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a b s t r a c t

This paper develops a hybrid deep learning approach to find optimal reinsurance, investment, and
dividend strategies for an insurance company in a complex stochastic system. A jump–diffusion
regime-switching model with infinite horizon subject to ruin is formulated for the surplus process.
A Markov chain approximation and stochastic approximation-based iterative deep learning algorithm
is developed to study this type of infinite-horizon optimal control problems. Approximations of
the optimal controls are obtained by using deep neural networks. The framework of Markov chain
approximation plays a key role in building iterative algorithms and finding initial values. Stochastic
approximation is used to search for the optimal parameters of neural networks in a bounded region
determined by the Markov chain approximation method. The convergence of the algorithm is proved
and the rate of convergence is provided.
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1. Introduction

For insurance companies, due to the nature of insurance prod-
cts, insurers tend to accumulate relatively large amounts of cash
r cash equivalents and invest the surplus in a financial market
n order to pay future claims and avoid financial ruin. Mean-
hile, redundant surplus will be paid out to policyholders before
eficit occurs. Hence, to optimize the cash flow management,
he decision makers of insurance companies will manage the risk
haring, investment performance and dividend payment schemes.
hus, how to build the strategies of reinsurance, investment, and
ividend payout is crucial to insurance industry.
Reinsurance is a standard risk sharing tool to reduce and

liminate risks borne by primary insurance carriers. The primary
nsurance carrier pays to reinsurance company a certain part of
remiums in return for protections against the adverse claim
olatilities. Since the pioneering work of Borch (1960) and Arrow
1963), there has been extensive research on optimal reinsurance.
he recent book on reinsurance, Albrecher et al. (2017), provides
n impressive list of references on the subject.
The optimal portfolio selection problem is of practical impor-

ance. Earlier work in this area can be traced back to Markowitz’s
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ean–variance model, see Markowitz (1952). The asset alloca-
ion problem for an insurance portfolio is different from that in
inance, since an insurer needs to pay claims. Browne (1995)
onsiders a model in which aggregate claims are modelled by
Brownian motion with drift, and the risky asset is modelled
y a geometric Brownian motion. Hipp and Plum (2000) use
he Cramér–Lundberg model to formulate the risk process of an
nsurance company and assume that the surplus of the insurance
ompany can be invested in a risky asset (market index) that
ollows a geometric Brownian motion.

Dividend payment scheme represents an important signal
bout a company’s financial status and future growth opportuni-
ies. Miller and Modigliani (1961) demonstrate the relationship
etween a company’s dividend policy and the valuation of its
hares. Instead of considering the safety aspect, optimal dividend
trategies for insurance companies are first studied by De Finetti
1957), who proposed a random walk to model the surplus
rocess and obtained that the optimal dividend payment strategy
as of barrier type. This research focuses on the economic per-

ormance instead of the safety aspect to maximize the discounted
otal dividend payment until ruin. Gerber (1972) provides so-
utions for optimal dividend problem under both discrete and
ontinuous models. Højgaard and Taksar (1999) study the rein-
surance and dividend strategies in a diffusion model and provide
closed-form solutions for optimal strategies.

https://doi.org/10.1016/j.insmatheco.2020.11.012
http://www.elsevier.com/locate/ime
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In past decades, extensive research has been devoted to find-
ng optimal insurance strategies using analytic techniques un-
er various discrete-time and continuous-time models. Types of
ontrols such as regular, singular, or impulse controls are inves-
igated under various models such as random walk, compound
oisson process, jump diffusion model, regime-switching model,
tc. Due to increasing complexity of stochastic systems such as
onsidering multiple types of controls simultaneously, adopting
onlinear insurance/reinsurance premium principles, and multi-
le decision makers in a game-theoretical framework etc., closed-
orm solutions are not available in many cases. Recently, there
s emerging research on numerically solving insurance problems
sing finite difference or similar type of methods; see Jin et al.
2012, 2013a,b), and Van Staden et al. (2018).

On the other hand, the fast developments of machine learning,
big data analytics, and artificial intelligence are changing our
community and insurance market in almost all aspects. There
are emerging efforts to figure out the impacts of data science
on insurance industry, and to see how we can apply the novel
data science approach to insurance industry such as reducing
losses, claim reserve estimation, policy design, and key parameter
estimation; see Wüthrich (2018a,b), Hainaut (2018), and Aleandri
(2018). A comprehensive summary of machine learning tech-
niques in non-life insurance pricing and data science such as
regression trees, neural networks, and unsupervised learning is
presented in Wüthrich and Buser (2017).

When managing a portfolio with multiple insurance products,
the decision maker generally faces a stochastic control problem.
Depending on the structures of insurance products, the control
problem is categorized into two types: finite-time horizon and
infinite-time horizon. There exists some literature on applying
deep learning methods to solve finite-time horizon problems. Han
and E (2016) and E et al. (2017) utilize neural networks to ap-
proximate the controls. The expectation of the objective function
at terminal time is approximated by the average value of Monte-
Carlo paths. Hence, finding optimal controls becomes search-
ing the optimal parameters of approximating neural networks
under a certain criteria guided by the rewarding function. Ba-
chouch et al. (2018) and Huré et al. (2018) integrate deep learning
methods into Monte Carlo backward optimization algorithms.
Parametric neural networks are adopted and the optimization is
executed backwards at discrete times. The approximating error
analysis is provided. In summary, determining optimal controls in
such finite-time horizon problems can be viewed as Monte Carlo
projections starting from an initial value.

For infinite-time horizon problems, since there is no fixed
terminal time, we can hardly use the maximization of a sim-
ple expectation of projections to design the reward function.
There exists very few literature on applying deep learning meth-
ods to find stochastic optimal controls in infinite-time horizon.
Cheng et al. (2020) develop a Markov chain approximation-based
deep learning algorithm to approximate the optimal insurance
strategies using neural networks. The idea of using Markov chain
approximation method to find initial guesses is proposed. The
reinsurance strategy and dividend strategy, considered as regular
and singular controls respectively, are approximated by two neu-
ral networks separately. The classical gradient descent algorithm
is adopted to find the weights of the two neural networks. A
couple of numerical examples are presented to show that the
neural-network approximating strategies converge to the an-
alytical solutions obtained in Højgaard and Taksar (1999). In
this paper, we further modify the algorithm and replace gra-
dient descent method by stochastic approximation to calibrate
the parameters of neural networks. The stochastic approxima-
tion theory provides a well-established framework to guarantee

the convergence of the iterations in the weak sense. A rigorous
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convergence proof of the algorithm is provided in this work,
while Cheng et al. (2020) are the first work to develop a hybrid
Markov chain approximation-based deep learning algorithm and
presents several numerical examples.

The hybrid feature of the proposed algorithm lies in an in-
tegration of neural network, Markov chain approximation, and
stochastic approximation to solve a stochastic optimization prob-
lem. Markov chain approximation method (MCAM) and stochastic
approximation (SA) are the main building blocks in the ap-
proximation procedures. A comprehensive introduction of the
development of Markov chain approximation methods and
stochastic approximation methods, together with the literature
can be found in Kushner and Dupuis (2001) and Kushner and Yin
(2003), respectively.

In this work, we apply our method to a complex jump–
diffusion system with regime-switching. The controls are approx-
imated by neural networks. To obtain the optimal parameters
of the neural networks, we have developed two major steps.
(1) Applying the Markov chain approximation method with coarse
scale to estimate the initial guess of the neural network;
(2) Applying stochastic approximation with fine scale to estimate
the accurate parameters in a bounded region. The convergence of
the numerical scheme is proved.

Comparing with the existing numerical methods on stochas-
tic control problems, our proposed deep-learning algorithm has
two main advantages. First, the introduction of machine learning
framework enables us to improve the computation efficiency by
using the two-scale numerical method. As it is well known, it is
inevitable that one faces the problem of ‘‘curse of dimensionality’’
that the number of computation nodes grows exponentially when
dealing with optimization problems with multiple control vari-
ables and states. We replace the optimization over the piecewise
control grid for every state value by finding optimal parameters
of neural networks for all state values. Now the computational
complexity mainly comes from the evaluation of gradients for
every state value. By using the stochastic approximation to cal-
culate the optimum, the number of computation nodes increases
linearly with respect to the number of points in the state lat-
tice. In addition, the coarse-scale Markov chain approximation
provides an initial value with small neighbourhood to conduct
the stochastic approximation with fine-scale computation. Hence
the computation efficiency for optimal controls can be largely
improved. Second, the accuracy of numerical results can be im-
proved by the developed algorithm. Traditional approximation
methods generally use piecewise constant controls to approxi-
mate the optimal control. Then the accuracy of control strategy
is subject to the denseness of the grid. The denseness of grids
depends on the types and ranges of controls and states. When the
ranges of controls and states are not comparable, the computation
efficiency and accuracy are largely affected since it is difficult
to find suitable stepsize for the lattice. On the contrary, neural
networks allow the control strategy to take values in a continuous
range and easily conquer the difficulty of effectively choosing a
precision in control spaces with significant different scales.

The rest of the paper is organized as follows. A general for-
mulation of surplus, dividend, investment, reinsurance strategies,
and related assumptions are presented in Section 2 together
with a complex regime-switching jump diffusion model. Sec-
tion 3 shows the construction of an approximating Markov chain.
In Section 4, the main steps of deep learning algorithms are
established. The neural networks are constructed accordingly.
Convergence of the algorithm is provided in Section 5. Some

concluding remarks are provided in Section 6.
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. Formulation

Let us work with a complete filtered probability space (Ω,F,
Ft}, P), where {Ft} (or simply Ft ) is a filtration satisfying the
sual condition. That is, Ft is a family of σ -algebras such that
s ⊂ Ft for s ≤ t and that F0 contains all null sets.
An insurance company adopts reinsurance, investment and

ividend strategies to manage the insurance portfolios. The sur-
lus process depends on regimes of the market, which is mod-
lled by a continuous-time finite-state Markov chain. The Markov
hain, α(t) takes values in a finite space M = {1, . . . ,m}. The
tates of economy are represented by the Markov chain α(t). Let
he continuous-time Markov chain α(t) be generated by Q =

qij) ∈ Rm×m. That is,

P{α(t + δ) = j|α(t) = i, α(s), s ≤ t}

=

{
qijδ + o(δ), if j ̸= i,
1 + qiiδ + o(δ), if j = i, (2.1)

here qij ≥ 0 for i, j = 1, 2, . . . ,m with j ̸= i and qii =∑
j̸=i qij < 0 for each i = 1, 2, . . . ,m.

We consider a Poisson measure in lieu of the widely used
oisson process. Suppose R ⊂ R+ is a compact set.

(t,H) := number of claims on [0, t]

with claim size taking values in H ∈ R (2.2)

ounts the number of claims up to time t , which is a Poisson
ounting process. The claim size A has a distribution Π(·). Due
o the regime switching, the Poisson measure in each regime
s represented as Ni for all i ∈ M. Then the Poisson measure
i((·), (·)) has intensity λ(i)dt × Π(dρ), where Π(dρ) = f (ρ)dρ,
nd f (ρ) is the density function. Let Y (t) be the aggregate claims
rocess

(t) =

∫ t

0

∫
R
ρNα(t)(dt, dρ).

(t) is a jump process representing claims with arrival rate λ(i),
or i ∈ M. Note that claim frequencies depend on the states of
conomy and financial market.
Furthermore, for each i ∈ M, we assume that the premium

ate c(i) collected by the primary insurance company follows the
xpectation premium principle:

(i) = (1 + ϕ)λ(i)E [A] ,

here ϕ is the safety loading for the primary insurer.
Let κ be the fraction of each claim paid by the primary in-

urance company. Then the aggregate claims amount paid by
he primary insurance company is denoted as Y κ (t). The reinsur-
nce premium rate is denoted as g(κ). We consider proportional
einsurance strategy in this work. Hence κ ∈ [0, 1]. By using
he variance premium principle, the reinsurance premium rate at
ime t is

(κ) = (1 − κ)E[A] + β(1 − κ)2Var[A], (2.3)

here β > 0 is the safety loading for the reinsurer. Note
that different premium principles are adopted for insurers and
reinsurance companies to make the formulation more general.

Following the work in Yang and Zhang (2005), we assume the
surplus process is invested in a financial market with a risk free
asset whose price follows

dS0(t) = S0(t)r0(α(t))dt

and N risky assets whose prices are governed by

dSı(t) = Sı(t)(µı(α(t))dt +

N∑
σıȷ(α(t))dWȷ(t)),
ȷ=1
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whereW (t) = (W1(t), . . . ,WN (t))′ is an N -dimensional standard
Brownian motion. In the above and thereafter, B′ denotes the
transpose of B with B being either a vector or a matrix with ap-
propriate dimension, and |B| denotes the Euclidean norm of B. Set

B(α(t)) = (µ1(α(t)) − r0(α(t)), . . . , µN (α(t)) − r0(α(t)))′, and
σ (α(t)) = (σıȷ(α(t)))N×N .

(2.4)

We use the proportional portfolio φ(t) = (φ1(t), . . . , φN (t))′
to represent an investment strategy, where φı(t) is the percentage
of the total capital invested in asset ı. To better reflect the reality
in certain markets where short selling is not allowed, we further
set a borrowing constraint on the investment strategy, which
means

∑N
ı=1 φı(t) ≤ 1 at any time. Denote

[0, 1]N = [0, 1] × [0, 1] × · · · × [0, 1],

and denote the constraint set of the controls as

Γ :=

{
φ ∈ [0, 1]N :

N∑
ı=1

φı ≤ 1

}
. (2.5)

A dividend strategy D(·) is an Ft-adapted process {D(t) : t ≥

0} corresponding to the accumulated amount of dividends paid
up to time t such that D(t) is a nonnegative and nondecreasing
stochastic process that is right continuous and have left limits
with D(0−) = 0.

Combining the proportional reinsurance, investment and div-
idend strategies, the surplus process of the insurance company,
denoted by X(t), follows⎧⎪⎨⎪⎩

dX(t) =
{
X(t)[r0(α(t)) + φ′(t)B(α(t))] + c(α(t))
− λ(α(t))g(κ)

}
dt

+X(t)φ′(t)σ (α(t))dW (t) − dY κ (t) − dD(t),
X(0) = x,

(2.6)

where

Y κ (t) = κY (t) = κ

∫ t

0

∫
R
ρNα(t)(dt, dρ).

In this paper, Ft is the σ -algebra generated by {α(s),W (s),Nα(s)
(·) : 0 ≤ s ≤ t, α ∈ M}.

By choosing the optimal reinsurance, investment and dividend
payment strategies, we aim to maximize the present value of
cumulative discounted dividend payments until financial ruin. Let
γ be the discount factor. A strategy π (·) = {π (t) := (κ(t), φ(t),
D(t)), t ≥ 0} being progressively measurable with respect to Ft is
called an admissible strategy. For an arbitrary triplet of controls
π (·) = (κ(·), φ(·),D(·)), the objective function is defined as

J(x, i, π ) = Ex,i

(∫ τ

0
e−γ tdD(t)

)
, (2.7)

where τ = inf{t ≥ 0 : X(t) < 0} represents the time of ruin,
and Ex,i denotes the expectation conditioned on X(0) = x and
α(0) = i. Hence, the value function

V (x, i) = sup
π

J(x, i, π ). (2.8)

In this paper we consider absolutely continuous dividend
strategies, and assume there is an upper bound M̃ on the dividend
rate. We write D(t) as

dD(t) = u(t)dt, 0 ≤ u(t) ≤ M̃, (2.9)

where u(t) is an Ft-adapted process and 0 < M̃ < ∞.

Remark 2.1. We focus on developing the algorithm and pro-
viding convergence analysis in this paper. The case of restricted
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ividend payment rate is presented to illustrate the idea and
ethodology. The case of unrestricted dividend payment rate
oes not add much difficulty to the algorithm design. A numerical
xample of the unrestricted dividend payment rate is presented
n Cheng et al. (2020).

Then (2.6) can be rewritten as⎧⎪⎨⎪⎩
dX(t) =

{
X(t)[r0(α(t)) + φ′(t)B(α(t))] + c(α(t))
− λ(α(t))g(κ) − u(t)

}
dt

+X(t)φ′(t)σ (α(t))dW (t) − dY κ (t),
X(0) = x.

(2.10)

In this case, denote the control by π := (κ, u, φ) ∈ [0, 1] ×

[0, M̃]×[0, 1]N . Then the expected discounted dividend until ruin
is given by

J(x, i, π (·)) = Ex,i

[∫ τ

0
e−γ tu(t)dt

]
. (2.11)

The value function of maximizing expected dividend payoff is
defined by the following optimization problem:

V (x, i) = sup
π∈[0,1]×[0,M̃]×[0,1]N

J(x, i, π (·)). (2.12)

For i ∈ M, and V (·, i) ∈ C2(R), define an operator L by

LV (x, i) = Vx(x, i)[x(r0(i) + φ′B(i)) + c(i) − λig(κ) − u]

+
1
2
x2Vxx|φ

′σ (i)|2

+λ(i)
∫ x

0
[V (x − κz, i) − V (x, i)]f (z)dz + QV (x, ·)(i),

(2.13)

here Vx and Vxx denote the first and second derivatives with
espect to x, and

V (x, ·)(i) =

∑
i̸=j

qij(V (x, j) − V (x, i)).

he operator L will be used to design the approximating Markov
hain in the following section.

. Approximating Markov chain

We will construct an approximating Markov chain for the
egime-switching jump diffusion model. The discrete-time con-
rolled Markov chain is so defined that it is locally consistent with
2.10). First, we will approximate the terms of discrete claims.

There is an equivalent way to define the process (2.10) by
orking with the claim times and values. To do this, set ν0 = 0,
nd let νn, n ≥ 1, denote the time of the nth claim, and ρn be
he corresponding claim severity. Let {νn+1 − νn, ρn, n < ∞} be
utually independent random variables with νn+1 − νn being

exponentially distributed, and let ρn have a distribution Π(·).
urthermore, let {νk+1 − νk, ρk, k ≥ n} be independent of {X(s),
α(s), s < νn, νk+1 − νk, ρk, k < n}, then the nth claim term is ρn.

Because νn+1 − νn is exponentially distributed, we can write

P{claim occurs on [t, t + δ)|X(s), α(s),W (s),N(s, ·), s ≤ t}

= λ(α(t))δ + o(δ). (3.1)

It is implied by the above discussion that X(·) satisfying (2.10)
can be viewed as a process that involves regime-switching dif-
fusion with claims according to the claim rate defined by (3.1).
To begin, we construct a discrete-time, finite-state, controlled
Markov chain to approximate the controlled diffusion process
with regime-switching, and the dynamic system is given by⎧⎪⎨⎪⎩

dX(t) =
{
X(t)[r0(α(t)) + φ′(t)B(α(t))] + c(α(t))
− λ(α(t))g(κ) − u

}
dt

+X(t)φ′(t)σ (α(t))dW (t)
(3.2)
X(0) = x.
265
Note that the state of the process has two components x and
α. Hence in order to use the methodology in Kushner and Dupuis
(2001), our approximating Markov chain must have two compo-
nents: one component delineates the diffusive behaviour whereas
the other keeps track of the regimes. Let h > 0 be a discretization
parameter representing the stepsize. Define S̃h = {x : x = kh, k =

0,±1,±2, . . . } and Sh = S̃h ∩ G̃h, where G̃h = (0,B + h) and B is
an upper bound introduced for numerical computation purpose.
Moreover, assume without loss of generality that the boundary
point B is an integer multiple of h. Let {(ξ hn , α

h
n), n < ∞} be a

controlled discrete-time Markov chain on Sh × M and denote by
phD((x, i), (y, j)|π ) the transition probability from a state (x, i) to
another state (y, j) under the control π . We need to define phD so
that the chain’s evolution well approximates the local behaviour
of the controlled regime-switching diffusion (3.2).
π is a control parameter and takes values in the compact set

U . We use πh
n to denote the random variable that is the actual

control action for the chain at discrete time n. To approximate the
continuous-time Markov chain, we need another approximation
sequence. Suppose that there is an ∆th(x, α, π ) > 0 and define
the ‘‘interpolation interval’’ as∆thn = ∆th(ξ hn , α

h
n, π

h
n ) on Sh×M×

U . Define the interpolation time thn =
∑n−1

k=0 ∆thk (ξ
h
k , α

h
k , π

h
k ). The

piecewise constant interpolations (ξ h(·), αh(·)), πh(·) and βh(t)
are defined as

ξ h(t) = ξ hn , α
h(t) = αh

n, π
h(t) = πh

n , β
h(t) = n for t ∈ [thn , t

h
n+1).

(3.3)

Let {phD((x, i), (y, j)|π )} for (x, i), (y, j) ∈ Sh × M, and π ∈ U
e a collection of well defined transition probabilities for the
arkov chain (ξ hn , α

h
n), an approximation to (X(·), α(·)). Define the

ifference ∆ξ hn = ξ hn+1 − ξ hn . Assume infx,i,π ∆th(x, i, π ) > 0 for
each h > 0 and limh→∞∆th(x, i, π ) → 0. Let Eπ,hx,i,n, Var

π,h
x,i,n, and

pπ,hx,i,n denote the conditional expectation, variance, and marginal
probability given {ξ hk , α

h
k , u

h
k, k ≤ n, ξ hn = x, αh

n = i, πh
n =

π}, respectively. The sequence {(ξ hn , α
h
n)} is said to be locally

consistent with the diffusion and regime switching, if

Eπ,hx,i,n∆ξ
h
n = (x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ) − u)

∆th(x, i, π ) + o(∆th(x, i, π )),
Varπ,hx,i,n∆ξ

h
n = x2|φ′σ (i)|2∆th(x, i, π ) + o(∆th(x, i, π )),

pπ,hx,i,n{α
h
n+1 = j} = ∆th(x, i, π )qij + o(∆th(x, i, π )), for j ̸= i,

pπ,hx,i,n{α
h
n+1 = i} = ∆th(x, i, π )(1 + qii) + o(∆th(x, i, π )),

sup
n,ω

|∆ξ hn | → 0 as h → 0.

(3.4)

Once we have a locally consistent approximating Markov
chain, we can approximate the value function. Let Uh denote the
collection of controls, which are determined by a sequence of
measurable functions F h

n (·) such that

πh
n = F h

n (ξ
h
k , α

h
k , k ≤ n;πh

k , k ≤ n). (3.5)

Note that Sh × M is a finite state space. Let Nh denote the first
time that {ξ hn } leaves Sh. Then the first exit time of ξ h(·) from Sh
is τh = thNh

. Natural reward functions for the chain is

Jh(x, i, πh) = Ex,i

Nh−1∑
n=0

e−γ∆thnuh
n∆thn . (3.6)

Denote

V h(x, i) = sup Jh(x, i, πh). (3.7)

πh∈Uh
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In view of (2.6), the transition probabilities can be constructed
s follows

phD((x, i), (x + h, i)|π )

=
(x2|φ′σ (i)|2/2) + h(x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ) − u)+

D̃ − γ h2
,

phD((x, i), (x − h, i)|π )

=
(x2|φ′σ (i)|2/2) + h(x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ) − u)−

D̃ − γ h2
,

phD((x, i), (x, j)|π ) =
h2

D̃ − γ h2
qij, for j ̸= i,

phD(·) = 0, otherwise,

∆th(x, i, π ) =
h2

D̃
,

(3.8)

ith

= x2|φ′σ (i)|2 + h|x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ)

− u|+h2(γ − qii)

being well defined.
Suppose that the current state is ξ hn = x, αh

n = i, and the
control is πh

n = π . To present the claim terms, we determine the
next state (ξ hn+1, α

h
n+1) by noting:

1. No claims occur in [thn , t
h
n+1) with probability (1 − λ(i)∆th

(x, i, π )+o(∆th(x, i, π ))); we determine (ξ hn+1, α
h
n+1) by tran-

sition probability phD(·) as in (3.8).
2. There is claim loss q in [thn , t

h
n+1) with probability λ(i)∆th

(x, i, π ) + o(∆th(x, i, π ))), we determine (ξ hn+1, α
h
n+1) by

ξ hn+1 = ξ hn − qh, αh
n+1 = αh

n,

where qh ∈ Sh ⊆ R+ such that qh is the nearest value of q
so that ξ hn+1 ∈ Sh. Then |qh − q| → 0 as h → 0, uniformly in
x.

Let Hh
n denote the event that (ξ hn+1, α

h
n+1) is determined by the

first alternative above and use T h
n to denote the event of the

second case. Let IHh
n
and IThn be corresponding indicator functions,

respectively. Then IHh
n

+ IThn = 1. Then we need a new definition

of the local consistency for Markov chain approximation of jump
diffusion process with regime-switching.

Definition 3.1. A controlled Markov chain {(ξ hn , α
h
n), n < ∞} is

said to be locally consistent with (2.6), if there is an interpolation
interval ∆th(x, i, π ) → 0 as h → 0 uniformly in x, i, and π such
that

1. there is a transition probability phD(·) that is locally consis-
tent with (3.2) in the sense that (3.4) holds.

2. there is a δh(x, i, π ) = o(∆th(x, i, π )) such that the one-step
transition probability {ph((x, i), (y, j))|π} is given by

ph(((x, i), (y, j))|π ) = (1 − λ(i)∆th(x, i, π ) + δh(x, i, π ))
phD((x, i), (y, j))
+(λ(i)∆th(x, i, π ) + δh(x, i, π ))

Π{ρh
= x − y}.

(3.9)

Furthermore, the system of dynamic programming equations
in the kth iteration follows

V h
k+1(x, i) =

{
S(x, i, V h

k , π ), for x ∈ Sh, (3.10)
0, for x = 0. f
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where

S(x, i, V h
k , π ) = max

π∈U

[
(1 − λ(i)∆th(x, i, π ) + δh(x, i, π ))

×e−γ∆th(x,i,π )
∑
y,j

(phD((x, i), (y, j))|π )V
h
k (y, j)

+(λ(i)∆th(x, i, π ) + δh(x, i, π ))e−γ∆th(x,i,π )

×

∫ x

0
V h
k (x − κρh, i)Π(dρ) + u∆th(x, i, π )

]
.

4. Numerical algorithm

In this section, we give details of the numerical algorithm.
In Section 4.1, we present the idea of approximating controls
with neural networks and introduce the Markov chain approxi-
mation method to find the initial values with coarse scale. In Sec-
tion 4.2, details of stochastic approximation method are provided
to find accurate approximations with fine scale. A comprehensive
description of the method is shown in Section 4.3.

4.1. MCAM

According to our approach, the control variables are approx-
imated by neural networks and computed in a lattice. Without
loss of generality, given different admissible ranges of different
strategies, independent neural networks are adopted for different
controls. The computational structure of computation nodes of
each neural network follows the pattern in Fig. 4.1.

Remark 4.1. Fig. 4.1 provides a generic computational structure
f one neural node with inputs and outputs. Every computa-
ion neural node follows the same pattern as in Fig. 4.1. When
choosing neural networks practically, the architecture of neural
networks depends on the complexity of the problem. Generally
neural networks with more layers are equipped with stronger
ability to learn more complicated control strategies. But over-
complicated neural networks and excess parameters may lead to
issues of gradient vanishing.

Remark 4.2. When multiple controls exist, separate and inde-
pendent neural networks will be designed. Comparable controls
can adopt similar architecture of neural networks to improve
the computation efficiency. More explanation and figures about
designation of neural networks can be found in Cheng et al.
(2020). For example, Figure 1 in Cheng et al. (2020) presents
n example showing that two controls are approximated by two
ndependent neural networks with similar architecture.

Define θ as the collection of all weights and bias terms in the
eural networks, then denote the neural network control strategy
y N(x, i, θ ). Given the policy and value space as designed in
ection 3, the stepsize is h while the surplus is approximated
s {xι}nι=1. That is, the range of the surplus is approximated by
spots.
Define an approximation of (3.6) and (3.7) as

J̃h(xι, i,N(xι, i, θh)) = Exι,i

Nh−1∑
s=0

e−γ∆ths N(xι, i, θh)∆ths ,

Ṽ h(xι, i) = sup
θh

J̃h(xι, i,N(xι, i, θh)),
(4.1)

or ι = 1, . . . , n, i = 1, . . . ,m.
We are using Markov chain approximation method to find the

nitial values of the controls. The initial values of the controls
re obtained by the value iteration. Assuming we are currently in
he kth iteration with the iterative value function Ṽ h

k−1 obtained

rom the previous iteration, the optimal parameters in the current
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teration is denoted as θhk . We show how to search for θhk by
tochastic approximation in Section 4.2. Then the kth iterative
ontrol strategy is expressed as N(x, i, θhk ).
The kth iterative value function follows the dynamic program-

ming equation

V h
k (xι, i) = S(xι, i, Ṽ h

k−1,N(x, i, θ
h
k )), 1 ≤ ι ≤ n, 1 ≤ i ≤ m.

Our objective is

lim
k→∞,h→0

θhk = θ∗. (4.2)

epeat the above iteration until the termination condition
n

ι=1

m∑
i=1

(
Ṽ h
k (xι, i) − Ṽ h

k−1(xι, i)
)2
< ϵI

is met, where ϵI is a predefined small positive number.

4.2. SA algorithm

In the stochastic approximation, the fundamental goal is to use
N(xι, i, θh) and choose θh to maximize the global improvement
function Gh(θh) as the following

Gh(θh) = Gh (̃Jh(xι, i,N(xι, i, θh)) : ι = 1, . . . , n, i = 1, . . . ,m).
(4.3)

The global improvement function Gh reflects how much the
approximating cost function will improve globally. The choice of
Gh should serve the goal that the value function will be improved
on most states rather than on every state of the state lattice. The
global improvement is achieved by iteratively adopting the θhk
hich is optimized in every iteration k. That is, θhk = argmaxθhGh.
ractically, we can choose general global improvement functions
uch as the weighted average of the value function depending on
he problem formulation and performance of the algorithm.

To proceed, we provide a general setting of the stochastic
pproximation algorithm. The general setting will provide an
ffective framework for the proof of convergence in the next
ection. Without loss of generality, we assume that the param-
ters of neural network θ is an r-dimension vector. Let ej denote
he standard unit vector with the jth component being 1 and
ll other components being 0, for j = 1, . . . , r . Let θl denote
he lth estimate of the optimum. Let δl > 0 be the stepsize
f finite difference intervals and εl be the stepsize of iterations,
espectively.

The stochastic approximation algorithm proposed above can
e described by the following steps in each iteration k for the
attice with stepsize h. Then the lth estimate of the optimum of
in the kth iteration is denoted as θh . Given an initial value θh
k,l k,0 w
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in each iteration k, we aim to verify

lim
l→∞

θhk,l = θhk . (4.4)

To simplify the notation in the algorithm description, we omit the
subscript k and the superscript h in each term, and we write the
global improvement function Gh(θh) as G(θ ).

(1) Initialization: Take an initial guess θ0.
(2) Estimate θ1:

– Take noisy observations of G(θ ) at θ0 ± δ0ej and denote
the observations by Ĝ(θ0 ± δ0ej, η±

0,j). Here and hence-
forth, η±

0,j denotes the observation noise associated
with θ0 ± δ0ej.

– Define the gradient estimate K0,j = DĜ(θ0, η±

0,j) =

Ĝ(θ0+δ0ej,η
+

0,j)−Ĝ(θ0−δ0ej,η
−

0,j)

2δ0
, for j = 1, . . . , r .

– Construct θ1 = θ0 + ε0K0, where ε0 > 0 is a step size
and K0 = (K0,1, K0,2, . . . , K0,r ).

(3) Iteration step: Repeat Step 2 with θl+1 = θl + εlKl in which

Kl = (Kl,1, Kl,2, . . ., Kl,r ) and Kl,i =
Ĝ(θl+δlej,η

+

l,j)−Ĝ(θl−δlej,η
−

l,j)

2δl
, η±

l,j

are the random noises for l ≥ 1. We further assume that
the sequences η±

l,j are stationary processes with EĜ(θ, η±

l ) =

G(θ ) for each θ .
(4) A termination criterion: A tolerance level is reached.

or the algorithm to converge, we need to choose the stepsize so
hat the following conditions satisfy

l → 0, εl/δl → 0,
∑

l εl = ∞,
∑

l ε
2
l /δ

2
l < ∞. (4.5)

By using the initialization of the MCAM, the search region
f the optimal control is confined to a bounded neighbourhood
entred at the MCAM’s piecewise optimal control. In addition,
o ensure that the iterations remain in a bounded region, we
onsider the case that θ is bounded. Therefore, the iterations of
he neural network’s parameters should be confined to a bounded
egion. For simplicity, take the projection region to be

= {θ : N(x, i, θ ) ∈ [N(x, i, θ0) − δl,N(x, i, θ0) + δl], |θl,j| ≤ B̃, B̃

∈ R, i = 1, . . . ,m, j = 1, . . . , r}, (4.6)

here B̃ is an arbitrarily large positive number, θl,j is the jth
lement of vector θl. Now we propose a projection procedure

l+1 = PM [θl + εlKl], (4.7)

here PM denotes the projection operator onto the constraint set
and PM (θ ) is the closest point in M to θ . Thus if the iteration is

ithin the region we keep their values. If they ever exit from this



Z. Jin, H. Yang and G. Yin Insurance: Mathematics and Economics 96 (2021) 262–275

˜

Fig. 4.2. Iterative learning cycle.
˜

5

t

interval, we push them back to the boundaries. For more details
of the projection procedure, we refer readers to Yin et al. (2002).

4.3. Algorithm summary

To summarize all above constructions, a complete algorithm
will be given in the following. The algorithm starts from the
following initialization steps. To simplify the notations, we omit
the index h for each term.

Initialization 1: Construct the state lattice for deep learning
algorithm denoted as {xι}nι=1, and the state lattice for obtaining
initial value of θ denoted as {yℓ}ñℓ=1. These two state lattices
satisfy following conditions:

x0 = y0, xn = yñ, ñ ≤ n.

Initialization 2: Choose the sets of computation precision ϵ and
maximal number of learning times. They are used to obtain initial
value of θ0, to determine iterative control strategy N(x, i, θk), and
to stop the MCAM iteration respectively.

Initialization 3: Pick up an appropriate function f (·) to compute
initial value for iteration. The choice is subject to properties of the
problem. Compute U0 as:

U0(yℓ, i) = f (yℓ, i), ℓ = 1, . . . , ñ, i = 1, . . . ,m.

Initialization 4: Use the same function f (·) as in Initialization 3
to compute V0 as:

V0(xι, i) = f (xι, i), ι = 1, . . . , n, i = 1, . . . ,m.

After initialization, the algorithm will repeat below iterative
steps. The repetition will stop until the algorithm achieves the
desired precision, which is set up in Initialization 2.

Step 1: For i = 1, . . . ,m, denote by π̃k(yℓ, i) the optimal control
obtained from standard MCAM. The input values Uk−1 are from
Initialization 3 or Step 4 in the last round.

Step 2: Fit against π̃k(yℓ, i) to obtain parameter starting values
θk,0:

θk,0 = argminθ
ñ∑
ℓ=1

m∑
i=1

(π̃k(yℓ, i) − N(yℓ, i, θ ))2.

The fitting process will stop if the desired precision is achieved or
if the maximal number of fitting iteration is reached, whichever
comes first.

Step 3: Maximize G(θk) by the stochastic approximation algo-
rithm to obtain the iterative control strategy. The learning process
will stop if the desired precision is achieved or if the maximal
number of learning iteration is reached, whichever comes first.
Now, we have θ , which yields N(x, i, θ ).
k k
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Step 4: For ℓ = 1, . . . , ñ, iterate to Uk(yℓ, i)) in the following
way:

Uk(yℓ, i) = S(yℓ, i,Uk−1,N(yℓ, i, θk)).

Step 5: For ι = 1, . . . , n, iterate to Vk(xι, i) in the following
way:

Vk(xι, i) = S(xι, i, Ṽk−1,N(xι, i, θk)).

Step 6: Compute
∑n

ι=1
∑m

i=1

(
Ṽk(xι, i) − Ṽk−1(xι, i)

)2
, and then

check the termination condition:

• If
∑n

ι=1
∑m

i=1

(
Ṽk(xι, i) − Ṽk−1(xι, i)

)2
< ϵ, stop.

• If
∑n

ι=1
∑m

i=1

(
Ṽk(xι, i) − Ṽk−1(xι, i)

)2
> ϵ,

– if the maximal number of iterations is reached, stop;
– otherwise, go to Step 1.

One should bear in mind that we are using a general deep
learning algorithm to solve for the proposed optimization prob-
lems. In specific cases, the structures of neural networks can be
different. For example, if the ranges of controls are comparable,
we use one neural network to output different controls. If the
ranges of controls are not comparable, we use independent neural
networks to output different controls. Then more parameters
and more precise grid required. To guarantee the feasibility and
efficiency of the algorithm, we need build neural networks case
by case. The neural networks will be calibrated and trained by
stochastic approximation method. A brief computation graph is
provided in Fig. 4.2 to illustrate the algorithm.

In the following section, we focus on the convergence proof of
the algorithm. Several numerical examples are presented in our
previous work (Cheng et al., 2020). The algorithms are coded by
Python with TensorFlow package and run on x64 platform of Intel
Xeon E-2186 2.90 GHz CPU with 64 GB RAM and NVIDIA Quadro
P5200 GPU with 16 GB RAM. Detailed settings of neural networks
and performance of the algorithm can be found in Section 6
of Cheng et al. (2020).

5. Convergence

In this section, we prove the convergence of the algorithm.
That is, by starting with an initial guess θhk,0, the iteration will lead
to the optimal set of parameters θ∗. Particularly, we will prove
that (4.2) and (4.4) hold.

.1. Convergence of Markov chain approximation

This section deals with the convergence proof of (4.2). Note
hat θh is the parameters of neural networks that optimally fits
k
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he piecewise constant control obtained by MCAM in the kth
teration with stepsize h. The convergence of (4.2) can be guaran-
eed by the convergence of piecewise constant control in MCAM.
ence, we need only prove the convergence of πh.

.1.1. Local consistency
To proceed, we first present the local consistency for our ap-

roximating Markov chain. Basically, it says that the approxima-
ion we constructed is consistent with the given dynamic system.

emma 5.1. The Markov chain {ξ hn , α
h
n} with transition probabil-

ties (phD(·)) defined in (3.8) is locally consistent with the stochastic
ifferential equation in (3.2).

roof. Using (3.8), it is readily seen that
π,h
x,i,n∆ξ

h
n = hphD((x, i), (x + h, i)|π ) − hphD((x, i), (x − h, i)|π )

= (x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ) − u)∆th(x, i, π )

+ o(∆th(x, i, π )),

ikewise, we obtain
π,h
x,i,n(∆ξ

h
n )

2
= h2phD((x, i), (x + h, i)|π ) − h2phD((x, i), (x − h, i)|π )

= x2|φ′σ (i)|2∆th(x, i, π ) +∆th(x, i, π )O(h).

s a result,

arπ,hx,i,n∆ξ
h
n = x2|φ′σ (i)|2∆th(x, i, π ) +∆th(x, i, π )O(h)

− (x[r0(i) + φ′(t)B(i)] + c(i) − λ(i)g(κ) − u)

×∆th(x, i, π ) + o(∆th(x, i, π ))2

= x2|φ′σ (i)|2∆th(x, i, π ) + o(∆th(x, i, π )).

hus both equations in (3.4) are verified. The desired local consis-
ency follows with the use of local properties of claims
pecified. □

.1.2. Interpolations of approximation sequences
Based on the Markov chain approximation constructed in the

ast section, piecewise constant interpolation is obtained here
ith appropriately chosen interpolation intervals. Using (ξ hn , α

h
n)

o approximate the continuous-time process (X(·), α(·)), we de-
ined the continuous-time interpolation (ξ h(·), αh(·)), πh(·) and
h(t) as in (3.3). Recall Nh is defined in the paragraph above (3.6),
e define the first exit time of ξ h(·) from Sh by

h = thNh
. (5.1)

et the discrete times at which claims occur be denoted by νhj , j =

, 2, . . . Define Dh
n as the smallest σ -algebra of {ξ hk , α

h
k , π

h
k ,H

h
k , k

n; νhk , ρ
h
k : νhk ≤ tn}. Then τh is a Dh

n-stopping time. Using the
nterpolation process, we can rewrite (3.6) as

h(x, i, πh) = Ex,i

∫ τh

0
e−γ suh(s)ds. (5.2)

et ξ h0 = x, αh
0 = α, Eh

n denote the expectation conditioned on the
nformation up to time n, that is, conditioned on Dh

n . In addition,
h defined by (3.5) is equivalent to the collection of all piecewise
onstant admissible controls with respect to Dh

n .
Then we can write

n = x +

n−1∑
k=0

[∆ξ hk IHh
k

+ (∆ξ hk (1 − IHh
k
))]

= x +

n−1∑
Eh
k∆ξ

h
k IHh

k
+

n−1∑
(∆ξ hk − Eh

k∆ξ
h
k )IHh

k

k=0 k=0
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+

n−1∑
k=0

(∆ξ hk (1 − IHh
k
)). (5.3)

he local consistency leads to

n−1∑
k=0

Eh
k∆ξ

h
k IHh

k

=

n−1∑
k=0

((ξ hk [r0(αh
k ) + φ′(t)B(αh

k )] + c(αh
k ) − λ(αh

k )g(κ
h
k ) − uh

k)∆thk

+o(∆thk ))IHh
k

=

n−1∑
k=0

((ξ hk [r0(αh
k ) + φ′(t)B(αh

k )] + c(αh
k ) − λ(αh

k )g(κ
h
k ) − uh

k)∆thk

+o(∆thk )) − (max
k′≤n

∆thk′ )O(
n−1∑
k=0

IThk )

(5.4)

enote

Mh
n =

n−1∑
k=0

(∆ξ hk − Eh
k∆ξ

h
k )IHh

k
,

Rh
n = −

n−1∑
k=0

(∆ξ hk (1 − IHh
k
)) =

∑
k:νk<n

ρh
k ,

(5.5)

here Mh
n is a martingale with respect to Dh

n . Note that
n−1∑
k=0

IThk = E[number of n : νhn ≤ t] → λt as h → 0.

his implies

max
k′≤n

∆thk′ )O(
n−1∑
k=0

IThk ) → 0 in probability as h → 0.

ence we can drop the term involving IHh
k

without affecting
he limit in (5.4). We attempt to represent Mh(t) similar to the
iffusion term in (3.2). Define W h(·) as

h(t) =

n−1∑
k=0

(∆ξ hk − Eh
k∆ξ

h
k )/|ξ

h
k (φ

h
k )

′σ (αh
k )|,

=

∫ t

0

1
|x(s)(φh)′σ (αh(s))|

dMh(s).

(5.6)

Combining (5.4)–(5.6), we rewrite (5.3) by

ξ h(t) = x +

∫ t

0
(ξ h[r0(αh(s)) + (φh)′(s)B(αh(s))] + c(αh(s))

−λ(αh(s))g(κh(s)) − uh(s))ds

+

∫ t

0
ξ h|(φh)′σ (αh(s))|dW h(s) − Rh(t) + εh(t)

Rh(t) =

∑
νhn≤t

ρh
nκ

h
j,n(νn),

(5.7)

here εh(t) is a negligible error satisfying

lim
h→0

sup
0≤t≤T

E|εh(t)| → 0 for any 0 < T < ∞. (5.8)

e can also rewrite (5.7) as

(t) = x +

∫ t

0

{
X(s)[r0(α(s)) + φ′(s)B(α(s))] + c(α(s))

−λ(α(s))g(κ) − u(s)
}
ds

+

∫ t

X(s)φ′(s)σ (α(s))dW (s) − Y κ (t),

(5.9)
0
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here

κ (t) =

∑
νn≤t

ρnκn = κ(t)
∫ t

0

∫
R+

ρN(dsdρ).

Now we give the definition of existence and uniqueness of
weak solution.

Definition 5.2. By a weak solution of (5.9), we mean that
there exist a probability space (Ω,F,F, P), a filtration Ft , and
process (X(·), α(·), π (·),W (·),N(·)) such that W (·) is a standard
Ft-Wiener process, N(·) is an Ft-Poisson measure with claim rate
λ and claim size distribution Π(·), α(·) is a Markov chain with
generator Q and state space M, π (·) is admissible with respect
to (α(·),W (·),N(·)), X(·) is Ft-adapted, and (5.9) is satisfied.
For an initial condition (x, i), by the weak sense uniqueness,
we mean that the probability law of the admissible process
(α(·), π (·),W (·),N(·)) determines the probability law of solution
(X(·), α(·), π (·),W (·),N(·)) to (5.9), irrespective of probability
space.

We need one more assumption.

A1) Let τ̂ (ϕ) = ∞ and G̃o be an interior of an compact set, if
ϕ(t) ∈ G̃o, for all t < ∞, otherwise, define τ̂ (ϕ) = inf{t :

ϕ /∈ G̃o
}. The function τ̂ (·) is continuous (as a map from

D[0,∞), the space of functions that are right continuous
and have left limits endowed with the Skorohod topology to
the interval [0,∞] (the extended and compactified positive
real numbers)) with probability one relative to the measure
induced by any solution to (5.9) with initial condition (x, i).

5.1.3. Convergence of surplus processes
This section deals with convergence of surplus processes.

Lemma 5.3. Using the transition probabilities {ph(·)} defined in
(3.4) and (3.9), the interpolated process of the constructed Markov
chain {αh(·)} converges weakly to α(·), the Markov chain with
generator Q = (qij).

Proof. The proof can be obtained similar to Theorem 3.1 in Yin
et al. (2003). □

Theorem 5.4. Let the approximating chain {ξ hn , α
h
n, n < ∞}

constructed with transition probabilities defined in (3.8) be locally
consistent with (2.10), {πh

n , n < ∞} be a sequence of admissible
controls, and (ξ h(·), αh(·)) be the continuous-time interpolation de-
fined in (3.3). Let {̃τh} be a sequence of Fh

t -stopping times. Then
{ξ h(·), αh(·), πh(·),W h(·),Nh(·), τ̃h} is tight.

Proof. Using one point compactification, τ̃ ∈ [0,∞]. In view
f Lemma 5.3, {αh(·)} is tight. The sequence {πh(·), τ̃h} is always
ight since the corresponding range space is compact. Let T < ∞,
nd let νh be an Ft-stopping time which is no bigger than T . Then
or δ > 0,

uh
ν̃h
(W h(νh + δ) − W h(νh))2 = δ + ε̃h, (5.10)

where ε̃h → 0 uniformly in νh. Taking lim suph→0 followed
by limδ→0 yield the tightness of {W h(·)}. In view of Theorem
9.2.1in Kushner and Dupuis (2001), the sequence {Nh(·)} is tight
because the mean number of claims on any bounded interval
[t, t + s] is bounded by λ(α(t))s + δh1(s), where δh1(s) goes to zero
as h → 0, and

lim infP{νhn+1 − νhn > δ|data up to νhn} = 1.

δ→0 h,n
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This also implies the tightness of {Rh(·)}. These results and the
boundedness of c(·), g(·) and u(·) implies the tightness of {ξ h(·)}.
Thus, {ξ h(·), αh(·), πh(·),W h(·),Nh(·), τ̃h} is tight. □

Theorem 5.5. Let (ξ (·), α(·), π (·),W (·),N(·), τ̃ ) be the limit of a
weakly convergent subsequence and Ft the σ -algebra generated by
{X(s), α(s), π (s),W (s),N(s), s ≤ t, τ̃ I{̃τ<t}}. Then W (·) and N(·) are
a standard Ft-Wiener process and Poisson measure, respectively, and
τ is an Ft-stopping time and π (·) is an admissible control. Let the
claim times and claim sizes of N(·) be denoted by νn, ρn. Then, (5.9)
is satisfied.

Proof. Since {ξ h(·), αh(·), πh(·),W h(·),Nh(·), τ̃h} is tight, we can
extract a weakly convergent subsequence by Prohorov’s theorem.
Denote the limit by (ξ (·), α(·), π (·),W (·),N(·), τ̃ ). To characterize
W (·), let t > 0, δ > 0, p, κ̃ , {tk : k ≤ p} be given such that
tk ≤ t ≤ t + t̃ for all k ≤ p, P(̃τh = tk) is zero. Let {Γ κ̃

j , j ≤ κ̃} be a
sequence of nondecreasing partition of Γ such that Π(∂Γ κ̃

j ) = 0
for all j and all κ̃ , where ∂Γ κ̃

j is the boundary of the set Γ κ̃
j . As

κ̃ → ∞, let the diameter of the sets Γ κ̃
j go to zero. By (5.6),

W h(·) is an Ft-martingale. Thus we have for any bounded and
continuous function H(·)

EH(ξ h(tk), αh(tk),W h(tk), πh(tk),Nh(tk,Γ κ̃
j ), j ≤ κ̃,

k ≤ p, τ̃hI{̃τh≤t}) × [W h(t + t̃) − W h(t)] = 0. (5.11)

By using the Skorohod representation and the dominant conver-
gence theorem, letting h → 0, we obtain

EH(X(tk), α(tk),W (tk), π (tk),N(tk,Γ κ̃
j ), j ≤ κ̃,

k ≤ p, τ̃ I{̃τ≤t})[W (t + t̃) − W (t)] = 0. (5.12)

Since W (·) has continuous sample paths, (5.12) implies that W (·)
is a continuous Ft-martingale. On the other hand, since E[(W h(t+
δ))2−(W h(t))2] = E[(W h(t+δ)−W h(t))2], by using the Skorohod
representation and the dominant convergence theorem together
with (5.10), we have

EH(X(tk), α(tk),W (tk), π (tk),N(tk,Γ κ̃
j ), j ≤ κ̃,

k ≤ p, τ̃ I{̃τ≤t})[W 2(t + δ) − W 2(t) − δ] = 0. (5.13)

The quadratic variation of the martingale W (t) is t . Then W (·) is
an Ft-Wiener process.

Now we need to show that N(·) is an Ft-Poisson measure. Let
ϕ(·) be a continuous function on R+, and define the process

ϕN (t) =

∫ t

0

∫
R+

ϕ(ρ)N(dsdρ).

By an argument which is similar to the Wiener process above, if
f (·) is a continuous function with compact support, then

EH(X(tk), α(tk),W (tk), π (tk),N(tk,Γ κ̃
j ), j ≤ κ̃, k ≤ p, τ̃ I{̃τ≤t})

×

[
f (ϕN (t + t̃)) − f (ϕN (t)) − λ

∫ t+̃t

t

∫
R+

[f (ϕN (s) + ϕ(ρ))

−f (ϕN (s))]Π(dsdρ)
]
= 0.

(5.14)

Eq. (5.14) and the arbitrariness of H(·), p, κ̃, tk,Γ κ̃
j , f (·) and ϕ(·)

imply that N(·) is an Ft-Poisson measure.
For δ > 0, define the process φ̃(·) by φ̃h,δ(t) = φ̃h(nδ), t ∈

h h

[nδ, (n+ 1)δ). Then, by the tightness of {ξ (·), α (·)}, (5.7) can be
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ewritten as

ξ h(t) = x +

∫ t

0
(ξ h[r0(αh(s)) + (φ̃h(s))′(t)B(αh(s))] + c(αh(s))

−λ(αh(s))g(κh(s)) − uh(s))ds

+

∫ t

0
ξ h|(φ̃h)′σ (αh,δ(s))|dW h(s) − Rh(t) + εh,δ(t),

(5.15)

here

lim
δ→0

lim sup
h→0

E|εh,δ(t)| = 0. (5.16)

Letting h → 0, by using the Skorohod representation, we
btain

E|

∫ t

0
(ξ h[r0(αh(s)) + (φ̃h(s))′(t)B(αh(s))] + c(αh(s))

−λ(αh(s))g(κh(s)) − uh(s))ds

−

∫ t

0
(ξ [r0(α(s)) + (φ̃(s))′(t)B(α(s))] + c(α(s))

−λ(α(s))g(κ(s)) − u(s))ds|= 0

(5.17)

niformly in t with probability one. Furthermore, the Skorohod
epresentation implies that as h → 0,∫ t

0
(ξ h[r0(αh(s)) + (φ̃h(s))′(t)B(αh(s))] + c(αh(s))

−λ(αh(s))g(κh(s)) − uh(s))ds

→

∫ t

0
(ξ [r0(α(s)) + (φ̃(s))′(t)B(α(s))] + c(α(s))

−λ(α(s))g(κ(s)) − u(s))ds

(5.18)

niformly in t with probability one on any bounded interval.
Since ξ h,δ(·) and αh,δ(·) are piecewise constant functions, we

btain∫ t

0
X(s)φ̃′(s)σ (αh,δ(s))dW h(s) →

∫ t

0
X(s)φ̃′(s)σ (αδ(s))dW (s) as

h → 0 (5.19)

with probability one. Combining (5.11)–(5.19), we have

X(t) = x +

∫ t

0
(ξ [r0(α(s)) + (φ̃(s))′(t)B(α(s))] + c(α(s))

−λ(α(s))g(κ(s)) − u(s))ds

+

∫ t

0
X(s)φ̃′(s)σ (αδ(s))dW (s) − Y κ (t) + εδ(t),

(5.20)

where limδ→0 E|εδ(t)| = 0. Finally, taking limits in the above
equation as δ → 0, (5.9) is obtained. □

5.1.4. Convergence of value functions
This section deals with the convergence of the reward and

value functions. Note that the reward Jh(x, i, πh) is given by
(5.2). By virtue of Theorem 5.4, with the use of τh in (5.1),
each sequence {ξ h(·), αh(·), πh(·),W h(·),Nh(·), τh} has a weakly
convergent subsequence with the limit satisfying (5.9). Slightly
abusing the notation, still index the convergent subsequence by
h with the limit denoted by (X(·), α(·), π (·),W (·),N(·), τ̃ ). By
assumption (A1), {τh} is uniformly integrable. Using the Skorohod
representation and the weak convergence, as h → 0,

Ex,i

∫ τh

0
e−γ suh(s)ds → Ex,i

∫ τ̃

0
e−γ su(s)ds. (5.21)

Assumption (A1) guarantees that the exit time of X(·) from G̃o is
τ = τ . This leads to

Jh(x, i, πh) → J(x, i, π ) as h → 0. (5.22)
 c
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Theorem 5.6. Assume (A1). V h(x, i) and V (x, i) are value functions
defined in (3.7) and (2.8), respectively. Then V h(x, i) → V (x, i) as
h → 0.

Proof. Since V (x, i) is the maximizing reward function, for any
admissible control π (·),

J(x, i,m) ≤ V (x, i).

Let π̃h(·) be an optimal control for {ξ h(·)}. That is,

V h(x, i) = Jh(x, i, π̃h) = sup
πh

Jh(x, i, πh).

Choose a subsequence {̃h} of {h} such that

lim sup
h→0

V h(x, i) = lim
h̃→0

V h̃(x, i) = lim
h̃→0

J h̃(x, i, π̃ h̃).

Without loss of generality (passing to an additional subsequence
if needed), we may assume that (ξ h̃(·), αh̃(·), π h̃(·),W h̃(·),N h̃(·),
τ h̃) converges weakly to (X(·), α(·), π (·),W (·),N(·), τ ), where π (·)
is an admissible related control. Then the weak convergence and
the Skorohod representation yield that

lim sup
h

V h(x, i) = J(x, i, π ) ≤ V (x, i). (5.23)

We proceed to prove the reverse inequality.
We claim that

lim inf
h

V h(x, i) ≥ V (x, i). (5.24)

Suppose that u is an optimal control with respect to (α(·),W (·),
N(·)) such that x(·) and τ are the associated trajectory and the
stopping time, and J(x, i, u) = V (x, i). Given any h > 0, there
are an ε > 0 and an ordinary control πh(·) that takes only
inite many values, that πh(·) is a constant on [kε, kε + ε), that
πh(·) is its corresponding optimal control representation, and let
X

h
(·) and τ h be the associated solution and stopping time. Then

f (πh(·), α(·),W (·),N(·)) converges weakly to (π (·), α(·),W (·),
N(·)), we also have (X

h
(·), πh(·), α(·),W (·),N(·), τ h) converges

weakly to (X(·), π (·), α(·),W (·),N(·), τ ), where (5.9) holds for the
limit and τ is the associate stopping time by Theorem 5.4. With
assumption (A1), Jh(x, i, πh) → J(x, i, π ), and that Jh(x, i, πh) ≥

V (x, i) − h. Thus,

lim inf
h

V h(x, i) ≥ Jh(x, i, πh) ≥ V (x, i) − h.

The arbitrariness of h then implies that lim infh V h(x, i) ≥ V (x, i).
Using (5.23) and (5.24) together with the weak convergence

and the Skorohod representation, we obtain the desired result.
The proof of the theorem is concluded. □

5.2. Convergence of stochastic approximation

In this section, we will work on the convergence of SA in each
iteration k. That is, we will prove the convergence of (4.4). Similar
to Section 4.2, since all terms are computed under the MCAM
with stepsize h in all iterations, for notation simplicity, we omit
the h in the superscript and k in the subscript for all terms in all
iterations. We first rewrite (4.7) as

θl+1 = θl + εlKl + εlzl, (5.25)

where εlzl is the vector having the shortest Euclidean length
necessary to bring θl + εlKl back to M if it escapes from M . Then

we have εlzn,j = θl+1,j − θl,j − εl
Ĝ(θl+δlej,η

+

n,j)−Ĝ(θl−δlej,η
−

n,j)

2δl
. To es-

ablish convergence of the algorithm, we present some sufficient
onditions first.
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(A2) For each η, the observed or simulated solution Ĝ(·, η) is
three-times continuously differentiable.

(A3) Ĝ(θ, η) = G0(θ, η̃) + η̂, such that G0(·, η̃) is three times
continuously differentiable for each η̃, that {̃η±

l } are se-
quences of bounded and stationary φ-mixing processes
with mixing measure φ(k) satisfying

∑
k φ

1/2(k) < ∞ and
ElG0(θ, η̃±

l ) = Ḡ(θ ) for each θ , where El is the condi-
tional expectation with respect to the σ−field generated
by {̃η±

l }; that {̂η±

l } are stationary martingale difference
sequences satisfying E|̂η±

l |
2
< ∞, and that {̃η±

l } and {̂η±

l }

are independent.

Remark 5.7. Note that in (A2), we assumed that Ĝ is a smooth
function. The assumption is common in the treatment of stochas-
tic optimization and is satisfied for the applications we are in-
terested in. Non-smooth functions can be dealt with. A new
development is in Nguyen and Yin (2020), which allows the
nonsmoothness appear in the algorithms and the limit dynamics.
The key depends on the use of differential inclusions and newly
developed stochastic differential inclusions. However, we decide
to not to get involved in the technical details.

Assumption (A3) covers a broad range of random noise pro-
cesses. It includes additive noise such as the case Ĝ(θ, ξ ) =

Ḡ(θ ) + noise as well as non-additive noise in a rather general
form (a nonlinear function of θ and the noise). In (A3), η̃ is the
nonadditive noise and η̂ is the additive noise.

Define

ζl,j = [Ḡ(θl+δlej)−G0(θl+δlej, η̃+

l,j)]−[Ḡ(θl−δlej)−G0(θl−δlej, η̃−

l,j)],

ψl,j = η̂+

l,j − η̂−

l,j,

ϖl,j = Ḡl,j,θl,j (θl) −
Ḡ(θl + δlej) − Ḡ(θl − δlej)

2δl
.

sing the notation

ζl = (ζl,1, . . . , ζl,r )′, ψl = (ψl,1, ψl,2, . . . , ψl,r )′,
ϖl = (ϖl,1, . . . ,ϖl,r )′,

¯ l(·) = Ḡl,θ (θl) = (Ḡl,1,θl,1 (·), Ḡl,2,θl,2 (·), . . . , Ḡl,r,θl,r (·))
′,

he algorithm (5.25) can be written as

l+1 = θl + εlḠl,θ (θl) + εl
ζl

2δl
+ εl

ψl

2δl
+ εlϖl + εlzl. (5.26)

In the above, {ϖl} is known as the bias in the finite difference
estimate of J̄l,θ (θl). We separate the noise into two parts, uncor-
related noise {ζl} and correlated noise {ψl}. The algorithm is of the
KW (Kiefer and Wolfowitz) type. Actually, in lieu of a sequence of
decreasing {δl}, we may use a fixed finite-difference stepsize δ >
0. The main requirement is that the stepsize goes to 0 much faster
than the finite difference intervals do. Further discussion on the
choice of stepsizes can be found in Kushner and Yin (2003). For
notational simplicity, Ĝ0(θ, η̃l) and η̂l are often used to represent
G0(θ, η̃±

l ) and η̂
±

l in what follows.
To proceed, let

t0 = 0 and tl =

n−1∑
i=0

εj,

and

m(t) =

{
n satisfying tl ≤ t < tl+1, for t ≥ 0,
0, for t < 0.

Therefore, m(t) is the unique value of l such that tl ≤ t < tl+1.
We define the continuous-time interpolation θ (·) on (−∞,∞)
0
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by θ0(t) = θ0 for t ≤ 0, and for t ≥ 0, θ0(t) = θl, for tl ≤ t < tl+1.
We then define the sequence of shifted process θ l(·) by

θl(t) = θ0(tl + t), −∞ < t < ∞.

As for the reflection term, we let zi = 0 for i < 0. Define

(t) = 0, for t ≤ 0,

(t) =

m(t)−1∑
k=0

εkzk, t ≥ 0.

Define the shifted process as below:

(t) = Z0(tl + t) − Z0(tl) =

m(tl+t)−1∑
k=l

εkzk, t ≥ 0,

(t) = −

l−1∑
k=m(tl+t)

εkzk, t < 0.

Then we can rewrite the interpolated process θl(·) as follows

θl(t) = θl +

m(tl+t)−1∑
k=l

εkḠk,θ (θk) +

m(tl+t)−1∑
k=l

εk
ζk

2δk
+

m(tl+t)−1∑
k=n

εk
ψk

2δk

+

m(tl+t)−1∑
k=l

εkϖk +

m(tl+t)−1∑
k=l

εkzk

= θl + gl(t) + ζl(t) + ψl(t) +ϖl(t) + Zl(t),

where for t ≥ 0,

gl(t) =

m(tl+t)−1∑
k=n

εkḠk,θ (θk), ζl(t) =

m(tl+t)−1∑
k=n

εk
ζk

2δk
,

ψl(t) =

m(tl+t)−1∑
k=n

εk
ψk

2δk
, ϖl(t) =

m(tl+t)−1∑
k=n

εkϖk.

Recall the notion of the projected ODE (ordinary differential
equation). According to the setup in Chapter 4 of Kushner and Yin
(2003), for θ ∈ M , define C(θ ) as follows. For θ ∈ M0, the interior
of M , C(θ ) contains the zero element only; and for θ ∈ ∂M , the
boundary of M , let C(θ ) be the infinite convex cone generated by
the outer normals at θ of the faces on which θ lies. The projected
ODE is defined by

θ̇ (t) = −Ḡθ (θ (t)) + z(t), z ∈ C(θ ),

Z(t) =

∫ t

0
z(u)du,

(5.27)

where z(·) is the projection or the constraint term that is the
minimum force needed to keep θ (·) in M .

Theorem 5.8. Assume that (A2) and (A3) are satisfied and that

sup
l≤k≤m(tl+T )

(εk/δ2k )/(εl/δ
2
l ) ≤ c1(T ), for some c1(T ) < ∞.

(5.28)

Then, there is a null set N such that for all ω ̸∈ N, {θl(·), Zl(·)} is
equicontinuous in the extended sense. Let (θ (·), Z(·)) denote the limit
of a convergent subsequence. Then, it satisfies the projected ordinary
differential equation (5.27). If θ∗ is an asymptotically stable point of
(5.27) and θl is in some compact set that is a subset of the domain
of attraction of θ∗ w.p.1, then θl → θ∗ w.p.1.

Proof. To prove this theorem, we apply Theorem 6.5.1 of Kushner
and Yin (2003). We only need to verify the conditions in that
theorem are fulfilled. To begin, for each θ in a bounded set, the
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oundedness of {η±

l } implies that {ζl} is bounded; thus,

up
l

|ζl| < ∞.

The moment bounds on {̂η±

l } imply that E|ψl|
2 < ∞. The function

Ḡ(·), (A2), (A3) lead to the conclusion that G(θ, η) is continuous
in θ for each η. For the additive noise, since {ψl} is a martingale
difference sequence, by virtue of (5.28), we have

E

⏐⏐⏐⏐⏐⏐
m(jT+t)−1∑
k=m(jT )

(εk/δk)ψk

⏐⏐⏐⏐⏐⏐
2

→ 0, as l → ∞.

As a result, for any µ > 0 and some T > 0,

lim
l

P

⎛⎝sup
j≥n

max
0≤t≤T

⏐⏐⏐⏐⏐⏐
m(jT+t)−1∑
k=m(jT )

(εk/2δk)ψk

⏐⏐⏐⏐⏐⏐ ≥ µ

⎞⎠ = 0. (5.29)

Recall that the correlated noise is defined as

ζk,j = [Ḡ(θk + δkej) − G0(θk + δkej, η̃+

k,j)]
−[Ḡ(θk − δkej) − G0(θk − δkej, η̃−

k,j)]
(5.30)

and

ζk = (ψk,1, ψk,2, . . . , ψk,r ).

Since {ηl} is stationary, by (A3),

ζk = 0, for each θk.

To verify the rate-of-growth condition, we need consider only, for
each θ , the sum of terms involving ζk. In fact, by virtue of (A3) and
he mixing inequality established by Kushner and Yin (2003) as
→ 0,⏐⏐⏐⏐⏐⏐
m(jT+t)−1∑
k=m(jT )

(εk/2δk)ζk

⏐⏐⏐⏐⏐⏐
2

=

m(jT+t)−1∑
k=m(jT )

m(jT+t)−1∑
l≥k

(εk/4δk)(εl/δl)Eζ ′

kζl

≤ K
m(jT+t)−1∑
k=m(jT )

(ε2k/δ
2
k )

m(jT+t)−1∑
l≥k

φ(l − k) → 0,

here K is a positive constant. Thus, we also have

lim
l

P

⎛⎝sup
j≥l

max
0≤t≤T

⏐⏐⏐⏐⏐⏐
m(jT+t)−1∑
k=m(jT )

(εk/2δk)ζk

⏐⏐⏐⏐⏐⏐ ≥ µ

⎞⎠ = 0. (5.31)

wing to (5.29) and (5.31), the rate-of-growth conditions for the
oise processes are verified.
Finally, concerning the bias term, in view of the central finite

ifference, using the smoothness of G0(·, η) [hence, that of Ḡ(·)]
nd taking the Taylor expansion about θl, αl = O(δ2l ). Therefore,

m(jT+t)−1∑
k=m(jT )

εkαk ≤ K
m(jT+t)−1∑
k=m(jT )

εkO(δ2k ) ≤ KO(δ2m(jT ))

⏐⏐⏐⏐⏐⏐ ,
and hence

lim
l

P

⎛⎝sup
j≥l

max
0≤t≤T

⏐⏐⏐⏐⏐⏐
m(jT+t)−1∑
k=m(jT )

εkαk

⏐⏐⏐⏐⏐⏐ ≥ µ

⎞⎠ = 0.

hus, all conditions of Theorem 6.5.1 in Kushner and Yin (2003)
re verified. The desired result follows. □

.3. Rate of convergence

In Section 5.2, we have obtained that θl → θ∗ w.p.1 under
uitable conditions. In this section, we will examine the rate of
273
convergence. As in the classical theory of convergence rate, we
will focus on the quantity yl = lα(θl − θ∗). Roughly speaking,
studying the rate of convergence of the stochastic approximation
algorithm is to find a choice of α that leads to a nontrivial limit
of yl in distribution. In the following analysis of rate convergence
we further assume θ∗

i is in the interior of B̃ for each i. That is,
without loss of generality we may drop the reflection term in the
recursion.

A4) θl → θ∗ w.p.1 such that θ∗
∈ M0, the interior of M , and θ∗

is a globally asymptotically stable point of the ODE (5.27).
The set {lα(θl − θ∗)} is tight.

We can take the Taylor expansion of Ḡ(θl ±δlej)−G0(θl ±δlej, η±

l )
about the point θ∗

± δlej as follows. Denote

ζ ∗

l,j = [Ḡ(θ∗
+ δlej) − G0(θ∗

+ δlej, η+

l )]

− [Ḡ(θ∗
− δlej) − G0(θ∗

− δlej, η−

l )],

and denote

ζ ∗

l = (ζ ∗

l,1, . . . , ζ
∗

l,r )
′.

In view of the condition in (A3), {ζ ∗

l } is a stationary φ-mixing
sequence. Define

wl(t) =

m(tl+t)−1∑
k=l

ζ ∗

k + ψk

2
√
k
, t ∈ [0,∞).

Lemma 5.9. Under conditions (A2)-(A4), wl(·) converges weakly to
a Brownian motion w(·), whose covariance matrix is given by

Σt =
1
4
(Σ1 +Σ2)t,

where

Σ1 = Eζ ∗

1 (ζ
∗

1 )
′
+

∞∑
k=2

Eζ ∗

1 (ζ
∗

k )
′
+

∞∑
k=2

Eζ ∗

k (ζ
∗

1 )
′, (5.32)

Σ2 = Eψkψ
′

k. (5.33)

Remark 5.10. By the independence of {ζ ∗

l } and {ψl},
∑m(tl+t)−1

k=l
ζ ∗

k /
√
k and

∑m(tl+t)−1
k=l ψk/

√
k can be treated separately. Each of

them converges to a Brownian motion with covariance Σ1t and
Σ2t respectively by virtue of page 235–241 of Kushner and Yin
(2003), the desired result then follows.

To proceed, we rewrite ϖl,j as

l,j = Ḡl,j,θl,j (θl) −
Ḡ(θl + δlej) − Ḡ(θl − δlej)

2δl
= Ḡl,j,θl,j (θl) − (Ḡl,j,θl,j (θl) + Cl,j(θl)δ2l ) + o(δ2n)

= −Cl,j(θl)δ2l + o(δ2l ).

hus we can rewrite (5.26) as follows:

l+1 = θl + εn
ζ ∗

l + ψl

2δl
− εlCl(θn)δ2l

−εn[Ḡl(θ∗) + Ḡl,θ (θ∗)(θl − θ∗)] + o(δ2l ) + o(θl − θ∗)
= θl + εl[−Ḡl,θ (θ∗)(θl − θ∗) − Cl(θl)δ2l ]

+εl[−Ḡl(θ∗) + o(θl − θ∗) + o(δ2l ) +
ζ ∗

l + ψl

2δl
].

(5.34)

where

C (·) = (C (·), C (·), . . . , C (·)) ∈ Rr ,
l l,1 l,2 l,r
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ith

l,j(·) =
1
3!

Ḡl,θl,jθl,jθl,j (·).

We further define yl(·) to be the piecewise constant interpo-
ation of yl, i.e.,
l(t) = yl, for t ∈ [tl+k − tl, tl+k+1 − tl).

hen, yl(·) ∈ Dr
[0,+∞), the space of Rr -valued functions that

re right continuous, have left limits, endowed with the Skorohod
opology.

For simplicity, we let εl = O(1/l) and δl = 1/lβ , then

(l + 1)/l)α = 1 +
α

l
+ O(εl).

sing the scaling factor lα and (5.34), we expand

yl+1 =

(
l + 1
l

)α
yl + εl

(
l + 1
l

)α (
−Ḡl,θ (θ∗)yl − Cl(θl)δ2l l

α
)

+ εl

(
l + 1
l

)α 1
2δl

lα(ζ ∗

l + ψl) +

(
l + 1
l

)α
εl(−Ḡl(θ∗)lα)

+ εlρl

=

(
1 +

α

l
+ o(εl)

)
yl − εl

(
l + 1
l

)α
Ḡl,θ (θ∗)yl

−
(l + 1)α

l2β
εlCl(θ∗)

+ εl(l + 1)αḠl(θ∗) +
1
2
εl(l + 1)α lβ (ζ ∗

l + ψl) + εlρl,

where

ρl = o(θl − θ∗)(l + 1)α + o(δ2l )(l + 1)α.

It is clear that we need require α−2β ≤ 0 and α+β−1/2 ≤ 0
or the weak convergence hold. By choosing the optimal choice of
and β , we further have α = 1/3, and β = 1/6. Then

l+1 =yl +
1
l

(
I
3

− Ḡl,θ (θ∗)
)
yl −

1
l
Cl(θ∗)

+
1

2
√
l
(ζ ∗

l + ψl) +
1
l
ρl. □

heorem 5.11. Recall that yl = l1/3(θl − θ∗), and yl(·) is its
continuous-time interpolation. Suppose that (A2)-(A4) are satisfied
and yl(0) → y0. All eigenvalues of I/3 − Ḡθθ (θ∗) have negative real
arts, then yl(·) converges weakly to y(·), which is a solution of the
tochastic differential equation

dy(t) =

((
I
3

− Ḡθθ (θ∗)
)
y(t) − C(θ∗)

)
dt + dw,

y(0) = y0,
(5.35)

here C(θ∗) is the limit of Cl(θ∗) and w(·) is the Brownian motion
iven in Lemma 5.9.

roof. The proof is divided into three steps. Using a truncation
evice, we work with an N-truncation in lieu of the original
rocess, obtain its tightness, and derive its weak convergence.
inally, we let N → ∞ to conclude the proof.
For a fixed but otherwise arbitrary N > 0, write the truncated

ersion of the recursive formula for yn as

N
l+1 = yNl +

1
l

((
I
3

− Ḡθθ (θ∗)
)
yNl − Cl(θ∗) + ρl

)
qN (yNl )

+
1

2
√
l
(ζ ∗

l + ψl), (5.36)
274
where

qN (y) = 1, for y ∈ SN ,

qN (y) = 0, for y ∈ Rr
− SN+1,

where SN = {y : |y| ≤ N} is the sphere with radius N . Let yl,N (·)
e the piecewise constant interpolation of yNl . That is,
l,N (t) = yNl+k, on t ∈ [tl+k − tl, tl+k+1 − tl).

hen, yl,N (t) = yl(t) up until the first exit from SN , so it is an
-truncation of yl(·);
Our first step is to derive the tightness of {yl,N (·)}. For any∆ >

and 0 < s ≤ ∆, we use Et to denote the conditional expectation
n Ft , the σ -algebra generated by {y0, ξj, ψj, j < m(tl + t)}. Then,
e have that, by using the φ-mixing of {ηl} and the martingale
ifference property of {̂ηl},

t

⏐⏐⏐⏐⏐⏐
m(tl+t+s)−1∑
k=m(tl+t)

1

2
√
k
(ζ ∗

k + ψk)

⏐⏐⏐⏐⏐⏐
2

≤ K
m(tl+t+s)−1∑
k=m(tl+t)

1
k

≤ Ks = O(∆).

Using the boundedness of yNl , we have

Et

⏐⏐⏐⏐⏐⏐
m(tl+t+s)−1∑
k=m(tl+t)

1
k

(
I
3

− Ḡθθ (θ∗)
)
yNk qN (y

N
k )

⏐⏐⏐⏐⏐⏐
2

≤ Ks2 = O(∆2),

Et

⏐⏐⏐⏐⏐⏐
m(tl+t+s)−1∑
k=m(tl+t)

1
k

(
Ck(θ∗) + ρk

)
qN (yNk )

⏐⏐⏐⏐⏐⏐
2

≤ O(∆2).

Combining these yields

lim
∆→0

lim sup
l→∞

E|yl,N (t + s) − yl,N (t)|
2

= 0.

Hence, the tightness of {yl,N (·)} follows by virtue of the criterion
in page 47 of Kushner (1984).

By the Prohorov theorem, we can extract a convergent subse-
quence and still use l as its index for convenience. Next, we figure
out the limit process. Choose a sequence ∆l → 0 satisfying

sup
j≥l

1
l∆n

→ 0, as n → 0.

Divide [m(tl + t),m(tl + t + s) − 1] into subintervals such that
m(tl + t) = m1 < m2 < · · · and such that

∑ml+1−1
k=ml

(k−1/∆l) → 1.
Then, it can be shown that
m(tl+t+s)−1∑
k=m(tl+t)

1
k

(
I
3

− Ḡθθ (θ∗)
)
yNk

→

∫ t+s

t

(
I
3

− Ḡθθ (θ∗)
)
yN (u)qN (yN (u))du.

t can also been shown that
m(tl+t+s)−1∑
k=m(tl+t)

1
k
Ck(θ∗)qN (yNk ) → C(θ∗)

∫ t+s

t
qN (yN (u))du,

m(tl+t+s)−1∑
k=m(tl+t)

1
k
ρkqN (yNk ) → 0.

Thus, yl,N (·) converges weakly to yN (·), which is a solution of
5.35) with the coefficients involving y(·) truncated, i.e.,

yN (t) =

((
I
3

− Ḡθθ (θ∗)
)
yN (t) − C(θ∗)

)
qN (yN (t))dt + dw(t),

y(0) = y0.



Z. Jin, H. Yang and G. Yin Insurance: Mathematics and Economics 96 (2021) 262–275

T
s
p
a
d

6

a
t
c
r
a
M
w
o
f
v
r

o
f
v
t
c
t
i
a
d
t
s
i
t
c
p
a
v
c

t
f
n
t
r
C
i
i
H

t
e
c
t
i
w

A

t
s
p
C
n
R

B
B

C

D

E

G

H

H

H

H

H

J

J

J

K

K

K

M
M

N

V

W

W

W

Y

Y

Y

he final step is to consider the desired result in an unbounded
phere with N → ∞. Using an argument similar to that of
age 283–284 of Kushner and Yin (2003), we conclude that yl(·)
lso converges to y(·), which is the solution to the SDE (5.35) as
esired. □

. Concluding remarks

This paper develops a hybrid Markov chain approximation
nd stochastic approximation-based deep learning method to find
he optimal investment, reinsurance, and dividend strategies in a
omplex stochastic system. An infinite-horizon subject to random
uin time optimization problem is formulated. The value function
nd controls are approximated by deep neural networks. The
arkov chain approximation method locates the initial guesses
ith coarse scale. A stochastic approximation algorithm is devel-
ped to find the optimal parameters of the neural networks with
ine scale. The approximating neural networks are proved to con-
erge weekly to the optimal controls. The analysis of convergence
ate is presented.

The method is different from most existing numerical meth-
ds dealing with optimization problems. Such methods mainly
ocus on solving for the corresponding HJB equations or quasi-
ariational inequalities and suffer ‘‘curse of dimensionality" due
o the exponentially increasing computation nodes with finer dis-
retization. Comparing with the classical finite difference method,
he computation efficiency of the proposed two-scale method
s significantly improved in a high-dimension case. Further, the
ccuracy of approximating piecewise controls in finite difference
epends on the grid density. Especially when the scales of con-
rols and states are significantly incomparable, finding suitable
tepsizes for finite differences are quite difficult. The deep learn-
ng method implements the stochastic approximation method
o find optimal controls. Hence we can achieve more accurate
ontrols. Moreover, the adoption of MCAM with coarse scale
rovides a feasible way to determine an initial computation node
nd relatively learning range in the neighbourhood of optimal
alues to improve the computation efficiency. This paper provides
onvergence analysis of the algorithm.
In future studies, we will develop a deep learning algorithm

o solve for optimization problem with finite horizon. Since
inite-horizon problem has one more dimension of time, we
eed approximate controls by neural networks at each discrete
ime by integrating Monte Carlo simulation into current algo-
ithm. When approximating complicated expectations, Monte
arlo simulation is of more time efficient than lattice-based
terative methods. Then the amounts of computation nodes only
ncrease linearly with respect to the number of sample paths.
ence, the computation efficiency is largely improved.
Further, we can develop deep learning algorithms to analyse

ime-inconsistent dividend optimization problems, where HJB
quations are generally not available due to non-exponential dis-
ounting. The deep learning algorithm will directly approximate
he controls and value functions and will provide us some new
nsights about the forms of optimal dividend strategies comparing
ith traditional barrier strategies.
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