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Abstract

This work focuses on almost sure and L” stability of stochastic functional differential
equations by using Lyapunov functionals with the help of the recently developed Dupire’s
functional Itd formula. Novel conditions for stability, which are different from those in the
existing literature, are given in terms of Lyapunov functionals. It is demonstrated that the
conditions are useful for stochastic stabilization. It is also shown that adding a diffusion term
can stabilize an unstable system of deterministic differential equations with Markov switch-
ing. Furthermore, a robustness result is obtained, which states that the stability of stochastic
differential equations with regime-switching is preserved under delayed perturbations when
the delay is small enough.

Keywords Switching diffusion - Functional stochastic differential equation with
switching - Stability

1 Introduction

Functional differential equations (FDEs) arise from a wide range of applications. As
observed that in real world applications, including queueing systems, biological and eco-
logical systems, finance and economics, control engineering, networked systems, wired and
wireless communications, and other related fields, delays are often unavoidable. Dealing
with such systems, one of the main ingredients is that the underlying dynamics of the sys-
tems have memory and include the past dependence; see e.g., [1, 10, 24, 30]. It has also
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been well recognized that the systems under consideration are often corrupted by noise.
Thus it is necessary to take into account of random perturbations. Because of the press-
ing needs, stochastic functional differential equations (SFDEs) and applications have been
studied extensively in the past decades; see [7, 11, 16, 22] and references therein. Several
types of stability for SFDEs including moment stability, almost sure stability, and stability
in probability have been considered using Razumikhin methods and Lyapunov functionals
in [3, 8, 11, 13, 15, 23, 29] and references therein.

There are several main difficulties in handling stochastic differential delay equations
and stochastic functional differential equations. To begin, the so-called segment process
associated to a stochastic functional equation, belongs to an infinite dimensional space even
if the differential equations and solutions live in a finite dimensional space. For instance,
one considers a stochastic differential equation. Rather than the running time #, suppose that
one can only observe the system at discrete epoch or sampling time |#/#o |ty for a constant
to > 0, where [t/f9] denotes the integer part of #/#y. Then one immediately faces systems
with delays.

Second, in the study of stability of stochastic differential equations (diffusions and
switching diffusions) with an equilibrium point O (under Lipschitz condition), an important
observation is: If the solutions do not start at 0, they will never reach 0O in finite time. Thus
we can conveniently construct needed Lyapunov functions. This is no longer true if we con-
sider SFDEs. As a results, unlike for SDEs or switching diffusions in which we can use
Lyapunov functions of the form V = |x|? for p € (0, 1) (e.g., [9, 13]) practical Lyapunov
functions (or functionals) for treating SFDEs are often of quadratic forms, which prevent the
use of a relatively large class of Lyapunov functions (or functionals) to prove L? or almost
surely stability; see also the classical results on stochastic differential equations [26].

In addition, for stochastic functional differential equations, the solution processes are no
longer Markovian. Although there were many excellent works on stochastic delay equa-
tions, because of the solution processes being non-Markovian due to delay, there had been
virtually no bona fide operators and functional Itd formulas except some general setup in
a Banach space such as [16] before 2009. The setup in a Banach space, though general,
is not suitable to be used in analysis involving functional stochastic differential equations.
Recently, in [6], Dupire generalized the It6 formula to a functional setting by using pathwise
functional derivatives. The Itd formula developed has substantially eased the difficulties
and encouraged development with a wide range of applications. Subsequently, his work was
developed further by [4, 5]. The functional It6 formula enables us to obtain a bona fide oper-
ator for SFDEs and facilitate the use of Lyapunov functionals to a larger class of stochastic
systems with delays, including stochastic functional differential equations with regime-
switching. It is known switching functional stochastic differential equations can describe
complex systems that cannot be modeled with continuous states alone. A distinct feature of
stochastic functional differential equations with regime-switching is that both continuous
dynamics and discrete events are influencing the systems.

In this work, we demonstrate that Dupire’s Functional Itd formula is useful for carry-
ing out stability analysis. With the help of the functional Itd formula, we obtain sufficient
conditions for almost sure and L? stability of SFDEs with regime switching by using Lya-
punov functionals that are different from the existing literature. For some of the recent
works on switching diffusions, we refer the reader to [2, 15, 17-20, 27, 28] and the refer-
ences therein. We further show that the stability result can be used for stabilizing Markovian
switching ordinary differential equations. This is done by adding a diffusion term to an
unstable ordinary differential equation with Markovian switching, which opens doors for
further consideration of stabilization of a wide variety of systems.

@ Springer



Stability of Stochastic Functional Differential Equations... 249

As a bi-product of the stability, we derive certain robustness results. We demonstrate that
if a stochastic differential equation is stable, then an associate stochastic functional differ-
ential equation is also stable provided the delay is small enough. Similar results have been
given in [8, 25] by estimating the difference between a SFDE and its SDE counterpart in
each finite interval. In contrast, using suitable Lyapunov functionals, we can obtain similar
results with weaker conditions and simpler proofs.

The rest of the paper is organized as follows. Section 2 recalls the notion of stochastic
functional differential equations with regime-switching and introduces the functional Itd
formula. We also use a functional Lyapunov function to prove the existence and uniqueness
of solutions. Section 3 is devoted to new conditions for almost sure stability and L? stability
of SFDEs with regime switching. Section 4 concentrates on the robustness. We treat almost
sure stability of SFDEs with regime switching when the delayed time is small.

2 SFDEs with Regime Switching and Functional I1t6 Formula

Let r be a fixed positive number. Denote by C([a, b], R"?) the set of R"0-valued continuous
functions defined on [a, b]. In what follows, we mainly work with C([—r, 0], R"0), and
simply denote it by C := C([—r, 0], R"0). For each ¢ € C, we use the sup norm metric
lpll = sup{|¢p(t)| : t € [—r,0]}; for t > 0, we use y; to denote the segment function or
memory segment function y; = {y(¢ +s) : —r < s < 0}. Denote by |x| the Euclidean norm
of x for x € R™. For an m x n matrix A, we use the operator norm

|A| = sup{||Ax|| : x € R", |x| = 1}.

We work with (2, F, {F:}s>0, P), a complete filtered probability space with the filtra-
tion {F;};>0 satisfying the usual condition, i.e., it is increasing and right continuous while
JFo contains all P-null sets. Let W(¢) be an F;-adapted and R?-valued Brownian motion,
and b(-, ) : R" xS — R where S := {1, ..., mp}. Let a(¢) be a homogeneous Markov
chain taking value in S, and assume that «(¢) is independent of the Brownian motion W (¢).
Suppose that the generator of a(¢) is Q = (gij)mgxm, S0 that for sufficiently small A > 0,

Pla(t + A) = jla(t) =i} = gijA +o(A)if i # j and @0

Pla(t 4+ A) =ila@) =i} =1—qiiA + o(A). ’
Assume that «(¢) is an irreducible Markov chain with a unique invariant probability

measure v = (Vi, ..., Vy,). Suppose that a continuous state component X (¢) satisfies

dX(1) = f(X;, a@®)dt + g(X;, a(1))dW(2). 22

Recall that a strong solution to Eq. 2.2 on [0, T'] with initial data (&, ip) with £ being a
C-valued Fp-measurable random variable and iy € S, is an J;-adapted process X (#) such
that

e X (¢) is continuous with probability 1 (w.p.1).
e X(t)=E&(t)fort € [—r,0]and x(0) = ip
e  X(t) satisfies (2.2) for all t € [0, T] w.p.1.
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For a Lyapunov function V : R"0 x § + R, which is twice continuously differentiable
with respect to the first variable, one often works with a map from C x S — R. With a
slight abuse of notation, we write it as

LV($, i) =LiV®) + ) qij[V(#0), j) = V((0),1)]

jeS
where
1
LiU (@) = Ux(¢(0) f (9, 1) + 3 tr (Uxx (¢ (0))A(9, i)

with U : R™ — R, being twice continuously differentiable with respect to its variable and

A@p. i) =g (¢,1)g(e,1).

Remark 2.1 The notation needs some explanation. Note that the variables ¢ and (¢, i)
in £;U(¢) and LV (¢, i) represent the variables appearing in £;U and LV, respectively,
because the term X; appears in the coefficient of the system in Eq. 2.2. They do not repre-
sent the variables in functions U and V. The dependence of the variable x (corresponding
the solution of Eq. 2.2) in £; U (¢) and LV (¢, i) is indicated by ¢ (0).

Now we state the functional It6 formula for our process (see [5] for more details). Let D
be the space of cadlag functions f : [—r, 0] — R".For¢ € D, with 2 > Oand y € R",
we define horizontal and vertical perturbations as

oG +h) if s €[—r, —h],
onls) = {¢(0) if s € [~h, —0],

and
: ¢(s) if s € [-r, 0),
Y(s) =
¢(”_{¢®»+yﬁs=o
respectively. Let V : D x & — R. The horizontal and vertical partial derivatives of V at
(¢, i) are defined as
V(gn, i) = V(9. 1)

Vi(¢.0) = lim ; (23)
and
e V@M D) =V, 0)
%V(¢. k) = lim 5 : (2.4)

respectively, if these limits exist. In Eq. 2.4, ¢ is the standard unit vector in R0 whose
k-th component is 1 and other components are 0. Let F be the family of function V(, -) :
D x S x Ry — R satisfying that

e ) is continuous, that is, for any ¢ > 0, (¢,i) € D x S, there is a § > 0 such that
V(p,i) —V(¢',i)| <easlongas ||¢p —¢'| <8.
The derivatives V;, V, = (3¢ V), and V,, = (dy;V) exist and are continuous.
V, Vi, Vi = (V) and V,x = (9)) are bounded in each By = {(¢,i) : ||¢]| <
R,i <R},R >0.

Let V(-, -) € I, we define the operator

LV(¢.i) =LiV(@) + Y qij[V(¢. ) = V(. )] 2.5)

JjeS
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where

1
LV(@) =Vi@.i) + Vs ) f@0.1) + 3 tr (Vs (6. DA@. ) )
no | 2o 2.6)
=Vi(¢,i) + ]; Je(@, DVi(9, i) + > k;l ak1 (¢, D)Vi (@, 0).
Again, the variable ¢ in L;V(¢) and (¢, i) in LV(¢, i) are variables of ;) and LY
respectively. We have the functional It6 formula (see [4, 5])

V(X1 a(0) = (LV(Xr, @) )di + Vi (Xp, 0(0)g (X, 0(0)dW (1) @7

Remark 2.2 The recently developed functional Itd formula in [6] encouraged subsequent
advances; for example, [4, 5]. Such development proved to be very useful for a wide range
of applications.

To proceed, we compute the Dupire derivatives of some functionals in certain forms.

e Consider
Vo(¢, i) = f1(¢(0),1)

where f(-,-) : R" x S — R is a function that is twice continuously differentiable in
the first variable. Then

0 82
F 6.0, auVe@.i) = L
Xk 0x0x]

(#(0),1).

2.8)
o If

0
v1(¢,i>=/ g, i) f1 (@), Ddu

where s € [—r, 0] is a fixed number, fi(-,-) : R” x § + R is a function that is
twice continuously differentiable in the first variable and g(-,-) : Ry x S — R be a
continuously differentiable function in the first variable. Then at (¢, i) € C x S we
have (see [21] for the detailed computations)

0
Vi (¢, 1) = g(0,1) f1(¢(0), i) — g(s,i) f1(p(s), i) — / fi(p ), i)dg(u, i),
wVi(g,i) =0, o Vi(¢, i) =0.

2.9)

o If
0 0
V2(¢,i)=/ gz(s,i)u(dS)/ g1(u, i) f2(¢p W), i)du

—r
where f>(-,+) : R" x § — R is a function that is twice continuously differentiable in
the first variable and g be a continuously differentiable function in the first variable
and g is continuous. Then applying (2.9) and Fubini’s theorem, we can easily obtain

0 0
V(. 1) = 8100, fo(@©). D) | g2ls, Dpe(ds)— | g1(s,0)g2(s. 1) f2(¢(s), D)e(ds)

0 0
—f g2(S,i)M(dS)/ S2(p(0), Ddgi (8, ),

—r

Va2 (¢, i) = 0, o V(gp,i) =0. (2.10)
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Assumption 2.1 Suppose that f and g are locally Lipschitz. That is, for any n > 0, there
exists K, > 0 such that

[f(@,0) — f(f, D]+ 1g(d, 1) — g, il < Knllp — ¥l
giventhat ¢, ¥ € C, ||$ll < n, [[Y]| < n.

Theorem 2.1 Suppose there exists a probability measure v on [—r, 0] and a function V (x)
satisfying cilx? < V(x) < ca|x?| and

0
LiV(p) <aV(p(0) + b/ V(g (s))u(ds).

—r

Then there exists a unique solution to Eq. 2.2 for any initial value (¢, i)

Proof The existence and uniqueness of local solutions can be seen in [15] due to the local
Lipschitz continuity of the coefficient. Let V(¢) = V(¢ (0)) + b [, ju(ds) [V (¢ (w))du

0
LY. i) =L:V($) + bV (@ (0)) — b / w(ds)V (@ (s))

—r

0 0
=aV(9(0)) +b/ V(¢ (s))u(ds) + bV (¢(0)) —b/ n(ds)V(gp(s))

<(a+Db)V(¢(0) < (a+Db)V(9).
Let t, = inf{r > 0 : V(X;) > n}, by It6’s formula, we have

AT,
Ep V(Xing,) =V(@) + . / LV(X,, a(s))ds
0
AT,
V@) + (a + bEg, / V(Xy)ds
0

t
<V($) + (@ +Db) / Eg1V(Xsrs, )ds.
0

By Gronwall’s inequality, we have
Ep,iV(Xirr,) < V(@)e@Pr.

As a result,

(a+b)t
Py VX <n) < YO g o,

n
which implies that 7o, > f a.s. for any ¢ > 0. The existence of global solutions is proved.

O

3 Almost Sure and LP Stability Using Functional It6 Formula
and Lyapunov Functionals

We start by recall a Razumikin’s type theorem in [11, 29] with the use of Lyapunov
functionals.

Theorem 3.1 (A Razumikhin’s Type Theorem) Let V : R x S + R be a C? function

satisfying
c1|x|2 <Vx,i) < czlx|2, Vx € D for some c1, cy > 0. 3.1)
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Suppose that there exists A1 > Lo > 0 such that

0
LV, i) < =l O) +?»2f |6 (1) * (dr)

—r
for some probability measure | in [—r, 0]. Then,

InEg ;| X (1)|? A
lim nEy i | X (1)l <—
t—00 t 1V

3.2)

for any A > 0 satisfying that A» fi)r e u(ds) + A < Ay. Since A > Ay, such A always
exists.

Proof Let

0 0
V(. i) = V(). i) + 1 / 1(ds) / )60 2 (du)

—r

Then, Eq. 2.10 implies

0

0 0 0
LV($. i) = LV (9, 1) + 121¢(0)? f e ulds) =2y | 1o ulds) = 1o / n(ds) / g () 2 (du)

—-r

IA

0 0 0
—<x1 - / e‘“u(ds)) [¢(0)* — Any f w(ds) / 9| ()| (du)

IA

A 0 0
—=V(¢(0)) — Ar2 / n(ds) f | ) (du)
1 _r .

K

A
1V

< —

Vo, i).

Then, standard arguments of Lyapunov methods show that

lim InEy ; V(X;, a(t)) - A ’
t—00 t 1V

which together with Eq. 3.1 leads to Eq. 3.2. O

Razumikhin’s methods for SFDEs with regime-switching usually require uniform (in
switching states) estimates for LV (¢, i), that seems to be very restrictive (see e.g., [11, 14]).
The following theorem allows us to relax this condition so as to have different estimates in
different switching states.

Theorem 3.2 Let V : R™ > Ry be a C? function satisfying
cilx> < V(x) < ealx|?, Vx € R™ for some ci, ¢a > 0. 3.3)

Suppose that there exist y > 0, b > 0, a(i) € R, pg € (0, %), and a probability measure
w on [—r, 0] such that

(5= ) V@2, )P
V@) +b [ juds) [Ler @9V (¢ (u))(du)

0
fa(i)V(¢(0))+b/ Vp®)u(dr),
(3.4

LiV(p)—
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for ¢ # 0 and that

0
— A= Z ((—V) v (a(i) + b/ e_ytu(dt))> v; < 0. (3.5)

ieM i
Then
In| X (t A
Py.; {limsup niXml _ ——} =1, (p,i)eC xS, (3.6)
t—00 t 2

and for sufficiently small p > 0,

Ey ;VP(X(t A
limsupwi(())f—p

t—00 t 2

, (p,0) eC xS. 3.7

Remark 3.1 Another distinctive feature of Theorem 3.2 is the appearance of the nega-
. 1 LACIOHC]

tive term = <7 R 0) V@ O)+b [°, w(ds) [Per =0V () (du)
not shown in the traditional stability analysis. Not only does it improve existing stability
conditions but it also indicates that the diffusion term can stabilize the system which, in
practice, is not shown using Lyapunov functions and Razumikhin’s methods. This fact will
be illustrated in Example 3.3.

in Eq. 3.4, which is normally

Proof Let
0 0
V(@) = V(p(0) +b / u(ds) / eV TV (¢ (w)) (du).

By the functional It formula, we have for X; £ 0 that

0 0
dV(X,) = (ﬁamwxm)—yb / u(ds) f @OV (X, (1)) (du)
0 0
+b/ eV u(ds)V (X, (s)) —b/

+Ve(X(©)g(Xy, a(1)dW (1),

V(Xt(S))dM(S)>df

which leads to

1 0 0
dinV(X,) = D <£a(,)V(X,)+yb f w(ds) / UV (X, () (du)
t —r s

0

0
+b/ e uds)V (X)) —b/

_|Vx(X(t))g(Xt»a(t))|2d V(X ()8 (X, a(t))dW (1)
2V2(X,) V(X:)

0
[(a(a(t)) +bf ey’u(dt)> % (—J/)] dt

Ve (X (1)g (X, (1) Ve (X(@)g(Xs, a(1))dW (1)
V2X)) dt + VX . (3.8)

V(Xt(S))dM(S)>dt

IA
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Let 7* = inf{tr : X; = 0}. By the exponential martingale inequality (see e.g., [12]), we
have

]P,{/t Vi (X ()8 (X, a(1))dW(s) t|VX(X(t))g(Xs,Ot(S))|2dS
0 V(X,) P, V(X))
Inn . } _
>——, forsomet € [0, 7" An) <n -
Po

Since ) o2, n=2 < oo, it follows from the Borel-Cantelli lemma that with probability 1,
there exists a random integer n* = n*(w) such that for any k > n*,

V(X (6)gXs, @(s)dW(s) [ V(X ()gX)IP | Ink .
fo V(X,) TP T Rk, 98T, Torallr € [0.kAT.

As a result, for almost every w € {t* = oo}, we have

/”Vx(X(s))g(XS,a(s))dW(s)_pO/'IVX(X(S))g(Xs)|2dS<lnkvt € 1. ), k> n*
0 0 Po o .

V(X (s)) 2V2(Xy)
3.9
Since limg_; o % = 0, we deduce from Eq. 3.8 that
limsupl [/‘ Vi (X(5)g(Xs, a(s))dW(s) » ’IVx(X(S))g(Xs,Ot(S))IZdS] <0
t—oo [ 0 V(Xs) 0 0 2v2(Xs) -
(3.10)
for almost every w € {t* = oco}. Combining (3.8) and (3.10) yields
t 0
lim sup InVX®) <limsup l/ (=y) Vv (a(ot(s)) + b/ e_V”;L(du)) ds
t—00 t t—o0 1 Jo _r
(3.11)
< Za(i)vi for almost every w € {t* = o0},
ieS
where
0
a(i)=(=y) Vv la() -I-b/ e ""u(du) .

Because of the uniqueness of the solution, X () = 0, ¢t > t* for almost all w € {t* < oo}.
This together with Eq. 3.11 proves (3.6).
Similar to Eq. 3.8, we can show for V7 (¢) = (V(¢))? that

LiVP(¢) <a(i)pV"(¢) for ¢ # 0, p € (0, po).

Since ) ;.5 (A +4d(i)) v; = 0 (due to Eq. 3.5), an application of the Fredholm alternative
(see e.g., [9]) is the existence of y; such that

D aijvi=—(A+a@).
jes

Let p € (0, po) be sufficiently small such that
~ A
2pyi < 1, and py;a(i) < X fori € S.

We have
Y aij(l—py)=—pY aqijyj =—pali),i€S.

JjeS JjeS
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LetU(p,i) = (1 — py;)VP(¢). We have that
LU@. i) =(1 — pypLiVP (@) + VP ($) > qij(1 — py))
JjeS
<p(l = pya@OL VP (@) + VP ($) > qij(1 — py))
jeS
< — pAVF($) — p*y;d(i) VP (¢)
A A
=@ < -Lurg). ¢ 0.

Then, standard arguments show that

InEy ;UX;, alt A
lim sup N5 i A1) (X1, a(0) < —p—.
t—00 t 2

Consequently, Eq. 3.7 follows. O

Example 3.1 Consider a scalar switching system

dX(t) = | a(@®)X @)+ Y bX(t —r)j) | dt, forrj <r.
j=1

Let V (x) = x2. Then

LiV($) =2a(i)(@(0)* +2a(i)bp©0) Y ¢(~r))

j=1

< (2a(i) +a*(D))($(0)* +b°m Yy ($(=r))° G.12)

Jj=1

0
< (2a(i) + @*)) (@) +b*m* [ (p(s)*1(ds),

1

where u(-) = — Z;":l d;(-) and &; is the Dirac measure with mass at —r;. As a result, a
m

condition for almost sure stability is —y = inf{2a(i) + a®(@i) + b*>m? : i € S} < 0 and

0 m
> @a(i) + a* @) +b2m2/ e 7 u(du) =Y (2a(i) +a*(@))v; +b’m Yy e’ < 0.

ieS - ieS j=1

Example 3.2 Consider a linear stochastic delay differential equation with regime-switching

of the form:
d

dX(t) = A(a(t)) X (t)dt + Z Cila@)X —r)dW;. (3.13)
j=l1

Let (i) = Z‘;:l C;r(i)Cj (). For a symmetric matrix D € R"0*"0_]et
AM(D) = sup{x " Dx : x e R |x| = 1}.
Let
M AT, , - Mo )2
a =Y (AMATO +A@) v, b=Y (AM(E6)) vi),

ieS ieS
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and y = —inf{AM(AT (i) + A(i)) : i € S}. We show that, the condition for almost sure
stability and L?-stability with a small p of the system is

a <0, and a® > be’". (3.14)
Indeed, under that condition, y > 0 (since a < 0) and we can find ¢ > 0 such that
beV"
2 +ac+ ¢ < 0 or equivalently,
beV"
at+ < e (3.15)
4c

‘We have the estimate that

M .
x B @)y s%‘f(’))ﬂzmx - v EG)y

_c
AM(Z(i))
_(aME@ay)’

- 4c

Let V (x) = |x|2. Then we have

LiV($) =) (AT () + A)P(0) + ¢ (—r)T@)(B(—r)) "
(AM(3()))

4c
(AM(z(i))

4c

x|? + cly[?

<(¢0) (AT () + A®))¢(0) + 19 (0)[* + clp(—r)|?

< (AM(ATO) + AG) + ) 16 (0)]> + clp(—r)I?

In view of Theorem 3.2 and Egs. 3.15 and 3.13 is exponentially stable almost surely under
(3.14).

Example 3.3 Letr < % and0 < 6 < % and consider the scalar equation without switching.
0

—r

1
-2
dX(t) = X(t)dt +2 (Xz(t) + 3/ X (t + s)|2ds> dw (t).
Consider V (x) = x2. We have LV (¢) = 2¢%(0) 4+ 4(¢*(0) + 8 fi’r > (s)ds). It is easy to
show that there are no A1 > A2 > 0 and an probability measure u such that

0
LV($) < —11¢°0) + 22 [ ¢(s)u(ds).

Thus, Razumikhin’s method does not work for the Lyapunov function V (x) = x2 in this

example.
On the other hand, choose y > 0 to be determined. We have

0
$%(0) (¢>2(0) +38 ¢>2(s)ds>

_20) $2(0) +8 [°, $*(s)ds
$2(0) +45 [0 ds [Oer =0 |p ) 2du $2(0) + 48 [ ds [2er@=9)$2 (u)du
2 0 2
Z¢2(0) ¢=(0) + 8f_r ¢ (s)ds

$2(0) +4rser” [ |6 (s)2ds
>¢2(0) if dre’” < 1.
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As a result,

1662(0) (4(62(0) +3 [°, *(5)d))
$2(0) + 48 [ ds [2er =0 |¢ () Pdu

1
CV(d))—(E — Po)

0
< — (8 —2p0)¢*(0) + 6¢>(0) +45 | ¢*(s)ds

—r

0

<— (@2 —=2p0)d*0)+45 | ¢*(s)ds if dre’” < 1.
—r

eV’ —1

= 1, we can choose y and pg sufficiently small that

Since 46 < 2, and lim,,

0 v — 1
2—2po—48/ e Vds =2—2pg— 48 < Oand4re’” < 1.
14

—r

With such pg and y, the system is exponentially stable with probability 1 because
Egs. 3.4 and 3.5 are satisfied with b = 48 and a = 2 — 2 pg. Note that without the diffusion
term, the system is unstable. Thus, our theorem shows that the diffusion term can stabilize
the system, which seems to be impossible to obtain using the Lyapunov function approach.

4 Stability of Systems with Small Delay

This section addresses the following equation. Suppose we have a SFDE with regime
switching R

dX (1) = f(X: (1), a(t))dt + (X, (t))dW (2). 4.1

Suppose further that the system
dX(1) = f(pe(X (1), a(®))dt +G($e(X), a(t))dW (1)
is stable where ¢ (X (¢)) satisfies ¢.(X(¢))(s) = X (¢), s € [—r, 0]. An immediate question
comes up. Is Eq. 4.1 stable when r is sufficiently small? For instance, if the scalar equation
dx (1) = (a(@(®) = b@O) X Odt + o @)X OAW (@)
is almost surely stable, we expect that when 7 is sufficiently small,
dX () = (a(a@®)X () — b(a(t)X(t —r))dt + o (a(t)) X ()dW ()

is almost surely stable.
We rewrite Eq. 4.1 in the form

dX (1) = (F(X (0, a®) + f(Xr, ) di+(g(X (1), a (1) + §(X,, () dW (1), (4.2)

where f and ¥ satisfy

~ 0 0
If @) < c% / wd)|p(0)=¢w)Pdu and [3($) < cf / w(ds)|$ (0) = ¢ (w)Pdu,

- - 43)
for some probability measure ().
Suppose that f(x, i) and g(x, i) are locally Lipschitz and
1T, Dl < cplxl, and [g(x, )] < cglx]. (4.4)
2T fx, i)+ tr(g T (x, D)g(x, i) —2/x gl
a; = sup 3 < 0 4.5)
x#0 |x]
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We impose the condition ) ;¢ a;v; < 0 for almost sure stability of the SDE with regime
switching
dX(t) = f(X(),a(®))dt + g(X(t), a(t))dW(t). (4.6)
It can be shown in the proof of Theorem 4.1 (or see [9, 20]) that if ), es aivi < 0, then
Eq. 4.6 is exponentially stable almost surely.

Theorem 4.1 Suppose that Eqs. 4.3, 4.4, and 4.5 hold. If —A := ) ;s a;vi < 0, then for
any A < A, there exists an r* > 0 such that any solutions of Eq. 4.2 satisfy

2
. _{ln|X<r>|

i p f—j\}:l

ifr <r*

Proof Let ¢y be a universal constant such @at trGTG < ¢¢|G||G]| for any G, G e Rxd,
Leta = —min;jes{a;} > 0.Leteo = A — A and M > 0, A > 0 given by
SCE + 8C1 CoC% & & &
LT ey A6 a e =M A=a+ o+ 22 2. (47)

€0 16 16 16

Consider the Lyapunov functional

0 0
U@)=M | nds) / U 19(0) — ¢ (w)|*du.

—r

Computing either directly from the definition or by expanding |¢ (0) — ¢ (x)|? and then
using Eq. 2.10 and It&’s formula for a product, we can obtain the Dupire derivatives of U (¢),
which are given as follows

0
Ui@) = —M [ 160) — p(s)I*nu(ds) — AU ().

0 0
Uy, (¢) =2 / u(ds) / (@i (0) — i (w))du, i = 1,..., no.

0 0
Urixi (9) = 2¢(0) | pu(ds) / U du = 2¢; ¢ (0); Uy, (¢) = Ofori # j,

where o 0
Ar) —1
Cry = / u(ds)/ gy < % —0asr— 0.
—r s

By the Cauchy-Schwarz inequality, we obtain the estimate

no 0 0 2
U =4M22( / 1(ds) / e“"—s><¢i(0>—¢,-(u>)du)

i=1

0 no 0 2
<4m? / /L(dS)Z< / e““—‘f>(¢i(0)—¢i<u)>du> “8)
i=1 \’¢ ’

—r

0 0 0 10
<art? [ ) [0 [ Y 610) - g
—r N S i=1

<4Mc; U ().
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Letting V(¢) = |$(0)|? + U(¢), we have

_ 2T+ NHulE+ D @+ D -MO-2U+U(f + ) + Mer, tlg + D) (g + 3]

L,V
’ x>+ U
lexT+ U0+ DR
2(1xP? +U)?
_ uTf+ugle) —aQ —au teolx>  2xTgP 2xTgl?
X[ +U 2xP(x +U) 202 +U)
1T+ U0+ | —alkP = (M —@)Q - . —D)U
2(|x|2 + U)? lx|2+U
+2fo + Mc g gl + (1+ Me; )28 T8 + 578D + U (f + )
X2+ U '

In the formula, x = ¢ (0), Q = fi)r | (0) — ¢(s)|2u(ds), the variables (x, i) = (¢(0, i)
in f, g and the variables (¢, i) in f g, Uy, U are dropped for sake of notational simplicity.
Ifx =0and U # 0, then f(x,i) =0and g(x,i) = 0. We have

_ U+ Mo )u@Te) —MQ— AU _ |U:gP

L,V
' U 202
20 — _ ~2
<(1+Mck,r)ctrch MQ A'U . |ng| (4'9)
= U 202
~12
L
= 202
if
M, < 1. (4.10)
If x # 0, we have
vanw+my@—@+%m—@+%w+muﬁ_ 12x T g|?
’ x> +U 20x2(|x2 + U)
2xTgl? 1T+ U@+
20x|2(Ix|> + U) 2(|x12 + U)?
D(xP+Q+U) BUNP+M -2+ —-a)U
x|2+U x|2+U
N 2T f+ Mey , trlgT gl + (14 Mey ) (028 Tg+ 88D + U (f + f)
X2+ U '
4.11)
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We have the following estimates:

T2 2 1,72 _ 0, 2 86%
21 fl<elxl"+e | fI7 = —xI”+ —10l,
8 €0
£0
Me; g gl < Mewer eglal” < el
~ -~ - £0 8ccoCy
(1+ Mc (]2 %) < 4ulg '3 < 4elgllg] < - Ix? + —=22 0,
8 €0 (4.12)
(1+ Mcy ) g 8] < 2e4c30,
262 |U, |2 8Mcxey U
& & A,
Uef < D+ L < Dpepp 4 —L22
8 €0
SRR I [/ LN
Ucf <Ifl+ 1 < cfQJrMc,\,rU,
if
2 %o
Mctrc)\,rcg < 16’ and Mc; , < 1. 4.13)
Then Eq. 4.12 and 4.7 lead to
—golx|* — (M —@)Q — (L —)U
X2 +U
N 2T f+Mey ,trlg gl + (14 Mey ) (28 g+ 281 + U (f + f)
|x|2+U
—0.5g9|x |2 — 6c§Q — Qe+ 1)U
- |x|2+U
(4.14)
if
8Mc§c;h, )
———— 4+ =<1, and 8Mctrckyrcg < g. 4.15)
€0
As aresult,
2xTgl> 1T+ U)E+ DS
2|x2(|x|> + U) 2(1x|> + U)?
2 TgP = @xT + U+ DI 2x"g*U
B 2(x[> + U)? 20x2(|x|? 4+ U)?
_2xTE+ U g +DP 2xTglPU
2(Ix)> + U)? 2|x|2(|1x|? + U)? 116
- - (4.16)
3T 431U P +3IUE 1 | 4l
- 2(]x|2 + U)? 2(]x|2 + U)?
6c31x12Q + 6Mc; rcglx U + 6Mc; ,c3QU 4csU
<
- (x> + U)? 2(|x|> + U)?
6¢2|x|20 + 6Mc; c2|x|2U + 6Mcy c2QU 202U
< 8 8 8 + 8 ,
- (x> +U)? (x> +U)
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which implies

—0.5eol|? — 6c30 — (2 + DU 2xTglP 1T +UDE+ R
P+ U 2P+ ) 2P+ U)?

_ (0.580|X|2 + 6C§Q + U) (|X|2 +U)+ (6C§|X‘2Q —+ 6MC)L,rC§|x|2U + 6MCA,rC§QU)

<
- (x|?> 4+ U)?
- (0.580 - 6Mc§,q,,) WPU —6(c2 — M 13 QU
<
- (x|?> 4+ U)?
<0,
417
if
0560 > 6Mcyc;.» and 1> Mc;, . (4.18)

Applying Eqs. 4.14 and 4.17) to Eq. 4.11 and then combining with Eq. 4.9, we have
eo(x* + Q +U)
16(|x|2 + U)

As aresult, for t < 1, := inf{s > 0: V(X;) = 0}, we have

LiInV < (a; — &9) —

t

InV(X;) =InV(Xyp) + / Loy In V(Xs, a(s))ds + H(t)
0

! eo(IX ()P + 0(Xy) + U(Xy))
< | e +emas - [ oy HO,

H@) = /’ X ()" + Un(X0))(&(Xs, i) + (X5, i))dW(S).
0 X () + U(Xy)
By virtue of Egs. 4.3, 4.4, and 4.8, we have the following inequality for the quadratic
variation of H (t)

/I|(2X(S)T+Ux(xs))(g(xwi)+§(sti))|2<Cft|X(s)|2+Q(Xs)+U(XS)
0 (IX®P+UX))? —Jo IX($)*+U(Xs)

for some constant C. As a result, we can apply the exponential martingale inequality and
proceed in the same manner as in the proof of Theorem 3.2 to show that

H@o 1 /’80|X(S)|2 +6c20(X,) + (2¢; + DU (Xy) 0
m — — — s =
0 16(1X (5)? + U (X,))

for almost every w € {t, = oo}, which implies that

where

ds, t <71y

=00 t t

1! ~
lim — / (a(a(s)) + e0)ds = Y _(a(i) + £0)v; = —Afor almost every € {r, = oo}.
t—oo t 0

Thus we have for almost every w € {t, = 0o} that

) In V(X (1)
lim sup -

t—00

< (@) + eo)vi = —A.
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if Egs. 4.10, 4.13, 4.15, and 4.18 are satisfied. Let

. 1 &0 & &0
K =min{ —, ) ) .
M 16Mcxc}’ 8Mc% + &' 8Meuc]
ekr _
Since ¢ < , Egs. 4.10, 4.13, 4.15, and 4.18 are satisfied if r < r* where r* =
In(KA+ 1) . . .
———— . The proof is complete by noting that X (t) = 0,¢ > 7, almost surely in the
event {7, < 00}. (I

Example 4.1 Consider the system
d
dX(t) =(AX @)+ BX(t —r))dt + Z (CJ-X(t) +D;X(t— r)) dW;(t)
j=1
d
=(AX()+ B(X(t —r)—=X®))dt+ Y _ (C;X(t)+ Dj(X(t —r)=X (1)) dW; (1)
=1
! (4.19)
where A=A+ B,C; =C; + Dj. Let

d
ai == inf {xTAx+)" (%(xTajT(i)aj(i)x) - (xTajT(i)x))
j=1

[x|=1
If Y a;v; < 0, then the system (4.19) is exponentially stable when r is small enough.
As a consequence, ifa — b — 0.502 < 0, the scalar system
dX(t) = (aX(t) —b(X(t —r)))dt +oX (@ —r)dW(),

is exponentially almost surely stable. Thus, the system can be stable even that the leading
coefficient a is positive, which seems practically impossible to obtain using Razumikhin’s
method.

Now, consider the case when the perturbations f and g satisfy
0 0

IF @ <% / @) Pdu and [Z@)I < cf / G Pdu.  (4.20)
—-r —r

Theorem 4.2 Suppose that Eqs. 4.20, 4.4, and 4.5 hold. If —A := > aivi < 0, then for
any A < A, there exists an ry > 0 such that any solutions of Eq. 4.2 satisfy

In|X(1)|? ~
S LI

ifr <ry

Proof Letey = A — A. Define

0 _
U@ = / D (s 2.
Then

Uy(¢) = —aU(¢) + Z—°|¢(0)|2e*5’ - z"170|<z5<—r)|2
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and Uy (¢, t) = 0. Consider the function
V(@) =160 + U(9).

Similar to the proof of Theorem 4.1, when r is sufficiently small, r < t*,

10.550(1X (5)I* + U (Xy))
InV(X;) <InV(¢) +/0 (aa(s) — €0))ds /0 XG)E UKy
n /’ X ()T (8(X(5), a(s)) + (X, a(5))dW (s)
0 1X ()12 4+ U(Xy) '
Proceeding in the same manner as in the proof of Theorem 4.1, we can obtain the desired
results. O

t

Example 4.2 Consider the scalar equation

0

—r

dX(1) = (f(X(t),Ot(t)) +/ Ci(s)X (1 +s)ds> dr

. 4.21)

+ (g(xm,a(z)) + /

—r

Dr(s)X (s + t)ds)) dW(1).

Suppose that ||®1|| A ||[P2]| < K. then an application of the Cauchy-Schwarz inequality
yields

0
< Kr/ ¢ (s)2ds, m = 1,2.

—r

0
/ i (s)9(s)ds

—r

As a result, if we have Zies a;v; < 0, where q; is defined by Eq. 4.5, system (4.21) is
stable when r is sufficiently small.

Remark 4.1 Although our conditions for perturbed functions f and g are more restrictive
than Assumption 2.2 in [25] since we require f and g to have some structures in Egs. 4.3 or
4.20, we do not need the global Lipschitz conditions for f and g like [25, Assumption 2.1].
The conditions (4.5) and Y a;v; < 0 are also more relaxed than the conditions

Z(ai + 05/0[2 — aiz)vi <0
ieS
and
XU f i) < aglx? g, i)l < pilxl, 1x T g(x, )] > oylx?]
used in [25].

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Appleby, J., Mao, X.: Stochastic stabilization of functional differential equations. Syst. Control Lett.
54(11), 1069-1081 (2005)

2. Bao, J., Shao, J., Yuan, C.: Approximation of invariant measures for regime-switching diffusions.
Potential Anal. 44(4), 707-727 (2016)

3. Bao, J., Yin, G., Yuan, C.: Asymptotic analysis for functional stochastic differential equations. Springer,
SpringerBriefs in Mathematics (2016)

@ Springer



Stability of Stochastic Functional Differential Equations... 265

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

. Cont, R., Fournié, D.-A.: Change of variable formulas for non-anticipative functionals on path space. J.

Funct. Anal. 259(4), 1043-1072 (2010)

. Cont, R., Fournié, D.-A.: Functional It6 calculus and stochastic integral representation of martingales.

Ann Probab. 41(1), 109-133 (2013)

. Dupire, B.: Functional It6’s calculus, bloomberg portfolio research paper no. 2009-04-FRONTIERS

available at SSRN: http://ssrn.com/abstract=1435551 or https://doi.org/10.2139/ssrn.1435551

. Federico, S., @Ksendal, B.: Optimal stopping of stochastic differential equations with delay driven by

Lévy noise. Potential Anal. 34(2), 181-198 (2011)

. Guo, Q., Mao, X., Yue, R.: Almost sure exponential stability of stochastic differential delay equations.

SIAM J. Control Optim. 54(4), 1919-1933 (2016)

. Khasminskii, R.Z., Zhu, C., Yin, G.: Stability of regime-switching diffusions. Stochastic Process. Appl.

117(8), 1037-1051 (2007)

Kolmanovskii, V.B., Myshkis, A.: Applied theory of functional differential equations. Kluwer Academic
Publishers, Dordrecht (1992)

Mao, X.: Stochastic functional differential equations with Markovian switching. Funct. Differ. Equ.
6(3-4), 375-396 (1999)

Mao, X.: Stability and stabilization of stochastic differential delay equations. IET Control Theory Appl.
1(6), 1551-1566 (2007)

Mao, X.: Stochastic differential equations and their applications, 2nd edn. Horwood, Chichester (2007)
Mao, X., Matasov, A., Piunovskiy, A.: Stochastic differential delay equations with Markovian switching.
Bernoulli6 1, 73-90 (2000)

Mao, X., Yuan, C.: Stochastic differential equations with Markovian Switching. Imperial College Press,
London (2006)

Mohammed, S.-E.A.: Stochastic functional differential equations, Longman Scientific and Technical
(1986)

Nguyen, D.H., Yin, G.: Modeling and analysis of switching diffusion systems: past-dependent switching
with a countable state space. SIAM J. Control Optim. 54(5), 2450-2477 (2016)

Nguyen, D.H., Yin, G.: Recurrence and ergodicity of switching diffusions with past-dependent switching
having a countable state space. Potential Anal. 48, 405-435 (2018)

Nguyen, D.H., Yin, G.: Recurrence for switching diffusion with past dependent switching and countable
state space. Math. Control Relat. Fields 8(3& 4), 879-897 (2018)

Nguyen, D.H., Yin, G.: Stability of regime-switching diffusion systems with discrete states belonging to
a countable set. STAM J. Control Optim 56, 3893-3917 (2018)

Pang, T., Hussain, A.: An application of functional Itd’s formula to stochastic portfolio optimization with
bounded memory. In: Proceedings of 2015 SIAM conference on control and its applications (CT15),
pp- 159-166 (2015)

Scheutzow, M.K.R.: Exponential growth rates for stochastic delay differential equations. Stoch. Dyn.
5(2), 163-174 (2005)

Shaikhet, L.: Lyapunov functionals and stability of stochastic functional differential equations. Springer,
Cham (2013)

Shaikhet, L.: Stability of stochastic hereditary systems with Markov switching. Theory Stoc. Proc. 2(18),
180-184 (1996)

Song, M., Mao, X.: Almost sure exponential stability of hybrid stochastic functional differential
equations. J. Math. Anal. Appl. 458(2), 1390-1408 (2018)

Skorokhod, A.V.: Asymptotic methods in the theory of stochastic differential equations, vol. 78,
American Mathematical Soc. (1989)

Tong, J., Jin, X., Zhang, Z.: Exponential Ergodicity for SDEs driven by «-Stable processes with
Markovian switching in Wasserstein Distances. Potential Anal. 49(4), 503-526 (2018)

Yin, G., Zhu, C.: Hybrid switching diffusions: properties and applications. Springer, New York (2010)
Zhao, X., Deng, F.: New type of stability criteria for stochastic functional differential equations via
Lyapunov functions. SIAM J. Control Optim. 52(4), 2319-2347 (2014)

Zong, X., Yin, G., Wang, L., Li, T., Zhang, J.: Stability of stochastic functional differential systems using
degenerate Lyapunov functionals and applications. Automatica J. IFAC 91, 197-207 (2018)

@ Springer


http://ssrn.com/abstract=1435551
https://doi.org/10.2139/ssrn.1435551

	Stability of Stochastic Functional Differential Equations...
	Abstract
	Introduction
	SFDEs with Regime Switching and Functional Itô Formula
	Almost Sure and Lp Stability Using Functional Itô Formula and Lyapunov Functionals
	Stability of Systems with Small Delay
	References




