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This paper focuses on a class of stochastic systems describing tumor-immune dynamics. The underlying
systems are given by stochastic differential equations. Our study concentrates on longtime behavior.
A sharp threshold-type condition is obtained, which characterizes the dynamic systems, and pinpoints
sufficient and nearly necessary conditions for persistence and extinction. Examples and numerical
results are provided to illustrate our findings.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Because of the pressing need for understanding cancer biology
nd the development of proper therapeutic treatments, much
ffort has been devoted to modeling and analyzing mathematical
odels of tumor-immune systems and their dynamical behav-

ors; see e.g., [1–6]. One of the earliest mathematical models
or nonlinear dynamics of immunogenic tumors was [2] that
imulates the interaction of the cytotoxic T lymphocyte with im-
unogenic tumor cells and considers the inactivation of effector
ells as well as the penetration of effector cells into tumor cells.
he dynamics are described by a system of differential equations
s follow:⎧⎪⎨⎪⎩
dX(t)
dt

= σ +
ρX(t)Y (t)
η + Y (t)

− µX(t)Y (t) − δX(t),

dY (t)
dt

= Y (t) (α − βY (t) − X(t)) ,

(1.1)

here X(t), Y (t) represent dimensionless local concentration of
ffector cells (ECs) and tumor cells (TCs), respectively, σ is the
aseline EC ‘‘source rate’’, δ is the EC ‘‘death rate’’ or the culling
ate of ECs, and α is the intrinsic growth rate of TCs; see [2]
or more discussion on the system setup and motivations from
biological point of view.

∗ Corresponding author.
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guyen.nhu@uconn.edu (N.N. Nguyen), gyin@uconn.edu (G. Yin).
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As is widely recognized now, it is important to take the impact
f random noises into consideration. When the stochastic varia-
ion of the environment mainly affects δ (the culling rate of ECs)
and α (the intrinsic growth rate of TCs) in that δdt → δdt +

1dW1(t), and αdt → αdt + σ2dW2(t), system (1.1) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t) =

(
σ +

ρX(t)Y (t)
η + Y (t)

− µX(t)Y (t) − δX(t)
)
dt

+σ1X(t)dW1(t),

dY (t) = Y (t) (α − βY (t) − X(t)) dt + σ2Y (t)dW2(t),

(1.2)

here W1(t), W2(t) are two independent standard Brownian mo-
ions, and σ1, σ2 are the intensities of the noises.

Eq. (1.2) is often referred to as the stochastic Kuznetsov–
aylor tumor-immune model [2,4,5]. In the past few years, much
ttention and effort were devoted to studying stochastic mod-
ls for cancer cells. For example, the stochastic stability for a
tochastic virus-tumor-immune model was studied in [7]. Oana,
umitru, and Riccardo in [5] considered the stochastic stability
f the stochastic Kuznetsov–Taylor model near the equilibria.
he tumor growth model describing the interaction and compe-
ition between the TCs based on the Michaelis–Menten enzyme
inetics was analyzed and the threshold conditions for extinc-
ion, weak persistence, and stochastic persistence of TCs were
btained in [8]. Most recently, the asymptotic behaviors includ-
ng the stochastic ultimately boundedness in moment, the limit
istribution, as well as the ergodicity have been investigated
n [4].

In this paper, our main aim is to characterize the longtime be-
avior of the stochastic tumor-immune model (1.2). The novelty
nd main contributions of this work are follows.
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• Inspired by the works [9,10] (see also [11–13]), a threshold
λ := α−

σ2
2
2 −

σ
δ
is introduced by taking a dynamical system

point of view. This enables us to characterize the long-
time behavior of tumor-immune systems without proposing
complex conditions on the coefficients. Such methodology
and idea can be also used to determine systematically the
thresholds characterizing the longtime behavior of many
biological models.

• We obtain a sharp result on the threshold given by a quan-
tity λ without assuming additional conditions on the coef-
ficients of the system and cover untreated cases in [4]. In
particular, we prove that if λ < 0 then Y (t) tends to 0
with exponential rate while if λ > 0, the existence and
uniqueness of invariant measure concentrated on {(x, y) ∈

R2
: x, y > 0} is guaranteed. The proofs of our results

are obtained by using stochastic analysis (stochastic Lya-
punov analysis, comparison principle for SDEs, etc.), theory
of stochastic processes (recurrence and transient properties
of non-degenerate diffusion processes), and certain occupa-
tion measures. Combining these tools enables us to reveal
the features of stochastic system (1.2).

• Numerical experiments are conducted to illustrate our find-
ings. In addition, some interesting examples are given to
show that small noise can be used to stabilize the determin-
istic systems. We demonstrate that the stochastic systems
can escape from unstable points and converge (or jump)
to stable points although the deterministic system may be
stuck at these unstable points.

In term of biological interpretation, the results obtained in
this paper enable us to understand the dynamics of the tumor
cell and impacts of the noises on the dynamics of the system,
which also give us insights on how to eliminate tumor cells and to
improve the treatment of cancer. By looking at the threshold λ =

−
σ2
2
2 −

σ
δ
, one can see from our results that in order to control the

umor, we can reduce λ aiming to make it negative. Reducing the
ntrinsic growth rate α of tumor cells or decreasing the culling
ate δ of effector cells or increasing effector cells source rate σ
re some solutions. Surprisingly, the system changes only the
ntensity of fluctuation of the dynamics of tumor cell by injecting
oise perturbations to the dynamics of effector cells, but does not
ffect the persistence and extinction of the tumor cells since λ

does not depend on the intensity σ1.
The rest of this paper is organized as follows. Section 2 states

our main results, whose proofs are postponed to Section 4, in
which the threshold is determined from a dynamical system
point of view, which can generalize to many other models. Sec-
tion 3 is devoted to discussions and simulations. Finally, Section 5
oncludes the paper.

. Main results

Let (Ω,F, {Ft}t≥0,P) be a complete filtered probability space.
Px,y and Ex,y denote the probability and expectation correspond-
ing to the initial condition X(0) = x, Y (0) = y, respectively.
Moreover, throughout the paper, we denote R2

+
:= {(x, y) ∈ R2

:

x ≥ 0, y ≥ 0}, R2,◦
+ := {(x, y) ∈ R2

: x > 0, y > 0}, and
R2,∗

+ := {(x, y) ∈ R2
: x ≥ 0, y > 0}, respectively. We begin with

the following theorem on the existence and uniqueness of the
solution of (1.2) and a complete characterization of its positivity.

heorem 2.1. For any initial data (x, y) ∈ R2
+
, there exists a global

olution (X(t), Y (t)) to (1.2) such that Px,y{(X(t), Y (t)) ∈ R2
+
, ∀t ≥

} = 1. Moreover, Px,0{Y (t) = 0, ∀t ≥ 0} = 1 for all x ≥ 0, and
x,y{(X(t), Y (t)) ∈ R2,◦

+ , ∀t > 0} = 1, for any (x, y) ∈ R2,∗
+ . In

ddition, the solution process (X(t), Y (t)) is a Feller-strong Markov
rocess with transition probability denoted by P(t, x, y, ·).
2

oment boundedness of the solutionWe proceed to investigate
he moment boundedness of the nonnegative solutions. It also
mplies the compactness properties of the solution in finite time.
amely, for any initial values in a compact set, the solution still
emains in a compact set with large probability in finite time.

roposition 2.1. For any q > 0 sufficiently small, there exist
q > 0 and Dq > 0 such that

x,y
(
X1+q(t) + Y 2(t)

)
≤

(1 + x1+q
+ y2)

eDqt
+

Cq

Dq
, ∀t ≥ 0. (2.1)

Moreover, for any H, ε, T > 0, there exists an MH,ε,T > 0 such that

Px,y

{
sup

t∈[0,T ]

{X(t) + Y (t)} ≤ MH,ε,T

}
≥ 1 − ε, ∀(x, y) ∈ [0,H]

2.

(2.2)

The proof of the first assertion above can be found in [4, Sec-
tion 3], whereas the second one follows from (2.1) (see e.g., [12,
Lemma 2.1]).

Threshold of permanence and extinction. Consider the first
equation of (1.2) on the boundary (i.e., the case when Y (t) ≡ 0),
it becomes

dX̃(t) =
(
σ − δX̃(t)

)
dt + σ1X̃(t)dW1(t). (2.3)

In [4], we have that X̃(t) has a unique invariant measure ν0 on
[0, ∞) and ν0((0, ∞)) = 1. Thus, ν0 × δ is the unique invariant
measure on the boundary [0, ∞) × {0} of (X(t), Y (t)), where δ
is the Dirac measure at 0. In fact, by solving the Fokker–Planck
equation, the unique invariant measure ν0 has density f ∗ given
by

f ∗(x) =
ba

Γ (a)
x−(a+1)e−

b
x , x > 0, (2.4)

where a =
2δ + σ 2

1

σ 2
1

, b =
2σ
σ 2
1

and Γ (·) is Gamma function.

Inspired by the works [9,10], our idea is to determine whether
Y (t) converges to 0 or not by considering the Lyapunov exponent

lim supt→∞

ln Y (t)
t

when Y (t) is small. Using Itô’s formula, we get

ln Y (t)
t

=
ln y
t

+
σ2W2(t)

t
+

(
α −

σ 2
2

2

)
−

1
t

∫ t

0

(
βY (u) + X(u)

)
du.

(2.5)

ntuitively, lim supt→∞

ln Y (t)
t < 0 implies limt→∞ Y (t) = 0 and

when Y (t) is small then X(t) is close to X̃(t) and therefore, when
t is sufficiently large we have

1
t

∫ t

0

(
βY (u) + X(u)

)
du ≈

1
t

∫ t

0
X̃(u)du.

y the ergodic theorem [14, Theorem 3.16, p.46] for X̃(t), and
(2.5), we obtain that the Lyapunov exponent of Y (t) is approx-
imated by

α −
σ 2
2

2
−

∫
∞

0
xf ∗(x)dx = α −

σ 2
2

2
−

σ

δ
. (2.6)

Therefore, we define

λ := α −
σ 2
2

2
−

σ

δ
. (2.7)

Roughly, if λ > 0, whenever Y (t) is small enough, lim supt→∞
ln Y (t)

≈ λ > 0 and it leads to Y (t) cannot be very small for a long
t
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Fig. 1. Phase portraits of (X(t), Y (t)) when σ1 = 0.2, σ1 = 1, σ1 = 6, respectively.
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ime. Conversely, when λ < 0, if the solution starts from a initial
oint (x, y), where y is sufficiently small, then lim supt→∞

ln Y (t)
t ≈

< 0 and which implies Y (t) → 0. However, the detailed proofs
are very technical and complex and need to be carefully done.

Characterization of the longtime behavior. The following the-
orem presents our main results, in which we prove that the
threshold λ defined above enables us to characterize the per-
manence and extinction of the longtime behavior of stochastic
nonlinear tumor-immune system (1.2). There is only the critical
case λ = 0 left. If one equips the space of parameters in (1.2)
with the Lebesgue measure, then the set {λ = 0} has Lebesgue
measure 0. In real applications, this case happens rarely. Thus, our
results can be applied to many applications because they cover
most of the possible cases of λ.

Theorem 2.2. The longtime behavior of the system is characterized
by the threshold λ defined by (2.7).

1. If λ > 0, the system is permanent in the sense that there exists
an invariant measure ν∗ of (X(t), Y (t)) on R2,◦

+ . Moreover, the
transition probability converges to the invariant measure in
total variation, i.e.,

lim
t→∞

∥P(t, x, y, ·) − ν∗(·)∥TV = 0, ∀ (x, y) ∈ R2,∗
+ . (2.8)

2. If λ < 0, then regardless of the initial values in R2
+
, the tumor

cells go extinct exponentially fast (with the rate λ) almost
surely, i.e.,

Px,y

{
lim
t→∞

ln Y (t)
t

= λ < 0
}

= 1. (2.9)

. Discussion and numerical examples

.1. Discussion

We start this section by comparing our results with existing
esults in literature. In [4], the authors characterized the longtime
ehavior of the system (1.2) as the follows.

Theorem 3.1. (see [4]) If α −
σ2
2
2 < 0, one has

lim sup
t→∞

ln Y (t)
t

≤ (α −
σ 2
2

2
)a.s (3.1)

n the other hand, if δ > h2, where h := max{0,
√

ρ −
√

µη} and

−
σ 2
2

2
−

σ

δ − h2 > 0, (3.2)

he solution (X(t), Y (t)) has a unique invariant measure concen-
trated on R2,◦.
+

3

Compared with the results above, it is readily seen that our
results in Theorem 2.2 are sharper. We are able to determine the
extinction and persistence of tumor cells using the sign of the
threshold λ := α −

σ2
2
2 −

σ
δ
. Moreover, we also characterize the

longtime behavior of the system without assuming any additional
conditions on the parameters. In addition, the rate of convergence
of the extinction case is obtained.

3.2. Perturbation in immune dynamics makes no impact on longtime
behavior of tumor cells

It is clear from the formula for λ that the large the σ2, the
maller the λ. Thus σ2 can be helpful to reduce the tumor cells. On
he other hand, σ1, the intensity of the perturbing noise term in
he dynamics of the effector cells has no impact on the longtime
ehavior of the tumor cells. This is somewhat surprising, but it is
onfirmed by the threshold λ := α−

σ2
2
2 −

σ
δ
, which is independent

of σ1. As a consequence, to control the tumor cells, one can
focus on controlling the parameter α, σ , σ2, and δ. However,
he variance of the dynamics still depends on σ1. Although the
hanges in σ1 do not affect the extinction and persistence of
he system, they change the intensities of the fluctuation of the
ynamics. As a result, this fact makes diagnosis and prediction
ore difficult.
Figs. 1, 2, and 3 display computational results for demonstra-

ion. In which, we consider system (1.2) with the parameters
σ = 1, ρ = 1, η = 1, δ = 1, µ = 1, α = 4, β = 1, σ2 = 1,
and three values of σ1 ∈ {0.2, 1, 6}.

3.3. Small noises stabilize the deterministic system: Numerical ex-
amples

In this section, we discuss chaotic phenomena of the nonlinear
tumor-immune system. We show that noise can stabilize the
deterministic system. In the deterministic case, the system can
be stuck in unstable points and may not converge to the stable
points. However, by adding a small noise to the deterministic
systems, the trajectory can escape from the unstable points, and
concentrates near a stable point or jumps between the stable
points. We refer the reader to [15–17] for further references.

Numerical examples will be given to illustrate this interesting
phenomena. Consider the deterministic system (1.1) with the
parameters σ = 10, ρ = 4.4, η = 2.7, δ = 3, µ = .05, α =

52, β = 1. There are three equilibrium points, two stable points
(blue ones) and one unstable points (the red point); see Fig. 4.

Now, consider stochastic system (1.2), which can be thought
of as (1.1) perturbed by white noises. Let σ1 = .15, σ2 = .03,
and keep the other parameters unchanged as in the deterministic
system.

The stochastic system spends very little time around the un-
stable point and stays in a domain near one stable point, and
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Fig. 2. Sample paths of Y (t) when σ1 = 0.2, σ1 = 1, σ1 = 6, respectively.
Fig. 3. Sample paths of X(t) when σ1 = 0.2, σ1 = 1, σ1 = 6, respectively.
w

hen jumps quickly to a domain near the other stable point,
nd continues the movements going back and forth between the
table equilibria. The sample paths of X(t), Y (t) are shown in
ig. 5 and the density of the occupation measure on the interval
0, 5 × 104

], which approximates the density of the invariant
easure is shown in Fig. 6. It can be seen that the invariant
easure puts most of the mass near the two stable points of the
orresponding deterministic system.

. Proof of main results

.1. Proof of Theorem 2.1

The existence and uniqueness of the solution of (1.2) and the
ositivity of X(t), Y (t) with positive initial values, Px,y((X(t), Y (t))
R2,◦

+ ) = 1 ∀(x, y) ∈ R2,◦
+ can be found in [4, Theorem 2.1] (see

lso [18]). Moreover, it is also easy to obtain that Px,0
{
X(t) > 0 :

> 0
}

= 1 if x > 0 and that Px,0
{
Y (t) = 0 : t > 0

}
= 1.

Furthermore, it follows from [19, Theorem 2.9.3] and
20, Section 2.5] that the solution of (1.2) is a Feller and (homo-
eneous) strong Markov process if the coefficients are globally
ipschitz. Therefore, we obtain from the local Lipschitz property
f coefficients of (1.2) and a truncation argument that (X(t), Y (t))
s a Feller and (homogeneous) strong Markov process. The details
f this argument and this result can be found in [21, Theorem 5.1].
It remains to show that P0,y{X(t) > 0 : t > 0} = 1 for all

≥ 0. Let ε > 0 be sufficiently small such that

+
ρx̃ỹ

η + ỹ
− µx̃ỹ − δx̃ ≥

σ

2
, (4.1)

or any (x̃, ỹ) ∈ R2 satisfying x̃ + |ỹ − y| < ε. Let

˜1 = inf{t > 0 : X(t) + |Y (t) − y| ≥ ε}.

y the continuity of (X(t), Y (t)), P0,y{τ̃1 > 0} = 1. Using the
ariation of constants formula (see [19, Chapter 3]), we can write
4

Fig. 4. Vector field of system (1.1). The red point is the unstable equilibrium
point while the two blue points are the stable points. The red curve through the
red point is its stable manifold, which splits the space into two domains each of
which contains a stable equilibrium point. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

X(t) in the form

X(t) = Φ(t)
[∫ t

0
Φ−1(u)

(
σ +

ρX(u)Y (u)
η + Y (u)

−µX(u)Y (u) − δX(u)
)
du

]
for t ∈ [0, τ̃1),

(4.2)

here Φ(t) = exp
(

−
σ 2
1 t
2

+ σ1W1(t)
)
. It follows from (4.1) that

σ +
ρX(u)Y (u)

− µX(u)Y (u) − δX(u) > 0 if u ∈ (0, τ̃1].

η + Y (u)
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his and (4.2) imply that

0,y{X(t) > 0, t ∈ (0, τ̃1]} = 1,

which combined with the fact Px,y((X(t), Y (t)) ∈ R2,◦
+ ) = 1 ∀(x, y)

∈ R2,◦
+ and the strong Markov property of (X(t), Y (t)) yields that

P0,y{X(t) > 0, t ∈ (0, ∞)} = 1.

The theorem is therefore proved.

4.2. Proof of Theorem 2.2

Proof for the case λ > 0. We assume by contradiction that there
is no invariant measure on R2,◦

+ , which also means that there
is no invariant measure on R2,∗

+ because the solutions starting
n R2,∗

+ will enter and remain in R2,◦
+ . As a result, ν0 × δ is the

nique invariant probability measure of the process {X(t), Y (t)}
on R2

+
. For each initial value (x, y) ∈ R2,◦

+ , consider the occupation
measure

Π
x,y
t :=

1
t
Ex,y

∫ t

0
1{(X(u),Y (u))∈·}du.

ecause of (2.1), {Π
x,y
t , t ≥ 1} is a tight family of probability

easures on R2
+
. Applying [10, Lemma 3.4], the tightness implies

hat any weak limit of Π
x,y
t is an invariant probability measure

f the process {X(t), Y (t)}. Since ν0 × δ is the unique invariant
robability measure, we have that Π

x,y converges weakly to
t t

5

0 × δ as t → ∞. Due to the uniform integrability in (2.1), [10,
Lemma 3.4] again implies that

lim
t→∞

1
t
Ex,y

∫ t

0
Y (u)du =

∫
R2

+

yν0(dx)δ(dy) = 0, (4.3)

and

lim
t→∞

1
t
Ex,y

∫ t

0
X(u)du =

∫
R2

+

xν0(dx)δ(dy) =
σ

δ
. (4.4)

n the other hand,

x,y
ln Y (t)

t
= Ex,y

ln y
t

+ α −
σ 2
2

2
−

1
t
Ex,y

(
β

∫ t

0
Y (u)du

+

∫ t

0
X(u)du

)
+ Ex,y

σ2W2(t)
t

.

(Note that Ex,y
ln Y (t)

t exists because all the expectations on the
ight-hand side exist. In particular E σ2W2(t)

t exists and equals 0).
As a result, we have

lim
t→∞

Ex,y
ln Y (t)

t
= α −

σ 2
2

2
− lim

t→∞
Ex,y

1
t

(
β

∫ t

0
Y (u)du

+

∫ t

0
X(u)du

)
= λ > 0.

his contradicts the fact that

lim Ex,y
ln Y (t)

≤ lim Ex,y
Y (t)

= 0,

→∞ t t→∞ t
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ecause ln y ≤ y while (2.1) implies limt→∞ Ex,y
Y (t)
t = 0. As a re-

sult, there exists an invariant measure ν∗ on R2,◦
+ . Moreover, (2.8)

ollows easily from a well-known property of non-degenerate
iffusions. □

roof for the case λ < 0. Suppose λ := α −
σ2
2
2 −

σ
δ

< 0. Let
γ0 > 0 be sufficiently small that

λ := α −
σ 2
2

2
−

σ

µγ0 + δ
< 0. (4.5)

Now, let X (t) be the solution to

dX (t) =
[
σ − (µγ0 + δ)X (t)

]
dt + σ1X (t)dW1(t). (4.6)

Similar to X̃(t), we can obtain that X (t) has a unique invariant
measure νγ0 on (0, ∞) and∫
(0,∞)

xνγ0 (dx) =
σ

µγ0 + δ
.

By the ergodic theorem, we have

lim
t→∞

1
t

∫ t

0
X 0(u)du =

σ

µγ0 + δ
a.s., (4.7)

here X 0(t) is the solution to (4.6) with X (0) = 0. (Note that
X 0(t) > 0 for any t > 0).

Lemma 4.1. Let γ0 satisfy (4.5). For any ε > 0 and H > 0, there
exists a γ1 > 0 such that for all (x, y) ∈ [0,H] × (0, γ1], we have

Px,y

{
lim
t→∞

ln Y (t)
t

= λ < 0
}

≥ 1 − ε. (4.8)

roof. In view of (4.5) and (4.7), for any ε > 0, there exists a
1 = T1(ε) > 0 such that P(Ω1) ≥ 1 −

ε
4 , where

1 =

{
ω ∈ Ω :

1
t

∫ t

0
X 0(u)du ≥

σ

µγ0 + δ
−

|̃λ|

4
for all t ≥ T1

}
.

(4.9)

ikewise, we have from the strong law of large numbers for
artingales that

lim
t→∞

W2(t)
t

= 0 a.s. (4.10)

As a consequence, there is a T2(ε) > 0 such that P(Ω2) ≥ 1 −
ε
4 ,

here

2 =

{
ω ∈ Ω :

|σ2W2(t)|
t

≤
|̃λ|

4
for all t ≥ T2

}
. (4.11)

et T = max{T1, T2}. In addition, we can choose M > αT
ufficiently large so that

(Ω3) ≥ 1 −
ε

4
, where Ω3 = {ω ∈ Ω : |σ2W2(t)|

≤ M − αT , for all t ∈ [0, T ]} . (4.12)

Let γ1 ∈
(
0, γ0e−M

)
. Combining the second equation of (1.2) and

(4.12) implies that

Y (t) =Y (0) exp
{(

α −
σ 2
2

2

)
t −

∫ t

0
(βY (u) + X(u)) du + σ2W2(t)

}
≤Y (0) exp

{(
α −

σ 2
2

2

)
t + σ2W2(t)

}
≤γ1eM < γ0 for any t ∈ [0, T ], if Y (0) ≤ γ1, ω ∈ Ω3.

(4.13)
6

Now, we define the stopping time

τ := inf {t ≥ 0 : Y (t) ≥ γ0} . (4.14)

s a consequence, for ω ∈ Ω3 we have τ̃ > T . Note that we can
rite

dX(t) =

[
σ + X(t)

(
ρX(t)Y (t)
η + Y (t)

− µY (t) + µγ0

)
− (δ + µγ0) X(t)

]
dt + σ1X(t)dW1(t).

(4.15)

Applying a comparison argument to (4.6) and (4.15), we have
X(t) ≥ X 0(t) for t ≤ τ̃ given that X(0) > 0. Thus, from the first
equation of (4.13), if t ≤ τ̃ ,

Y (t) =Y (0) exp
{(

α −
σ 2
2

2

)
t −

∫ t

0
(βY (u) + X(u)) du + σ2W2(t)

}
≤Y (0) exp

{(
α −

σ 2
2

2

)
t −

∫ t

0

(
X (u)

)
du + σ2W2(t)

}
.

(4.16)

Combining (4.9), (4.11), and (4.13), for ω ∈
⋂3

j=1 Ωj and Y (0) =

≤ γ1, we have τ̃ > T and

Y (t) ≤ Y (0) exp
{(

α −
σ 2
2

2

)
t −

∫ t

0

(
X (u)

)
du + σ2W2(t)

}
= Y (0) exp

{(
α −

σ 2
2

2

)
t −

σ t
µγ0 + δ

+
|̃λ|t
4

+
|̃λ|t
4

}
< Y (0) exp

(
λ̃t
2

)
≤ γ1 < γ0, t ∈ [T , τ̃ ).

(4.17)

Therefore, we must have τ̃ = ∞ for almost all ω ∈
⋂3

j=1 Ωj,
(0) ≤ γ1. [We obtain this claim by contradiction argument as
ollows. If the claim is false then we have a set Ω4 ∈

⋂3
j=1 Ωj

ith P(Ω4) > 0 and τ̃ < ∞ for any ω ∈ Ω4. Note that we
lready proved that T < τ̃ for ω ∈

⋂3
j=1 Ωj. Moreover, in view

of (4.17), we have Y (t) ≤ γ1 < γ0 for any t ∈ [T , τ̃ ). Since
Y (t) is continuous almost surely, for almost all ω ∈ Ω4 we have
limt→τ̃ Y (t) = Y (̃τ ) ≤ γ1 < γ0 which is a contradiction]. Because
τ = ∞, one has

Y (t) ≤ Y (0) exp
{

λ̃t
2

}
, for any t ≥ T , ω ∈

3⋂
j=1

Ωj, Y (0) = y ≤ γ1.

This clearly implies that limt→∞ Y (t) = 0 for almost ω ∈
⋂3

j=1 Ωj.
Moreover, since Y (t) ≤ γ0 for any t ≥ 0 for almost ω ∈⋂3

j=1 Ωj, a comparison argument ([19, Theorem 6.1.1]) implies
hat X(t) ≤ X̂(t), where

X̂(t) =

[
σ −

(
−

ργ0

η
+ δ

)
X̂(t)

]
dt + σ1X̂(t)dW1(t). (4.18)

Similar to (4.6), if γ0 is sufficiently small that
(
−

ργ0
η

+ δ

)
> 0,

he solution to (4.18) has a unique invariant measure ν̂ and we
ave from the ergodicity of X̂(t) that for some small p̂ > 0

lim sup
t→∞

1
t

∫ t

0
X1+p̂(u)du ≤ lim

t→∞

1
t

∫ t

0
X̂1+p̂(u)du

=

∫
x1+p̂ν̂(dx) < ∞ for almost all ω in

3⋂
j=1

Ωj. (4.19)
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ue to (4.19) and limt→∞ Y (t) = 0, the family of random occu-
pation measure

Π̃ t (·) :=
1
t

∫ t

0
1{(X(u),Y (u))∈·}du

s tight for almost all ω ∈
⋂3

j=1 Ωj. From [10, Lemma 5.6], with
probability 1, any weak-limit of Π̃ t (·) as t → ∞ (if it exists) is an
invariant probability measure of the process (X(t), Y (t)), which
has support on [0, ∞) × {0}. It is easily seen that ν0 × δ is the
unique invariant probability measure on [0, ∞)×{0}. As a result,
Π̃ t (·) converges weakly to ν0 × δ for almost every ω ∈ ∩

3
j=1Ωj as

t tends to ∞. By the weak convergence, as well as the uniform
integrability in (4.19), we have

lim
t→∞

ln Y (t)
t

= lim
t→∞

1
t

(
αt −

σ 2
2 t
2

− β

∫ t

0
Y (u)du

−

∫ t

0
X(u)du

)
+ lim

t→∞

σ2W2(t)
t

= lim
t→∞

∫
R2

+

(α −
σ 2
2

2
− βy − x)Π̃ t (dx, dy) = λ < 0,

or almost every ω ∈ ∩
3
j=1Ωj, (x, y) ∈ [0,H]× (0, γ1]. The proof is

omplete by noting that P(∩3
j=1Ωj) > 1 − ε. □

Now we complete the proof of Theorem 2.2, part 2. In view of
Lemma 4.1, the process (X(t), Y (t)) is transient in R2,◦

+ . Thus, the
process has no invariant probability measure in R2,◦

+ , and ν0 × δ
is the unique invariant probability measure of (X(t), Y (t)) in R2

+
.

Thanks to (2.1), the process (X(t), Y (t)) is tight. Consequently the
occupation measure

Π t
x,y(·) =

1
t

∫ t

0
Px,y {(X(u), Y (u)) ∈ ·} du

s tight in R2
+
. Since any weak-limit of Π t

x,y as t → ∞ must be
an invariant probability measure of (X(t), Y (t)), we have that Π t

x,y
converges weakly to ν0 ×δ as t → ∞. As a result, for any γ1 > 0,
there exists a T̂ > 0 such that

Π T̂
x,y((0, ∞) × (0, γ1)) > 1 − ε,

or equivalently, 1
T̂

∫ T̂
0 Px,y{Y (t) ≤ γ1}dt > (1 − ε). As a result,

x,y{τ̂ ≤ T̂ } > 1 − ε, where τ̂ = inf{t ≥ 0 : Y (t) ≤ γ1}.

sing the strong Markov property and Lemma 4.1, we have that

x,y

{
lim
t→∞

ln Y (t)
t

= λ < 0
}

≥ 1 − 2ε,

or any (x, y) ∈ R2,∗
+ . Since ε > 0 is arbitrary, (2.9) must follow

by letting ε → 0). This completes the proof of Theorem 2.2. □

. Concluding remarks

This paper is devoted to studying longtime behavior of a class
f tumor-immune systems. Under broad conditions, we obtain
ufficient and nearly necessary conditions for persistence and
xtinction of the stochastic systems. Note that at the beginning,
e assumed the two Brownian motions to be independent. In

act, we can treat the case W1(t) = W2(t) = W (t), resulting in
egenerate case in the two-dimensional system. The techniques
an also be adopted to treat correlated Brownian motions.
The model in this paper is spatially homogeneous in the sense

hat the density of the effector cells or tumor cells does not
epend on the space variable, just depend on the time vari-
ble. Taking the spatial inhomogeneity into consideration will
7

ake the model more versatile but also pose many challenges;
ee [22–24]. The problems can be studied using a stochastic par-
ial differential equation frameworks, which will present a much
ifferent perspective compared with systems given by stochastic
ifferential equations (SDEs), or ordinary differential equations
ODEs), or partial differential equations (PDEs).

Further research can also be devoted to study diffusion sys-
ems that are also subject to an additional random switching
rocess. Consideration of systems involving delays and more
omplex stochastic functional differential equations is another
orthwhile direction.
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