in [18]. A comparison
of these two approaches can be found in [11,18]; see also [10].
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10.1. Infinite-dimensional integration theory

This section provides the formulation of a space-time white noise driving process in our
stochastic systems together with the corresponding stochastic integral with respect to a standard
cylindrical Q-Wiener process. First, we start with a finite trace Q-Wiener process.

Definition 10.1. Let V be a separable Hilbert space endowed with the inner product (-, -)y, and
0 be a linear, symmetric (self-adjoint), non-negative definite, and bounded operator on V such
that Tr Q < oco. A V-valued stochastic process {W (¢), t > 0} is a Q-Wiener process if

e W(0) =0, W has continuous trajectories, and W has independent increments.

e The law of W (¢) — W (s) is Gaussian with mean zero and covariance operator (f —s) Q. That
is, for any 2 € V and 0 < s <1, the real-valued random variable (W, — W;, h)y is Gaussian
with mean zero and variance (t — s){Qh, h)y.

Let {ex}32, be a complete orthonormal system in the Hilbert space V such that Qey = Axex,
where Ay is the strictly positive k™ eigenvalue of Q corresponding to the eigenvector ey. If
we define Bk(t) = (W(@),ex)y, fort >0, k € N, and B (t) = %, then it can be seen that
{Bx(1)}72, is a sequence of independent, standard, one-dimensional {;}-Brownian motions,
and

o0

W)=Y (W) edver =Y vV MBr(Dex.
k=1

k=1

Conversely, given a sequence of independent standard Brownian motions {ﬁk(t)},f‘; 1> and a se-
quence {A¢}p2, of positive numbers satisfying that Y %o Ak < 00, we can obtain a Q-Wiener
process W by defining

W)=Y VaBOer.
k=1

Definition 10.2. Let Q be a symmetric (self-adjoint) and non-negative definite bounded linear
operator on the Hilbert space V. A family of random variables B = {B;(h),t > 0,h € V} is a
cylindrical Wiener process on V if the following conditions are satisfied:

e forany h € V, {B;(h),t > 0} is a Brownian motion with covariance ¢t{Qh, h)y;
e foralls,z>0,and h,geV,

E (Bs(h)B:i(8)) = (s A1)(Qh, g)v.

We name Q the covariance of B. If Q is the identity operator in V, then we call B a standard
cylindrical Wiener process.

Similarly, if we let {e;};2, be a complete orthonormal system in V, B;(h) be a standard
cylindrical Wiener process and set 8 (1) := By (ex), then {8, (1)}72 | is a sequence of independent,
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standard, one-dimensional Brownian motions. Conversely, given a sequence of independent real-
valued standard Brownian motions {8 (¢) },fil ,

Bi(h) =) Br(®)(ex, h)v,

k=1

defines a standard cylindrical Wiener process in V.

If {W(),t >0} is a Q-Wiener process on V, we can associate it to a cylindrical Wiener pro-
cess in the sense of Definition 10.2 by setting B;(h) = (W;, h)y forany h € V,t > 0. Conversely,
one may imagine that any cylindrical Wiener process is associated to a Q-Wiener process on a
Hilbert space. Unfortunately, this is not true in general. In fact, if V is an infinite dimensional
space, there is no Q-Wiener process W associated to a given standard cylindrical Wiener process
B; see [11, Theorem 3.2]. However, it is possible to construct a Hilbert-space-valued Wiener
process in a larger Hilbert space Vi, which is associated to B (in certain sense), and which will
be called a cylindrical Q-Wiener process. The construction is as follows. Let V be a Hilbert
space and Q be a symmetric non-negative definite and bounded operator on V with possibly
Tr Q = oco. Let {ex};2; be a complete orthonormal system of V' that contains eigenvectors of Q
with respect to eigenvalues {Ak},fozl. Define Vj := Ql/ 2(V)asa subspace of V endowed with the
inner product

(h, &)vy :=(Q " ?h, 07V 2g)y,

where Q~1/2 is the pseudo-inverse of the operator Q'/2. Then, Vj is also a Hilbert space. As
in [49, Remark 2.5.1], it is always possible to find a Hilbert space V| such that V is embedded
continuously into V; and the embedding of Vj into Vj is Hilbert-Schmidyt, i.e., there is a bounded
linear injective operator J : V — Vj such that the restriction Jy := J)y, : Vo — V| is a Hilbert-
Schmidt operator. Recall that the operator 7 : V — H is Hilbert-Schmidt if for some (and then
all) complete orthonormal system {ex}2, of V,

D IT el < oo (10.1)

k=1

Let Jg be the adjoint of Jo and Q1 := JoJ;.

Proposition 10.1. ([ 18, Proposition 4.11] or [11, Proposition 3.6]) The formula

W)= B(®)ér, (10.2)

k=1

where {ék},fil (e = Ql/z(ek)) is a complete orthonormal system in Vo and {ﬁk(t)},fil is a
sequence of independent real-valued standard Wiener processes, defines a Q1-Wiener process
on Vi with Tr Q1 < 0o. More precisely, this Q1-Wiener process has the following form in Vi:

W)= Jo@)Ai(),

k=1
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Definition 10.3. The process W (¢) defined in (10.2) is called a cylindrical Q-Wiener process if
Tr Q = oo and standard cylindrical Q-Wiener process if Q is the identity operator.

Let L(V, H) be the space of linear (not necessarily bounded) operators from V to H, and
Lg := HS(Vy, H), the Hilbert space of all Hilbert-Schmidt operators from Vj := Ql/ 2(V) into
H equipped with the inner product

o
(@, W) 0= ) (Péx, Yer)n.
k=1

where {é;}72 | is a complete orthonormal system of Vj.
For @ = {®(s) : s € [0, T]} being a measurable Lg—valued process satisfying

172

T
19lr = | E /IIdD(s)Ingds <00,
0

the stochastic integral with respect to the cylindrical Q-Wiener process,

t

/dD(s)dW(s),

0

is constructed as follows. First, the stochastic integral f(f D(s)dW(s), where W (¢) is a Q-Wiener
process with Tr O < oo, is defined through the class of simple functions and then using isometry
property, the details of this construction can be found in [18, Chapter 4]. Now, if Q is the identity
operator or in general, Tr Q = oo, as in the above construction, there are a Hilbert space V| and
an operator J such that the restriction Jy of J in Vj is Hilbert-Schmidt and W (¢) is a Q1-Wiener
process on Vq with Tr Q1 < oo.

Definition 10.4. As in [11, Proposition 3.6] or [18, Proposition 4.11] or [49, Proposition 2.5.2],
we have

®eLd=Lr(Vo, H) < DoJ; ' eL(Q)*(V1), H).

Hence, the H-valued stochastic integral fé d(s)d W (s) with respect to the cylindrical Q-Wiener
process is defined by

t 1

/CD(s)dW(s) ::/@(s)oJ(;‘dW(s),

0 0

where the integral on the right-hand side is the integral with respect to the (finite trace) Q-
Wiener process defined in V; previously. Note that the above definition does not depend on the
choice of space V.
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Now, let B be a cylindrical Wiener process in V' (Definition 10.2) and V¢ be the Hilbert space
V equipped with the inner product

(h,g)vy, :==(Qh,8g)v, h,geV,

{vk}z2, be a complete orthonormal system of Vp, and g € L3(Q x [0, T]; Vo) be predictable
process. We define the integral fOT g(s)dB(s) as follows

T

00 T
/ g($)dB(s) = / (8(5), V&) vod Bs (0p).
0

0 k=

—

Moreover, we can associate B to a cylindrical Q-Wiener process defined by (10.2) with B¢ (¢) =
By (ex), {ex};=, is a basic of V. Then, the above stochastic integrals are connected in the follow-
ing Proposition.

Proposition 10.2. ([11, Proposition 3.9]) Define ®% : V. — R by ®5(n) = (g(s),n)y. Then
(B85 €10, T} is a predictable process with value in Lo(Vp, R),

T T
e [10, | =2 | [1sei,ds .
0 0

and

T T

/q>§dW(s)=/g(s)dB(s).

0 0
Definition 10.5. With ®$ being defined as in Proposition 10.2, define

t T

/ (g(s). dW(s))y = / DLW (s).

0 0

10.2. Random field approach
In this section, we recall some definitions of space-time white noise and random field approach
introduced by Walsh. We discuss these briefly only for our own purpose while the details can be

found in [57].

Definition 10.6. Let (E, £, v) be a o-finite measure space. A white noise based on v is a random
set function W on the set A € £ of finite v-measure such that

e W(A)isan N(0,v(A)) random variable,
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e if AN B =1, then W(A) and W (B) are independent and
W(ANB)=W(A)+ W(B).

Definition 10.7. Let E =R’} , v be Lebesgue measure, and W be a white noise on E. The Brow-
nian sheet on R’} is the process {W, : t € R’} } defined by W, := W((0, t]), where t = (11, ..., 1)),
0,1]:=(0,11] x---x (0, t,]. That is a mean-zero Gaussian process. Moreover, if s = (s1, ..., $)
andt = (1, ..., t,), the covariance function is

EW W) =(G1AH)...(5, A ty).

The integral in Walsh’s sense is defined based on martingale measure theory, which is con-
structed as follows.

Definition 10.8. Let U(A, w) be a (random) function defined on A x Q, where A C £ is an
algebra and such that E(U%(A)) <oo,YA € Aand U(AUB) = U(A)+U(B) as. forall A, B €
A, AN B = (. We say that U is o-finite if there exists an increasing sequence E, C £ whose
union is E such that for all n

o & C Awhere &, :=Eg,,
o suplU(A)]2: A € &} < o0, where [U(A)]> == E (U2(4)) "2,

Moreover, if U is countably additive on &,, Vn, we can take an extension as follows. If A € £,
U(A) =lim,_ U(A N E,,) if the limit does exist in L? (the space L*(Q, F, P) endowed with
the above norm) and U (A) is not defined otherwise. Such a U is said to be a “o-finite L2-valued
measure”.

Definition 10.9. ([57, Chapter 1]) Let F; be a right continuous filtration. A process {M;(A), F;,
t >t, A € A} is a martingale measure if

e Mo(A) =0,
o if t >0, M; is a o-finite L?-valued measure, and
e {M,(A), F;,t >0} is a martingale.

Definition 10.10. A martingale measure M is orthogonal if for any two disjoint sets A and B,
the martingales {M,(A), F;,t > 1} and {M,(B), F;,t > 1} are orthogonal.

Let W be a white noise in Ry x E and M;(A) = W([O, t] x A). Then it is clear that M;(A)
is a martingale measure. Moreover, M;(A) and M;(B) are independent and orthogonal provided
AN B =@.Itis also worthwhile to note that we can integrate over dx for fixed ¢ as in the Bochner
integral and integrate over dt for fixed set A as in the It0 integral. However, we wish to integrate
over dx and dt together. It is not possible to construct a stochastic integral with respect to all
martingale measures. Hence, the following class of martingale measures is defined.

Definition 10.11. ([57, Chapter 2]) The covariance function of M is defined by
Qi(A, B) = (M(A), M(B));.
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For arectangle, i.e., the set A x B x (s,1] € £ x £ x Ry, define a set function Q on rectangle by

Q(A x B x (s,1]) == Q,(A, B) — O,(A, B),
and extend Q by additivity to finite disjoint union of rectangles.

Definition 10.12. ([57, Chapter 2]) A martingale measure M is “worthy” if there exists a random
o -finite measure K (A, w), A € £ x £ x B, where B consists of Borel sets on R such that

K is positive definite and symmetric in the first and the second variables,
for fixed A, Be &, {K(A x B x (0,t],t > 0)} is predictable,

foralln e N, E (K(E, x E, x[0,T])) < oo, where E, € £,

for any rectangle A, |Q(A)| < K(A).

We call K the dominating measure of M.
Now, let M be a worthy martingale measure on the Lusin space (E, £), and Qs and Ky be
its covariance and dominating measure, respectively. The stochastic integral (in Walsh’s sense)

will be defined for the class of simple functions first.

Definition 10.13. A function f is elementary if it is of the form

[, x, 0) = X(0)1(g,p(s)1a(x),

where 0 < a < b, X is bounded and F-measurable and A € £. A function f is simple if it is a
finite sum of elementary functions.

Definition 10.14. The predictable o-field P on Q2 x E x R is the o-field generated by class of

simple function. A function is predictable if it is P-measurable.
Let Py be the class of all predictable functions f such that || f|l < oo, where

Ifllm =B fL 1 D&)"Y,

and

(f. &)k = / f(s,x)g(s, y)K(dxdyds).
ExExR4

Proposition 10.3. ([57, Proposition 2.3]) The class of simple function is dense in Pyy.

For an elementary function f (s, x, @) = X (@)1(4,51(s)14(x), the martingale measure f - M
is defined by

f - Mi(B) :=X(w) (Minp(AN B) — Mina(AN B)).
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Proposition 10.4. ([57, Lemma 2.4]) The martingale measure f - M is worthy and
E((f-Mi(B)?) <1 f 1} VBEE =T,
Now, for simple function f, we can define f - M by linearity. Since Proposition 10.3, we are
able to define f - M for all f € Py as usual. Finally, we define the stochastic integral by

t

//f(s,X)M(ds,dX) =f-M(A),
A

0

and

t

//f(s,x)M(ds,dx) = f-M;(E).
E

0

10.3. Equivalence of the two approaches

We proceed with the equivalence of the stochastic integrals by Da Prato and Zabczyk (with
respect to standard cylindrical Q-Wiener processes) and the stochastic integrals in Walsh’s sense
(with respect to space-time white noises or Brownian sheets associated to the cylindrical Wiener-

processes).
Now, let us assume Q is the identity operator on the space V = L?(U), with

U::{x:(xl,...,xd)e]Rd:OE)ci51,i=l,...,d},

and W is a standard cylindrical Q-Wiener process and By () is the associated cylindrical Wiener
process. Moreover, we define

o0
B.x)i=Y g0 [ ey,
k=1 R(x)
where {ek},fil is an orthonormal basis of LZ(U), R(x) is the rectangle in U, i.e.,
R(x):={a=(a1,...,a3) €U :0<a; <x;,i=1,...,d}.
Then, it is easy to verify that B(-, -) is a Brownian sheet; see e.g., [18, Section 4.3.3].

Consider a real-valued stochastic process ¢ (s, x), s € [0, T], x € U and assume that ¢(s, -),
s € [0, T]is an L2(U)-valued predictable process and such that

T T
E //(pz(s,x)dsdx =E /||<p(s,.)||iz(wds < 00.
0 U 0

Then, one has
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T T T

//w(s,X)B(ds,dX)=/(¢(S,~),dW(Sw))L2(U) =/<0(S)dBw(S), (10.3)
U

0 0 0

where the first integral is the stochastic integral with respect to the Brownian sheet in Wal-
sh’s sense in Section 10.2, the second is the stochastic integral with respect to the cylindrical
Q-Wiener process in Da Prato’s and Zabczyk’s sense in Section 10.1 (see Definition 10.5 and
Proposition 10.2) and the last one is the stochastic integral with respect to the cylindrical Wiener
process in the sense of Section 10.1. To gain more insight, the reader is referred to [11,18].

Solutions of the two approaches and their equivalence. Now, we demonstrate that the solutions
of stochastic heat equation in one dimension in these approaches are equivalent. Actually, this
fact holds for large classes of SPDEs in general (including stochastic heat equation and stochastic
wave equation with dimension < 3).

Consider a class of non-linear SPDEs of the following form

du(t, x)

a7 = Au(t,x) 4+ bu(t,x)) + o (ut, x)W(t, x), (10.4)

where 1 > 0, x € O C R?, A = A together with some boundary condition on @ if O is a bounded
domain (in fact, we can consider non-linear wave equation with the assumptions d < 3), b(-) and
o (-) are continuous, and W (z, x) is a space-time white noise.

Let T;(x, y) be a fundamental solution of the problem % = Au(z, x) and e’ be the ana-
lytic semi-group generated by A, alternatively defined by

(" u)(x) := / T; (x, y)u(y)dy.
(@)

Mild random field solution. A mild random field solution {u (¢, x) : (¢, x) € [0, T] x O} of (10.4)
is such that the following stochastic integral equation is satisfied

t
u(t, x) = / T, (x yyuo(y)dy + / / Ty (r, )b(u(s, y))dyds
O 00

t
+ / / Ty (x. y)or (u(s, Y)W (ds, dy).
00O

In the above, the first and the second integrals are understood as usual and the last one is the
stochastic integral in Walsh’s sense (that is, the two parameters in integration are taken at the
same time).

Mild L%(O)-valued solution. A mild L%(©®)-valued solution {u(z,-) : ¢ € [0, T1}, u(t,-) €
L%(O) of (10.4) is such that the following stochastic integral equation is satisfied (in L2(O))
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t t

u(r):e’Au0+/eUﬂ‘)Ab(u(s))ds+/e<’*S>Aa(u(s))dW(s).
0 0

In the above, the second integral is a Bochner integral while the last integral is a stochastic
integral in the sense of infinite dimensional integration theory in Section 10.1 (with o (u(s))
being understood as a multiplication operator). To end this subsection, we state the following
Proposition.

Proposition 10.5. Consider O = (0, 1), A = % endowed with homogeneous Neumann bound-

ary condition. The mild random field solution and the mild L*(O)-valued solution are equiv-
alent if one of them exists uniquely and has continuous paths (in both space and time), i.e.,
u(s,-) € C([O, t], C ([0, 1], IR)) a.s. and satisfies

sup  E(lu(t, x)|%) < oo. (10.5)
[0,T]x[0,1]

The equivalence is in the sense that if we let u(t,x) be the mild random field solution then
u(t) :=u(t,-) is the mild L*(O)-valued solution and vice versa.

The above Proposition follows the equivalence of stochastic integrals in random field ap-
proach and in infinite-dimensional approach (as in (10.3)). The condition “has continuous paths”
and (10.5) may be a bit restrictive. In fact, we imposed this condition to prove the equivalence
without much effort. In certain cases, this condition may not be needed and one can verify di-
rectly that the “mild random field solution” is equivalent to the “mild L*(Q)-valued solution”.
For the details of the proof of this Proposition, the reader is referred to [11, Proposition 4.9].

10.4. Malliavin calculus

We describe briefly the Malliavin calculus in this section for our own purpose, and refer to [46]
for a complete presentation of this subject. Denote by S the space of smooth random variables
such that for F € S, F has the form

F = f(W(hl)v cee W(hn))a

where f € CEO(R”), and Ay, ..., h, is an orthonormal sequence in LZ(IRJr x (0, 1)),and W (¢, x)
is a Brownian sheet,! and for / € L2(R+ x (0, 1)),

W(h) := //h(s,y)W(ds,dy).

For F € S, the first-order Malliavin derivative D F is defined to be the LZ(RJr x (0, 1))-valued
random variable as follows

! For sake of simplicity of notation, in this section, we can assume the Brownian sheet is the canonical process.
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n
Dy F =Y ok f(W(h). ... W(ha))hi(t. x).
k=1

Let D'? be the completion of S with respect to the semi-norm

2 . 2 2
IENT 2 :=EIFI"+EIDFl2g, 01

Moreover, for each h € LZ(JRQ x (0, 1)), we define Dy, F (in fact, it is also the directional deriva-
tive) by

o0
DhF = Z(hk, DF)LZ(R+><(O,1)) (hk, h)LQ(RJrX(O,l)) - <DF, h>L2(R+X(0,1))'

k=1

The operator Dj, can be extended as a closed operator with domain D" and D2 ¢ D". In addi-
tion, one has

oo o0
Dy F = Z(DF, hie) 2R, x 0, 1)k (t, x) = Z Dy, Fhy(t, x)
k=1 k=1

(if one of them exists). Furthermore, F € D2 if and only if F € D" for each k and

o
ZE <|thF|2> < 00.
k=1

Since our system has non-Lipschitz and unbounded coefficients, we need to localize the sys-
tem. The “local” criterion for absolute continuity of the law of a random variable is stated as
follows.

Definition 10.15. (see [47, Definition 2.1]) A random variable F is said to belong to the class

Dllc;f if there exists a sequence of measurable subsets of Q: ©,, C 2,41 and U, R, = Q a.s. and

a sequence {F,} C D2 such that
F|Qn = Fn|QnVn.
We say that F is localized by the sequence {(€2,,, F;,),n € N}.

Proposition 10.6. ([47, Proposition 2.2]) Let F € DIIO’CZ. There exists a unique measurable func-
tion of (t, x, w) DF such that for any localizing sequence (2, Fy),

1o, DF =1q,DF,.

Proposition 10.7. ([47, Proposition 2.3]) Let F be a real random variable. A sufficient condition
for the law of F to be absolutely continuous with respect to the Lebesgue measure is that
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(i) FeD,;

(i) IDFl2r, x0,1)) >0 as.
To close this section, we state the following chain rule, which is used in Section 5.

Proposition 10.8. ([46, Proposition 1.2.2]) Let ¢ : R" — R be a continuously differentiable func-
tion with bounded partial derivative and fixed p > 1. Suppose that F = (F1, ..., F,) is a random
vector, whose components are in DLP. Then, o(F) € DY and

m

3
De(F)=3" a—;:(F)DFi.
i=1 !
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