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Abstract
This work focuses on almost sure and Lp stability of stochastic functional differential
equations by using Lyapunov functionals with the help of the recently developed Dupire’s
functional Itô formula. Novel conditions for stability, which are different from those in the
existing literature, are given in terms of Lyapunov functionals. It is demonstrated that the
conditions are useful for stochastic stabilization. It is also shown that adding a diffusion term
can stabilize an unstable system of deterministic differential equations with Markov switch-
ing. Furthermore, a robustness result is obtained, which states that the stability of stochastic
differential equations with regime-switching is preserved under delayed perturbations when
the delay is small enough.

Keywords Switching diffusion · Functional stochastic differential equation with
switching · Stability

1 Introduction

Functional differential equations (FDEs) arise from a wide range of applications. As
observed that in real world applications, including queueing systems, biological and eco-
logical systems, finance and economics, control engineering, networked systems, wired and
wireless communications, and other related fields, delays are often unavoidable. Dealing
with such systems, one of the main ingredients is that the underlying dynamics of the sys-
tems have memory and include the past dependence; see e.g., [1, 10, 24, 30]. It has also
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been well recognized that the systems under consideration are often corrupted by noise.
Thus it is necessary to take into account of random perturbations. Because of the press-
ing needs, stochastic functional differential equations (SFDEs) and applications have been
studied extensively in the past decades; see [7, 11, 16, 22] and references therein. Several
types of stability for SFDEs including moment stability, almost sure stability, and stability
in probability have been considered using Razumikhin methods and Lyapunov functionals
in [3, 8, 11, 13, 15, 23, 29] and references therein.

There are several main difficulties in handling stochastic differential delay equations
and stochastic functional differential equations. To begin, the so-called segment process
associated to a stochastic functional equation, belongs to an infinite dimensional space even
if the differential equations and solutions live in a finite dimensional space. For instance,
one considers a stochastic differential equation. Rather than the running time t , suppose that
one can only observe the system at discrete epoch or sampling time �t/t0�t0 for a constant
t0 > 0, where �t/t0� denotes the integer part of t/t0. Then one immediately faces systems
with delays.

Second, in the study of stability of stochastic differential equations (diffusions and
switching diffusions) with an equilibrium point 0 (under Lipschitz condition), an important
observation is: If the solutions do not start at 0, they will never reach 0 in finite time. Thus
we can conveniently construct needed Lyapunov functions. This is no longer true if we con-
sider SFDEs. As a results, unlike for SDEs or switching diffusions in which we can use
Lyapunov functions of the form V = |x|p for p ∈ (0, 1) (e.g., [9, 13]) practical Lyapunov
functions (or functionals) for treating SFDEs are often of quadratic forms, which prevent the
use of a relatively large class of Lyapunov functions (or functionals) to prove Lp or almost
surely stability; see also the classical results on stochastic differential equations [26].

In addition, for stochastic functional differential equations, the solution processes are no
longer Markovian. Although there were many excellent works on stochastic delay equa-
tions, because of the solution processes being non-Markovian due to delay, there had been
virtually no bona fide operators and functional Itô formulas except some general setup in
a Banach space such as [16] before 2009. The setup in a Banach space, though general,
is not suitable to be used in analysis involving functional stochastic differential equations.
Recently, in [6], Dupire generalized the Itô formula to a functional setting by using pathwise
functional derivatives. The Itô formula developed has substantially eased the difficulties
and encouraged development with a wide range of applications. Subsequently, his work was
developed further by [4, 5]. The functional Itô formula enables us to obtain a bona fide oper-
ator for SFDEs and facilitate the use of Lyapunov functionals to a larger class of stochastic
systems with delays, including stochastic functional differential equations with regime-
switching. It is known switching functional stochastic differential equations can describe
complex systems that cannot be modeled with continuous states alone. A distinct feature of
stochastic functional differential equations with regime-switching is that both continuous
dynamics and discrete events are influencing the systems.

In this work, we demonstrate that Dupire’s Functional Itô formula is useful for carry-
ing out stability analysis. With the help of the functional Itô formula, we obtain sufficient
conditions for almost sure and Lp stability of SFDEs with regime switching by using Lya-
punov functionals that are different from the existing literature. For some of the recent
works on switching diffusions, we refer the reader to [2, 15, 17–20, 27, 28] and the refer-
ences therein. We further show that the stability result can be used for stabilizing Markovian
switching ordinary differential equations. This is done by adding a diffusion term to an
unstable ordinary differential equation with Markovian switching, which opens doors for
further consideration of stabilization of a wide variety of systems.
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As a bi-product of the stability, we derive certain robustness results. We demonstrate that
if a stochastic differential equation is stable, then an associate stochastic functional differ-
ential equation is also stable provided the delay is small enough. Similar results have been
given in [8, 25] by estimating the difference between a SFDE and its SDE counterpart in
each finite interval. In contrast, using suitable Lyapunov functionals, we can obtain similar
results with weaker conditions and simpler proofs.

The rest of the paper is organized as follows. Section 2 recalls the notion of stochastic
functional differential equations with regime-switching and introduces the functional Itô
formula. We also use a functional Lyapunov function to prove the existence and uniqueness
of solutions. Section 3 is devoted to new conditions for almost sure stability and Lp stability
of SFDEs with regime switching. Section 4 concentrates on the robustness. We treat almost
sure stability of SFDEs with regime switching when the delayed time is small.

2 SFDEs with Regime Switching and Functional Itô Formula

Let r be a fixed positive number. Denote by C([a, b],Rn0) the set of Rn0 -valued continuous
functions defined on [a, b]. In what follows, we mainly work with C([−r, 0],Rn0), and
simply denote it by C := C([−r, 0],Rn0). For each φ ∈ C, we use the sup norm metric
‖φ‖ = sup{|φ(t)| : t ∈ [−r, 0]}; for t ≥ 0, we use yt to denote the segment function or
memory segment function yt = {y(t + s) : −r ≤ s ≤ 0}. Denote by |x| the Euclidean norm
of x for x ∈ R

n0 . For an m × n matrix A, we use the operator norm

|A| = sup{‖Ax‖ : x ∈ R
n, |x| = 1}.

We work with (�,F , {Ft }t≥0,P), a complete filtered probability space with the filtra-
tion {Ft }t≥0 satisfying the usual condition, i.e., it is increasing and right continuous while
F0 contains all P-null sets. Let W(t) be an Ft -adapted and R

d -valued Brownian motion,
and b(·, ·) : Rn0 ×S → R

n0 , where S := {1, . . . , m0}. Let α(t) be a homogeneous Markov
chain taking value in S , and assume that α(t) is independent of the Brownian motion W(t).
Suppose that the generator of α(t) is Q = (qij )m0×m0 so that for sufficiently small � > 0,

P{α(t + �) = j |α(t) = i} = qij� + o(�) if i 	= j and
P{α(t + �) = i|α(t) = i} = 1 − qii� + o(�).

(2.1)

Assume that α(t) is an irreducible Markov chain with a unique invariant probability
measure ν = (ν1, . . . , νm0). Suppose that a continuous state component X(t) satisfies

dX(t) = f (Xt , α(t))dt + g(Xt , α(t))dW(t). (2.2)

Recall that a strong solution to Eq. 2.2 on [0, T ] with initial data (ξ, i0) with ξ being a
C-valued F0-measurable random variable and i0 ∈ S , is an Ft -adapted process X(t) such
that

• X(t) is continuous with probability 1 (w.p.1).
• X(t) = ξ(t) for t ∈ [−r, 0] and α(0) = i0
• X(t) satisfies (2.2) for all t ∈ [0, T ] w.p.1.
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For a Lyapunov function V : Rn0 ×S 
→ R+, which is twice continuously differentiable
with respect to the first variable, one often works with a map from C × S 
→ R. With a
slight abuse of notation, we write it as

LV (φ, i) = LiV (φ) +
∑

j∈S
qij

[
V (φ(0), j) − V (φ(0), i)

]

where

LiU(φ) = Ux(φ(0))f (φ, i) + 1

2
tr (Uxx(φ(0))A(φ, i))

with U : Rn0 
→ R+ being twice continuously differentiable with respect to its variable and
A(φ, i) = g�(φ, i)g(φ, i).

Remark 2.1 The notation needs some explanation. Note that the variables φ and (φ, i)

in LiU(φ) and LV (φ, i) represent the variables appearing in LiU and LV , respectively,
because the term Xt appears in the coefficient of the system in Eq. 2.2. They do not repre-
sent the variables in functions U and V . The dependence of the variable x (corresponding
the solution of Eq. 2.2) in LiU(φ) and LV (φ, i) is indicated by φ(0).

Now we state the functional Itô formula for our process (see [5] for more details). Let D
be the space of cadlag functions f : [−r, 0] 
→ R

n0 . For φ ∈ D, with h ≥ 0 and y ∈ R
n,

we define horizontal and vertical perturbations as

φh(s) =
{

φ(s + h) if s ∈ [−r, −h],
φ(0) if s ∈ [−h, −0],

and

φy(s) =
{

φ(s) if s ∈ [−r, 0),
φ(0) + y, if s = 0

respectively. Let V : D × S 
→ R. The horizontal and vertical partial derivatives of V at
(φ, i) are defined as

Vt (φ, i) = lim
h→0

V(φh, i) − V(φ, i)

h
, (2.3)

and

∂iV(φ, k) = lim
h→0

V(φhek , i) − V(φ, i)

h
, (2.4)

respectively, if these limits exist. In Eq. 2.4, ek is the standard unit vector in R
n0 whose

k-th component is 1 and other components are 0. Let F be the family of function V(·, ·) :
D × S × R+ 
→ R satisfying that

• V is continuous, that is, for any ε > 0, (φ, i) ∈ D × S , there is a δ > 0 such that
|V(φ, i) − V(φ′, i)| < ε as long as ‖φ − φ′‖ < δ.

• The derivatives Vt , Vx = (∂kV), and Vxx = (∂klV) exist and are continuous.
• V , Vt , Vx = (∂kV) and Vxx = (∂klV) are bounded in each BR := {(φ, i) : ‖φ‖ ≤

R, i ≤ R}, R > 0.

Let V(·, ·) ∈ F, we define the operator

LV(φ, i) = LiV(φ) +
∑

j∈S
qij

[
V(φ, j) − V(φ, i)

]
(2.5)
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where

LiV(φ) =Vt (φ, i) + Vx(φ, i)f (φ(0, i) + 1

2
tr
(
Vxx(φ, i)A(φ, i)

)

=Vt (φ, i) +
n0∑

k=1

fk(φ, i)Vk(φ, i) + 1

2

n0∑

k,l=1

akl(φ, i)Vkl(φ, i).
(2.6)

Again, the variable φ in LiV(φ) and (φ, i) in LV(φ, i) are variables of LiV and LV
respectively. We have the functional Itô formula (see [4, 5])

dV(Xt , α(t)) =
(
LV(Xt , α(t))

)
dt + Vx(Xt , α(t))g(Xt , α(t))dW(t) (2.7)

Remark 2.2 The recently developed functional Itô formula in [6] encouraged subsequent
advances; for example, [4, 5]. Such development proved to be very useful for a wide range
of applications.

To proceed, we compute the Dupire derivatives of some functionals in certain forms.

• Consider

V0(φ, i) = f1(φ(0), i)

where f (·, ·) : Rn × S 
→ R is a function that is twice continuously differentiable in
the first variable. Then

V0t (φ, i) = 0, ∂kV0(φ, i) = ∂f

∂xk

(φ(0), i), ∂klV0(φ, i) = ∂2f

∂xk∂xl

(φ(0), i).

(2.8)
• If

V1(φ, i) =
∫ 0

s

g(u, i)f1(φ(u), i)du

where s ∈ [−r, 0] is a fixed number, f1(·, ·) : R
n × S 
→ R is a function that is

twice continuously differentiable in the first variable and g(·, ·) : R+ × S 
→ R be a
continuously differentiable function in the first variable. Then at (φ, i) ∈ C × S we
have (see [21] for the detailed computations)

V1t (φ, i) = g(0, i)f1(φ(0), i) − g(s, i)f1(φ(s), i) −
∫ 0

s

f1(φ(u), i)dg(u, i),

∂kV1(φ, i) = 0, ∂klV1(φ, i) = 0.

(2.9)

• If

V2(φ, i) =
∫ 0

−r

g2(s, i)μ(ds)

∫ 0

s

g1(u, i)f2(φ(u), i)du

where f2(·, ·) : Rn × S 
→ R is a function that is twice continuously differentiable in
the first variable and g1 be a continuously differentiable function in the first variable
and g2 is continuous. Then applying (2.9) and Fubini’s theorem, we can easily obtain

V2t (φ, i) = g1(0, i)f2(φ(0), i)
∫ 0

−r

g2(s, i)μ(ds)−
∫ 0

−r

g1(s, i)g2(s, i)f2(φ(s), i)μ(ds)

−
∫ 0

−r

g2(s, i)μ(ds)

∫ 0

s

f2(φ(t), i)dg1(t, i),

∂kV2(φ, i) = 0, ∂klV(φ, i) = 0. (2.10)
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Assumption 2.1 Suppose that f and g are locally Lipschitz. That is, for any n > 0, there
exists Kn > 0 such that

|f (φ, i) − f (ψ, i)| + |g(φ, i) − g(ψ, i| ≤ Kn‖φ − ψ‖
given that φ, ψ ∈ C, ‖φ‖ ≤ n, ‖ψ‖ ≤ n.

Theorem 2.1 Suppose there exists a probability measure μ on [−r, 0] and a function V (x)

satisfying c1|x|2 ≤ V (x) ≤ c2|x2| and

LiV (φ) ≤ aV (φ(0)) + b

∫ 0

−r

V (φ(s))μ(ds).

Then there exists a unique solution to Eq. 2.2 for any initial value (φ, i)

Proof The existence and uniqueness of local solutions can be seen in [15] due to the local
Lipschitz continuity of the coefficient. Let V(φ) = V (φ(0)) + b

∫ 0
−r

μ(ds)
∫ 0
s
V (φ(u))du

LV(φ, i) =LiV (φ) + bV (φ(0)) − b

∫ 0

−r

μ(ds)V (φ(s))

≤aV (φ(0)) + b

∫ 0

−r

V (φ(s))μ(ds) + bV (φ(0)) − b

∫ 0

−r

μ(ds)V (φ(s))

≤(a + b)V (φ(0)) ≤ (a + b)V(φ).

Let τn = inf{t ≥ 0 : V(Xt ) ≥ n}, by Itô’s formula, we have

Eφ,iV(Xt∧τn) =V(φ) + Eφ,i

∫ t∧τn

0
LV(Xs, α(s))ds

≤V(φ) + (a + b)Eφ,i

∫ t∧τn

0
V(Xs)ds

≤V(φ) + (a + b)

∫ t

0
Eφ,iV(Xs∧τn)ds.

By Gronwall’s inequality, we have

Eφ,iV(Xt∧τn) ≤ V(φ)e(a+b)t .

As a result,

Pφ,i{V(Xt ) ≤ n} ≤ V(φ)e(a+b)t

n
→ 0 as n → ∞,

which implies that τ∞ > t a.s. for any t > 0. The existence of global solutions is proved.

3 Almost Sure and Lp Stability Using Functional Itô Formula
and Lyapunov Functionals

We start by recall a Razumikin’s type theorem in [11, 29] with the use of Lyapunov
functionals.

Theorem 3.1 (A Razumikhin’s Type Theorem) Let V : Rn0 × S 
→ R+ be a C2 function
satisfying

c1|x|2 ≤ V (x, i) ≤ c2|x|2, ∀x ∈ D for some c1, c2 > 0. (3.1)
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Suppose that there exists λ1 > λ2 > 0 such that

LV (φ, i) ≤ −λ1|φ(0)|2 + λ2

∫ 0

−r

|φ(t)|2μ(dt)

for some probability measure μ in [−r, 0]. Then,

lim
t→∞

lnEφ,i |X(t)|2
t

≤ − λ

1 ∨ c1
(3.2)

for any λ > 0 satisfying that λ2
∫ 0
−r

e−λsμ(ds) + λ ≤ λ1. Since λ1 > λ2, such λ always
exists.

Proof Let

V(φ, i) = V (φ(0), i) + λ2

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)|φ(u)|2(du)

Then, Eq. 2.10 implies

LV(φ, i) = LV (φ, i) + λ2|φ(0)|2
∫ 0

−r

e−λsμ(ds) − λ2

∫ 0

−r

|φ(s)|2μ(ds) − λλ2

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)|φ(u)|2(du)

≤ −
(

λ1 − λ2

∫ 0

−r

e−λsμ(ds)

)
|φ(0)|2 − λλ2

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)|φ(u)|2(du)

≤ − λ

c1
V (φ(0)) − λλ2

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)|φ(u)|2(du)

≤ − λ

1 ∨ c1
V(φ, i).

Then, standard arguments of Lyapunov methods show that

lim
t→∞

lnEφ,iV(Xt , α(t))

t
≤ − λ

1 ∨ c1
,

which together with Eq. 3.1 leads to Eq. 3.2.

Razumikhin’s methods for SFDEs with regime-switching usually require uniform (in
switching states) estimates forLV (φ, i), that seems to be very restrictive (see e.g., [11, 14]).
The following theorem allows us to relax this condition so as to have different estimates in
different switching states.

Theorem 3.2 Let V : Rn0 
→ R+ be a C2 function satisfying

c1|x|2 ≤ V (x) ≤ c2|x|2, ∀ x ∈ R
n0 for some c1, c2 > 0. (3.3)

Suppose that there exist γ > 0, b ≥ 0, a(i) ∈ R, p0 ∈ (0, 1
2 ), and a probability measure

μ on [−r, 0] such that

LiV (φ)−
(
1
2 − p0

)
|Vx(φ(0))g(φ, i)|2

V (φ(0)) + b
∫ 0
−r

μ(ds)
∫ 0
s
eγ (u−s)V (φ(u))(du)

≤ a(i)V (φ(0))+b

∫ 0

−r

V (φ(t))μ(dt),

(3.4)
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for φ 	≡ 0 and that

− � :=
∑

i∈M

(
(−γ ) ∨

(
a(i) + b

∫ 0

−r

e−γ tμ(dt)

))
νi < 0. (3.5)

Then

Pφ,i

{
lim sup
t→∞

ln |X(t)|
t

≤ −�

2

}
= 1, (φ, i) ∈ C × S, (3.6)

and for sufficiently small p > 0,

lim sup
t→∞

Eφ,iV
p(X(t))

t
≤ −p�

2
, (φ, i) ∈ C × S . (3.7)

Remark 3.1 Another distinctive feature of Theorem 3.2 is the appearance of the nega-

tive term −
(
1
2 − p0

) |Vx(φ(0))g(φ,i)|2
V (φ(0))+b

∫ 0
−r μ(ds)

∫ 0
s eγ (s−u)V (φ(u))(du)

in Eq. 3.4, which is normally

not shown in the traditional stability analysis. Not only does it improve existing stability
conditions but it also indicates that the diffusion term can stabilize the system which, in
practice, is not shown using Lyapunov functions and Razumikhin’s methods. This fact will
be illustrated in Example 3.3.

Proof Let

V(φ) = V (φ(0)) + b

∫ 0

−r

μ(ds)

∫ 0

s

eγ (u−s)V (φ(u))(du).

By the functional Itô formula, we have for Xt 	≡ 0 that

dV(Xt ) =
(
Lα(t)V (X(t)) − γ b

∫ 0

−r

μ(ds)

∫ 0

s

eγ (u−s)V (Xt (u))(du)

+b

∫ 0

−r

e−γ sμ(ds)V (Xt (s)) − b

∫ 0

−r

V (Xt (s))dμ(s)

)
dt

+Vx(X(t))g(Xt , α(t))dW(t),

which leads to

d lnV(Xt ) = 1

V(Xt )

(
Lα(t)V (Xt ) + γ b

∫ 0

−r

μ(ds)

∫ 0

s

eγ (u−s)V (Xt (u))(du)

+b

∫ 0

−r

e−γ sμ(ds)V (X(t)) − b

∫ 0

−r

V (Xt (s))dμ(s)

)
dt

−|Vx(X(t))g(Xt , α(t))|2
2V2(Xt )

dt + Vx(X(t))g(Xt , α(t))dW(t)

V(Xt )

≤
[(

a(α(t)) + b

∫ 0

−r

e−γ tμ(dt)

)
∨ (−γ )

]
dt

−p0
|Vx(X(t))g(Xt , α(t))|2

V2(Xt )
dt + Vx(X(t))g(Xt , α(t))dW(t)

V(Xt )
. (3.8)
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Let τ ∗ = inf{t : Xt ≡ 0}. By the exponential martingale inequality (see e.g., [12]), we
have

P

{∫ t

0

Vx(X(t))g(Xs, α(t))dW(s)

V(Xs)
− p0

∫ t

0

|Vx(X(t))g(Xs, α(s))|2
2V2(Xs)

ds

≥ ln n

p0
, for some t ∈ [0, τ ∗ ∧ n)

}
≤ n−2.

Since
∑∞

n=1 n−2 < ∞, it follows from the Borel-Cantelli lemma that with probability 1,
there exists a random integer n∗ = n∗(ω) such that for any k > n∗,
∫ t

0

Vx(X(s))g(Xs, α(s))dW(s)

V(Xs)
−p0

∫ t

0

|Vx(X(s))g(Xs))|2
2V2(Xs)

ds <
ln k

p0
for all t ∈ [0, k∧τ ∗).

As a result, for almost every ω ∈ {τ ∗ = ∞}, we have
∫ t

0

Vx(X(s))g(Xs, α(s))dW(s)

V(X(s))
−p0

∫ t

0

|Vx(X(s))g(Xs)|2
2V2(Xs)

ds <
ln k

p0
∀t ∈ [k−1, k), k>n∗.

(3.9)
Since limk→∞ ln k

k−1 = 0, we deduce from Eq. 3.8 that

lim sup
t→∞

1

t

[∫ t

0

Vx(X(s))g(Xs, α(s))dW(s)

V(Xs)
− p0

∫ t

0

|Vx(X(s))g(Xs, α(s))|2
2V2(Xs)

ds

]
≤ 0

(3.10)
for almost every ω ∈ {τ ∗ = ∞}. Combining (3.8) and (3.10) yields

lim sup
t→∞

lnV(X(t))

t
≤ lim sup

t→∞
1

t

∫ t

0
(−γ ) ∨

(
a(α(s)) + b

∫ 0

−r

e−γ uμ(du)

)
ds

≤
∑

i∈S
ã(i)νi for almost every ω ∈ {τ ∗ = ∞},

(3.11)

where

ã(i) = (−γ ) ∨
(

a(i) + b

∫ 0

−r

e−γ uμ(du)

)
.

Because of the uniqueness of the solution, X(t) = 0, t ≥ τ ∗ for almost all ω ∈ {τ ∗ < ∞}.
This together with Eq. 3.11 proves (3.6).

Similar to Eq. 3.8, we can show for Vp(φ) = (V(φ))p that

LiVp(φ) ≤ ã(i)pVp(φ) for φ 	= 0, p ∈ (0, p0).

Since
∑

i∈S (� + ã(i)) νi = 0 (due to Eq. 3.5), an application of the Fredholm alternative
(see e.g., [9]) is the existence of γi such that

∑

j∈S
qij γj = − (� + ã(i)) .

Let p ∈ (0, p0) be sufficiently small such that

2pγi < 1, and pγj ã(i) <
�

2
, for i ∈ S .

We have ∑

j∈S
qij (1 − pγj ) = −p

∑

j∈S
qij γj = −pã(i), i ∈ S .
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Let U(φ, i) = (1 − pγi)Vp(φ). We have that

LU(φ, i) =(1 − pγj )LiVp(φ) + Vp(φ)
∑

j∈S
qij (1 − pγj )

≤p(1 − pγj )̃a(i)LiVp(φ) + Vp(φ)
∑

j∈S
qij (1 − pγj )

≤ − p�Vp(φ) − p2γj ã(i)Vp(φ)

≤ − p�

2
Vp(φ) ≤ −p�

2
Up(φ), φ 	= 0.

Then, standard arguments show that

lim sup
t→∞

lnEφ,iU(Xt , α(t))

t
≤ −p�

2
.

Consequently, Eq. 3.7 follows.

Example 3.1 Consider a scalar switching system

dX(t) =
⎛

⎝a(α(t))X(t) +
m∑

j=1

bX(t − rj )

⎞

⎠ dt, for rj ≤ r .

Let V (x) = x2. Then

LiV (φ) = 2a(i)(φ(0))2 + 2a(i)bφ(0)
m∑

j=1

φ(−rj )

≤ (2a(i) + a2(i))(φ(0))2 + b2m

m∑

j=1

(φ(−rj ))
2

≤ (2a(i) + a2(i))(φ(0))2 + b2m2
∫ 0

−r

(φ(s))2μ(ds),

(3.12)

where μ(·) = 1

m

∑m
j=1 δj (·) and δj is the Dirac measure with mass at −rj . As a result, a

condition for almost sure stability is −γ = inf{2a(i) + a2(i) + b2m2 : i ∈ S} < 0 and

∑

i∈S
(2a(i) + a2(i))νi + b2m2

∫ 0

−r

e−γ uμ(du) =
∑

i∈S
(2a(i) + a2(i))νi + b2m

m∑

j=1

eγ rj < 0.

Example 3.2 Consider a linear stochastic delay differential equation with regime-switching
of the form:

dX(t) = A(α(t))X(t)dt +
d∑

j=1

Cj (α(t))X(t − r)dWj . (3.13)

Let �(i) =∑d
j=1 C�

j (i)Cj (i). For a symmetric matrix D ∈ R
n0×n0 , let

�M(D) = sup{x�Dx : x ∈ R
n0 , |x| = 1}.

Let

a =
∑

i∈S

(
�M(A�(i) + A(i))

)
ν(i), b =

∑

i∈S

(
�M(�(i))

)2
ν(i),
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and γ = − inf
{
�M(A�(i) + A(i)) : i ∈ S

}
. We show that, the condition for almost sure

stability and Lp-stability with a small p of the system is

a < 0, and a2 > beγ r . (3.14)

Indeed, under that condition, γ > 0 (since a < 0) and we can find c > 0 such that

c2 + ac + beγ r

4
< 0 or equivalently,

a + beγ r

4c
≤ −c. (3.15)

We have the estimate that

x��(i)y ≤�M(�(i))

4c
x��(i)x + c

�M(�(i))
y��(i)y

≤
(
�M(�(i))

)2

4c
|x|2 + c|y|2

Let V (x) = |x|2. Then we have
LiV (φ) =(φ(0))�(A�(i) + A(i))φ(0) + φ(−r)�(i)(φ(−r))�

≤(φ(0))�(A�(i) + A(i))φ(0) +
(
�M(�(i))

)2

4c
|φ(0)|2 + c|φ(−r)|2

≤
(

�M(A�(i) + A(i)) +
(
�M(�(i))

)2

4c

)
|φ(0)|2 + c|φ(−r)|2

In view of Theorem 3.2 and Eqs. 3.15 and 3.13 is exponentially stable almost surely under
(3.14).

Example 3.3 Let r < 1
4 and 0 < δ < 1

2 and consider the scalar equation without switching.

dX(t) = X(t)dt + 2

(
X2(t) + δ

∫ 0

−r

|X(t + s)|2ds

)− 1
2

dW(t).

Consider V (x) = x2. We have LV (φ) = 2φ2(0) + 4(φ2(0) + δ
∫ 0
−r

φ2(s)ds). It is easy to
show that there are no λ1 > λ2 ≥ 0 and an probability measure μ such that

LV (φ) ≤ −λ1φ
2(0) + λ2

∫ 0

−r

φ(s)μ(ds).

Thus, Razumikhin’s method does not work for the Lyapunov function V (x) = x2 in this
example.

On the other hand, choose γ > 0 to be determined. We have

φ2(0)

(
φ2(0) + δ

∫ 0

−r

φ2(s)ds

)

φ2(0) + 4δ
∫ 0
−r

ds
∫ 0
s
eγ (s−u)|φ(u)|2du

=φ2(0)
φ2(0) + δ

∫ 0
−r

φ2(s)ds

φ2(0) + 4δ
∫ 0
−r

ds
∫ 0
s
eγ (u−s)φ2(u)du

≥φ2(0)
φ2(0) + δ

∫ 0
−r

φ2(s)ds

φ2(0) + 4rδeγ r
∫ 0
−r

|φ(s)|2ds

≥φ2(0) if 4reγ r < 1.
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As a result,

LV (φ)−(
1

2
− p0)

16φ2(0)
(
4(φ2(0) + δ

∫ 0
−r

φ2(s)ds)
)

φ2(0) + 4δ
∫ 0
−r

ds
∫ 0
s
eγ (s−u)|φ(u)|2du

≤ − (8 − 2p0)φ
2(0) + 6φ2(0) + 4δ

∫ 0

−r

φ2(s)ds

≤ − (2 − 2p0)φ
2(0) + 4δ

∫ 0

−r

φ2(s)ds if 4reγ r < 1.

Since 4δ < 2, and limγ→0
eγ r−1

γ
= 1, we can choose γ and p0 sufficiently small that

2 − 2p0 − 4δ
∫ 0

−r

e−γ sds = 2 − 2p0 − 4δ
eγ r − 1

γ
< 0 and 4reγ r < 1.

With such p0 and γ , the system is exponentially stable with probability 1 because
Eqs. 3.4 and 3.5 are satisfied with b = 4δ and a = 2− 2p0. Note that without the diffusion
term, the system is unstable. Thus, our theorem shows that the diffusion term can stabilize
the system, which seems to be impossible to obtain using the Lyapunov function approach.

4 Stability of Systems with Small Delay

This section addresses the following equation. Suppose we have a SFDE with regime
switching

dX(t) = f̂ (Xt (t), α(t))dt + ĝ(Xt , α(t))dW(t). (4.1)

Suppose further that the system

dX(t) = f̂ (φc(X(t)), α(t))dt + ĝ(φc(Xt ), α(t))dW(t).

is stable where φc(X(t)) satisfies φc(X(t))(s) ≡ X(t), s ∈ [−r, 0]. An immediate question
comes up. Is Eq. 4.1 stable when r is sufficiently small? For instance, if the scalar equation

dX(t) =
(
a(α(t)) − b(α(t)

)
X(t)dt + σ(α(t))X(t)dW(t)

is almost surely stable, we expect that when τ is sufficiently small,

dX(t) = (a(α(t))X(t) − b(α(t)X(t − r))dt + σ(α(t))X(t)dW(t)

is almost surely stable.
We rewrite Eq. 4.1 in the form

dX(t) = (f (X(t), α(t)) + f̃ (Xt , α(t))
)
dt+(g(X(t), α(t)) + g̃(Xt , α(t))) dW(t), (4.2)

where f̃ and g̃ satisfy

|f̃ (φ)|2 ≤ c2
f̃

∫ 0

−r

μ(ds)|φ(0)−φ(u)|2du and |̃g(φ)|2 ≤ c2g̃

∫ 0

−r

μ(ds)|φ(0)−φ(u)|2du,

(4.3)
for some probability measure μ(·).

Suppose that f (x, i) and g(x, i) are locally Lipschitz and

|f �(x, i)| ≤ cf |x|, and |g(x, i)| ≤ cg|x|. (4.4)

ai = sup
x 	=0

{
2x�f (x, i) + tr(g�(x, i)g(x, i)) − 2|x�g|2

|x|2
}

< ∞ (4.5)
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We impose the condition
∑

i∈S aiνi < 0 for almost sure stability of the SDE with regime
switching

dX(t) = f (X(t), α(t))dt + g(X(t), α(t))dW(t). (4.6)

It can be shown in the proof of Theorem 4.1 (or see [9, 20]) that if
∑

i∈S aiνi < 0, then
Eq. 4.6 is exponentially stable almost surely.

Theorem 4.1 Suppose that Eqs. 4.3, 4.4, and 4.5 hold. If −� := ∑
i∈S aiνi < 0, then for

any �̃ < �, there exists an r∗ > 0 such that any solutions of Eq. 4.2 satisfy

Pφ,i

{
ln |X(t)|2

t
≤ −�̃

}
= 1

if r ≤ r∗.

Proof Let ctr be a universal constant such that trG�G̃ ≤ ctr|G||G| for any G, G̃ ∈ R
n0×d .

Let a = −mini∈S{ai} > 0. Let ε0 = � − �̃ and M > 0, λ > 0 given by

8c̃2f + 8ctrcgcg̃

ε0
+ 2ctrc

2
g̃ + c2f + 6c2g̃ + a + ε0

16
= M; λ = a + ε0

16
+ ε0

16
2c2g + 2. (4.7)

Consider the Lyapunov functional

U(φ) = M

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)|φ(0) − φ(u)|2du.

Computing either directly from the definition or by expanding |φ(0) − φ(u)|2 and then
using Eq. 2.10 and Itô’s formula for a product, we can obtain the Dupire derivatives ofU(φ),
which are given as follows

Ut(φ) = −M

∫ 0

−r

|φ(0) − φ(s)|2μ(ds) − λU(φ).

Uxi
(φ) = 2

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)(φi(0) − φi(u))du, i = 1, . . . , n0.

Uxixi
(φ) = 2φi(0)

∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)du = 2cλ,rφi(0); Uxixj
(φ) = 0 for i 	= j,

where

cλ,r :=
∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)du ≤ exp(λr) − 1

λ
→ 0 as r → 0.

By the Cauchy-Schwarz inequality, we obtain the estimate

|Ux |2 =4M2
n0∑

i=1

(∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)(φi(0) − φi(u))du

)2

≤4M2
∫ 0

−r

μ(ds)

n0∑

i=1

(∫ 0

s

eλ(u−s)(φi(0) − φi(u))du

)2

≤4M2
∫ 0

−r

μ(ds)

∫ 0

s

eλ(u−s)du

∫ 0

s

eλ(u−s)

n0∑

i=1

(φi(0) − φi(u))2du

≤4Mcλ,rU(φ).

(4.8)
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Letting V(φ) = |φ(0)|2 + U(φ), we have

LiV = 2x�(f +f̃ )+tr[(g + g̃)�(g + g̃)−MQ−λU+Ux(f + f̃ ) + Mcλ,r tr[(g + g̃)�(g + g̃)]
|x|2 + U

−|(2x� + Ux)(g + g̃)|2
2(|x|2 + U)2

= 2x�f + tr(g�g) − aQ − aU + ε0|x|2
|x|2 + U

− |2x�g|2
2|x|2(|x|2 + U)

+ |2x�g|2
2|x|2(|x|2 + U)

−|(2x� + Ux)(g + g̃)|2
2(|x|2 + U)2

+ −ε0|x|2 − (M − a)Q − (λ − a)U

|x|2 + U

+2x�f̃ + Mcλ,r tr[g�g] + (1 + Mcλ,r )(tr[2g�g̃ + g̃�g̃]) + Ux(f + f̃ )

|x|2 + U
.

In the formula, x = φ(0), Q = ∫ 0−r
|φ(0) − φ(s)|2μ(ds), the variables (x, i) = (φ(0, i)

in f, g and the variables (φ, i) in f̃ , g̃, Ux, U are dropped for sake of notational simplicity.
If x = 0 and U 	= 0, then f (x, i) = 0 and g(x, i) = 0. We have

LiV = (1 + Mcλ,r ) tr(g̃�g) − MQ − λU

U
− |Uxg̃|2

2U2

≤ (1 + Mcλ,r )ctrc
2
g̃Q − MQ − λU

U
− |Uxg̃|2

2U2

≤ − a − |Uxg̃|2
2U2

,

(4.9)

if

Mcλ,r < 1. (4.10)

If x 	= 0, we have

LiV =2x�f + tr[g�g) − (a + ε0
16 )Q − (a + ε0

16 )U + ε0|x|2
|x|2 + U

− |2x�g|2
2|x|2(|x|2 + U)

+ |2x�g|2
2|x|2(|x|2 + U)

− |(2x� + Ux)(g + g̃)|2
2(|x|2 + U)2

−
ε0
16 (|x|2 + Q + U)

|x|2 + U
−

15ε0
16 |x|2 + (M − a)Q + (λ − a)U

|x|2 + U

+ 2x�f̃ + Mcλ,r tr[g�g] + (1 + Mcλ,r )(tr[2g�g̃ + g̃�g̃]) + Ux(f + f̃ )

|x|2 + U
.

(4.11)
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We have the following estimates:

2|x�f̃ | ≤ ε1|x|2 + ε−1
1 |f̃ |2 ≤ ε0

8
|x|2 +

8c2
f̃

ε0
|Q|,

Mcλ,r tr[g�g] ≤ Mctrcλ,rc
2
g|x|2 ≤ ε0

16
|x|2,

(1 + Mcλ,r )(tr[2g�g̃) ≤ 4 tr[g�g̃] ≤ 4ctr|g||̃g| ≤ ε0

8
|x|2 + 8ctrcgcg̃

ε0
Q,

(1 + Mcλ,r ) tr[̃g�g̃] ≤ 2ctrc
2
g̃Q,

Uxf ≤ ε0

8
|x|2 + 2c2f |Ux |2

ε0
≤ ε0

8
|x|2 + 8Mc2f cλ,rU

ε0
,

Uxf̃ ≤ |f̃ | + |Ux |2
4

≤ c2
f̃
Q + Mcλ,rU,

(4.12)

if

Mctrcλ,rc
2
g ≤ ε0

16
, and Mcλ,r ≤ 1. (4.13)

Then Eq. 4.12 and 4.7 lead to

−ε0|x|2 − (M − a)Q − (λ − a)U

|x|2 + U

+ 2x�f̃ + Mcλ,r tr[g�g] + (1 + Mcλ,r )(tr[2g�g̃ + g̃�g̃]) + Ux(f + f̃ )

|x|2 + U

≤ −0.5ε0|x|2 − 6c2g̃Q − (2c2g + 1)U

|x|2 + U
(4.14)

if
8Mc2f cλ,r

ε0
+ cλ,r ≤ 1, and 8Mctrcλ,rc

2
g ≤ ε0. (4.15)

As a result,

|2x�g|2
2|x|2(|x|2 + U)

− |(2x� + Ux)(g + g̃)|2
2(|x|2 + U)2

=|2x�g|2 − |(2x� + Ux)(g + g̃)|2
2(|x|2 + U)2

+ |2x�g|2U
2|x|2(|x|2 + U)2

≤|2x�g̃ + Ux(g + g̃)|2
2(|x|2 + U)2

+ |2x�g|2U
2|x|2(|x|2 + U)2

≤3|2x�g̃|2 + 3|Uxg|2 + 3|Uxg̃|2
2(|x|2 + U)2

+ 4c2gU

2(|x|2 + U)2

≤6c2g̃|x|2Q + 6Mcλ,rc
2
g|x|2U + 6Mcλ,rc

2
g̃QU

(|x|2 + U)2
+ 4c2gU

2(|x|2 + U)2

≤6c2g̃|x|2Q + 6Mcλ,rc
2
g|x|2U + 6Mcλ,rc

2
g̃QU

(|x|2 + U)2
+ 2c2gU

(|x|2 + U)
,

(4.16)
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which implies

−0.5ε0|x|2 − 6c2g̃Q − (2c2g + 1)U

|x|2 + U
+ |2x�g|2

2|x|2(|x|2 + U)
− |(2x� + Ux)(g + g̃)|2

2(|x|2 + U)2

≤
−
(
0.5ε0|x|2 + 6c2g̃Q + U

)
(|x|2 + U) +

(
6c2g̃ |x|2Q + 6Mcλ,r c

2
g |x|2U + 6Mcλ,r c

2
g̃QU

)

(|x|2 + U)2

≤
−
(
0.5ε0 − 6Mc2gcλ,r

)
|x|2U − 6(c2g̃ − Mcλ,r c

2
g̃ )QU

(|x|2 + U)2

≤ 0,
(4.17)

if
0.5ε0 ≥ 6Mc2gcλ,r and 1 ≥ Mcλ,r . (4.18)

Applying Eqs. 4.14 and 4.17) to Eq. 4.11 and then combining with Eq. 4.9, we have

Li lnV ≤ (ai − ε0) − ε0(|x|2 + Q + U)

16(|x|2 + U)
.

As a result, for t < τ∗ := inf{s ≥ 0 : V(Xs) = 0}, we have

lnV(Xt ) = lnV(X0) +
∫ t

0
Lα(s) lnV (Xs, α(s))ds + H(t)

≤
∫ t

0
(a(α(s)) + ε0)ds −

∫ t

0

ε0(|X(s)|2 + Q(Xs) + U(Xs))

16(|X(s)|2 + U(Xs))
ds + H(t),

where

H(t) :=
∫ t

0

(2X(s)� + Ux(Xs))(g(Xs, i) + g̃(Xs, i))dW(s)

|X(s)|2 + U(Xs)
.

By virtue of Eqs. 4.3, 4.4, and 4.8, we have the following inequality for the quadratic
variation of H(t)
∫ t

0

|(2X(s)�+Ux(Xs))(g(Xs, i)+g̃(Xs, i))|2
(|X(s)|2+U(Xs))2

≤C

∫ t

0

|X(s)|2+Q(Xs)+U(Xs)

|X(s)|2+U(Xs)
ds, t <τ∗

for some constant C. As a result, we can apply the exponential martingale inequality and
proceed in the same manner as in the proof of Theorem 3.2 to show that

lim
t→∞

H(t)

t
− 1

t

∫ t

0

ε0|X(s)|2 + 6c2g̃Q(Xs) + (2c2g + 1)U(Xs)

16(|X(s)|2 + U(Xs))
ds = 0

for almost every ω ∈ {τ∗ = ∞}, which implies that

lim
t→∞

1

t

∫ t

0
(a(α(s)) + ε0)ds =

∑
(a(i) + ε0)νi = −�̃for almost every ω ∈ {τ∗ = ∞}.

Thus we have for almost every ω ∈ {τ∗ = ∞} that

lim sup
t→∞

lnV(X(t)

t
≤
∑

(a(i) + ε0)νi = −�̃.
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if Eqs. 4.10, 4.13, 4.15, and 4.18 are satisfied. Let

K = min

{
1

M
,

ε0

16Mctrc2g
,

ε

8Mc2f + ε
,

ε0

8Mctrc2g

}
.

Since cλ ≤ eλr − 1

λ
, Eqs. 4.10, 4.13, 4.15, and 4.18 are satisfied if r ≤ r∗ where r∗ =

ln(Kλ + 1)

λ
. The proof is complete by noting that X(t) = 0, t ≥ τ∗ almost surely in the

event {τ∗ < ∞}.

Example 4.1 Consider the system

dX(t) = (AX(t) + BX(t − r)) dt +
d∑

j=1

(
CjX(t) + DjX(t − r)

)
dWj (t)

= (AX(t) + B(X(t − r)−X(t))
)
dt +

d∑

j=1

(
CjX(t) + Dj(X(t − r)−X(t))

)
dWj (t)

(4.19)
where A = A + B, Cj = Cj + Dj . Let

ai := inf|x|=1

⎧
⎨

⎩x�Ax +
d∑

j=1

(
1

2
(x�σ�

j (i)σj (i)x) − (x�σ�
j (i)x)

)⎫⎬

⎭ .

If
∑

aiνi < 0, then the system (4.19) is exponentially stable when r is small enough.
As a consequence, if a − b − 0.5σ 2 < 0, the scalar system

dX(t) = (aX(t) − b(X(t − r)))dt + σX(t − r)dW(t),

is exponentially almost surely stable. Thus, the system can be stable even that the leading
coefficient a is positive, which seems practically impossible to obtain using Razumikhin’s
method.

Now, consider the case when the perturbations f̃ and g̃ satisfy

|f̃ (φ)|2 ≤ c2
f̃

∫ 0

−r

|φ(u)|2du and |̃g(φ)|2 ≤ c2g̃

∫ 0

−r

|φ(u)|2du. (4.20)

Theorem 4.2 Suppose that Eqs. 4.20, 4.4, and 4.5 hold. If −� := ∑
aiνi < 0, then for

any �̃ < �, there exists an r∗ > 0 such that any solutions of Eq. 4.2 satisfy

Pφ,i

{
ln |X(t)|2

t
≤ −�̃

}
= 1

if r ≤ r∗.

Proof Let ε0 = � − �̃. Define

U(φ) = ε0

4

∫ 0

−r

ea(s+r)|φ(s)|2ds.

Then
Ut(φ) = −aU(φ) + ε0

4
|φ(0)|2e−ar − ε0

4
|φ(−r)|2
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and Ux(φ, t) = 0. Consider the function

V(φ) = |φ(0)|2 + U(φ).

Similar to the proof of Theorem 4.1, when r is sufficiently small, t < τ ∗,

lnV(Xt ) ≤ lnV(φ) +
∫ t

0
(aα(s) − ε0))ds −

∫ t

0

0.5ε0(|X(s)|2 + U(Xs))

|X(s)|2 + U(Xs)

+
∫ t

0

X(s)�(g(X(s), α(s)) + g(Xs, α(s)))dW(s)

|X(s)|2 + U(Xs)
.

Proceeding in the same manner as in the proof of Theorem 4.1, we can obtain the desired
results.

Example 4.2 Consider the scalar equation

dX(t) =
(

f (X(t), α(t)) +
∫ 0

−r

�1(s)X(t + s)ds

)
dt

+
(

g(X(t), α(t)) +
∫ 0

−r

�2(s)X(s + t)ds)

)
dW(t).

(4.21)

Suppose that ‖�1‖ ∧ ‖�2‖ ≤ K . then an application of the Cauchy-Schwarz inequality
yields ∣∣∣∣∣

∫ 0

−r

�m(s)φ(s)ds

∣∣∣∣∣

2

≤ Kr

∫ 0

−r

|φ(s)|2ds,m = 1, 2.

As a result, if we have
∑

i∈S aiνi < 0, where ai is defined by Eq. 4.5, system (4.21) is
stable when r is sufficiently small.

Remark 4.1 Although our conditions for perturbed functions f̃ and g̃ are more restrictive
than Assumption 2.2 in [25] since we require f̃ and g̃ to have some structures in Eqs. 4.3 or
4.20, we do not need the global Lipschitz conditions for f and g like [25, Assumption 2.1].
The conditions (4.5) and

∑
aiνi < 0 are also more relaxed than the conditions
∑

i∈S
(αi + 05ρ2

i − σ 2
i )νi < 0

and
x�f (x, i) ≤ αi |x|2, |g(x, i)| ≤ ρi |x|, |x�g(x, i)| ≥ σi |x2|

used in [25].
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