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1. Introduction

Because of the pressing need for understanding cancer biology
and the development of proper therapeutic treatments, much
effort has been devoted to modeling and analyzing mathematical
models of tumor-immune systems and their dynamical behav-
iors; see e.g., [1-6]. One of the earliest mathematical models
for nonlinear dynamics of immunogenic tumors was [2] that
simulates the interaction of the cytotoxic T lymphocyte with im-
munogenic tumor cells and considers the inactivation of effector
cells as well as the penetration of effector cells into tumor cells.
The dynamics are described by a system of differential equations
as follow:

dx(t) _ PX(t)Y(t)
dy
T~ v @ - pro X,

where X(t), Y(t) represent dimensionless local concentration of
effector cells (ECs) and tumor cells (TCs), respectively, o is the
baseline EC “source rate”, § is the EC “death rate” or the culling
rate of ECs, and « is the intrinsic growth rate of TCs; see [2]
for more discussion on the system setup and motivations from
a biological point of view.
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As is widely recognized now, it is important to take the impact
of random noises into consideration. When the stochastic varia-
tion of the environment mainly affects § (the culling rate of ECs)
and « (the intrinsic growth rate of TCs) in that §dt — d&dt +
o1dWiq(t), and adt — adt + o,dW,(t), system (1.1) becomes

_ PXOY(D)
dX(t) = <a+ YD

+o1 X (t)dWi(t),
Y(t) (@ — BY(t) — X(t)) dt + o2 Y (£)dWa(t),

where Wy(t), W;(t) are two independent standard Brownian mo-
tions, and o1, o, are the intensities of the noises.

Eq. (1.2) is often referred to as the stochastic Kuznetsov-
Taylor tumor-immune model [2,4,5]. In the past few years, much
attention and effort were devoted to studying stochastic mod-
els for cancer cells. For example, the stochastic stability for a
stochastic virus-tumor-immune model was studied in [7]. Oana,
Dumitru, and Riccardo in [5] considered the stochastic stability
of the stochastic Kuznetsov-Taylor model near the equilibria.
The tumor growth model describing the interaction and compe-
tition between the TCs based on the Michaelis-Menten enzyme
kinetics was analyzed and the threshold conditions for extinc-
tion, weak persistence, and stochastic persistence of TCs were
obtained in [8]. Most recently, the asymptotic behaviors includ-
ing the stochastic ultimately boundedness in moment, the limit
distribution, as well as the ergodicity have been investigated
in [4].

In this paper, our main aim is to characterize the longtime be-
havior of the stochastic tumor-immune model (1.2). The novelty
and main contributions of this work are follows.

— uX(O)Y(t) — (SX(t)) dt
(1.2)

dy(t) =
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e Inspired bg the works [9,10] (see also [11-13]), a threshold

Ai=a— %2 — % is introduced by taking a dynamical system
point of view. This enables us to characterize the long-
time behavior of tumor-immune systems without proposing
complex conditions on the coefficients. Such methodology
and idea can be also used to determine systematically the
thresholds characterizing the longtime behavior of many
biological models.

e We obtain a sharp result on the threshold given by a quan-
tity A without assuming additional conditions on the coef-
ficients of the system and cover untreated cases in [4]. In
particular, we prove that if A < 0 then Y(t) tends to O
with exponential rate while if A > 0, the existence and
uniqueness of invariant measure concentrated on {(x,y) €
R? : x,y > 0} is guaranteed. The proofs of our results
are obtained by using stochastic analysis (stochastic Lya-
punov analysis, comparison principle for SDEs, etc.), theory
of stochastic processes (recurrence and transient properties
of non-degenerate diffusion processes), and certain occupa-
tion measures. Combining these tools enables us to reveal
the features of stochastic system (1.2).

e Numerical experiments are conducted to illustrate our find-
ings. In addition, some interesting examples are given to
show that small noise can be used to stabilize the determin-
istic systems. We demonstrate that the stochastic systems
can escape from unstable points and converge (or jump)
to stable points although the deterministic system may be
stuck at these unstable points.

In term of biological interpretation, the results obtained in
this paper enable us to understand the dynamics of the tumor
cell and impacts of the noises on the dynamics of the system,
which also give us insights on how to eliminate tumor cells and to
improve the treatment of cancer. By looking at the threshold 1 =

2

o— %2 — %, one can see from our results that in order to control the
tumor, we can reduce A aiming to make it negative. Reducing the
intrinsic growth rate « of tumor cells or decreasing the culling
rate & of effector cells or increasing effector cells source rate o
are some solutions. Surprisingly, the system changes only the
intensity of fluctuation of the dynamics of tumor cell by injecting
noise perturbations to the dynamics of effector cells, but does not
affect the persistence and extinction of the tumor cells since A
does not depend on the intensity oy.

The rest of this paper is organized as follows. Section 2 states
our main results, whose proofs are postponed to Section 4, in
which the threshold is determined from a dynamical system
point of view, which can generalize to many other models. Sec-
tion 3 is devoted to discussions and simulations. Finally, Section 5
concludes the paper.

2. Main results

Let (2, F, {Ft}t>0, P) be a complete filtered probability space.
P, and E,, denote the probability and expectation correspond-
ing to the initial condition X(0) = x, Y(0) = y, respectively.
Moreover, throughout the paper, we denote R% := {(x,y) € R? :
x > 0,y > 0}, R° := {(x,y) € R*> : x > 0,y > 0}, and
Ri’* = {(x,y) € R? : x > 0,y > 0}, respectively. We begin with
the following theorem on the existence and uniqueness of the
solution of (1.2) and a complete characterization of its positivity.

Theorem 2.1. For any initial data (x,y) € Ri, there exists a global
solution (X(t), Y(t)) to (1.2) such that Py, {(X(t), Y(t)) € RZ, Vt >
0} = 1. Moreover, Py o{Y(t) = 0, YVt > 0} = 1 for all x > 0, and
P A(X(t), Y(£)) € RY°, Vt > 0} = 1, forany (x,y) € R>*. In
addition, the solution process (X(t), Y(t)) is a Feller-strong Markov
process with transition probability denoted by P(t, x, y, -).
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Moment boundedness of the solution We proceed to investigate
the moment boundedness of the nonnegative solutions. It also
implies the compactness properties of the solution in finite time.
Namely, for any initial values in a compact set, the solution still
remains in a compact set with large probability in finite time.

Proposition 2.1. For any q > O sufficiently small, there exist
Cq > 0 and Dq > 0 such that

(1+ x4+ y?)

Exy (X'9(0) + Y2(1)) < o

Cq
—, Vt>0. 2.1
Fpp Vezoo @)

Moreover, for any H, e, T > 0, there exists an My .t > 0 such that

Pryq sup {X(t)+Y(t)} = MHA,S,T} >1—¢, V(xy) €l0,HP
tel0,T]

(2.2)

The proof of the first assertion above can be found in [4, Sec-
tion 3], whereas the second one follows from (2.1) (see e.g., [12,
Lemma 2.1]).

Threshold of permanence and extinction. Consider the first
equation of (1.2) on the boundary (i.e., the case when Y(t) = 0),
it becomes

dX(t) = (o6 — 8X(t)) dt + o1 X(£)dWi(t). (2.3)

In [4], we have that )N((t) has a unique invariant measure vy on
[0, 00) and wy((0, 00)) = 1. Thus, vg x § is the unique invariant
measure on the boundary [0, co) x {0} of (X(t), Y(t)), where §
is the Dirac measure at 0. In fact, by solving the Fokker-Planck
equation, the unique invariant measure vy has density f* given

by

b? 1) b
F*x) = @x’(” Je~x, x> 0,

26 + crl2 20

wherea = ———,b = —
2 o2

Jq 1
Inspired by the works [9,10], our idea is to determine whether
Y(t) converges ;0 0 or not by considering the Lyapunov exponent

(2.4)

and I'(-) is Gamma function.

n
lim sup,_, o, — when Y(t) is small. Using It6’s formula, we get

2
g
w2
2)

- :/Ot<ﬁY(u)+X(u)>du.

Intuitively, lim sup;_, o, w < 0 implies lim;_, o, Y(t) = 0 and

when Y(t) is small then X(t) is close to X(t) and therefore, when
t is sufficiently large we have

1 [t 1t
;/0 (ﬂY(u)+X(u))du~ ?/0 X(u)du.

By the ergodic theorem [14, Theorem 3.16, p.46] for )N((t), and
(2.5), we obtain that the Lyapunov exponent of Y(t) is approx-
imated by

InY(t In o, WhH(t
t()=Ty+ ztz()+<

(2.5)

2 o] 2
0'2 % 0'2 o
2 _ dx = o — = — —. 2.6
o 5 /0 X (x)dx = « 5 5 (2.6)
Therefore, we define
2
A;:a—a—z—g. (2.7)
2 )

Roughly, if A > 0, whenever Y(t) is small enough, limsup;_, .,
w ~ A > 0 and it leads to Y(t) cannot be very small for a long



T.D. Tuong, N.N. Nguyen and G. Yin
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Fig. 1. Phase portraits of (X(t), Y(t)) when o1 = 0.2, o1 = 1, o1 = 6, respectively.

time. Conversely, when A < 0, if the solution starts from a initial
point (x, y), where y is sufficiently small, then lim sup,_, ., In f(f)
A < 0 and which implies Y(t) — 0. However, the detailed proofs

are very technical and complex and need to be carefully done.

~
~

Characterization of the longtime behavior. The following the-
orem presents our main results, in which we prove that the
threshold A defined above enables us to characterize the per-
manence and extinction of the longtime behavior of stochastic
nonlinear tumor-immune system (1.2). There is only the critical
case A = 0 left. If one equips the space of parameters in (1.2)
with the Lebesgue measure, then the set {, = 0} has Lebesgue
measure 0. In real applications, this case happens rarely. Thus, our
results can be applied to many applications because they cover
most of the possible cases of A.

Theorem 2.2. The longtime behavior of the system is characterized
by the threshold )\ defined by (2.7).

1. If & > 0, the system is permanent in the sense that there exists
an invariant measure v* of (X(t), Y(t)) on ]Ri". Moreover, the
transition probability converges to the invariant measure in
total variation, i.e.,

lim [IP(t %y, ) = v Ollv =0, V(xy) e RY". (28)
—00

2. If A < 0, then regardless of the initial values in Ri, the tumor
cells go extinct exponentially fast (with the rate A) almost
surely, i.e.,

. InY(t)
P"*y{rlggo t

3. Discussion and numerical examples

=A<O} =1 (2.9)

3.1. Discussion

We start this section by comparing our results with existing
results in literature. In [4], the authors characterized the longtime
behavior of the system (1.2) as the follows.

2
%

Theorem 3.1. (see [4]) If o — - < 0, one has
t 2
lim sup n¥() <(ax-— U—z)a.s (3.1)
t—00 t 2

On the other hand, if § > h?, where h := max{0, Jp = Jun} and

2
0, e

2 s
the solution (X(t), Y(t)) has a unique invariant measure concen-
trated on R%°.

> 0, (3.2)

Compared with the results above, it is readily seen that our
results in Theorem 2.2 are sharper. We are able to determine the
extinction and persistzence of tumor cells using the sign of the

a5 o

threshold A == o — - — %. Moreover, we also characterize the
longtime behavior of the system without assuming any additional
conditions on the parameters. In addition, the rate of convergence
of the extinction case is obtained.

3.2. Perturbation in immune dynamics makes no impact on longtime
behavior of tumor cells

It is clear from the formula for A that the large the o5, the
smaller the A. Thus o, can be helpful to reduce the tumor cells. On
the other hand, o, the intensity of the perturbing noise term in
the dynamics of the effector cells has no impact on the longtime
behavior of the tumor cells. This is somewhat surprising, but it is

confirmed by the threshold A := o — %2 — %, which is independent
of o1. As a consequence, to control the tumor cells, one can
focus on controlling the parameter «, o, 07, and 8. However,
the variance of the dynamics still depends on o;. Although the
changes in o7 do not affect the extinction and persistence of
the system, they change the intensities of the fluctuation of the
dynamics. As a result, this fact makes diagnosis and prediction
more difficult.

Figs. 1, 2, and 3 display computational results for demonstra-
tion. In which, we consider system (1.2) with the parameters
c=1Lp=1n=16=1Lpu=1La=48=10 =1,
and three values of o7 € {0.2, 1, 6}.

3.3. Small noises stabilize the deterministic system: Numerical ex-
amples

In this section, we discuss chaotic phenomena of the nonlinear
tumor-immune system. We show that noise can stabilize the
deterministic system. In the deterministic case, the system can
be stuck in unstable points and may not converge to the stable
points. However, by adding a small noise to the deterministic
systems, the trajectory can escape from the unstable points, and
concentrates near a stable point or jumps between the stable
points. We refer the reader to [15-17] for further references.

Numerical examples will be given to illustrate this interesting
phenomena. Consider the deterministic system (1.1) with the
parameters ¢ = 10,p = 44,n = 2.7,§ = 3,0 = .05, =
52, 8 = 1. There are three equilibrium points, two stable points
(blue ones) and one unstable points (the red point); see Fig. 4.

Now, consider stochastic system (1.2), which can be thought
of as (1.1) perturbed by white noises. Let o1y = .15,0, = .03,
and keep the other parameters unchanged as in the deterministic
system.

The stochastic system spends very little time around the un-
stable point and stays in a domain near one stable point, and
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Fig. 2. Sample paths of Y(t) when oy = 0.2, 07 = 1, 07 = 6, respectively.
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Fig. 3. Sample paths of X(t) when o1 = 0.2, 0y = 1, 01 = 6, respectively.

then jumps quickly to a domain near the other stable point,
and continues the movements going back and forth between the
stable equilibria. The sample paths of X(t), Y(t) are shown in
Fig. 5 and the density of the occupation measure on the interval
[0,5 x 10%], which approximates the density of the invariant
measure is shown in Fig. 6. It can be seen that the invariant
measure puts most of the mass near the two stable points of the
corresponding deterministic system.

4. Proof of main results
4.1. Proof of Theorem 2.1

The existence and uniqueness of the solution of (1.2) and the
positivity of X(t), Y(t) with positive initial values, Py ,((X(t), Y(t))
€ R%°) = 1 V(x,y) € R%° can be found in [4, Theorem 2.1] (see
also [18]). Moreover, it is also easy to obtain that ]P’X,O{X(t) >0:
t >0} =1ifx > 0and that P,o{Y(t)=0:t >0} = 1.

Furthermore, it follows from [19, Theorem 2.9.3] and
[20, Section 2.5] that the solution of (1.2) is a Feller and (homo-
geneous) strong Markov process if the coefficients are globally
Lipschitz. Therefore, we obtain from the local Lipschitz property
of coefficients of (1.2) and a truncation argument that (X(t), Y(t))
is a Feller and (homogeneous) strong Markov process. The details
of this argument and this result can be found in [21, Theorem 5.1].

It remains to show that Py, {X(t) > 0 : t > 0} = 1 for all
y > 0. Let ¢ > 0 be sufficiently small such that

Xy . . O
o+ —— — uxXy — 86x > —, 4.1
— KXY > (4.1)
for any (X, ) € R? satisfying X + |y — y| < . Let
71 = inf{t > 0: X(t)+ |Y(t) —y| > &}

By the continuity of (X(t), Y(t)), Poy{T1 > 0} = 1. Using the
variation of constants formula (see [19, Chapter 3]), we can write

60 ' 7

10 20 40 60

Fig. 4. Vector field of system (1.1). The red point is the unstable equilibrium
point while the two blue points are the stable points. The red curve through the
red point is its stable manifold, which splits the space into two domains each of
which contains a stable equilibrium point. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

X(t) in the form

¢u)£/t¢—%u)cy+
0

—uXW)Y(u) — BX(u)) du} for t € [0, 71),

pX(u)Y(u)

X n+Y(u)

(4.2)
Ulzt
where @(t) = exp <—7 + 01W1(t)>. It follows from (4.1) that

pX(u)Y(u)
n+Y()

uXW)Y(u) —8X(u) > 0ifu € (0, 71].
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Fig. 5. Sample paths of X(t), Y(t) of stochastic system (1.2).
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Fig. 6. Left figure: 2-dimensional density of the invariant measure of the solution of (1.2). Right figure: Nullclines of the corresponding deterministic system.

This and (4.2) imply that
Poy{X(t) > 0,t € (0,711} = 1,

which combined with the fact P, ,((X(t), Y(t)) € R_zf) =1V(x,y)
€ Ri’c’ and the strong Markov property of (X(t), Y(t)) yields that

Po, (X(t) > 0.t € (0, 00)} = 1.

The theorem is therefore proved.
4.2. Proof of Theorem 2.2

Proof for the case A > 0. We assume by contradiction that there
is no invariant measure on R%°, which also means that there
is no invariant measure on R%* because the solutions starting
in R%* will enter and remain in R%°. As a result, vy x & is the
unique invariant probability measure of the process {X(t), Y(t)}
on ]R%r. For each initial value (x,y) € Ri’", consider the occupation
measure

-l t
7 = TExy / Txw), yaedu.
0

Because of (2.1), {/I;”,t > 1} is a tight family of probability
measures on ]Ri. Applying [ 10, Lemma 3.4], the tightness implies
that any weak limit of /7"’ is an invariant probability measure
of the process {X(t), Y(t)}. Since vy x § is the unique invariant
probability measure, we have that [T’ converges weakly to

vg X § as t — oo. Due to the uniform integrability in (2.1), [10,
Lemma 3.4] again implies that

] t
lim —Equf Y(u)du =/ yvo(dx)é(dy) = 0, (4.3)
t—oo t 0 Ri
and

1 t o
lim —Ex,y/ X(u)du :[ xvo(dx)é(dy) = —. (4.4)
t—oo t 0 ]R_Z*_ )

On the other hand,
InY(t) Iny o 1
o =B e

(Note that E,, 1“’:(” exists because all the expectations on the

right-hand side exist. In particular ]E%Zm exists and equals 0).
As a result, we have

InY(t 2
lim Ey, t():a 22

t—o00
t
+[ X(u)du) =X1>0.
0

This contradicts the fact that

Y _ i gy, YO 2,
t—oo0 7t

lim E,,

t—o00
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because Iny < y while (2.1) implies lim;_, o ]Ex,y@ = 0. As a re-

sult, there exists an invariant measure v* on Rff’. Moreover, (2.8)
follows easily from a well-known property of non-degenerate
diffusions. O

2
o5 (r

Proof for the case A < 0. Suppose A :== o — 5 — 5 < 0. Let
1o > 0 be sufficiently small that
2
T=a-2__% (45)
2 puytd
Now, let X(t) be the solution to
dX(t) = [0 — (uyo + 8) X(t)] dt + o1 X(t)dWy(t). (4.6)

Similar to )N((t), we can obtain that X(t) has a unique invariant
measure v, on (0, oo) and
o

xv,, (dx) = .
/m,oo) 70 1yo + 8

By the ergodic theorem, we have
1 '
lim — | Fo(wdu= —2
uyo+38

t—oo t
where X,(t) is the solution to (4.6) with x(0) =
Xo(t) > 0 for any t > 0).

as., (4.7)

0. (Note that

Lemma 4.1. Let yy satisfy (4.5). For any ¢ > 0 and H > 0, there
exists a y; > 0 such that for all (x,y) € [0, H] x (0, y1], we have

InY(t
Px'y{rllrrolc : ( )

Proof. In view of (4.5) and (4.7), for any & > O, there exists a
Ty = Ti(e) > 0 such that P(£2;) > 1 — g, where

=)»<O}Zl—8. (4.8)

o Il
uyvo+d 4

1 '
le{weﬂz?/xo(u)duz foralltle}.
0

(4.9)

Likewise, we have from the strong law of large numbers for
martingales that

. Wh(t)
lim

t—00 t

=0as. (4.10)

As a consequence, there is a To(¢) > 0 such that P(£2;) > 1 — £

I
where

sz{weﬂzwf% foralltsz}. (4.11)
Let T = max{Ty, T»}. In addition, we can choose M > «T
sufficiently large so that

P(2;)>1— Z, where 25 = {w € 2 : |6, Wa(t)|

<M —aT, forallte[0,T]}. (4.12)

Let y; € (O, yoe‘M). Combining the second equation of (1.2) and
(4.12) implies that

2 t
Y(t) =Y(0)exp { (oe — %) t— / (BY(u) + X(u)) du + azwz(t)}

2
<Y(0)exp { (a — 7) t+ Usz(f)}
<y1eM <y for any t € [0, T], if Y(0) < y1, w € £25.

(4.13)
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Now, we define the stopping time

=inf{t > 0:Y(t) > yo} . (4.14)

As a consequence, for w € £23 we have T > T. Note that we can
write

ix(t) = [o +X(t) (M v+ m)

n+Y(O) (4.15)

-6+ Myo)X(t)i| dt + o1 X(t)dWq(t).

Applying a comparison argument to (4.6) and (4.15), we have
X(t) > Xo(t) for t < T given that X(0) > 0. Thus, from the first
equation of (4.13), if t < 7T,

Y(t) =Y(0)exp { (a — —) t— / (BY (u) + X(u)) du + o, Wy(t )}
2 t
<Y(0)exp { (a _ Ui) t — / (*(w) du+ Usz(t)} .
0

N

(4.16)

Combining (4.9), (4.11), and (4.13), for » € (2, £2; and Y(0) =
¥y < y1, we have 7 > T and

2 t
Y(t) < Y(0)exp { <a — %) t— f (®(w)) du + O’sz(t)}
0

o2 ot e A
= Y(0)exp - = )t— 4+ — 4+ —
2 uyo + 8 4 4
it

< Y(0)exp (5> <y <y, tell,7).

(4.17)

Therefore, we must have T = oo for almost all w € ﬂ i,
Y(0) < y4. [We obtain this claim by contradiction argument as
follows. If the claim is false then we have a set 24 € ﬂ £2;
with P(£24) > 0 and T < oo for any w € £24. Note that we
already proved that T < 7 for w € ﬂ 1 §2;. Moreover, in view
of (4.17), we have Y(t) < y1 < w flor any t € [T, 7). Since
Y(t) is continuous almost surely, for almost all w € 24 we have
llrnHr Y(t) = Y(T) < y1 < yo which is a contradiction]. Because
T = oo, one has

~ 3
At
Y(t) < Y(0)exp {7} , foranyt >T,w e ﬂﬂj, Y0)=y <.
j=1
This clearly implies that lim;_, o, Y(t) = 0 for almost w € ﬂle £2;.
Moreover, since Y(t) < yp for any t > O for almost w €
ﬂj; £2;, a comparison argument ([19, Theorem 6.1.1]) implies
that X(t) < X(t), where
" PYo o
dX(t) = |:a - (—— + 8) X(t )] dt 4+ o1 X(t)dW,(t). (4.18)
n
Similar to (4.6), if yp is sufficiently small that (—% n 5) >0,

the solution to (4.18) has a unique invariant measure v and we
have from the ergodicity of X(t) that for some small p > 0

lim sup

t—>00 t—oo t

1[0 1 [t ais
f/ X"P(u)du < lim — | X'"P(u)du
0 0

3
= /x”f’f:(dx) < oo for almost all w in m 2.
j=1

(4.19)
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Due to (4.19) and lim;_, , Y(t) = 0, the family of random occu-
pation measure

- 1 [t
()= ;/0 L. ywye du

is tight for almost all w € ﬂj; £2;. From [10, Lemma 5.6], with
probability 1, any weak-limit of INT(-) ast — oo (if it exists) is an
invariant probability measure of the process (X(t), Y(t)), which
has support on [0, co) x {0}. It is easily seen that vy x § is the
unique invariant probability measure on [0, co) x {0}. As a result,
I1%(-) converges weakly to vy x & for almost every o € ﬂf;lfzj as
t tends to oo. By the weak convergence, as well as the uniform
integrability in (4.19), we have

InY(t 1 2t t
o ()=1im7((xt—%—,3/ Y(u)du
0

t—00 t t—o0 t
t Wo(t
— / X(u)du) 4+ fim 2200
0 t—o00 t
O’2 ~
=lim | (¢ — =% —By—x)I'(dx,dy)=x <0,
t—00 R%r 2

for almost every w € ﬂf’:152j, (x,y) € [0, H] x (0, y1]. The proof is
complete by noting that P(N2,2)) > 1 —¢. O

Now we complete the proof of Theorem 2.2, part 2. In view of
Lemma 4.1, the process (X(t), Y(t)) is transient in ]Ri’(’. Thus, the
process has no invariant probability measure in Ri’", and vy x 8§
is the unique invariant probability measure of (X(t), Y(t)) in ]Ri.
Thanks to (2.1), the process (X(t), Y(t)) is tight. Consequently the
occupation measure

1 t
m,0= - / Py [(X(1), Y(1)) € ) du
0

is tight in R2. Since any weak-limit of I'[,f,y as t — oo must be
an invariant probability measure of (X(t), Y(t)), we have that H,f,y
converges weakly to vg x § as t — oco. As a result, for any y; > 0,
there exists a T > 0 such that

1, ,((0,00) x (0, 1)) > 1 —&,
or equivalently, % fOT Pey{Y(t) < y1}dt > (1 —¢). As a result,

Py, {t <T} > 1—¢, where £ =inf{t > 0:Y(t) < y}.
Using the strong Markov property and Lemma 4.1, we have that

. InY(t
Fry {tllglo %

for any (x,y) € Ri*. Since ¢ > 0 is arbitrary, (2.9) must follow
(by letting ¢ — 0). This completes the proof of Theorem 2.2. O

:A<O}Zl—28,

5. Concluding remarks

This paper is devoted to studying longtime behavior of a class
of tumor-immune systems. Under broad conditions, we obtain
sufficient and nearly necessary conditions for persistence and
extinction of the stochastic systems. Note that at the beginning,
we assumed the two Brownian motions to be independent. In
fact, we can treat the case Wi(t) = W,(t) = W(t), resulting in
degenerate case in the two-dimensional system. The techniques
can also be adopted to treat correlated Brownian motions.

The model in this paper is spatially homogeneous in the sense
that the density of the effector cells or tumor cells does not
depend on the space variable, just depend on the time vari-
able. Taking the spatial inhomogeneity into consideration will

Systems & Control Letters 146 (2020) 104806

make the model more versatile but also pose many challenges;
see [22-24]. The problems can be studied using a stochastic par-
tial differential equation frameworks, which will present a much
different perspective compared with systems given by stochastic
differential equations (SDEs), or ordinary differential equations
(ODEs), or partial differential equations (PDEs).

Further research can also be devoted to study diffusion sys-
tems that are also subject to an additional random switching
process. Consideration of systems involving delays and more
complex stochastic functional differential equations is another
worthwhile direction.
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